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A Deep Adaptation Network for Speech
Enhancement: Combining a Relativistic
Discriminator With Multi-Kernel
Maximum Mean Discrepancy

Jiaming Cheng ““, Ruiyu Liang

Abstract—In deep-learning-based speech enhancement (SE) sys-
tems, trained models are often used to handle unseen noise types
and language environments in real-life scenarios. However, since
production environments differ from training conditions, mis-
match problems arise that may cause a serious decrease in the
performance of an SE system. In this study, a domain adaptive
method combining two adaptation strategies is proposed to im-
prove the generalization of unlabeled noisy speech. In the proposed
encoder-decoder-based SE framework, a domain discriminator
and a domain confusion adaptation layer are introduced to conduct
adversarial training. The model has two main innovations. First,
the algorithm optimizes adversarial training by introducing a rel-
ativistic discriminator that relies on relative values by applying the
difference, thus avoiding possible bias and better reflecting domain
differences. Second, the multi-kernel maximum mean discrepancy
(MK-MMD) between domains is taken as the regularization term
of the domain adversarial loss, thereby further decreasing the
edge distribution distance between domains. The proposed model
improves the adaptability to unseen noises by encouraging the
feature encoder to generate domain-invariant features. The model
was evaluated using cross-noise and cross-language-and-noise ex-
periments, and the results show that the proposed method provides
considerable improvements over the baseline without an adapta-
tion in the perceptual evaluation of speech quality (PESQ), the short
time objective intelligibility (STOI) and the frequency-weighted
signal-to-noise ratio (FWSNR).
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I. INTRODUCTION

PEECH signals are easily distorted by background noises
S in our daily acoustic environment, thus influencing people’s
hearing and call quality. The distortion caused by background
noises also introduce effects in many speech-related tasks (such
as automatic speech recognition and speaker recognition) [1].
Therefore, the study of speech enhancement (SE), which aims to
ensure the quality and intelligibility of speech while suppressing
background noises, is particularly important. The research of SE
has been developed for decades and has been a trending topic in
the field of speech processing. It is typically challenging when
the speech and noise are captured by a single microphone at the
same time. This study focuses on this monaural SE task.

Classic single-channel noise suppressors are based on statis-
tical signal processing and usually operate on the magnitude
spectrogram of noisy speech, including spectral subtraction [2],
Wiener filtering, the minimum mean square error (MMSE) [3]
method, the minima controlled recursive averaging (MCRA)
noise estimation algorithm [4] and its improved version [5].
These techniques can adapt to the noise level and perform well
with quasi-stationary noises but have limitations when address-
ing non-stationary noise in real acoustic scenes [6]. Addition-
ally, many unreasonable assumptions and empirical parameter
settings in such algorithms limit their performances.

With the development of computer technology, supervised
SE methods have been inspired by new advances in computa-
tional auditory scene analysis (CASA) [7] and machine learn-
ing, such as non-negative matrix factorization (NMF) [8], [9].
These techniques suppress noise by estimating clean speech
at each time-frequency (T-F) point. In recent years, with the
significant development of deep learning algorithms, data-driven
SE methods have received increasing attention. In 2013, Wang
extracted acoustic features from the sub-band signals in each
time-frequency unit and used them as input to a deep neural
network (DNN) to learn more distinguishable features [10].
Xu et al. [11] used a DNN based on the restricted Boltzmann
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machine to reach a regression mapping, proven to be better than
traditional SE methods. A SE method based on a long-short-term
recurrent neural network (LSTM-RNN) was proposed in [12],
which used the recursive structure between frames to capture
long-term contextual information. In addition, convolutional
neural networks (CNNs) [13] and generative adversarial net-
works (GANSs) [14], [15] have also been applied to SE tasks and
achieved good performances.

However, one of the key problems of data-driven SE algo-
rithms is their generalization to untrained conditions. Due to
the complexity of a real acoustic environment, the acoustic
environment of an actual scene may be quite different from
the acoustic environment of the training corpus. For the SE
task, language type [16], noise type [17], signal-to-noise ratio
(SNR) [11] and speaker identity [18] are the main issues that
cause mismatched conditions. Unseen acoustic conditions can
lead to an under-adaptation in supervised SE models, which
severely degrades the quality of enhanced speech. A common
way to solve the generalization problem is to expand the training
data, that is, to train the model with as many acoustic conditions
as possible. However, for complex real-world environments, it
is impractical to cover an infinite amount of potential noise and
language types. Further, the level of noise in the environment
is constantly changing. Hence, the mismatch problem of super-
vised SE models always exists.

Since it is difficult to obtain clean speech corresponding to
noisy speech in actual acoustic scenes, we propose to use a
domain adaptive transfer learning method to solve the general-
ization problem. Under such circumstances, the source domain
is set to have many pairs of noisy speech and clean references for
training. However, only noisy speech with unseen noise types
can be obtained in the target domain. Domain adaptation meth-
ods enable knowledge transfer from a labeled source domain
to an unlabeled target domain via exploring domain-invariant
structures that bridge different domains under substantial distri-
butional discrepancy [19], [20]. The idea of domain adaptation
has been widely used in the field of computer vision [21], [22],
but it is not common in regard to the research of SE. Inspired by
the research in [23], we propose a new domain adaptation frame-
work for SE that combines two domain adaptation strategies.
One of them is to build an isomorphism-inducing feature space
by minimizing a distance metric of domain discrepancy to bridge
the source and target domains [24], [25]. The other strategy is
to use domain adversarial training to extract domain-invariant
features, that is, to employ a minimax game between the feature
extractor and the domain discriminator [20]. The key idea of
the proposed framework is to jointly train a feature extractor
and a domain discriminator. The domain discriminator tries to
distinguish between the data of the source domain and that of the
target domain, while the feature extractor tries to obfuscate the
discriminator. During the process of domain adversarial training,
we use the maximum mean discrepancy (MK-MMD) as the
regularization term of the domain adversarial loss to further
minimize the domain shift.

