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ABSTRACT

This paper presents an application that classifies forest’s aesthetics
using interactive machine learning on mobile devices. Transfer
learning is used to be able to build upon deep ANNs (MobileNet)
using the limited resources available on smart-phones. We trained
and evaluated a model using our application based on a data-set
that is plausible to be created by a single user. In order to increase
the comprehensibility of our model we explore the potential of
incorporating explainable Artificial Intelligence (XAI) into our mo-
bile application. To this end we use deep Taylor decomposition to
generate saliency maps that highlight areas of the input that were
relevant for the decision of the ANN and conducted a user study to
evaluate the usefulness of this approach for end-users.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile comput-
ing systems and tools; Empirical studies in ubiquitous and mobile
computing; « Information systems — Personalization.

KEYWORDS

interactive machine learning, artificial neural networks, scenic
beauty classification, explainable Al

ACM Reference Format:

Simon Flutura, Andreas Seiderer, Tobias Huber, Katharina Weitz, Ilhan
Aslan, Ruben Schlagowski, Elisabeth André and Joachim Rathmann. 2020.
Interactive Machine Learning and Explainability in Mobile Classification
of Forest-Aesthetics . In 6th EAI International Conference on Smart Objects
and Technologies for Social Good (GoodTechs °20), September 14-16, 2020,
Antwerp, Belgium. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3411170.3411225

1 INTRODUCTION

A dictum says, there’s no accounting for taste. While there is a
rough consensus on what is beautiful, it differs for every individual
in the long run. This also holds true for the individual taste for
landscapes, which can even be correlated to personality traits [1].
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While traditionally technology and nature are seen as antipodes,
mobile technology is pervading our lives, becoming invisible to
our accustomed eye. This enables artificial intelligence to guide
us in situations where traditional technology would be seen as
being disruptive. With these recent trends, machine learning tech-
niques can be integrated seamlessly into our daily routines and
even benefit our health, for example by planning routes that con-
tain landscapes which are the most recreational for us. In such
contexts, personalized prediction models are desirable. Thus, indi-
vidual taste and preferences can be taken into account to optimize
the desired positive effects for a user. As forests have repeatedly
proven their recreational effect in previous studies [17], this paper
lays the conceptual and prototypical foundation for applications
that use interactive machine learning to personalize the classifi-
cation of a forest’s aesthetic value. Forests vary in purpose and
appearance, while there is work on route planning based on forests’
walkability [9], a basis for scenic route planning in forests is lack-
ing. To preserve the user’s privacy we designed our application
to train artificial neural networks (ANNs) locally without send-
ing any private data such as images to remote servers. For model
training and continuous user customization, we implemented and
evaluated a transfer learning approach. Additionally, this allows
using comparably few data amounts for training. We examine the
hypothesis that (0) with just one user’s photographs, we are able to
train a model on a smartphone that is able to distinguish aesthetic
from un-aesthetic forest-scenery. Since ANNs typically use millions
of trained parameters, their decision process is incomprehensible
for the user. To address this problem we explore the potential of
augmenting the raw predictions of our classification network with
saliency maps, a technique from the research field of explainable
artificial intelligence (XAI) that highlights the regions of the input
that were relevant for the prediction of the ANN. The interplay
between user perception and visualization can vary from one field
of application to another, thus evaluation of specific scenarios is
advisable. This additional information might help the users to un-
derstand the classifier and enable them to choose additional training
data to adapt the model to their personal needs, i.e. by including
more pictures of objects they find particularly aesthetic. We con-
ducted a user study to verify our hypothesis that this augmentation
increases (1) the perceived transparency of the prediction model
and (2) the competence of the user with regard to judging forest
aesthetics. This study also contained an exploratory part that in-
vestigated whether our augmented predictions enabled the users
to select additional training data to better customize the neural
network to their personal aesthetic preferences.



This paper is structured into (1) related work (2) description
of the data-set our work relies on, (3) the mobile prototype we
developed, (4) the approach on explainable Al we chose as well as
(5) the user study we conducted and (6) evaluation of the ANN and
the user study.

