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SPARSE COMPRESSION OF EXPECTED SOLUTION OPERATORS\ast 

MICHAEL FEISCHL\dagger AND DANIEL PETERSEIM\ddagger 

Abstract. We show that the expected solution operator of prototypical linear elliptic PDEs
with random coefficients is well approximated by a computable sparse matrix. This result is based
on a random localized orthogonal multiresolution decomposition of the solution space that allows
both the sparse approximate inversion of the random operator represented in this basis as well as
its stochastic averaging. The approximate expected solution operator can be interpreted in terms
of classical Haar wavelets. When combined with a suitable sampling approach for the expectation,
this construction leads to an efficient method for computing a sparse representation of the expected
solution operator.
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1. Introduction. For a random (or parameterized) family of prototypical linear
elliptic partial differential operators\bfscrA (\omega ) =  - div(\bfitA (\omega )\nabla \bullet ) and a given deterministic
right-hand side f , we consider the family of solutions

\bfitu (\omega ) := \bfscrA (\omega ) - 1f

with events \omega \in \Omega in some probability space \Omega . We define the harmonically averaged
operator

\scrA :=
\bigl( 
\BbbE [\bfscrA (\omega ) - 1]

\bigr)  - 1
.

The idea behind this definition is that \BbbE (\bfitu ) satisfies

\BbbE [\bfitu ] = \scrA  - 1f.

In this sense, \scrA may be understood as a stochastically homogenized operator, and
\scrA  - 1 is the effective solution operator. Note that this definition does not rely on
probabilistic structures of the random diffusion coefficient \bfitA , such as stationarity,
ergodicity, or any characteristic length of correlation. However, we shall emphasize
that \scrA does not coincide with the partial differential operator that would result from
the standard theory of stochastic homogenization (under stationarity and ergodicity)
[31, 36, 45]; see, e.g., [5, 21, 12, 22, 1] for quantitative results. Recent works on
discrete random problems on \BbbZ d with independent and identically distributed (i.i.d.)
edge conductivities indicate that \scrA is rather a nonlocal perturbation of the Laplacian
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by a convolution-type operator [4, 28, 11], which indicates that there might exist an
efficient algorithm to approximate the operator.

The goal of the present work is to show the following result, even in the more
general PDE setup of this paper without any assumptions on the distribution of the
random coefficient.

Main Result (see Theorem 10 for the precise statement). We can compute
a sparse matrix R\delta in almost linear cost which approximates the expected solution
operator \scrA  - 1 in the sense that the corresponding operator \scrR \delta satisfies

\| \scrA  - 1  - \scrR \delta \| L2(D)\rightarrow L2(D) \leq \delta 

for any \delta > 0 the number of nonzero entries of R\delta as well as the computational cost
to evaluate \scrR \delta scale like \delta  - d up to logarithmic-in-\delta terms.

The sparse matrix representation of \scrA  - 1 is based on multiresolution decompo-
sitions of the energy space in the spirit of numerical homogenization by localized
orthogonal decomposition (LOD) [32, 25, 37, 18, 29, 19] and, in particular, its multi-
scale generalization that is popularized under the name gamblets [33]. In this paper, a
one-to-one correspondence of a gamblet decomposition and classical Haar wavelets is
established via L2-orthogonal projections and conversely by corrections involving the
solution operator (see section 2). The resulting problem-dependent multiresolution
decompositions block-diagonalize the random operator \bfscrA for any event in the prob-
ability space (see section 3). The block-diagonal representations (with sparse blocks)
are well conditioned and, hence, easily inverted to high accuracy using a few steps of
standard linear iterative solvers. The sparsity of the inverted blocks is preserved to
the degree that it deteriorates only logarithmically with higher accuracy.

While the sparsity pattern of the inverted block-diagonal operator is independent
of the stochastic parameter and, hence, not affected when taking the expectation (or
any sample mean), the resulting object cannot be interpreted in a known basis. This
issue is circumvented by reinterpreting the approximate inverse stiffness matrices in
terms of the deterministic Haar basis before stochastic averaging (see section 4). This
leads to an accurate representation of \scrA  - 1 in terms of piecewise constant functions.
Sparsity is not directly preserved by this transformation but can be retained by some
appropriate hyperbolic cross truncation which is justified by scaling properties of the
multiresolution decomposition (see section 5).

While the mathematical question of sparse approximability of the expected oper-
ator can be answered positively with simpler techniques, the above construction leads
to a computationally efficient method for approximating \scrA  - 1 when combined with
any sampling approach for the approximation of the expectation (see section 6). This
new sparse compression algorithm for the direct discretization of \scrA  - 1 may be bene-
ficial if we want to compute \BbbE [\bfitu ] for multiple right-hand sides f . This, for example,
is the case if we have an independent probability space \xi \in \Xi influencing f = \bfitf (\xi )
as well as the corresponding solution \bfitU (\omega , \xi ) := \bfscrA (\omega ) - 1\bfitf (\xi ). Then we might be
interested in the average behavior \BbbE \Omega \times \Xi [\bfitU ], which is the solution of

\BbbE \Omega \times \Xi [\bfitU ] = \BbbE \Xi [\scrA  - 1\bfitf ] = \scrA  - 1\BbbE \Xi [\bfitf ].(1.1)

While this can be computed efficiently with sparse approximations of the random
parameter (see, e.g., [2, 3]) or multilevel algorithms (see, e.g., [9, 20]) under the reg-
ularity assumption on the random parameter, the present approach does not assume
any smoothness apart from integrability. A practical example for the problem might
serve the Darcy flow as a model of groundwater flow. Here, \bfscrA is a random diffu-
sion process modeling the unknown diffusion coefficient of the ground material. The
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right-hand side \bfitf would be the random (unknown) injection of pollutants into the
groundwater. Ultimately, the user would be interested in the average distribution
of pollutants in the ground. Obviously, computing the right-hand side of (1.1) re-
quires the user to sample \Omega and \Xi successively, whereas computing the left-hand side
of (1.1) forces the user to sample the much larger product space \Omega \times \Xi . While for
plain Monte Carlo sampling only the possibly increased variance of the product ran-
dom variable affects the convergence, higher-order sampling methods such as sparse
grids and quasi--Monte Carlo will directly and, in case of lack of regularity on the
random parameter, quite drastically (see, e.g., exponential dependence on dimension
in [7]) benefit from the reduction of dimension of the probability space. Therefore,
an accurate discretization of \scrA can help save significant computational cost.

We consider some prototypical linear second-order elliptic PDEs with a random
diffusion coefficient. Let (\Omega ,\scrF ,\BbbP ) be a probability space with set of events \Omega , \sigma -
algebra \scrF \subseteq 2\Omega , and probability measure \BbbP . The expectation operator is denoted by
\BbbE . Let D \subseteq \BbbR d for d \in \{ 1, 2, 3\} be a bounded Lipschitz polytope with diameter of
order 1. The set of admissible coefficients reads

\scrM (D, \gamma min, \gamma max) =

\Biggl\{ 
A \in L\infty (D;\BbbR d\times d

sym) s.t. \gamma min| \xi | 2 \leq (A(x)\xi ) \cdot \xi \leq \gamma max| \xi | 2

for a.e. x \in D and all \xi \in \BbbR d

\Biggr\} 

for given uniform spectral bounds 0 < \gamma min \leq \gamma max < \infty . Here, \BbbR d\times d
sym denotes the set

of symmetric d\times dmatrices. Let\bfitA be a Bochner-measurable\scrM (D, \gamma min, \gamma max)-valued
random field with \gamma max > \gamma min > 0. Note that we do not make any structural assump-
tions regarding the distribution of \bfitA . Moreover, realizations in \scrM (D, \gamma min, \gamma max) are
fairly free to vary within the bounds \gamma min and \gamma max without any conditions on fre-
quencies of variation or smoothness.

Denote the energy space by V := H1
0 (D), and let f \in V \ast = H - 1(D) be deter-

ministic. The prototypical second-order elliptic variational problem seeks a V -valued
random field \bfitu such that, for almost all \omega \in \Omega ,

(1.2) \bfita \omega (\bfitu (\omega ), v) :=

\int 
D

(\bfitA (\omega )(x)\nabla \bfitu (\omega )(x)) \cdot \nabla v(x) dx = f(v) for all v \in V.