The main contributions of this paper are as follows:

® We propose a new domain adaptive framework for SE tasks

that combines two transfer learning strategies. The network

performs domain adaptive transfer learning through the
minmax game between domain adversarial loss, domain
confusion loss (MK-MMD-based loss) and regression loss,
thereby improving the robustness to unseen noise.

® We explore the impact of different loss weights on domain
adversarial training and verify the validity in different
acoustic environments.

® We conducted separate cross-noise and cross-language-
and-noise experiments, and the results have proven that the
proposed algorithm can considerably improve the adapt-
ability of the model to unseen noise and language types.

II. RELATED WORK

In supervised SE models, untrained acoustic conditions are
the main factors that cause model mismatches. However, trans-
fer learning for SE systems is not commonly seen. Most SE
models improve the generalization of the model by expanding
the dataset. For example, 500 hours of training data containing
10,000 kinds of noise fragments are used in [13] to improve
the performance of unseen noise types. However, the massive
training data can be a burden on the computing resources, and
the complexity of the model becomes correspondingly higher.
Additionally, the corpus resources available for training may be
scarce in actual scenarios. Sometimes, only noisy speech can
be obtained, but their labels (corresponding clean speech) are
unavailable. To solve such problems, it is necessary to study
semi-supervised or unsupervised transfer learning methods on
an incomplete dataset.

Transfer learning can build models bridging different domains
and tasks by explicitly taking the cross-domain discrepancy into
account [21]. In the field of speech, transfer learning has already
been applied on speech recognition to adapt to unseen speakers
or acoustic environments [26]. In addition, transfer learning
methods have also been used to synthesize speech with different
speaker identities [27]. For SE systems, Xu et al. [16] proposed
a cross-language transfer learning method for DNN-based SE
models, where the upstream network was fine-tuned to a new
language, while the parameters of the downstream network were
fixed in the original language. The generalization ability of
SE generative adversarial networks (SEGAN) across language
and noise types was investigated in [18]. However, the above
algorithms are all fine-tuning methods based on the original
model; they cannot adapt to the unlabeled target domain. A
domain adaptive method for an SE model was first proposed
by [23]. The domain adversarial training (DAT) was performed
by jointly training the feature extractor and the domain discrimi-
nator and successfully adapting the model to unseen noise types.
However, [23] only considered the adaptation of a single noise
type in the target domain and did not explore situations with
target speech signals distorted by multiple types of noises. To
further improve the generalization of the SE model, we have
introduced a new domain adaptive framework. The proposed
framework combines two domain adaptation strategies, which
are minimizing domain discrepancy distance and domain adver-
sarial training.



For the first strategy, several methods used the maximum
mean discrepancy (MMD) loss as a distance measure for domain
differences. MMD computes the norm of the difference between
two domain means. In [28], a two-layer neural network was
trained using a denoising autoencoder for pre-training, and
MMD was used as a domain confusion loss, but the shallow
network lacked strong semantic representation; hence, the effect
was not good. [29] added an adaptation layer to a deep convolu-
tional neural network and used MMD to learn discriminative
and domain-invariant representations based on conventional
classification losses, providing closer marginal distributions be-
tween the source and target domain. MMD embedded the deep
features into the reproducing kernel Hilbert spaces (RKHSs).
Such kernel-embedding-based matching is relatively sensitive
to the choice of kernel. Thus, Long ef al. [19] proposed a
deep adaptation network (DAN), which uses multi-kernel MMD
to match deep representations across domains and multi-layer
adaptation to effectively enhance the transferability of features.

For the second strategy, adversarial loss is used to minimize
the domain shift, thus, learning a representation that is not able to
be distinguished between domains. Tengz et al. [30] employed
an adversarial adaptation method in a deep CNN structure to
learn invariant representations by jointly optimizing for domain
confusion and matching soft labels. [31] proposed the gradient
reversal algorithm (Reverse Grad) to directly maximize the
domain classification loss through the gradient reversal layer.
The domain separation network [32] introduced the concept of
a private subspace for each domain, which captures the shared
representations by finding shared subspaces that are orthogonal
to the private subspace. The above mentioned adversarial train-
ing methods treat domain invariance as a binary classification
problem, while the adversarial discriminative domain adaptation
(ADDA) [20] introduced an adversarial loss based on a gener-
ative adversarial network into the domain adversarial training.
On this basis, a general adversarial adaptation framework that
combines discriminative modeling, untied weight sharing, and
a GAN loss was proposed.

The two domain adaptive strategies have been successfully
applied to classification tasks in the fields of computer vision
and speech recognition, but related research on the regression
task of SE is not common [23]. In this paper, we used a SE
framework based on a feature encoder-decoder structure. Our
aimis to enable the feature encoder to generate domain-invariant
representations through the domain adaptive method. The do-
main discriminator and the domain confusion adaptation layer
are introduced separately, and the MK-MMD is used as the
regularization term of the domain adversarial loss. Unlike the
classification cross-entropy domain adversarial loss in [23], we
used a GAN-based loss as the loss of the domain discriminator.
To make the domain discriminator loss better reflect the distance
between domains, the RSGAN-based loss [33] is introduced.
In SERGAN [34], a relativistic GAN framework including a
relativistic generator and a relativistic discriminator was used to
perform the SE task and provided improvements. However, in
our work, only the relativistic discriminator is used for domain
adversarial training to do the domain adaptation of the SE
methods.
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Structure diagram of the proposed algorithm.

Fig. 1.

III. SYSTEM OVERVIEW

This paper aims to solve the problem of domain adaptation
in SE tasks. Hence, we have made the assumption that a large
amount of noisy speech data and their labels (i.e., corresponding
clean speech) can be obtained in the source domain. However,
only the noisy speech information is available in the target
domain. Our goal is to improve the performance of the SE
model for the unseen environment of the target domain through
a domain adaptive method. The baseline SE model follows
the feature encoder-decoder structure in [23], using log-power
spectra (LPS) features as the input and output of the model to
perform the regression task. The structure diagram of the SE
system is shown in Fig. 1.