2 RELATED WORK

People have used recreational green spaces for centuries, as can be
seen in the cross-cultural practice of creating gardens and parks.
Forests in particular can help to restore a lower blood-pressure
after demanding cognitive work [17] and help us to relax through
a multitude of fascinating features [18]. This is reflected in a recent
trend called "Shinrin-yoku" or forest-bathing, where a person strives
for relaxation by slowly wandering a forest, while perceiving the
forest with all senses [24].

2.1 Scenic Beauty Assessment

Parsons et al. [25] argue, that decisions in scenic aesthetic envi-
ronment classifications are holistic in an environmental psycho-
logical and cognitive scientific view and therefore sustainable. To
support such decisions, assessment of aesthetic potential has been
researched in scenic beauty estimation (SBE), e.g. by using validated
scales to rate photographs [10]. One dilemma with aesthetic qual-
ity is according to [21], that it highly depends on the perspective
of the observer. As a consequence, Bell et al. distinguish between
‘expert-led’ and ’perception-based’ aesthetic criteria [7]. To better
assess subjective criteria, visitor employed photography (VEP) [33]
can be used. By analyzing images that were taken by the individual
users, their personal preferences regarding features such as focus,
viewing angle and situational taste can be assessed.

2.2 Aesthetic Landscapes in HCI

The perspective of using technology to support our goals of living a
good life has led to a paradigm shift towards positive computing [8]
where efficiency at work is no longer the sole purpose of computers.
Consequentially, applications augmenting recreational forest walks
are not a neglected topic in human computer interaction (HCI).
The “Hobbit”-System by Posti et al. for instance, helps users to
avoid other people in hiking tours by interpreting signals that are
captured by mobile phones [27]. Other applications predict the
aesthetics of scenery by using machine learning techniques such
as artificial neuronal networks (ANNs). Such prediction models
were trained on handcrafted features, for instance relating to a
forest’s structure [16] and directly on raw image data [26] to classify
aesthetic value in scenery. Samsonov et al. for instance used ANN-
based scenic beauty classifiers to select a passenger’s seat on a
bus-tour based on which side the view is more aesthetic [29]. Other
projects explored tools that use these techniques to plan routes
that are aesthetically more pleasing for travelers [22]. Most of the
applications that consider scenic beauty for route planning rely on
automatically generated images which are provided by the Google
Streetview API and not by pictures that were taken by users. As a
result, the user’s individual aesthetic taste was not considered in
these projects.

2.3 Interactive Machine Learning and
Personalization

The term Interactive Machine Learning (IML) was introduced by
Fails et al. who described a train-feedback-correct cycle which al-
lows users to correct mistakes of a machine learning system [12].
Kelusza et al. took this idea a step further by focusing in depth on
the transparency of machine learning classifiers to improve the
user’s mental model of a system and therefore the quality of his
or her corrections. As part of their study, they generated detailed
explanations for a naive bayes classifier within an e-mail catego-
rization tool [19]. IML can also be used on mobile devices like a
smartwatch [13]. In this case drinking activities were recognized.

2.4 Explainable Artificial Intelligence

With Al and Big Data becoming ubiquitous buzzwords in media
over the recent years, the research field of artificial intelligence
gained popularity. While such systems like convolutional neural
networks (CNNs) achieved remarkable prediction accuracies, their
decision process remains opaque in part because of the huge amount
of learned parameters that are used. Recent years therefore saw a
resurgence of research on Explainable Artificial Intelligence, which
aims to make opaque black-box models more interpretable for hu-
mans. One way of increasing the interpretability of such a model
is the creation of saliency maps, which are heat-maps that high-
light the parts of the input that were relevant for a certain pre-
diction [2]. While some saliency map algorithms use gradients to
identify inputs that would change the prediction the most [32],
other algorithms try to approximate the classifier with a better
understandable model [28]. In this paper we use Layer-wise Rele-
vance Propagation (LRP) which directly uses the trained weights
to calculate how much each input contributed to the prediction [6].
This method was for example used by [15] to create an explainable
recommendation system that not only gives a recommendation
but also identifies the features that mostly influenced this recom-
mendation. Our study, in contrast, uses transfer learning instead
of manual corrections to retrain an image classifier to adapt pre-
dictions to the user’s individual aesthetic taste. The ANNs used for
this application run on a mobile device previously bench-marked
by Seiderer et al. [31]. As model transparency encourages users to
engage in the IML cycle more frequently [20], but is non-trivial
to achieve for complex classifier architectures, such as ANNs, we
used specialized explaining techniques from the research field of
explainable artificial intelligence.