The bilinear form \bfita \omega depends continuously on the coefficient\bfitA (\omega ) \in \scrM (D, \gamma min, \gamma max)
and, particularly, is measurable as a function of \omega . Hence, the reformulation of this
problem in the Hilbert space L2(\Omega ;V ) of V -valued random fields with finite sec-
ond moments shows well-posedness in the sense that there exists a unique solution
\bfitu \in L2(\Omega ;V ) with

\| \nabla \bfitu \| L2(\Omega ;V ) :=

\int 
\Omega 

\int 
D

| \nabla (\bfitu (\omega ))(x)| 2 dx d\BbbP (\omega )
1/2

\leq \gamma  - 1
min\| f\| V \ast .

To connect the model problem to the operator setting of the introduction, we shall
define the random operator \bfscrA : \Omega \rightarrow \scrL (V, V \ast ) by

\langle \bfscrA (\omega )u, v\rangle V \ast ,V := \bfita \omega (u, v)

for functions u, v \in V and \omega \in \Omega . Then the model problem (1.2) can be rephrased as

\bfscrA (\omega )\bfitu (\omega ) = f for almost all \omega \in \Omega .

For convenience, we define the sample-dependent energy norm | | | \cdot | | | 2\omega := \bfita \omega (\cdot , \cdot ).
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2. Coefficient-adapted hierarchical bases. Let \scrT \ell , \ell = 0, . . . , L denote a
sequence of uniform refinements with mesh size h\ell of some initial mesh \scrT 0 of D,
and let \scrN (\scrT \ell ) denote the nodes of the meshes. We allow fairly general meshes in
the sense that we only require a reference element Tref together with a family of
uniformly bi-Lipschitz maps \Psi T : Tref \rightarrow T for all elements T \in \scrT \ell , \ell = 0, . . . , L.
Straightforward examples are simplicial meshes generated from an initial triangulation
by red refinement (or newest vertex bisection) or quadrilateral meshes generated by
subdividing the elements into 2d new elements. Particularly, hanging nodes do not
pose problems as long as the other properties are observed.

The number of levels (or scales) L will typically be chosen proportional to the
modulus of some logarithm of the desired accuracy 1 \gtrsim \delta > 0. We assume h\ell +1 \leq 
h\ell /2. Note that any other fixed factor of mesh width reduction strictly smaller than
one would do the job. Define the set of descendants of an element T \in \scrT \ell by ref(T ) :=

\{ T \prime \in \scrT \ell +1 : T \prime \subseteq T\} . For each T \in 
\bigcup L - 1

\ell =0 \scrT \ell , we pick piecewise constant functions
\phi T,1, \phi T,2, . . . , \phi T,\#ref(T ) \in P 0(ref(T )) such that they are pairwise L2(T )-orthogonal
and

\int 
T
\phi T,j dx = 0 for all j = 1, . . . ,\#ref(T ). With the indicator functions \chi (\cdot ), we

then define \scrH 0 := \{ \chi T : T \in \scrT 0\} and for \ell \geq 1

\scrH \ell :=
\bigcup 

T\in \scrT \ell  - 1

\bigl\{ 
\phi T,j : j = 1, . . . ,\#ref(T )

\bigr\} 
.(2.1)

We define a Haar basis via

\scrH :=

L\bigcup 
\ell =0

\scrH \ell .

Lemma 1. The basis \scrH is L2-orthogonal and local in the sense that \phi \in \scrH \ell sat-
isfies supp(\phi ) = T for some T \in \scrT \ell  - 1 or T \in \scrT 0 for \ell = 0.

Proof. Let \phi \ell \in \scrH \ell and \phi k \in \scrH k. If k = \ell , then the interiors of the supports of
any \phi k = \phi \ell \in \scrH k are disjoint, which implies L2(D)-orthogonality. If k < \ell , we have
that \phi k is constant on supp(\phi \ell ). Since

\int 
D
\phi \ell dx = 0 by definition, this concludes the

proof of L2-orthogonality. Locality follows readily from the construction.

Remark 2. For uniform Cartesian meshes, \scrH is the Haar basis. The choice of the
2d  - 1 generating functions follows the standard procedure for Haar wavelets (see,
e.g., [42]). The construction is applicable to general meshes that are not based on
tensor-product structures.

Due to the lack of V -conformity, the basis \scrH is not suited for approximating
the solution of model problem (1.2) in a Galerkin approach. It will, however, serve

as a companion of certain regularized hierarchical bases \bfscrB (\omega ) =
\bigcup L

\ell =0 \bfscrB \ell (\omega ) \subset V
to be defined below. The new bases are connected to \scrH (and to each other) via
L2-orthogonal projections \Pi \ell : V \rightarrow P 0(\scrT \ell ) onto \scrT \ell -piecewise constant functions by

(2.2) \Pi \ell \bfscrB \ell (\omega ) = \scrH \ell 

for all \ell = 0, 1, . . . , L and \omega \in \Omega . Among the infinitely many possible choices, we
define the elements of \bfscrB \ell (\omega ) by minimizing the energies 1

2\bfita \omega (\bullet , \bullet ) in the closed affine
space of preimages of \Pi \ell restricted to V ; i.e., given \phi \in \scrH \ell and \omega \in \Omega , we define
\bfitb \phi (\omega ) \in \bfscrB \ell (\omega ) by

\bfitb \phi (\omega ) := argmin
v\in V

1
2\bfita \omega (v, v) subject to \Pi \ell v = \phi .(2.3)
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Fig. 1. Realization of coefficient-adapted hierarchical decomposition in one dimension (top
row) and two dimensions (bottom row) based on an elliptic partial differential operator with random
coefficient i.i.d. with respect to Cartesian grid of width \varepsilon = 2 - 6. Five levels from coarse (left) to
fine (right). Green lines/surfaces represent classical Haar wavelets.

This construction (visualized in Figure 1) is strongly inspired by numerical homoge-
nization, where this sort of orthogonalization of scales in the energy space paved the
way to a scheme that works with arbitrary rough coefficients beyond periodicity or
scale separation [32, 25, 37, 29]. While most results in the context of this so-called
LOD are based on a conforming companion (the Faber basis), early works also ad-
dressed the possibility of using discontinuous companions [13, 14]. This dG version
of LOD is very useful when taking the step from two levels or scales in numerical ho-
mogenization to actual multilevel decomposition. This was first shown in [33], where
so-called gamblets are introduced; see also [41, 26, 27, 35, 34]. In particular, piecewise
constants induce a natural hierarchical structure with nested kernels of local projec-
tion operators (here the \Pi \ell ) that is not easily achieved with H1-conforming functions.
The construction of the present paper coincides with the gamblet decomposition of
[33] in the sense that the approximation spaces on all levels coincide in some ide-
alized deterministic setting. However, our particular choice of basis is connected to
the Haar wavelets which decouple the definition and computation of the basis across
levels. More importantly, our particular choice of basis is crucial in the context of
the random problem at hand because it is exactly the link to the deterministic Haar
basis that allows a meaningful interpretation of the averaged approximate solution
operator.

We shall express the mapping of bases encoded in (2.2)--(2.3) in terms of two
concatenated linear operators. This will be useful for both analysis and actual com-
putations. First, let \~\Pi \ell : L

2(D) \rightarrow V be such that

(2.4) \Pi \ell \circ \~\Pi \ell = id on span\scrH \ell .

In particular, this means that \~\Pi \ell maps any \phi \in \scrH \ell to some function that is admis-
sible in the sense of the minimization problem (2.3). The operators \~\Pi \ell are easily
constructed using nonnegative bubble functions \~\chi T supported on an element T \in \scrT \ell 
with \Pi \ell \~\chi T = \chi T . Then

\~\Pi \ell v =
\sum 
T\in \scrT \ell 

(\Pi \ell v)| T \~\chi T .

There is even locality in the sense of

(2.5) supp \~\Pi \ell \phi \subset supp\phi 
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for all \phi \in span\scrH \ell . The bubbles can be chosen such that, for some C > 0,

(2.6) \| \~\Pi \ell \phi \| Hm(D) \leq Ch - m\| \phi \| L2(D)

holds for m \in \{ 0, 1\} .
The second step involves \bfita \omega -orthogonal projections \bfscrC \ell (\omega ) onto the closed sub-

spaces

(2.7) W\ell := kernel(\Pi \ell | V ) = kernel(\~\Pi \ell | V )

of V . Given any u \in V , define \bfscrC \ell (\omega )u \in W\ell as the unique solution of the variational
problem

\bfita \omega (\bfscrC \ell (\omega )u, v) = \bfita \omega (u, v) for all v \in W\ell .(2.8)

With the two operators \~\Pi \ell and \bfscrC \ell we rewrite (2.3) as

\bfitb \phi = (id - \bfscrC \ell )\~\Pi \ell \phi 

for all \phi \in \scrH \ell and \ell = 0, 1, . . . , L. Actually, for any \omega \in \Omega , (id  - \bfscrC \ell (\omega ))\~\Pi \ell defines a
bijection from \scrH to \bfscrB (\omega ) with left inverse \Pi \ell .