During the training stage, the network contains two data flows.
One is the noisy samples in the source domain and their corre-
sponding labels; the other is only the noisy samples in the target
domain. First, the short-time Fourier transform (STFT) is used to
extract time-frequency (T-F) features of speech waveforms (Xg
with label Yg and X7) in the two data flows and log-power
spectra features (LPSZ with label LPSY and LPSr) are
obtained by logarithmic transformation. The proposed SE model
has a feature encoder-decoder structure. Two data flows will go
through the feature encoder simultaneously and share weights
during the training process. Subsequently, there will be three
destinations for the two data flows. Among them, only the
source data flow will continue to go to the feature decoder and

s Y
reconstruct the log-power spectra LI?Sg. The mean absolute

error (MAE) between LPS)S/ and its label LPSg is calculated
as the regression loss of the network. An adaptation layer is
set in the second direction to compute the MK-MMD between
the source domain data and the target domain data. The domain
discriminator is set in the third direction to provide the relativistic
adversarial loss between the domains. The method of domain
adversarial training is adopted to update the parameters of the SE
model. The network performs domain adaptive transfer learning
through the minmax game between domain adversarial loss,
domain confusion loss (MK-MMD-based loss) and regression
loss. As a result, the feature encoder will learn domain-invariant
features to improve the adaptability of the SE model to unlabeled
target domain data.

In the enhancing stage, LPS features are extracted from the
noisy signals in the target domain and implemented in the



44

adapted SE model to obtain the estimated clean LPS features.
Considering that human listeners are not sensitive to small
changes in the signal phase, the time-domain waveform of the
enhanced speech is computed by an inverse Fourier transform
using phase information in the noisy speech. Finally, the wave-
form of the entire sentence can be synthesized by an overlap-add
algorithm.

IV. THE PROPOSED MODEL
A. MK-MMD

Multi-kernel maximum mean discrepancy (MK-MMD) is
an extension of the MMD metric. MMD is first used for the
two-sample test, which accepts or rejects a null hypothesis
(P = Q) based on the two samples generated from P and Q.
MMD uses the kernel-mapping method to embed the crucial
statistical features of two distributions into the high-dimensional
reproducing kernel Hilbert space (RKHS). Then, the distances
between kernel mean embeddings are calculated. With MMD as
the test statistic, the MMD metric between domains is equivalent
to the distinguishability of the data distribution.

Let H;, be a reproducing kernel Hilbert space corresponding
to a characteristic kernel k. Then, the kernel mean embedding
of a distribution P in #, is a unique element () such that
the expectation E,p [ () = (f (), ux(P))y, forall f € Hy.
Thus, the crucial features in distribution IP are encoded into the
embedding p (IP) such that we can learn though pux (P) directly
instead of IP. Then, the MMD metric between the distribution
P and Q can be defined by the squared distance of the kernel
mean embeddings:

MMD*(P,Q) £ |[Epr-p[¢(z”)] — Esinalé(@)]lly, , (1)

where ¢(-) denotes a series of non-linear feature mappings in
a unit sphere of a universal RKHS. Given Dp = {2}, and
Dq = {z{}}_, as the sample set of the distribution P’ and Q,
an empirical estimate of MMD is:

2
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MMD*(Dp, D) = || 3 () = = > ()
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(2

In the computation of MMD, the feature mapping ¢(-) is re-

lated to the kernel mapping k(z?, 27) = (¢(2P), ¢(x?)). Given

a characteristic kernel k in #H},, the MMD metric can be written
as:

1 m m
MMD?*(Dp,Dq) 2 — > > " k(al,a%)

i=1 j=1
+ %ZZI‘J(ZL‘Z,‘L?)
i=1 j=1
2 m n
- ;; k(al,z?).  (3)

Classical MMD is based on a single-kernel transformation.
However, a single kernel is not sufficiently flexible to adequately
describe various distributions. Thus, the multi-kernel MMD is

proposed, which assumes that the optimal kernel function com-
posed of multiple kernel functions can better approximate the
distribution of the feature space. Multiple characteristic kernels
k can be defined as convex combinations of m kernels:

K2 {k = zm:ﬁuku : zm:,ﬁu =18, > o,vu}. (4)
u=1 u=1

Since a Gaussian kernel can map an infinite dimensional

space, a characteristic kernel based on the Gaussian function
leP—o9)? . o .
k(zP,z9) = e 2.2 ischosenin this paper. Multi-kernel mean

embeddings can characterize distributions at different scales to
match different orders of moments. In the proposed domain
adaptive model, minimizing the MK-MMD metric between
the source and the target domain data can decrease the edge
distribution distance between the domains, so that the feature
encoder tends to produce domain-invariant features. Therefore,
the MK-MMD-based loss is taken as the regularization term of
the domain adversarial loss.

B. RSGAN

The relativistic GAN approach presented in [33] is introduced
into the domain adversarial training in this paper. The relativistic
discriminator of RSGAN is used as the domain discriminator in
the proposed framework.

1) Relativistic Discriminator of the RSGAN: The standard
GAN [35] can be defined as:

Lp=-E,, plloga(C(z,))]
Lg =

—Eq;~ollog(l — a(C(zf))));
—Eq ~gllog(1 — o (Clzy)))], 5)

where P and QQ are the distributions of real data and fake
data, respectively. C(x) represents the non-transformed layer
as D(z) = o(C(x)), and is a sigmoid function. The principle of
the standard GAN can be seen as an adversarial game between a
generator and a discriminator. The generator and discriminator
are viewed as a “fake producer’” and a “judge”. On the one hand,
the “fake producer” is constantly producing fake samples in an
attempt to fool the “judge”. On the other hand, the “judge”
continuously improves its discriminative ability to distinguish
between real samples and fake samples. The two compete with
each other until the “judge” is confused, and the training of the
standard GAN is then completed. However, [33] argued that the
key missing property of a standard GAN is that the probability
of real data being real (i.e., D(x,)) should decrease as the
probability of fake data being real (i.e., D(xs)) increases. For a
standard GAN, the generator cannot affect D(z,) because the
discriminator is operated independently: the real samples are not
involved while training the generator, so the discriminator must
remember all the attributes of real samples to guide the generator,
which is a burden to the training. Therefore, [33] introduced a
method of a relativistic standard GAN to make the output of the
discriminator depend on the relative values of real and fake data.
The discriminator is made relativistic as D(Z) = o(C(z,) —
C(zy)), where T = (z,, ) is sampled from real/fake data-
pairs. Correspondingly, the probability that the given fake
data are more realistic than randomly sampled real data is



defined as D, (Z) = 0(C(zs) — C(z,)). Due to the special
property of this relativistic discriminator(i.e., 1 — D,..,, (T) =
1—0(C(zy) — C(ar)) = o(Clar) — Clay)) = D(@)), Drev
do not need to be included in the loss function. The loss functions
of the discriminator and the generator of the relativistic standard
GAN can be written as follows:

= —E@, 2 )~@qllogo(C(z,) — Clzy))],
= —E@, )~ qlloga(C(zf) — C(z,))]. (6)

In this paper, the relativistic discriminator is used in the
domain adversarial training. The discriminator is no longer
dependent on the real/fake data-pairs, but samples from the
source domain and the target domain, respectively. Theoreti-
cally, the relativistic GAN makes the discriminator only rely on
the relative value by doing the difference, thus avoiding the pos-
sible bias of the discriminator and rendering the gradient more
stable, which is beneficial to the domain adversarial training.
Additionally, the relativistic discriminator can better reflect the
distance between the source domain data and the target domain
data compared with the standard GAN discriminator, which is
conducive to shorten the distance between the domains.

2) Gradient Penalty in the Discriminator: Gradient penalty
regularization is introduced in [36] to penalize the norm of the
gradient of the critic with respect to its input, to avoid the extreme
situations of the gradient (gradient vanishing and exploding)
in the training process. A soft version of the constraint with
a penalty on the gradient norm for random samples is used to
realize the gradient penalty:

Lep(D) = Bawp, [(IV:C@], - 17, @)

RSGAN
LD

RSGAN
LG

where P; is the distribution of & = ez, + (1 — &)z, x)p ~
P,z ~ Q, and ¢ is sampled from a uniform distribution in
[0,1]. Therefore, the loss of the discriminator after applying the
gradient penalty is Lp + AgpLgp(D), where Lgp is a hyper-
parameter used to adjust the weight of gradient penalty. It has
been observed in [33] that the application of a gradient penalty
in the discriminator can stabilize the training of an RSGAN
model and achieve an acceleration in convergence. Therefore, a
gradient penalty is also applied to the domain adversarial training
to improve the stability of the model.

C. The Proposed Algorithm

In terms of domain adaptation problems, rich source-labeled
data are available, but they are not identically distributed with
the target domain data. Additionally, target domain contains
no labeled data points. Hence, directly adapting the original
model to the target domain through fine-tuning is infeasible.
Assume that there is a high-dimensional feature space that can
represent the crucial features of the source and target domains,
respectively. Then, such domain-invariant features can decrease
the edge distribution distance between the source and target
domains. In view of such a domain adaptation goal, we designed
a domain adaptive framework for SE models, which mainly
consists of four parts: the feature encoder (Enc(0gy.)) that
embeds LPS features into a high-dimensional feature space, the
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feature decoder (Dec(fp..)) that predicts clean LPS features, an
adaptation layer for calculating the MK-MMD-based loss and
the domain discriminator (D(fp)) for computing the domain
adversarial loss. Here, 0gy,¢, 0pe. and 0p are parameters of
the network, and the adaptation layer is only used to calculate
MK-MMD metrics and will not participate in the gradient update
of the network. Fig. 2 shows the overall block diagram.

The overall workflow is visualized as follows. First, the short-
time Fourier transform is performed on the source domain sam-
ples (with clean labels) and target domain samples (unlabeled)
to obtain the log-power spectra (LPS) features. Then, they are
sent to the encoder to obtain Xg and Xr:

Xgs = Encoder(0gne, LPSs),
Xr = Encoder(0gpne, LPST). ®)

Xs and Xt are processed in the following three directions. The
first way sends the labeled Xg to the decoder to reconstruct the
estimated LPS features, and then the mean absolute loss (MAE)
is calculated using the source domain labels:

N
Ly = 5 3 IDec(Xs(i) - Y. ©)

i=1

This loss is set to measure the performance of the source
domain regression task, and minimizing it can make the model
best fit the source domain dataset.

The second path computes the multi-kernel maximum mean
discrepancy loss (Lasx—nrarp) of Xs and Xp. The distribu-
tion of Xg and Xt can be made as close as possible through
minimizing L ;i a0, that is, to make the encoder produce
domain-invariant features that are robust to noises in different
domains. Dg = {x7}}_, and Dy = {27 }%_, are the sample
set of Xg and Xr, respectively, where b denotes the batch size.
L x— v p can be calculated by Eq. (3) with the single kernel
k replaced by multiple characteristic kernels «:
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Lk myvp = MKMMD?*(Dg, D)

b b b b
S %ZZK(JS?J?) + %ZZ“@?"’??)
o1 =1 i=1 j=1

(10)

wl’_'

b b
LY ),
i=1j=1
where ~ can be defined as convex combinations of / kernels as
Eq. (4). The constraints on coefficients {3, } are chosen to be
1/h. The total number of multiple characteristic kernels & is set
to 19. Their parameters o2 are le-6, le-5, le-4, le-3, le-2, le-1,
1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, le4, 1e5 and 1e6.

Third, X5 and X7 are sent to the domain discriminator. It can
be regarded as a classifier between the source and the target
domains, the last layer of which is a dense layer with one
unit using a sigmoid function as the activation. The output of
the discriminator with a value of 0-1 is used to compute the
relativistic adversarial loss Lp:

Lp=-E,_ 5, .7(logo(D(zs) — D(zr))). (11)

Minimizing Lp actually means that the discriminator can
better distinguish between samples from the source and the target
domains. Here, our goal is to conduct the minimax game between
the encoder and the discriminator. As described above, the dis-
criminator is trained to make a better judgment on the samples,
while the encoder is expected to extract the domain-invariant
features between the source and target domains to confuse the
discriminator. The weight parameters are set to balance the battle
between the two. If the discriminator cannot distinguish Xg from
Xr, the transfer learning from the source domain to the target do-
main is successful. To implement this minmax game, a gradient
reversal layer (GRL) is inserted between the discriminator and
the encoder. During the forward propagation, the GRL acts as
an identity transformation to keep the input unchanged. During
the backpropagation, however, the GRL takes the gradient from
the subsequent level and changes its sign by —A before passing
it to the encoder to form a confrontation between the encoder
and the discriminator.