3 DATA-COLLECTION

The data-set is based on pictures taken by geography students in
an urban forest. Photographs were taken using digital compact
cameras and had to be associated with either the label aesthetic
or unaesthetic. To simulate the process of single user rating, the
photographs were reviewed by a single student, discarding those not
inline with his judgment. This resulted in a data-set of 202 pictures,
balanced within the two classes, 101 each for aesthetic / unaesthetic
forest (see Figure 1 for examples). A data-set of 200 pictures can be
considered an effort practicable by a single layperson.

The non-aesthetic part consists of all pictures with obvious hu-
man impact ruining the beauty of the scene and all pictures showing



Figure 1: Images labeled unaesthetic (left), aesthetic (right).

natural destructive processes. These include tree stumps, bark carv-
ings, piled up logs, markers and signs, fencing around the trees,
wagons left on an old railroad track, small to medium-sized boul-
ders and parts with either only sparse vegetation or branches lying
around. Samples of other human constructions such as a Kneipp
basin that not only had no water in it but was also in bad condition
were labeled as non-aesthetic as well as images showing the results
of erosive processes by forces of nature. This compares well to ref-
erences in literature [33]. Lastly, dead parts of the forest were also
captured by the students, thus finalizing our unaesthetic part. The
aesthetic part on the other hand mainly contains pictures of well
grown branches, single or multiple trees, in some cases separated
by a small footpath. Water related pictures showing a clear creek,
stream or lake with decent forest plant growth around it are also
part of the aesthetic class. Some pictures were taken on the edge
of the forest, thus showing the transition from grassland to forest
with a shiny blue sky above. These, as well as fountains, sculptures
and trees or tree stumps covered in moss or ivy are categorized as
aesthetic, too.

4 PROTOTYPE

Based on the mobile machine learning scenario we present our
prototype implementation consisting of a transfer learning setup
and an explainable Al setup.

4.1 On-device Model Training

To implement our prototype we decided to use Python in combi-
nation with a Web-based GUI. This makes it possible to use a full
version of TensorFlow with classification and training function-
ality on a smartphone while providing a GUI that is familiar to
Android users. An overview of the communication between the
components of the prototype can be seen in Figure 2. The prototype
is implemented by using multiple components. The main compo-
nent provides a minimal webserver with websocket capability. It
is used to host an HTML 5 based GUI using Google’s “Material
Design”! which is also used by Android and thus looks familiar to
Android users. The main component calls two separate components
as processes for retraining and classification. The retraining is con-
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Figure 2: Communication between prototype components.

ducted by an adapted version of the TensorFlow retrain example
[11]. This adapted version provides more outputs to be able to show
the progress of the operations in more detail. Image classification
is done by another component which loads the specified model and

!https://material.io/design/

labels before classifying a picture file. The GUI consists of two tabs.
The “home” tab (see Figure 3a) allows the selection of a collection,
can show information about the classes of a collection, allows the
user to start the model retraining as well as to revert to the previ-
ous model and allows the classification of a picture. The “settings”
tab (see Figure 3b) can be used to add and remove collections and
classes. Additionally, already existing pictures can be added to a
selected class. Information about the classes of a collection is shown
at the bottom. Before being able to start image classification the user
has to create a collection. In the best case there are already some
pictures of the desired classes stored on the device so that the user
can just add them by using the button on the “settings” tab. There
have to be at least two classes with at least five pictures in each
class to be able to create a classification model. Such information
is shown in a dialog if the user tries to use the image recognition
without having created a model or wants to train a model without
sufficient pictures and classes.

a) b) <) d)