While the L2-orthogonality of the Haar basis is not preserved under these map-
pings, we have achieved \bfita -orthogonality between the levels of the hierarchies as shown
in the following lemma.

Lemma 3 (\bfita -orthogonality and scaling of \scrB ). Any two functions bk \in \scrB k(\omega ) and
b\ell \in \scrB \ell (\omega ) with k = \ell satisfy

\bfita \omega (bk, b\ell ) = 0.

Moreover,

C - 1\| \phi k\| L2(D) \leq C - 1\| bk\| L2(D) \leq hk| | | bk| | | \omega \leq C\| \phi k\| L2(D)(2.9)

with some generic constant C > 0 independent of the mesh sizes and the event.

Proof. Since

(2.10) \Pi k(id - \bfscrC \ell (\omega ))\~\Pi \ell \scrH \ell = \Pi k\Pi \ell (id - \bfscrC \ell (\omega ))\~\Pi \ell \scrH \ell = \Pi k\scrH \ell = \{ 0\} 

whenever k < \ell , we have that

\bfscrB \ell (\omega ) \subset Wk.

This and the orthogonality

\bfita \omega (\bfscrB k(\omega ),Wk) = 0

from (2.8) prove the (block-)orthogonality of the bases. The scaling follows from
\Pi k - 1\bfscrB k = \{ 0\} (which is a special instance of (2.10)), the Poincar\'e inequality, (2.6),
and the construction. More precisely,

\| \phi k\| L2(D) = \| \Pi kbk\| L2(D) \leq \| bk\| L2(D) = \| (1 - \Pi k - 1)bk\| L2(D) \lesssim hk| | | bk| | | \omega 
= hk| | | (1 - \bfscrC (\omega ))\~\Pi k\phi k| | | \omega \leq hk| | | \~\Pi k\phi k| | | \omega \lesssim \| \phi k\| L2(D).

(2.11)

This concludes the proof.
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We shall emphasize that, in general, the basis elements \bfitb \phi (\omega ) have global support
in D. However, their moduli decay exponentially away from supp\phi in scales of h\ell ,

(2.12) \| \bfitb \phi (\omega )\| H1(D\setminus BR(supp\phi )) \leq Ce - cR/h\ell \| \bfitb \phi (\omega )\| H1(D),

with some generic constants c, C > 0 that solely depend on the contrast \gamma max/\gamma min and
the shape regularity of the mesh \scrT \ell (and thus on \scrT 0) but not on the mesh size. This
is a well-established result of numerical homogenization since [32] and valid in many
different settings (see [37] and references therein). Here, we will provide some elements
of a more recent constructive proof of the decay that provides local approximations
by the theory of preconditioned iterative solvers [29], which in turn is based on [30].

We start with introducing an overlapping decomposition of D that we will later
use to define the local preconditioner. Let the level \ell \in \{ 0, 1, . . . , L\} and the event
\omega \in \Omega be arbitrary but fixed. For any element of the mesh, define the patch

DT :=
\bigcup 

\{ K \in \scrT \ell | \=K \cap \=T = \emptyset \} 

and a corresponding local subspace

VT :=
\bigl\{ 
v \in V | v = 0 in D \setminus DT

\bigr\} 
\subset V.

Note that VT is equal to H1
0 (DT ) up to extension by zero outside of DT . Let \lambda T ,

T \in \scrT \ell , be a partition of unity with supp\lambda T \subset DT and \| \lambda T \| Wm,\infty (D) \lesssim h - m
\ell ,

m = 0, 1. Under the complementary projection (id - \~\Pi \ell ), these subspaces are turned
into subspaces

WT := (id - \~\Pi \ell )VT =
\bigl\{ 
v \in W\ell | v = 0 in D \setminus DT

\bigr\} 
of W\ell . For each T \in \scrT \ell , we define the corresponding \bfita \omega -orthogonal projection
\bfscrP T (\omega ) : V \rightarrow WT \subset W\ell \subset V by the variational problem

\bfita \omega (\bfscrP T (\omega )u,w) = \bfita \omega (u,w) for all w \in WT .

The sum of these local Ritz projections

\bfscrP \ell (\omega ) :=
\sum 
T\in \scrT \ell 

\bfscrP T (\omega )(2.13)

defines a bounded linear operator from V to W\ell that can be seen as a preconditioned
version of the correction operator \bfscrC \ell (\omega ). The operator \bfscrP \ell (\omega ) is quasi-local with
respect to the mesh \scrT \ell since information can only propagate over distances of order
h\ell each time \bfscrP \ell (\omega ) is applied.

The remaining part of this section aims to show that the preconditioned operators
\bfscrP \ell (\omega ) serve well within iterative solvers for linear equations. Following the abstract
theory for subspace correction or additive Schwarz methods for operator equations
[30] (see also [43, 44] for the matrix case), we need to verify that the energy norm of
a function u \in V can be bounded in terms of the sum of local contributions from VT ,
and, for one specific decomposition, we need a reverse estimate.

Lemma 4. For every decomposition u =
\sum 

T\in \scrT \ell 
uT of u \in W\ell with uT \in WT , we

have
\| \nabla u\| 2L2(D) \leq K2

\sum 
z\in \scrT \ell 

\| \nabla uT \| 2L2(D)
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with constant K2 > 0 depending only on the shape regularity of \scrT \ell (and thus on \scrT 0).
With the partition of unity functions \lambda T associated with the elements T \in \scrT \ell , the one
decomposition

\sum 
T\in \scrT \ell 

uT = u with uT := (1 - \~\Pi \ell )(\lambda Tu) \in WT for T \in \scrT \ell satisfies\sum 
T\in \scrT \ell 

\| \nabla uT \| 2L2(D) \leq K1 \| \nabla u\| 2L2(D)

with constant K1 > 0 that only depends on the shape regularity of \scrT \ell and the contrast
\gamma max/\gamma min.

Proof. With K2 the maximum number of elements of \scrT \ell covered by one patch
DT for T \in \scrT \ell , we can estimate on a single element T \prime 

\| \nabla u\| 2L2(T \prime ) =
\sum 
T\in \scrT \ell 

\nabla uT

2

L2(T \prime )

\leq K2

\sum 
T\in \scrT \ell 

\| \nabla uT \| 2L2(T \prime ).

Due to shape regularity of \scrT \ell , K2 is independent of h\ell . A summation over all T \prime 

yields the first inequality. The second one follows from the H1-stability of \~\Pi \ell on W\ell ,
the product rule, (2.6), and the Poincar\'e inequality. For further details, we refer the
reader to [29, Lemma 3.1], where these results are proved in detail in a very similar
setting.