The parameters of the entire network are updated using the
gradient descent method. The Adam algorithm [37] is used for
training. The overall update rules are as follows:

— aLreg aLD aLMK—MMD
QETLC B BEnC - (89Enc 8GE'nc * K 89E'nc ’
8Lreg
6)Dec - 9Dec - aaeDec )
dLp
0p = 0p — a—2 12
p=0p—«a 90, (12)

where « is the learning rate, and the weight parameters A and
are used to balance the impacts of the discriminator loss and the
MK-MMD loss on the parameter updating of the encoder.

In the parameter updating process of the entire network,
the encoder is expected to generate domain-invariant features
through the confrontation between the encoder and the discrim-
inator. The introduced MK-MMD loss can be regarded as the

overall regularization term of the domain adversarial loss, that
is, adding a constraint to the gradient update of the model, so
that it can be updated in a direction that decreases the edge
distribution distance between domains, thereby promoting the
effect of the overall transfer learning.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experiment Setting

In this paper, noise type and language type are two issues that
cause mismatch problems and are evaluated in the experiments.
We set up two types of experiments, a cross-noise experiment
and a cross-noise-and-language experiment, to test the adapta-
tion performance of the proposed model. The cross-noise exper-
iment is based on an English corpus in which clean utterances are
selected from an excerpt of the VoiceBank-DEMAND dataset
constructed by [38], containing utterances of 28 speakers from
the same accent region (England) with a sampling rate of 48 kHz.
For the training set, 500 utterances are randomly selected as the
source domain data, and the other 500 utterances are utilized as
the target domain data. The source domain data are corrupted
with five matched noise types at seven SNR levels (—10 dB,
—5dB, 0dB, 5 dB, 10 dB, 15 dB, and 20 dB) to form 17,500
source domain training data. Another 500 utterances (target
domain) are randomly mixed with 5 mismatched noises under
the above SNR levels to form 3,500 target domain training
data. The matched noise types include DestroyerEngine, Fac-
toryFloor, HFchannel, and Pink (from NoiseX-92 [39]) as well
as Wind (from the Nonspeech set [40]), while the mismatched
noise types contain Speech babble (from NoiseX-92), Cry (from
the Nonspeech set) and three noises in real scenes [41] (Car
Riding, Crossing, and Market Place). During the training stage,
the source domain data and their clean labels are used to execute
the supervised training, while the target domain labels are only
used to plot the loss curves but do not participate in the training.
For the test set, 200 utterances selected from the VoiceBank
dataset that do not cross with the training set are corrupted
with five mismatched noise types at five SNR levels (—6 dB,
—3dB, 0 dB, 3 dB, and 6 dB) to evaluate the performance. For
the cross-noise-and-language experiment, the source domain
training data are consistent with the cross-noise experiment.
However, clean utterances in the target domain are selected
from the reading corpus in the Chinese Mandarin Test CD [42],
which contains 60 paragraphs read by a man and a woman
with a sampling rate of 44.1 kHz. In addition, 700 utterances
are randomly selected from these paragraphs and divided by
voice activity detection (VAD). 500 utterances are chosen for
the training data in the target domain, and the rest are exploited
for testing. Other settings of the experiment are consistent
with the cross-noise experiment. All the datasets are available
online. !

All the utterances and noises used in training and testing
are resampled to 16 kHz. The signal frame length is 512-point
(32 ms), and the frame shift is 256-point. For comparison, the
baseline model is set the same as in [23]. Two bidirectional

![Online]. Available: https://github.com/JMCheng-SEU/audio-dataset
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TABLE I
THE SETTINGS OF THE MODEL PARAMETERS

Parameters Values
Batch size 16

Steps 100,000
Feature encoder | 512 BLSTM
Feature encoder | 512 BLSTM

Output layer 257 fully connected layer
1,024 LSTM and 1 fully connected layer

0.0001

Discriminator

learning rate

LSTM layers with 512 nodes are selected as the feature encoder
and decoder, and a fully connected layer with 257 linear nodes
is used as the output layer for spectrogram estimation. For
the domain adaptive discriminator, unlike [23], we set a fully
connected layer with one node after the unidirectional LSTM
layer with 1,024 nodes and use the sigmoid function as the
activation function to compute the relativistic discriminator loss
instead of the categorical cross-entropy loss in [23]. The model
is trained using the TensorFlow framework. The specific model
parameters are shown in Table I.

B. Objective Measures for Speech Enhancement

To compare the SE performances of different methods, three
objective indicators are utilized to evaluate different algo-
rithms. The perceptual evaluation of speech quality (PESQ) [43],
the short time objective intelligibility (STOI) [44], and the
frequency-weighted segmental SNR (FWSNR) [45] are selected
to evaluate the speech quality, speech intelligibility and the noise
reduction. Among them, the PESQ is the subjective voice quality
assessment indicator recommended by the ITU-T, with a score
range of —0.5~4.5. The STOI measures the intelligibility of
speech, and its score is between 0 and 1. The FWSNR reflects the
degree of noise suppression. Compared with the global domain
SNR, it is closer to the actual speech quality. For the three
indicators, a higher score denotes a better result.