Figure 3: a) Main screen for model retraining, restoration
and image recognition. The prototype can handle multi-
ple collections (here: forest) with multiple classes (here:
aesthetic / unaesthetic). b) Overview over collections and
classes with possibilities to adapt them. c) Evaluation result
after training a model. In this case 17 pictures were used and
all 8 unseen unaesthetic pictures were classified correctly. d)
If the recognition result was incorrect (user selected "No")
this dialog allows to select the right class or add the image
to a completely new class. The recognition probabilities are
shown to make the process more transparent.
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Figure 4: Runtimes of bottleneck (feature vector) creation,
training and evaluation on a Nexus 6P smartphone. ANNs
are MobileNet 1 (M1) and 2 (M2) at input from 75 by 128 pix-
els (M2_075_128) to to 100 by 224 pixels and Inception V3

If sufficient data is available, the model can be retrained. Infor-
mation about the retraining process is shown in a dialog. In the
end the performance of the model is shown to the user per class



(see Figure 3c). This can give the user first hints about the practical
performance of the model. After this process the recognition can
be used by pressing on the “recognize picture” button. This opens
first the default camera app of the system and after taking a picture
the file is classified with the current model. The program will show
as text how certain it is with its result based on the output of the
classifier. It can select from “I'm sure the picture contains a..”, “I'm
quite sure ..” and “I'm not sure but the picture seems to contain ...
Additionally, it asks whether this is correct. If the user selects “Yes”
the new picture is added as a new sample to the recognized class,
if “No” a list is opened where the user can select from all classes
which shows the probabilities the classifier returned for each class
and enables the user to create a new class (see Figure 3d). If the
user restarts the training process the new samples are included in
the data set. In case the user notices that a model is broken but the
one before worked it is possible to revert to the last trained model.
If the user added more data it is very likely that the problem gets
resolved and the user can use a newly trained model on the data set
for image recognition. We tested the transfer-learning process on
a Nexus 6P smart-phone, see Figure 4. This shows that MobileNet
with 128 pixel input has a good ratio when it comes to on-device
training. Because of this and the fact that it achieves good results,
it is the foundation of our evaluation regarding ANN-model in
Section 6.1 as well as user-study in Section 6.2.

4.2 Explainable AI Approach

To identify the regions of an input picture that were especially rele-
vant for our classification models we use an XAl method called deep
Taylor decomposition which was initially introduced by Montavon
et al. [23]. This method increases the transparency of a classifier
by creating saliency maps that visualize the relevance of each pixel
of the input for the decision of the network (see Figure 5). Deep

Original input
picture

Deep Taylor
decomposition

Figure 5: An example for deep Taylor decomposition. High-
lighted on the left, the relevant parts of the image for the
prediction. In this example, the decomposition clarifies that
the network’s prediction is mainly based on the street sign.

Taylor decomposition calculates the relevance of the input pixels
by performing a layer-wise relevance propagation similar to the
one introduced by Bach et al. [5] (in fact the latter approach can be
embedded into the theoretical framework of deep Taylor decompo-
sition). During this propagation the algorithm assigns a relevance
value R; to each neuron of the neural network. This process starts
at the output layer, where the relevance of the prediction we want
to analyze is defined as the activation of the respective neuron. The
output neuron’s relevance is then successively propagated back-
wards to each previous layer until it reaches the input layer where

the neurons correspond to the input pixels. At each step of this
propagation a Taylor approximation is used to approximate how rel-
evant a neuron xf in layer [ was for a neuron xﬁ.“ of the subsequent
layer [+1. For this approximation we need to describe the relevance
of xj.“ as a function Rﬁ.“ (x!) which depends on the neurons xf of
the previous layer. This can for example be done through previous
relevance propagation steps. After such a function is found, one
can decompose it using the Taylor series
oRM1
R§+1 (x}) = Z 8)]cl e (x5 +e, (1)

i i

with Taylor residual ¢ and base point %! which is chosen depend-
ing on xé“. The propagated relevance from xé” to xf is given by
AR _

a; 7 |§, (xlg - xf) if one assumes that ¢ is small enough. Depend-
ing on the choice of base point %! we obtain different deep Taylor
methods. For our study we use the deep Taylor implementation of

the INNvestigate framework [3].