Lemma 4 implies that

(2.14) 1/K1\bfita \omega (v, v) \leq \bfita \omega (\bfscrP \ell (\omega )v, v) \leq K2\bfita \omega (v, v)

holds for functions v in the kernel W\ell of \Pi \ell | V and any \omega \in \Omega (cf. [29, equation
(3.11)]). Following the construction of [30, 29], there exists a localized linear approx-
imation \bfscrC \delta 

\ell (\omega ) based on \scrO (log(1/\delta )) steps of some linear iterative solver applied to
the preconditioned corrector problems [29, Equations (3.8) or equation (3.18)] such
that

(2.15) \| \nabla (\bfscrC \ell (\omega )u - \bfscrC \delta 
\ell (\omega )u)\| L2(D) \leq \delta \| \nabla \bfscrC \ell (\omega )u\| L2(D);

see [29, Lemma 3.2]. With the approximate correctors, we can define modified (local-
ized) bases

\scrB \delta (\omega ) :=

L\bigcup 
\ell =0

\scrB \delta 
\ell (\omega ) :=

L\bigcup 
\ell =0

\bfitb \delta \phi (\omega ) : \phi \in \scrH \ell 

\bigr\} 
,

where

\bfitb \delta \phi (\omega ) := (id - \bfscrC \delta 
\ell (\omega ))\~\Pi \ell \phi 

for \phi \in \scrH \ell . The previous discussion shows that there exist constants C1, C2 > 0 that
only depend on the shape regularity of the meshes \scrT \ell and the contrast \gamma max/\gamma min of
the coefficients such that

| | | \bfitb \phi (\omega ) - \bfitb \delta \phi (\omega )| | | \omega \leq C1\delta | | | \bfitb \phi (\omega )| | | \omega ,(2.16)

while

(2.17) supp \bfitb \delta \phi (\omega ) \subset 
\bigl\{ 
x \in D : dist(x, supp \phi ) \leq C2| log(\delta )| h\ell 

\bigr\} 
.
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Later, we will typically use normalized bases. Since

(1 - C1\delta )| | | \bfitb \phi (\omega )| | | \omega \leq | | | \bfitb \delta \phi (\omega )| | | \omega \leq (1 + C1\delta )| | | \bfitb \phi (\omega )| | | \omega (2.18)

by (2.16), the normalization of the localized bases is meaningful whenever \delta < 1/C1.
Normalization does not affect the local supports (2.17), and the approximation prop-
erty (2.16) is preserved in the sense of

| | | \bfitb \phi (\omega )

| | | \bfitb \phi (\omega )| | | \omega 
 - 

\bfitb \delta \phi (\omega )

| | | \bfitb \delta \phi (\omega )| | | \omega 
| | | \omega \leq 

| | | \bfitb \phi (\omega ) - \bfitb \delta \phi (\omega )| | | \omega 
| | | \bfitb \phi (\omega )| | | \omega 

+
| | | \bfitb \phi (\omega )| | | \omega  - | | | \bfitb \delta \phi (\omega )| | | \omega 

| | | \bfitb \delta \phi (\omega )| | | \omega 

\leq \delta C1 +
C1\delta 

1 - C1\delta 
\leq 3\delta C1

(2.19)

for any \delta \leq 1/(2C1).

3. Sparse stiffness matrices. With the localized bases of the previous section,
we can now study the sparsity of corresponding stiffness matrices and their inverses.
We define the level function lev(\cdot ) according to the Haar basis by lev(\bfitb ) = lev(\bfitb \delta ) =
lev(\phi ) = \ell for \bfitb = \bfitb \phi \in \scrB \ell (\omega ), b

\delta = b\delta \phi \in \scrB \delta 
\ell (\omega ), and \phi \in \scrH \ell . We order the basis

functions in \scrB , \scrB \delta , and \scrH such that lev is monotonically increasing in the index
running from 1 to N := \#\scrB = \#\scrB \delta = \#\scrH . With this convention, we may also write
lev(i) := lev(\bfitb i) = lev(\bfitb \delta i ) = lev(\phi i) for all i = 1, . . . , N . Moreover, we define a
(semi-)metric d(\cdot , \cdot ) on \{ 1, . . . , N\} by

d(i, j) :=
dist(mid(\phi i),mid(\phi j))

hmin\{ lev(i),lev(j)\} 
,

where mid(w) defines the barycenter of supp(w).
Define the stiffness matrices \bfitS (\omega ) \in \BbbR N\times N associated with the bases \bfscrB (\omega ) by

\bfitS (\omega )ij := \bfita \omega 
\bfitb j(\omega )

| | | \bfitb j(\omega )| | | \omega 
,

\bfitb i
| | | \bfitb i(\omega )| | | \omega 

.

The orthogonality of the bases \bfscrB motivates the approximation of the stiffness matrices
by block-diagonal ones even after localization. Given 1/C1 > \delta > 0, define the block-
diagonal stiffness matrices \bfitS \delta (\omega ) \in \BbbR N\times N by

\bfitS \delta (\omega )ij :=

\left\{   \bfita \omega 

\bigl( \bfitb \delta 
j (\omega )

| | | \bfitb \delta 
j (\omega )| | | \omega 

,
\bfitb \delta 
i (\omega )

| | | \bfitb \delta 
i (\omega )| | | \omega 

for lev(i) = lev(j),

0 else.

In the following, we use the spectral norm \| \cdot \| 2, i.e., the matrix norm induced by the
Euclidean norm.

Lemma 5. There exists a constant C > 0 that depends only on D, the shape
regularity of \scrT 0, and the contrast \gamma max/\gamma min such that, for any \omega \in \Omega and for all
\delta \leq 1/(2C1),

\| \bfitS (\omega ) - \bfitS \delta (\omega )\| 2 \leq C\delta .

Moreover, there exists a constant \zeta > 0 which depends only on D such that

d(i, j) > \zeta (| log(\delta )| + 1) or lev(i) = lev(j) =\Rightarrow \bfitS \delta 
ij(\omega ) = 0;(3.1)

in particular, the number of nonzero entries nnz(\bfitS \delta (\omega )) \lesssim N(1+ | log \delta | )d is bounded
uniformly in \omega .
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Proof. The sparsity of the diagonal blocks follows from (2.17). For the proof of
the error bound, define

\widetilde \bfitS \delta 
(\omega )ij :=

\Biggl\{ 
\bfita \omega 

\bigl( \bfitb j(\omega )
| | | \bfitb j(\omega )| | | \omega ,

\bfitb \delta 
i (\omega )

| | | \bfitb \delta 
i (\omega )| | | \omega 

for lev(i) = lev(j),

0 else.

Since | \bfitS ij(\omega )  - \widetilde \bfitS \delta 

ij(\omega )| = 0 whenever lev(i) = lev(j), it suffices to bound the errors
related to the diagonal blocks indexed by \ell = 1, 2, . . . , L. We have for any vectors

x, y \in \BbbR \#\scrB \delta 
\ell that

| x \cdot (\bfitS \ell (\omega ) - \widetilde \bfitS \delta 

\ell (\omega ))y| 

=
\sum 

lev(i)=\ell 

\sum 
lev(j)=\ell 

xiyj\bfita \omega 
\bfitb i(\omega )

| | | \bfitb i(\omega )| | | \omega 
,

\bfitb \delta j(\omega )

| | | \bfitb \delta j(\omega )| | | \omega 
 - \bfitb j(\omega )

| | | \bfitb j(\omega )| | | \omega 
\lesssim \delta \| x\| \ell 2\| y\| \ell 2

by (2.18). The same arguments show | x \cdot (\bfitS \delta 
\ell (\omega )  - \widetilde \bfitS \delta 

\ell (\omega ))y| \lesssim \delta \| x\| \ell 2\| y\| \ell 2 , and the
triangle inequality readily proves the assertion.

Lemma 6. For any \omega \in \Omega , the normalized set \scrB = \bfscrB (\omega ) or \scrB = \bfscrB \delta (\omega ) (with
\delta \lesssim 1/L sufficiently small) is a Riesz basis in the sense that

C - 1
\sum 
b\in \scrB 

\alpha 2
b \leq 

\sum 
b\in \scrB 

\alpha b
b

| | | b| | | \omega 

2

H1(D)

\leq C
\sum 
b\in \scrB 

\alpha 2
b(3.2)

holds with some constant C > 0 which depends only on D, the shape regularity of
\scrT 0, and the contrast \gamma max/\gamma min. This immediately implies that \bfitS (\omega ) and \bfitS \delta (\omega ) are
uniformly well conditioned.