C. Determination and Analysis of Weight Parameters

In this experiment, we analyze the weight parameters A
and p of the two domain adaptative losses in the objective
function on the cross-noise experiment. First, the impact of
the relativistic discriminator loss weight A on the training is

6
30k 40k S0k 60k 70k 80k 90k 100k 0 10k
Step

(b) MK-MMD loss

20k 30k 40k S0k 60k 70k 80k 90k 100k
Step

(c) Target domain loss

Experiments on the relativistic discriminator loss weight A.

explored without introducing the multi-kernel maximum mean
discrepancy loss. The value range of the weight parameter A
is {0.05,0.1,0.15,0.2,0.25}. Fig. 3 shows three types of loss
curves to reflect the influence of the weight A, that is, the
MK-MMD metric loss (not involved in training, only used to
show the effect) curve between encoded features from the source
domain and the target domain, the discriminator loss curve and
the loss curve of the reconstructed target domain samples (do
not contain samples in the test set). When the weight A is small
(i.e., A = 0.05), the loss of the relativistic discriminator will
continue to decrease and converge to a minimum value after a
certain number of steps. This will lead to a vanishing gradient
that renders the relativistic discriminator incapable of providing
reasonable guidance for the feature encoder. At the initial stage
of training, the capability of the feature encoder is relatively
weak, and while the discriminator is also weak, it can still
distinguish between samples from the source domain and the
target domain. However, the weight A is small, so the adversarial
training is insufficient. This renders the training of the relativistic
discriminator to quickly saturate. It is further difficult for the
subsequent network to readjust. Therefore, the target loss curve
with A = 0.05 converges to a high position. The increase of the
weighting parameter A in the interval [0.05, 0.2] more obviously
influences the relativistic discriminator loss. With the increase of
the weight A in this interval, the loss curve of the discriminator
rises and finally converges to a higher level. This shows that
strengthening the confrontation between the relativistic discrim-
inator and the feature encoder through the weight parameter A
is conducive to the generation of domain-invariant features to
a certain extent. However, when the parameter A continues to
be increased to 0.25, although the discriminator loss still rises,
the loss curve of the target domain does not decrease further.
This indicates that at this time, the feature encoder cannot learn
more target domain knowledge, and the domain adversarial
training cannot reach more transferable features by increasing
the weight parameter. Therefore, A = 0.2 is fixed as the weight
of the relativistic discriminator loss to obtain a better adaptation
performance. Additionally, it can be seen from the graph that the
trend of the MK-MMD metric loss curve is consistent with that
of the target domain, which shows that reducing the MK-MMD
metric between domains can lead the adaptation training of the
model to a better direction. However, it should be noted that the
MK-MMD metric loss remains a high position, indicating room
for optimization.
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In the following stage, MK-MMD is introduced as the regu-
larization term of the domain adversarial loss with the weight
A = 0.2. The three loss curves shown in Fig. 4 are still used to
analyze the influence of the weight parameter p. The param-
eter is varied in {0,0.01,0.05,0.1,0.15}. Furthermore, i = 0
indicates that MK-MMD is not introduced. It can be seen from
the trend of the MK-MMD loss curve that the introduction of
MK-MMD as a regularization term can effectively reduce the
MK-MMD metric between the source domain and the target
domain, which is not considerable when the weight parameter
is small (u = 0.01). However, when the weight increases, the
impact will expand. The loss of the relativistic discriminator also
increases, indicating that the confrontation between domains is
strengthened. The decrease of the target domain loss has proven
that the introduction of the MK-MMD loss renders the model
optimized towards the direction of producing domain-invariant
features. Compared with the discriminator weight A, the model
is more robust to the MK-MMD weight ;.. When the value of
is higher than 0.05, although the MK-MMD loss is still reduced,
the loss of the relativistic discriminator is not increased, and the
target domain loss is not decreased, indicating that increasing
the weight parameter of MK-MMD at this time cannot further
strengthen the confrontation between domains to achieve a better
adaptation effect. To balance the loss of MK-MMD and the
relativistic discriminator, A = 0.2, i = 0.05 are chosen as the
final weight.

In theory, the fundamental purpose of domain adaptation is
to obtain feature representations with domain-invariant char-
acteristics. From this perspective, the relativistic discriminator

0.55
10k 20k 30k 40k SOk 60k 70k 8Ok 90k 100k 0
Step

(b) MK-MMD loss
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Experiments on the MK-MMD loss weight p with fixed A = 0.2.

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Step

(b) Target domain loss

Comparison of loss curves for the cross-noise experiment.

loss improves the domain invariance of the feature encoder by
executing the minmax confrontation with the feature encoder.
In contrast, the MK-MMD loss reduces the cross-domain dis-
crepancy of the feature representations in the mapping space
to match different domain distributions. These findings suggest
that MK-MMD reduces the domain difference actively, while
the relativistic discriminator requires passive confrontation to
obtain domain invariance. Therefore, the weight parameter of
the relativistic discriminator is more sensitive to changes, while
the weight of MK-MMD is relatively robust.

D. Cross-Noise Comparative Experiment

The same baseline architecture and weight initialization were
used for all models during the experiment for a fair comparison.
In addition, 200 utterances in the target domain test set are tested
under 5 levels of SNR. As research on domain adaptation with
unlabeled target samples for the SE task is not commonly seen,
the domain adversarial training method in [23] (abbreviated as
DAT) and the MK-MMD-based model (abbreviated as MK-
MMD) are chosen as the unlabeled adaptation algorithms for
comparison. Additionally, the fine-tuning algorithm in [18] is
taken as a supervised transfer learning method for comparison.
The result of the relativistic discriminator (abbreviated as R-D) is
provided to verify its effect alone. Furthermore, the comparison
between MMD and MK-MMD is given by indicators.