5 USER STUDY
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Figure 6: Examples of each block in the questionnaire.

To gather information regarding the reception of our approach,
we conducted an online survey. Participants were presented six
images in two modes (see Figure 6), one with deep Taylor decompo-
sition saliency maps and one without, thus resulting in an overall
iteration count of 12 images per participant. To prevent a bias re-
lated to learning effects, the two modes were permuted randomly
and balanced. Both groups’ questionnaires started out asking for
personal demographic and tech-affinity information and were con-
cluded by asking if each block’s explanations were perceived as
sufficient, how false-classifications would be handled in an inter-
active system as well as final feedback. Each of the 12 iterations
contained questions regarding label agreement comprehension, re-
garding the system’s classification, and improvement regarding
sharpening visual sensing. Additionally, image regions perceived as
important for classification were inquired. To explore the potential
of our system to assist the user to customize the model to their
personal aesthetic preferences we also included an open question.
Here the participants had to describe which additional training data
they would use to change the hypothetical prediction of a model
for the input picture in Figure 5 from ’unaesthetic’ to "aesthetic’.

6 EVALUATION

Our prototype’s evaluation is split in evaluation of the model (Sec-
tion 6.1) that was trained using our data-set ( Section 3), as well as
evaluating deep Taylor decomposition as Ul-feature (Section 6.2).



6.1 ANN-Model

The retrained model we use is based upon MobileNet V2 [30] with
an input of 128 by 128 pixel. To gain a representative evaluation
k-folds cross-validation with 5 splits is employed on overall 202
images distributed evenly onto two classes. Training took place
in eight epochs and batches of 20 while having the first 55 layers
frozen. The number of epochs was determined using a grid search.
This results in an accuracy of 79.7% (confusion matrix in Table 1).

Table 1: Results of 5-Fold cross-validation (202 images).

Confusion Matrix

Predicted: Aesthetic Unaesthetic

Aesthetic 76 23
Unaesthetic 18 85
Accuracy 79.7%

6.2 User Study

We conducted a study with 31 participants of a mean age of 31
(SD = 10.54) with 18 males and 13 females. On a Likert scale from
1 to 5 when considering their machine-learning knowledge our
participants scored an average of 2.48 (SD = 0.99). Participants
were divided into two groups, one of them seeing the XAI images
first, the other group seeing them secondly. The participants were
assigned randomly. Since we employed a total of six t-tests, we used
the Holm correction to adjust our p-values that are presented in
the following. Independent t-tests were employed in the next three
reported results, when only the answers raised on the participants’
first encounter with the images were used, be it with (group A) or
without (group B) deep Taylor visualizations.

First, we tested if the participant’s agreement with the classifi-
cation of the network differs between group A and group B, where
group A has no higher agreement with the classification of the
network compared to group B. There was no statistical difference
(¢(166) = -0.06, p = 1.0) between group A (M = 3.42, SD = 1.37) and
group B (M =3.43, SD = 1.25). Second, we evaluated the question if
XAI compared to the UI without Deep-Taylor explanations helps to
sharpen the participant’s view. There was no statistically significant
difference (#(166) = 1.86, p = .09) between group A (M = 2.92, SD
=1.17) and group B (M = 2.58, SD = 1.14). Third, we evaluated if
XAI (A) helps users to comprehend the system’s decision when
compared to the UI without XAI (B). There was a statistically sig-
nificant difference (#(166) = 2.63, p = .02) between group A (M =
3.57, SD = 1.22) and group B (M = 3.08, SD = 1.22), where group A
found the system’s decisions more comprehensive than group B.

Thereafter, paired t-tests were used to evaluate the difference be-
tween the UI with XAI and the UI without XAI for each participant
also including the images rated in the participant’s second block.
Here the agreement with the system’s classification can not, again
as expected, be significantly discriminated (#(185) = 2.60, p = 1.0)
between XAI (A) and non-XAI (B) with group A (M =3.44, SD =
1.36) and group B (M = 3.40, SD = 1.30).