Proof. Since \| \cdot \| H1(D) and | | | \cdot | | | \omega are equivalent uniformly in \omega and the basis \bfscrB (\omega )
is \bfita \omega (\cdot , \cdot )-orthogonal across the levels, it suffices to consider one level k \in \{ 1, . . . , L\} in
the case \scrB = \bfscrB (\omega ). The L2(D)-orthogonality of the Haar basis and the construction
of \scrB implies

\sum 
b\in \scrB k

\alpha 2
b =

\sum 
b\in \scrB k

\alpha b
\phi b

\| \phi b\| L2(D)

2

L2(D)

= \Pi k

\sum 
b\in \scrB k

\alpha b
b

\| \phi b\| L2(D)

2

L2(D)

\leq (1 - \Pi k - 1)
\sum 
b\in \scrB k

\alpha b
b

\| \phi b\| L2(D)

2

L2(D)

\lesssim 
\sum 
b\in \scrB k

\alpha b
b

| | | b| | | \omega 

2

H1(D)

,

where the last estimate follows from the Poincar\'e inequality and (2.9). For the proof
of the converse direction, the construction of \scrB and boundedness of \bfscrC k show

\sum 
b\in \scrB k

\alpha b
b

| | | b| | | \omega 

2

H1(D)

= (id - \bfscrC k(\omega ))\~\Pi k

\sum 
b\in \scrB k

\alpha b
b

| | | b| | | \omega 

2

H1(D)

\lesssim \~\Pi k

\sum 
b\in \scrB k

\alpha b
\phi b

| | | \phi b| | | \omega 

2

H1(D)

\lesssim 
\sum 
b\in \scrB k

\alpha b
\phi b

\| \phi b\| L2(D)

2

L2(D)

=
\sum 
b\in \scrB k

\alpha 2
b ,

where the second inequality follows from the inverse inequality (2.6) and (2.9).
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The result for \scrB = \bfscrB \delta (\omega ) is slightly more involved as the \bfita \omega (\cdot , \cdot )-orthogonal across
the levels is lost. In a first step, Lemma 5 and the equivalence of | | | \cdot | | | \omega and \| \cdot \| H1(D)

imply\sum 
b\delta \in \bfscrB \delta 

\ell (\omega )

\alpha b\delta 
b\delta 

| | | b\delta | | | \omega 

2

H1(D)

\simeq \bfitS \delta 
\ell (\omega )\alpha \cdot \alpha \simeq \bfitS \ell (\omega )\alpha \cdot \alpha \pm C\delta \| \alpha \| 2\ell 2 \simeq (1\pm C\delta )\| \alpha \| 2\ell 2

with the constant C from Lemma 5 and \delta \leq 1/(2C). The second step concerns the
quantification of nonorthogonality. The estimate (2.15) and the norm equivalence
| | | \cdot | | | \omega \simeq \| \cdot \| H1(D) imply

| | | (\bfscrC \delta 
\ell  - \bfscrC \ell )v| | | \omega \lesssim \delta | | | v| | | \omega for all v \in H1

0 (D).

Consequently, we obtain as in the proof of Lemma 5, for some 1 \leq k = \ell \leq L,

\bfita \omega 

\biggl( \sum 
b\delta \in \bfscrB \delta 

\ell (\omega )

\alpha b\delta 
b\delta 

| | | b\delta | | | \omega 
,

\sum 
b\in \bfscrB k(\omega )

\beta b
b

| | | b| | | \omega 

= \bfita \omega 

\biggl( 
(\bfscrC \delta 

\ell  - \bfscrC \ell )\~\Pi \ell 

\sum 
b\delta \phi \in \bfscrB \delta 

\ell (\omega )

\alpha b
\phi 

| | | b\delta \phi | | | \omega 
,

\sum 
b\in \bfscrB k(\omega )

\beta b\delta \phi 

b

| | | b| | | \omega 

\lesssim \delta \| \alpha \| \ell 2\| \beta \| \ell 2 ,

where we used the orthogonality across levels and the stability of \bfscrB . Symmetry of the

argument concludes \bfita \omega (
\sum 

b\delta \in \bfscrB \delta 
\ell (\omega ) \alpha b\delta 

b\delta 

| | | b\delta | | | \omega ,
\sum 

b\in \bfscrB k(\omega ) \beta b
b

| | | b| | | \omega ) \lesssim \delta \| \alpha \| \ell 2\| \beta \| \ell 2 , and

we find\sum 
b\delta \in \bfscrB \delta (\omega )

\alpha b\delta 
b\delta 

| | | b\delta | | | \omega 

2

H1(D)

\simeq 
L\sum 

\ell =1

(1\pm \delta )\| \alpha | \bfscrB \delta 
\ell (\omega )\| 2\ell 2 \pm \delta 

L\sum 
i,j=1
i=j

\| \alpha | \bfscrB \delta 
i (\omega )\| \ell 2\| \alpha | \bfscrB \delta 

j (\omega )\| \ell 2

\simeq (1\pm C\delta L)\| \alpha \| 2\ell 2
for sufficiently small \delta \leq 1/(2CL). This concludes the proof.

4. Basis transformations. This section analyzes the properties of a certain ma-
trix representation of the L2(D)-orthogonal projections \Pi \ell : L

2(D) \rightarrow span(
\bigcup \ell 

j=0 \scrH \ell )

for \ell = 1, . . . , L. Given \omega \in \Omega , define the matrix \bfitT (\omega ) \in \BbbR N\times N by

\bfitT ij(\omega ) :=
(\bfitb j(\omega ), \phi i)L2(D)

| | | \bfitb j(\omega )| | | \omega \| \phi i\| 2L2(D)

.

Given some v =
\sum N

i=1 \alpha i
\bfitb i

| | | \bfitb i| | | \omega with \Pi Lv =
\sum N

i=1 \beta i
\phi i

\| \phi i\| L2(D)
, then, by definition,

\beta i =
(\Pi Lv, \phi i)

\| \phi i\| 2L2(D)

=

N\sum 
j=1

\alpha j\bfitT ij = (\bfitT \alpha )i,

i.e., \beta = \bfitT (\omega )\alpha . Given \delta > 0, a truncated approximation \bfitT \delta (\omega ) of \bfitT (\omega ) is defined
by

\bfitT \delta 
ij(\omega ) :=

\left\{   
(\bfitb \delta 

j (\omega ),\phi i)L2(D)

| | | \bfitb \delta 
j (\omega )| | | \omega \| \phi i\| 2

L2(D)

if lev(j) \leq lev(i),

0 else
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for any i, j \in \{ 1, . . . , N\} . \bfitT \delta (\omega ) is a sparse lower block-triangular matrix, and the
next lemma shows that the error of truncation is at most proportional to \delta . To explore
the block structure of matrices, we shall introduce the following notation first. For
any matrix K \in \BbbR N\times N , we define subblocks K(k,\ell ) \in \BbbR \#\scrH \ell \times \#\scrH k according to the
level structure by

K(k,\ell ) := K| \bigl\{ 
(i,j) : lev(i)=k, lev(j)=\ell 

\bigr\} .
Thus, we may write

K =

\left(     
K(0,0) K(0,1) \cdot \cdot \cdot K(0,L)

K(1,0) K(1,1) \cdot \cdot \cdot K(1,L)

...
...

. . .
...

K(L,0) K(L,1) \cdot \cdot \cdot K(L,L)

\right)     .

Lemma 7. For \delta > 0 as in Lemma 6, there holds

\| \bfitT (\omega ) - \bfitT \delta (\omega )\| 2 \leq CL\delta ,

and, for 0 \leq \ell \leq k \leq L, there holds

\| \bfitT \delta (\omega )(k,\ell )\| 2 \leq Chk.(4.1)

Moreover, \bfitT \delta is lower block-triangular with sparse blocks; more precisely,\bigl( 
lev(j) \geq lev(i) and i = j

\bigr) 
or d(i, j) > \zeta (1 + | log(\delta )| ) =\Rightarrow \bfitT \delta 

ij = 0,

where \zeta > 0 is the bandwidth from Lemma 5. The number of nonzero entries per block
is bounded by nnz(\bfitT \delta (\omega )(k,\ell )) \lesssim \#\scrH k(1+ | log \delta | )d. The constant C > 0 depends only
on D, the shape regularity of \scrT 0, and the contrast \gamma max/\gamma min.

Proof. We see immediately that \bfitT ij(\omega ) = 0 for all lev(j) \geq lev(i) and i = j since

(\bfitb j(\omega ), \phi i)L2(D) = (\Pi lev(\phi i)\bfitb j(\omega ), \phi i)L2(D) = (\phi j , \phi i)L2(D) = 0.

Since supp(\bfitb \delta i (\omega )) \cap supp(\phi j) = \emptyset as soon as d(i, j) \gtrsim | log(\delta )| , there is some \zeta > 0

which depends only on D such that \bfitT \delta (\omega )ij = 0 for all d(i, j) > \zeta (1 + | log(\delta )| ).
For any vectors x \in \BbbR \#\scrB \delta 

k and y \in \BbbR \#\scrB \delta 
\ell , we have

x \cdot (\bfitT (k,\ell )(\omega ) - \bfitT \delta 
(k,\ell )(\omega ))y

=
\sum 

lev(i)=k

\sum 
lev(j)=\ell 

xiyj
\phi i

\| \phi i\| 2L2(D)

,
\bfitb \delta j(\omega )

| | | \bfitb \delta j(\omega )| | | \omega 
 - \bfitb j(\omega )

| | | \bfitb j(\omega )| | | \omega L2(D)

\lesssim \delta \| x\| \ell 2\| y\| \ell 2

by the Friedrichs inequality and (2.19). This implies \| \bfitT (\omega )(\ell ,k)  - \bfitT \delta (\omega )(\ell ,k)\| 2 \lesssim \delta .