First, the loss curves of the source and target domain test
set are shown in Fig. 5, which reflects the quality of the re-
constructed speech from source domain samples (trained with
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TABLE II
COMPARISON OF SPEECH INDICATORS FOR THE CROSS-NOISE EXPERIMENT

Indicator Method SNR pt
-6dB -3dB 0dB 3dB 6dB AVG
Noisy 1.421 1.689 1.867 2.034 2224 1.847 * ok ok
Baseline 1642 1.893 2103 2276 2486  2.080 * Kk
MK-MMD 1.673  1.898  2.085 2256 2428  2.068 * ok ok
PESQ DAT 1.700  1.989  2.193 2375 2549 2.161 * ok ok
Relativistic Discriminator 1.864 2093 2270 2431 2555 2243 ® ok ok
MMD + Relativistic Discriminator 1889 2129 2308 2472 2595 2279 ok
MK-MMD + Relativistic Discriminator ~ 1.987 2216 2377 2509  2.641  2.346 /
Fine-tune 1.846  2.140 2350 2528 2713 2315 > 0.05
Noisy 0.626  0.688  0.737  0.776  0.817  0.729 ok ok
Bascline 0.638 0701  0.750  0.787  0.822  0.740 ok ok
MK-MMD 0.630  0.692 0741 0776 0810  0.730 * ok ok
STOI DAT 0.641 0712 0.757  0.792  0.822  0.745 * ok ok
Relativistic Discriminator 0.683 0733 0.768  0.803  0.823  0.762 *
MMD + Relativistic Discriminator 0.685 0.736  0.776  0.808  0.828  0.767 > 0.05
MK-MMD + Relativistic Discriminator ~ 0.703  0.751 0.784 0814 0834 0.777 /
Fine-tune 0.671 0.738 0.779 0.819 0.843 0.770 > 0.05
Noisy 1392 2,195 3.190 4608 5741  3.425 * K ok
Baseline 1990 2936 3919 4950 5812  3.921 * ok ok
MK-MMD 1.894 2814 3772 4758 5601  3.768 * Kk
FWSNR DAT 3278 4596 5759 6426  7.217 5455 * ok ok
Relativistic Discriminator 4851 5636 6310 7.021 7444 6252 *
MMD + Relativistic Discriminator 4.962 5.819 6.527 7.266 7.821 6.479 > 0.05
MK-MMD + Relativistic Discriminator ~ 5.111 5926  6.608 7346  7.808 6.560 /
Fine-tune 4.683 5862 6599 7447 8126 6543 > 0.05

! Note: statistic significance is shown by asterisk symbols: *0.01 < p < 0.05, x0.001 < p < 0.01, * *
xp < 0.001. The symbol in the following tables have the same meaning.

TABLE III
COMPARISON OF SPEECH INDICATORS FOR THE CROSS-NOISE-AND-LANGUAGE EXPERIMENT

Indicator Method SNR P
-6dB -3dB 0dB 3dB 6dB AVG
Noisy 1.168 1.460 1.659 1.836 2.054 1.635 * %k
Baseline 1.290 1.572 1.803 2.003 2.225 1.779 * ok k
PESQ MK-MMD 1.321 1.573 1.788 1.960 2.162 1.761 * kK
DAT 1.328 1.577 1.827 2.011 2.233 1.795 * sk ok
Relativistic Discriminator 1.400  1.656  1.874  2.040 2230 1.840 > 0.05
MMD + Relativistic Discriminator 1.405 1.652 1.891 2.069 2271 1.858 > 0.05
MK-MMD + Relativistic Discriminator 1.446 1.681 1.933 2.116 2.310 1.897 /
Fine-tune 1.423 1.692 1.946  2.149 2.370 1916 > 0.05
Noisy 0.652 0.721 0.785 0.832 0.880 0.774 > 0.05
Baseline 0.650  0.720  0.783  0.827 0.867 0.770 > 0.05
STOI MK-MMD 0.642 0.710  0.771 0.810  0.849  0.756 5 ok ok
DAT 0.647 0717 0780  0.823 0.863 0766 > 0.05
Relativistic Discriminator 0.650 0.718  0.780 0815 0849  0.762 > 0.05
MMD + Relativistic Discriminator 0.655 0728 0.787 0.824 0859 0.771 > 0.05
MK-MMD + Relativistic Discriminator ~ 0.660  0.731 0.788  0.827 0.860  0.773 /
Fine-tune 0.660  0.732 0.793  0.830 0.866  0.776 > 0.05
Noisy 2721 3.622 4761 6.486 7.999 5.118 *
Baseline 3.094 4115 5236 6454 7.551 5.290 > 0.05
FWSNR MK-MMD 3.045 3.999 5.095 6.165 7177 5.096 s ok sk
DAT 2.935 3.870 4974  6.063 7.096  4.988 ok sk
Relativistic Discriminator 3.504 4417 5425 6179 6991 5.303 > 0.05
MMD + Relativistic Discriminator 3715 4.677 5.617 6.471 7.256 5.547 > 0.05
MK-MMD + Relativistic Discriminator 3776 4.721 5.656  6.473 7.253 5.576 /
Fine-tune 3.840 4910  6.047 7.060  8.027 5977 > 0.05
labels) and target domain samples (trained without labels). It ~ Although MK-MMD alone has only a slight adaptation effect,

can be seen from the loss curve of the target domain that the
proposed model has the lowest loss, followed by R-D and
DAT, and MK-MMD is only slightly better than the baseline
model. From the comparison between domain discriminators,
it can be concluded that the proposed relativistic discriminator
achieves a certain improvement over the discriminator in [23].

its combination with the relativistic discriminator achieves an
obvious improvement. This reflects that directly narrowing the
distance between domain distributions does not work well.
However, the MK-MMD loss can be a constraint to the domain
adversarial training, making it easier to guide the model to the
target domain. Notably, the source domain loss curve of each
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Fig. 6. Spectrograms of an English utterance (p231-166.wav) corrupted by
Crossing noise (from target domain) at 0 dB SNR: (a) Clean speech, (b) Noisy
speech, (c) Baseline model, (d) MK-MMD model, (¢) DAT model, (f) R-D
model, (g) Fine-tune model, (h) Proposed model.

model has increased compared to the baseline, which means
that each transfer learning method has an adverse effect on the
enhancement performance of the source domain while adapting
to the target domain. Among them, DAT and MK-MMD have
the most and least effect on the source domain, respectively,
and the proposed combination of MK-MMD and the relativistic
discriminator has an effect that lies between that of these meth-
ods. Additionally, the source domain loss of the proposed model
converges to a lower position than the relativistic discriminator,
which indicates that introducing MK-MMD loss as the regular-
ization term of the domain adversarial loss can also help ensure
the enhancement performance of the source domain. Essentially,
the better trade-off of loss curves is brought by the constraints
in objective function, and it indicates that the proposed model
can improve the adaptability to the target domain while ensuring
enhanced performance of the source domain.