XAI does help to sharpen the user’s view significantly (#(185) =
2.60, p = .025) when considering the Ul-implementation with XAI
(A) compared to the UI without XAI (B) with group A (M = 2.70,
SD = 1.17) and group B (M = 2.38, SD = 1.10).

Compared to the independent t-test the effect regarding the
helpfulness of XAI (A) to comprehend the systems decision in
relation to the UI without XAI (B) increased and is significant
(#(185) = 6.0, p = .0003) with group A (M = 3.26, SD = 1.18) and
group B (M = 2.47, SD = 1.23).

To evaluate the open question about what kind of additional pic-
tures the participants would choose to change the prediction of the
model for the picture in Figure 5 from “unaesthetic” to “aesthetic”,
we took inspiration from Anderson et al. [4]. We asked three ex-
perts, that were involved in the training process of the model, how
they would answer the question. All three of them answered with
variations of “I would include additional pictures that contain street
signs and label them with unaesthetic”. Based on this answer we
identified two concepts that should be part of a correct answer: (1)
referring to the street sign and (2) choosing an appropriate labeling.
Afterwards, we checked which participants included those priorly
defined concepts in their answer.

Table 2: Results of whether the saliency maps enabled the
participants to choose training data to adapt the network to
their personal aesthetic preferences.

concepts included in answer 2 1 0

# participants 7 10 6
average ML experience 29 22 18

Out of our 31 participants 8 answered, they did not understand
the question. The results of the remaining 23 are shown in Table 2.

7 DISCUSSION

We trained a ANN based on MobileNet v2 with a limited data-set
containing 202 images (transfer learning) that could be created by
a single user without effort. Our model was able to discriminate
aesthetic from unaesthetic forest-scenes with an accuracy of 79.7%
and therefore is a indicator, that we are able to create sufficient
models with limited resources (hypothesis 0). The visualizations
helped users to sharpen their view significantly, that is improving
their competence when it comes to judging the aesthetics of forest
views. The biggest effect could be found in regard of Deep-Taylor
visualizations helping the user to comprehend the system’s decision.
To explore the benefit of additional saliency maps for the interactive
machine learning process we asked the participants which addi-
tional training data they would use to change a certain prediction
of the system. The results of this question showed that 74% of the
participants, that understood the question, were able to identify at
least one of the two concepts we identified as relevant for choos-
ing training data to adapt the network to fit a specific aesthetic
preference. After investigating, we saw a connection between the
participant’s understanding of machine learning algorithms and
the amount of concepts they were able to recognize. The partici-
pants that identified both relevant concepts had the highest average
machine learning experience while the group of participants that
found none of the concepts had the lowest average machine learn-
ing experience. On the one hand we think these results indicate
that augmenting the raw prediction with saliency maps improves
the users’ ability to personalize the system. On the other hand the



connection to machine learning expertise shows that additional
work is needed to increase the user’s understanding of the train-
ing process of the network. This might be achieved by giving the
users additional instructions on how to use the system but it also
highlights the need for XAI approaches to convey knowledge about
the underling machine learning system. Since visualizations high-
lighting regions of interest for the classifier within images were
significantly rated to help the users to sharpen their view, the vi-
sualization goes beyond being a benefit just in the context of the
interactive machine learning process. Deep Taylor visualizations
hold the potential to be beneficial in the users’ ability to judge the
aesthetic quality of forest scenery.

8 CONCLUSION

We presented a prototype that enables smart-phone users to use
transfer learning on their devices interactively. An accuracy of
79.7% was achieved by the prototype within the scenario of forest-
aesthetic classification, based on a limited data-set consisting of
images gained by Visitor Employed Photography. Finally, we pre-
sented insights from a user-study examining the use of deep-Taylor
visualizations that improve the comprehensiveness of the machines
decision process but also fosters the user’s capabilities in judging
a forest scene’s aesthetics. Since forests aesthetics is relevant for
users’ wellbeing it could be further researched by including mobile
physiological and environmental sensors like used in the study
conducted in [14].
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