Summing up over the levels proves \| \bfitT (\omega ) - \bfitT \delta (\omega )\| 2 \lesssim L\delta .
To see (4.1), note that w :=

\sum 
\phi i\in \scrH k

\alpha i\phi i and b :=
\sum 

\bfitb j(\omega )\in \scrB \ell 
\beta j\bfitb 

\delta 
j(\omega ) satisfy

\alpha T\bfitT \delta (\omega )\beta = (w, b)L2(D) = ((1 - \Pi k)w, b)L2(D) = (w, (1 - \Pi k)b)L2(D)

\lesssim hk\| w\| L2(D)| | | b| | | \omega \lesssim hk\| \alpha \| \ell 2\| \beta \| \ell 2

by Lemma 6. This concludes the proof.
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5. Inverse stiffness matrices and averaging. This section proves that the
inverse of the stiffness matrix \bfitS \delta (\omega ) (w.r.t. the coefficient adapted bases \bfscrB \delta (\omega ))
defined in the previous section can be efficiently approximated by a sparse matrix.
One possibility to compute an approximate inverse of the matrix \bfitS \delta (\omega ) is to apply the
conjugate gradient (CG) method to the matrix with unit vectors ei \in \BbbR N as right-hand
sides. The sparsity pattern from Lemma 5 shows that one matrix-vector product with
\bfitS \delta ei increases the number of nonzero entries to \#

\bigl\{ 
1 \leq j \leq N : d(i, j) \lesssim 1+| log(\delta )| 

\bigr\} 
.

Thus, after k \in \BbbN iterations of the CG method, the resulting vector has about \#
\bigl\{ 
1 \leq 

j \leq N : d(i, j) \lesssim k(1 + | log(\delta )| )
\bigr\} 

nonzero entries. Since the condition number

\kappa (\bfitS \delta ) is uniformly bounded due to Lemma 6, the number of iterations grows only
logarithmically in the desired accuracy \delta . Thus, the cost of k \simeq 1+ | log(\delta )| iterations
of the CG method to reach the accuracy can be bounded roughly by (1 + | log(\delta )| ))2.

Lemma 8. For \delta > 0 as in Lemma 6, there exists a matrix \bfitR \delta (\omega ) such that
\| \bfitS (\omega ) - 1  - \bfitR \delta (\omega )\| 2 \leq \delta . Moreover, \bfitR \delta (\omega ) satisfies

d(i, j) > Cinv\zeta (| log(\delta )| 2 + 1) or lev(i) = lev(j) =\Rightarrow \bfitR \delta 
ij(\omega ) = 0(5.1)

for \zeta from Lemma 5 and Cinv > 0 depending only on D, the shape regularity of \scrT 0,
and the contrast \gamma max/\gamma min. The number of nonzero entries is bounded by nnz(\bfitR \delta ) \lesssim 
N(1 + | log(\delta )| )d, and the cost to compute \bfitR \delta is bounded by the same number.

Proof. Due to Lemma 5 and the fact that \bfscrB (\omega ) is a Riesz basis (Lemma 6), we
observe that all eigenvalues of \bfitS \delta (\omega ) are of order \scrO (1) as long as \delta \lesssim 1. Therefore,

we can obtain \bfitR \delta (\omega ) by application of CG steps to \bfitS 
\~\delta (\omega ) (we chose \~\delta > 0 later; see,

e.g., [40, Chapter 6]). The convergence properties of CG show

\| \bfitS \~\delta (\omega ) - 1  - \bfitR \delta (\omega )\| 2 \leq \delta 

if we perform k = \scrO (| log(\delta )| + 1) CG steps. This follows since

\| resk\| \ell 2 \simeq 
\sqrt{} 

\bfitS 
\~\delta (\omega )resk \cdot resk

for the residual resk of the CG method. From Lemma 5, we see that \bfitR \delta (\omega ) satisfies

d(i, j) > \zeta (| log(\delta )| + 1)2 or lev(i) = lev(j) =\Rightarrow \bfitR \delta 
ij(\omega ) = 0

since each CG step increases the bandwidth by the original bandwidth. With Lemma 5,
we conclude the proof by choosing k \simeq 1+| log(\delta )| and \~\delta \simeq \delta . The constructive nature
of this proof immediately reveals the cost estimate.

Lemma 9. We define a discrete approximation to \scrA  - 1 by

R := \BbbE 
\bigl[ \bigl( 
\bfitT  - T (\omega )\bfitS (\omega )\bfitT  - 1(\omega )

 - 1\bigr] 
= \BbbE 

\bigl[ 
\bfitT (\omega )\bfitS (\omega ) - 1\bfitT (\omega )T

\bigr] 
.

For \delta > 0 as in Lemma 6, we define a perturbed and truncated version of R by
R\delta \in \BbbR N\times N

(R\delta )(\ell ,k) :=

\left\{   \BbbE 
\bigl[ 
\bfitT \delta (\omega )\bfitR \delta (\omega )\bfitT \delta (\omega )T

\bigr] \Bigr) 
(\ell ,k)

\ell + k \leq | log(\delta )| ,

0 else,
(5.2)

which satisfies \| R - R\delta \| 2 \leq CL2\delta . The number of nonzero entries in R\delta is bounded by
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nnz(R\delta ) \lesssim L/\delta d, and up to the computation of the expectation, the cost to produce R\delta 

is bounded by \scrO (Ld/\delta d). The constant C > 0 depends only on D, the shape regularity
of \scrT 0, and the contrast \gamma max/\gamma min.

Proof. We define the auxiliary operator

\widetilde R\delta := \BbbE 
\bigl[ 
\bfitT \delta (\omega )\bfitR \delta (\omega )\bfitT \delta (\omega )T

\bigr] 
.

Analogously to matrix subblocks, we may partition vectors x \in \BbbR N by

x = (x(1), . . . , x(L))

with x(\ell ) \in \BbbR \#\scrH \ell . Using this notation and following the proofs of Lemmas 5, 7, and
8, we show

\| (R - \widetilde R\delta )x\| 2\ell 2 \lesssim 
L\sum 

\ell =1

L\sum 
k=1

(R(\ell ,k)  - \widetilde R\delta 
(\ell ,k))x(k)

2

\ell 2

\lesssim \delta 2L4
L\sum 

\ell =1

L\sum 
k=1

\| x(k)\| 2\ell 2 = \delta 2L4\| x\| 2\ell 2

and, hence, \| R - \widetilde R\delta \| 2 \lesssim \delta L2. The estimate (4.1) implies, for \ell + k > | log(\delta )| ,

\| ( \widetilde R\delta  - R\delta )(\ell ,k)\| 2 \leq 
L\sum 

j=0

\| \bfitT \delta (\omega )(\ell ,j)\| 2\| \bfitR \delta (\omega )(j,j)\| 2\| (\bfitT \delta (\omega )(k,j))\| 2

\lesssim 
L\sum 

j=0

h\ell (1 + \delta )hk

\lesssim L2 - \ell  - k.

This implies, for x \in \BbbR N ,

\| ( \widetilde R\delta  - R\delta )x\| 2\ell 2 \leq 
L\sum 

i,j=0

\| ( \widetilde R\delta  - R\delta )(i,j)x| (j)\| 2\ell 2 \lesssim 
L\sum 

j=0

\| x| (j)\| 2\ell 2
L\sum 

i=| log(\delta )|  - j

L2 - i - j

\lesssim L\delta \| x\| 2\ell 2 .

The number of nonzero entries in R\delta can be bounded sufficiently by ignoring the
sparsity within the blocks and just summing up the entries\sum 

0\leq i+j\leq | log(\delta )| 

\#(R\delta )(i,j) \lesssim 
\sum 

0\leq i+j\leq | log(\delta )| 

2d(i+j) \lesssim L\delta  - d,

where we used that (R\delta )i,j \in \BbbR \#\scrH i\times \#\scrH j and \#\scrH i \simeq 2di. The cost to compute R\delta (up
to the computation of the expectation) is bounded by the linear cost in the number
of nonzeros to set up \bfitT \delta (see Lemma 7) as well as the cost to set up \bfitR \delta . The latter
is bounded by \scrO (N(1 + | log(\delta )| d)) according to Lemma 8, where N = \#\scrH \simeq \delta  - d.
This concludes the proof.