Second, Table II shows the objective evaluation indicators
of each model on the enhanced speech in the target domain.
As indicated, the results contain three indicators (PESQ, STOI,
and FWSNR) under five levels of SNR. Each adaptation model
shows a certain improvement over the baseline, but their benefits
are different. For the PESQ indicator, MK-MMD is better than
the baseline only at low SNR levels (—6 dB, —3 dB), and slightly
worse than the baseline at a higher SNR, indicating that reducing
the MK-MMD distance between different domain distributions

can improve the quality of target samples at a low SNR on this
dataset. In contrast, the algorithms based on domain adversarial
training, DAT and R-D, have relatively larger improvements over
the baseline. In the comparison between the two, the relativistic
discriminator achieves a better adaptation effect, especially at
low SNR levels. The combination of MMD and the relativistic
discriminator gains a further improvement, and the multi-kernel
transformation is superior to the single-kernel method. Note that
even compared with the fine-tuning method that uses a few target
labels, the proposed model that does not require target labels still
achieves a slight advantage at the average SNR and dominates
at low SNR levels. This indicates that the proposed model can
effectively improve the perceptual quality of speech. In terms of
the speech intelligibility indicator STOI, MK-MMD performs
slightly lower than the baseline, and the improvement of the
DAT model is not obvious, while the relativistic discriminator
achieves considerable improvement over DAT at low SNR lev-
els. The proposed combination of MK-MMD and the relativistic
discriminator still achieves the best results among all models
on the average SNR, only slightly lower than the fine-tuned
model under the high SNR. The comparison of the FWSNR
indicator reflects the degree of noise suppression of each model.
From the average results, the proposed model still ranks first
among all models, which is consistent with the trends of the
above two indicators. The improvement of PESQ, STOI and
FWSNR over the baseline at the average SNR is 0.266,0.037 and
2.639, respectively, which is the best result among the compared
algorithms. The results of the statistical analysis show that
compared with adaptation algorithms that are unlabeled, namely,
DAT and MK-MMD, the improvement of all the indexes is
significant (p < 0.001). For the supervised fine-tuning method,
the proposed model can achieve slightly better results.

Finally, the enhanced spectrograms of the compared models
are shown in Fig. 6. It can be seen that the relativistic discrimina-
tor suppresses the noise more thoroughly than the discriminator
in dat. On this basis, the proposed model combining the two
adaptation strategies can better retain the details of the speech.

E. Cross-Noise-and-Language Comparative Experiment

As the model may encounter unseen language types in the
production environment, the adaptation performance in different
language is worth testing. Additionally, the mismatched noise
and language types often appear simultaneously in real scenar-
ios, so a cross-noise-and-language experiment is performed to
compare different models. The weight parameters are set the
same as the experiments above to test the adaptability of the
parameters to a new environment.

The trend of the loss curves shown in Fig. 7 is generally con-
sistent with the results in the cross-noise experiment. However,
in terms of the target domain loss, the adaptation effect of each
model has obviously decreased, and the gap between models
has also reduced, reflecting that the cross-noise-and-language
scenario is relatively difficult.

From the perspective of specific evaluation indicators in
Table III, the enhancement effect of each model is reduced
compared to the cross-noise experiment. For the PESQ indicator,
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Fig.8. Spectrograms of a Chinese utterance (31-26.wav) corrupted by Speech-
babble noise (from target domain) at 0dB SNR: (a) Clean speech, (b) Noisy
speech, (c) Baseline model, (d) MK-MMD model, (¢) DAT model, (f) R-D
model, (g)Finetune model, (h) Proposed model.

the proposed model still ranks first in the unsupervised adap-
tation methods. However, the supervised fine-tuning approach
performs better at the average SNR, only inferior to the proposed
model under low SNR. In terms of the STOI indicator, all the
unsupervised adaptation approaches fail to gain an effective
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Comparison of loss curves on the cross-noise-and-language experiment.

enhancement effect at the average SNR. The results of MK-
MMD, DAT and R-D are even lower than the baseline, which
means they provide negative adaptation effects. The proposed
method only achieves a slight improvement over the baseline
under low SNR levels, indicating that the adaptation effect of
speech intelligibility needs further exploration. Considering the
effect of noise suppression, the proposed model achieves the
highest FWSNR indexes compared with unsupervised methods
but is lower that the fine-tuning method at each SNR level. In
general, the proposed model can maintain a good adaptation
effect that is similar to the fine-tuning method when confronting
mismatched noise and language types.

Finally, the comparison of the spectrograms in Fig. 8 shows
the effectiveness of the proposed algorithm again.

VI. CONCLUSION

In this work, we investigated the problem of noise mismatch
in SE systems. We proposed a domain adaptive method for
the SE task that combines two adaptation strategies, utilizing
unlabeled target domain noisy speech as the guidance. A do-
main discriminator and a domain confusion adaptation layer are
introduced, respectively, for adversarial training based on an
encoder-decoder SE framework. The relativistic discriminator
loss is chosen as the domain adversarial loss to better measure the
differences between domains and improve the adaptation effect.
Further, MK-MMD-based loss is introduced as the regulariza-
tion term of the domain adversarial loss to further reduce the
edge distribution distance between domains. The entire network
performs domain adaptive transfer learning through the minimax
game between the domain adversarial loss, MK-MMD-based
loss and regression loss. As aresult, the feature encoder will learn
domain-invariant features to improve the adaptability of the SE
model. The experimental results show that the proposed algo-
rithm can considerably improve the adaptability of the baseline
model to unseen noise and language types in the target domain.
In comparison with other algorithms, the proposed algorithm
achieves the best results in the unsupervised adaptation methods,
and its adaptation effect is similar to the supervised fine-tuning
method.
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Future work includes the following aspects. First, as the
improvement of speech intelligibility is not obvious, improved
adaptation algorithms that aim at further improving the intel-
ligibility of unseen noisy speech should be studied. Second,
although the proposed model is effective on the speech denoising
task, the applications on speech dereverberation and speaker
separation are also worth exploring. Additionally, apart from
the regression task in this paper, the proposed domain adaptive
method is expected to be conducted in classification tasks.
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