To formulate the following main theorem, we identify the matrix R\delta with an
operator \scrR \delta : L2(D) \rightarrow L2(D) via the natural embedding \iota : \BbbR N \rightarrow span(\scrH ), \iota (\alpha ) =\sum N

i=1 \alpha i\phi i \in L2(D). There holds \scrR \delta := \iota R\delta \iota  \star .
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Theorem 10. For a given accuracy \delta > 0 with \delta \lesssim 1/L sufficiently small, there
exists a finite-dimensional operator \scrR \delta : L2(D) \rightarrow L2(D) which depends only on \delta 
such that

\| \scrA  - 1  - \scrR \delta \| \scrL (L2(D),L2(D)) \leq \delta .

The corresponding operator matrix R\delta from Lemma 9 has at most \scrO (| log(\delta )| 2d+1\delta  - d)
nonzero entries, and up to the computation of the expectation, the cost of producing
R\delta is bounded by \scrO (| log(\delta )| 3d\delta  - d). The hidden constant depends only on D, the shape
regularity of \scrT 0, and the contrast \gamma max/\gamma min.

Constructive proof. We use the operator matrix R\delta \in \BbbR N\times N from Lemma 9.
Given f \in L2(D), define \bfitF (\omega ) \in \BbbR N by \bfitF i(\omega ) := (f, \bfitb i/| | | \bfitb i| | | \omega ). By definition, there

holds \bfitS (\omega )\bfitalpha (\omega ) = \bfitF (\omega ) with \bfitu L(\omega ) :=
\sum N

i=1 \bfitalpha i(\omega )\bfitb i/| | | \bfitb i| | | \omega \in span(\bfscrB (\omega )) being the
Galerkin approximation to \bfitu (\omega ) \in H1

0 (\Omega ). Galerkin orthogonality

\bfita \omega (\bfitu (\omega ) - \bfitu L(\omega ), span(\bfscrB (\omega ))) = 0

implies \bfitu (\omega ) - \bfitu L(\omega ) \in WL and, hence, \Pi L(\bfitu (\omega ) - \bfitu L(\omega )) = 0. Thus,

\| \bfitu (\omega ) - \Pi L\bfitu L(\omega )\| L2(D) \leq \| (1 - \Pi L)\bfitu (\omega )\| L2(D) \lesssim hL\| f\| L2(D)

using standard approximation properties of piecewise constants (Poincar\'e inequality)
and a standard energy bound. With the transfer matrices \bfitT (\omega ) from Lemma 7, we
obtain \widetilde F := \iota  \star f = \bfitT  - T (\omega )\bfitF (\omega ),

and, hence, \bfitbeta \in \BbbR N with \bfitT  - T (\omega )\bfitS (\omega )\bfitT  - 1(\omega )\bfitbeta (\omega ) = \widetilde F satisfies \bfitT (\omega )\bfitalpha (\omega ) = \bfitbeta (\omega ).

Together with Lemma 7, this shows that \Pi L\bfitu L(\omega ) =
\sum N

i=1 \bfitbeta i(\omega )\phi i/\| \phi i\| L2(D). The

approximate solution \scrR \delta f =
\sum N

i=1 \gamma i\phi i/\| \phi i\| L2(D) with \gamma := R\delta \widetilde F satisfies

| \gamma  - \BbbE [\bfitbeta ]| \lesssim L2\delta \| f\| L2(D)

by use of Lemma 9 and since \BbbE M [\bfitbeta ] = R \widetilde F . Since \scrH is an orthogonal basis, we obtain
immediately \| \scrR \delta f  - \scrR f\| L2(D) \lesssim L2\delta \| f\| L2(D), where

\scrR \delta f = \BbbE [\bfitu L].

Combining the above error bounds, we conclude

\| \BbbE [\bfitu ] - \scrR \delta f\| L2(D) \lesssim (L2\delta + hL)\| f\| L2(D).

With L \simeq | log \delta | and hL \simeq \delta , there holds \| \BbbE [\bfitu ] - \scrR \delta f\| L2(D) \lesssim (1+| log(\delta )| 2)\delta \| f\| L2(D),

and Lemma 9 shows nnz(R\delta ) \simeq L/\delta d \simeq | log \delta | /\delta d. To clean up the result, we replace

\delta with \widetilde \delta := (1+ | log(\delta )| 2)\delta and obtain nnz(R\delta ) \lesssim (1+ | log(\widetilde \delta )| 2d+1)/\widetilde \delta d (note that we

used \delta \gtrsim \widetilde \delta /(1+ | log \widetilde \delta | 2) and \delta \leq \widetilde \delta for sufficiently small \delta > 0). The same calculation
with Ld/\delta d instead of L/\delta d (see Lemma 9) proves the cost estimate for producing R\delta 

and, hence, concludes the proof.
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6. Sparse operator compression. Theorem 10 shows that the expected oper-
ator can indeed be compressed to a sparse matrix. The constructive proof motivates a
compression algorithm by simply replacing the expectation by a suitable sample mean.
For this purpose, let \Omega M \subset \Omega be a finite set of sampling points with | \Omega M | = M \in \BbbN ,
and define the sample mean \BbbE M [X] := M - 1

\sum 
\omega \in \Omega M

X(\omega ) for a random field X. It is
readily seen that Lemma 9 remains valid when \BbbE is replaced by \BbbE M . More precisely,
define

RM := \BbbE M

\bigl[ \bigl( 
\bfitT  - T (\omega )\bfitS (\omega )\bfitT  - 1(\omega )

\bigr)  - 1\bigr] 
= \BbbE M

\bigl[ 
\bfitT (\omega )\bfitS (\omega ) - 1\bfitT (\omega )T

and a perturbed and truncated version of RM by R\delta 
M \in \BbbR N\times N ,

(R\delta 
M )(\ell ,k) :=

\left\{   \BbbE M

\bigl[ 
\bfitT \delta (\omega )\bfitR \delta (\omega )\bfitT \delta (\omega )T

\bigr] \Bigr) 
(\ell ,k)

\ell + k \leq | log(\delta )| ,

0 else.
(6.1)

Then

(6.2) \| RM  - R\delta 
M\| 2 \leq CL2\delta ,

and the number of nonzero entries in R\delta 
M is bounded by \scrO (L/\delta d).

Remark 11. The truncation condition \ell + k \leq | log(\delta )| in (6.1) can be relaxed to
\ell + k \leq C| log(\delta )| for some C \simeq 1 without any harm. In practice, when L \simeq | log \delta | is
chosen, a natural choice would be \ell +k \leq L. In the numerical experiment of section 7,
we will see that sometimes it can be advantageous to include a few more blocks of the
lower right part of the matrix (see (7.1)) to recover gradient information.

The analogue of Theorem 10 in this discrete stochastic setting then as follows.

Corollary 12. For a given accuracy \delta > 0 as in Theorem 10 and a set of M
samples \Omega M \subset \Omega , M \in \BbbN , there exists a finite-dimensional operator \scrR \delta 

M : L2(D) \rightarrow 
L2(D) which depends only on the sample coefficients \bfitA (\omega ), \omega \in \Omega M , \delta , and D such
that

\| \scrA  - 1  - \scrR \delta 
M\| \scrL (L2(D),L2(D)) \leq \delta + \| (\BbbE  - \BbbE M )[\bfscrA  - 1]\| \scrL (L2(D),L2(D)).

The corresponding operator matrix R\delta 
M has \scrO (| log(\delta )| 2d+1\delta  - d) nonzero entries and

can be computed with cost bounded by \scrO (| log(\delta )| 3d\delta  - d). The hidden constant depends
only on D, the shape regularity of \scrT 0, and the contrast \gamma max/\gamma min.

When using a plain Monte Carlo sampling, the mean squared sampling error
scales like M - 1, meaning that M \simeq \delta  - 2 samples suffice to ensure that the sam-
pling error is not dominating the error bound. This is optimal in the present setting
with no assumptions on the distribution of the random diffusion coefficient. More
advanced sampling techniques such as quasi-Monte Carlo methods are certainly pos-
sible under additional assumptions, such as a rapid decay of eigenvalues of a given
Karhunen--Lo\`eve expansion of the random parameter (see [10] for a discussion in
terms of PDEs with random parameters). Even more promising is the possible inter-
twining of the hierarchical decomposition and the sampling procedure in the spirit of
multilevel/multi-index Monte Carlo (see, e.g., [20, 23] for the seminal works as well
as [8]). At least in the regime where stochastic homogenization applies, the compu-
tation of basis functions is likely to be essentially independent of the parameter \omega for
levels that are much coarser than the characteristic length scale of random oscillation
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(or correlation) [19]. This has been made rigorous in a two-level setting in [16]. For
the increasing variance for the levels approaching the scale of correlation, stationarity
could be exploited to improve the overall complexity.

Another interesting case is the use of lognormal coefficients \bfitA (\omega ) = exp(\bfitZ (\omega ))
for a normal random field \bfitZ . As shown in [15], such random fields can be efficiently
generated for general covariance functions and nonuniform grids. The present analysis,
however, breaks down since the assumption of bounded contrast in (1) is violated. The
authors are confident, however, that the arguments can be modified in the sense that
the extreme contrast samples will only appear with very low probability (the tails of
the Gaussian density). Thus, a polynomial dependence on the contrast (as is observed
for the present construction) will not perturb the final result.

We shall finally mention that so far the construction relies on the exact solution of
the (infinite-dimensional) corrector problems (2.8) and their preconditioned variant,
respectively. The elegant way to transfer all results to a fully discrete setting is to
consider a space-discrete problem from the very beginning. It is readily seen that
all constructions and results remain valid if we replace the space V = H1

0 (D) by
a suitable finite-dimensional subspace Vh \subset V throughout the paper. We have in
mind some standard V -conforming finite element space Vh that is based on some
regular mesh of width h which turns the preconditioned corrector problems into finite
element problems on the mesh h restricted to local subdomains of diameter h\ell | log \delta | .
The only restriction that comes with this discretization step is that the mesh size h
limits the number of possible levels L in the hierarchical decomposition and, hence,
the possible accuracy \delta \lesssim h when the sparse approximation is compared with the
reference solution \BbbE [\bfitu h], where \bfitu h solves (1.2) with V replaced with Vh. Clearly, the
overall accuracy of the fully discrete method depends on the error \| \BbbE [\bfitu  - \bfitu h]\| L2(D),
which is a standard finite element error that depends on the spatial regularity of \bfitA 
and also its possible frequencies of oscillations. All this is well understood and implies
the usual conditions on the smallness of h so that \bfitA is properly resolved (see, e.g.,
[39]).

7. Numerical experiment. This section presents some simple numerical ex-
periments to illustrate the performance of the method. We consider the domain D =
[0, 1]d for d = 1, 2, and the coefficient \bfitA is scalar i.i.d., and, on each cell of the uniform
Cartesian mesh \scrT \varepsilon , it is uniformly distributed in the interval [\gamma min, \gamma max] = [0.5, 10].
The mesh width (scale of oscillation/correlation length) is \varepsilon = 2 - 8 (d = 1) and
\varepsilon = 2 - 5 (d = 2).

The approximations of the solution operator are based on sequences of uniform
Cartesian meshes \scrT \ell (\ell = 0, 1, 2, . . . , L) of mesh width h\ell = 2 - \ell that do not necessarily
resolve \varepsilon . We compute approximations \scrR L = \scrR \delta 

ML
of the expected solution operator

depending on the maximal level L, which means that we expect L2(D) errors of order
\delta \approx 2 - L. The truncation of blocks is performed based on the criterion k + \ell \leq L as
indicated in Remark 11. For the solution of the corrector problems and the reference
solution uh, we use d-linear finite elements on the mesh \scrT h, where h = 2 - 14 (d = 1)
and h = 2 - 9 (d = 2). To achieve accuracy of order \delta (w.r.t. to the reference
solution), we perform \lceil L/2\rceil CG iterations for both computing the correctors \bfscrC \delta (\omega )
and inverting the block-diagonal stiffness matrices \bfitS \delta (\omega ). For the approximation
of the expected values, we use a quasi--Monte Carlo method (particularly a Sobol
sequence) with appropriate numbers of sampling points Mh := h - 1 for the reference
solutions and ML := 2L for the approximations. While we did not show that the
problem is smooth enough to justify the use of quasi--Monte Carlo sampling, we still



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPARSE COMPRESSION OF EXPECTED SOLUTION OPERATORS 3161

Fig. 2. Numerical results in one dimension: L2(D)-errors \| \BbbE Mh
[\bfitu h] - \scrR Lf\| L2(D) and H1(D)-

errors \| \nabla (\BbbE Mh
[\bfitu h]  - u1

L)\| L2(D) of postprocessed approximation for L = 1, 2, . . . , 10. Left: Errors

versus nnz(RL) using original approach (6.1). Right: Errors versus nnz( \~RL) using modified ap-
proach (7.1).

Fig. 3. Numerical results in two dimensions: L2(D)-errors \| \BbbE Mh
[\bfitu h]  - \scrR Lf\| L2(D) and

H1(D)-errors \| \nabla (\BbbE Mh
[\bfitu h]  - u1

L)\| L2(D) of postprocessed approximation for L = 1, 2, . . . , 6. Left:

Errors versus nnz(RL) using original approach (6.1). Right: Errors versus nnz( \~RL) using modified
approach (7.1).

observe the expected higher convergence rate compared to plain Monte Carlo sampling
and thus save significant computing time.

Since the computation of a reference expected operator is hardly feasible, we only
compute the error for one nonsmooth deterministic right-hand side f =
\chi [.5,1]\times [0,1]d - 1 \in L2(D) \setminus H1(D). Figures 2 and 3 (left plots) depict the errors

\| \BbbE Mh
[\bfitu h]  - \scrR Lf\| L2(D) versus the number of nonzero entries of nnz(RL) for L =

1, 2, . . . . The results are very well in agreement (up to a possibly pessimistic loga-
rithmic factor) with the prediction that

\| \BbbE Mh
[\bfitu h] - \scrR Lf\| L2(D) \lesssim M - 1

L +
| log(nnz(RL))2+1/d

nnz(RL)1/d
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for d = 1, 2. This is the optimal rate of convergence (up to a logarithmic factor) given
a piecewise constant approximation.

In this setting, where the expected solution \BbbE [\bfitu ] is even H2(D) regular, it would
be desirable to recover gradient information from the piecewise constant approxi-
mation by suitable postprocessing, e.g., in the hierarchical basis associated with a
constant coefficient. Figures 2 and 3 (left plots) indicate that this is not automati-
cally achieved for nonsmooth right-hand sides with the present choice of parameters.
However, when the truncation in (6.1) is slightly relaxed in the form

( \~RL)(\ell ,k) :=

\left\{   \BbbE M

\bigl[ 
\bfitT \delta (\omega )\bfitR \delta (\omega )\bfitT \delta (\omega )T

\bigr] \Bigr) 
(\ell ,k)

\ell + k \leq L+max(1, \lceil log2 L\rceil ),

0 else,

(7.1)

accurate reconstruction of gradients seems possible. From this slightly more accurate
but slightly more dense approximation \~RL, we can reconstruct the coefficients of a
smooth approximation u1

L \in span\bfscrB (\omega \Delta ) (with \omega \Delta \in \Omega such that \bfitA (\omega \Delta ) = 1) in the
hierarchical basis that corresponds to the Laplacian by simply applying T \delta (\omega \Delta )

 - 1 to
\~RLf . The errors of this smooth postprocessing \| \nabla (\BbbE Mh

[\bfitu h] - u1
L)\| L2(D) are plotted

in Figures 2 and 3 (right plots) against the number of nonzero entries nnz( \~RL). The
observed rate of convergence for the H1-error is nnz( \~RL) - 1/d (up to a logarithmic
factor) which is nearly optimal. See also the plots on the left of Figures 2 and 3,
which indicate that the step from (6.1) to (7.1) is essential for meaningful gradient
reconstruction.

These first numerical results support the theoretical findings and indicate the
potential of the approach. Since the techniques that were used in the construction of
the method and its analysis, in particular the LOD, generalize in a straightforward
way to other classes of operators, such as linear elasticity [24] or Helmholtz problems
[38, 17, 6], we believe that the sparse compression algorithm for the approximation of
expected solution operators is applicable beyond the prototypical model problem of
this paper.
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