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In a recent paper [Phys. Rev. E 101, 050101(R) (2020)] an attempt is presented to formulate the nonequilibrium
thermodynamics of an open system in terms of the Hamiltonian of mean force. The purpose of the present
comment is to clarify severe restrictions of this approach and to stress that recently noted ambiguities
[Phys. Rev. E 94, 022143 (2016)] of fluctuating thermodynamic potentials cannot be removed in the suggested
way.
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The Hamiltonian of mean force [1], such as its classical
precursor, the potential of mean force [2,3], encompasses the
complete information on the equilibrium thermodynamical
behavior of an open system. It is defined in terms of the bath-
renormalized Boltzmann factor at the inverse temperature β,
given by the expression,

e−βH∗(β,μ) = Z−1
B (β,μ)TrBe−βHtot (μ), (1)

where H∗(β,μ) and Htot(μ) = HS (μ) + HSB(μ) + HB(μ) de-
note the Hamiltonian of mean force, the Hamiltonian of the
system HS (μ), and the environment HB(μ), including the
mutual interaction HSB(μ), respectively. With μ, all exter-
nally controllable parameters, including those parameters λ,
exclusively acting on the considered open system, but also
including all other globally acting parameters, such as electric
and magnetic fields, are specified. Furthermore, TrB indi-
cates the partial trace over the environmental Hilbert space
for quantum systems and, for a classical system, the inte-
gral over the environmental phase space with respect to a
properly permutation-symmetry-adapted dimensionless vol-
ume element. With the normalization by the partition function
of the environment, ZB(β,μ) = TrBe−βHB (μ), the Hamiltonian
of mean force agrees with the bare system Hamiltonian for
isolated systems; for further details see Refs. [4,5]. With
the partition function for the Hamiltonian of mean force
ZS (β,μ) = TrSe−βH∗(β,μ) = Ztot(β,μ)/ZB(β,μ) and the re-
sulting Helmholtz free energy FS (β,μ) = −β−1 ln ZS (β,μ),
the equilibrium thermodynamics of the open system becomes
accessible. Likewise, for a quantum system, the density ma-
trix and, for a classical system, the respective phase space
probability density function (pdf) are specified in terms of the
Hamiltonian of mean force according to

ρ(β,μ) = Z−1
S (β,μ)e−βH∗(β,μ). (2)

On the other hand, from the knowledge of ρ(β,μ), which
can, in principle, be inferred from a system-intrinsic point of
view, it is not possible to separate ρ(β,μ) into the Hamil-
tonian of mean force and the system’s partition function in

conflict with a central dogma of stochastic thermodynamics
[6–8] which postulates that all necessary information can be
obtained from observations of the system without recourse
to data from the environment. As a resort, Strasberg and
Esposito argue in Ref. [8] that only those differences of free
energies or, equivalently, those ratios of the system’s partition
functions are relevant for the description of thermodynamic
processes that are taken at different values of the direct system
control parameters λ. With this assumption, the large class of
thermodynamic processes accompanied by changes in global
parameters as well as of temperature and pressure is excluded
and most relevant thermodynamic quantities, such as specific
heat, isobaric thermal expansion, magnetization, and polariza-
tion, magnetic, and electric susceptibilities, and compression
factors are not accessible within such an approach. Hence,
even though the description of special processes may not
require extra information about the environment, in general, a
system intrinsic description, i.e., one that is exclusively based
on the observation of the system, be it by means of quantum
tomography or of a monitoring of the stochastic trajectories
of a classical open system, is not possible [4,5]. In contrast to
Strasberg and Esposito [8] being concerned with the nonequi-
librium dynamics of a special class of problems, our main aim
in Refs. [4,5] is the characterization of the thermal equilibrium
of open systems in its dependence on all relevant parame-
ters. In this context, the modification of the Hamiltonian of
mean force suggested by Strasberg and Esposito [8] cannot
be qualified as an addition of an “irrelevant constant” that
would have “no thermodynamic consequences”; the quota-
tions are taken from Ref. [8]. For general thermodynamic
processes it would rather lead to erroneous conclusions. Even
in the restricted situation of isothermal processes at constant
global parameters it is not sufficient to know the reduced
density matrix or the pdf of the open system to infer changes
in thermodynamic quantities. Additionally, process-specific
relations, such as the Jarzynski equality or second-law-like
relations must be imposed. This further narrows the predictive
power of the method suggested by Ref. [8]. Moreover, the
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inference of free energy differences on the basis of the Jarzyn-
ski equality often requires an unrealistically large amount of
data [9,10]. The same kind of problem must be expected
also for the other methods, in particular, when the tomog-
raphy of time-dependent states is required to estimate, e.g.,
an effective system Hamiltonian on the basis of Eq. (23) in
Ref. [8].

As explained in Refs. [4,5], the concept of fluctuating
thermodynamic potentials suffers already in thermal equilib-
rium from ambiguities that can be subsumed as the set of
all functions with a vanishing equilibrium average value with
respect to the respective Gibbs state of the total system. For
transient and other nonequilibrium processes, the respective
set of functions is characterized by a vanishing average with
respect to the actual time-dependent state of the system. It,
hence, changes with time in dependence of the initial pdf of
the system as it follows from Eqs. (53) and (54) in combi-
nation with Eqs. (50) and (51) of Ref. [4], but it does not
collapse to an empty set as Strasberg and Esposito wrongly
conclude in Footnote [60] of Ref. [8]. We further note that
even the specification of a particular fluctuating free energy as
performed in Eq. (5) of Ref. [11] does still leave the fluctuat-
ing internal energy and entropy largely unspecified as can be
seen from the Eqs. (107) and (108) in Ref. [5]. In the particular
case of an equilibrium system the supposedly fluctuating free
energy defined in (5) of Ref. [11] yields the nonfluctuating
equilibrium free energy [4].

Furthermore, we would like to clarify two misleading lit-
eral citations in Ref. [8] which are taken out of their original
context. Our statement in Ref. [5] that “...presents in practice

an impossible task” does not refer to the Hamiltonian of mean
force as insinuated by Strasberg and Esposito [8] but to the
reconstruction of the total system’s Hamiltonian solely based
on open system’s trajectories. Our observation that the first
law of thermodynamics for quantum open systems interacting
with their environments at a finite strength is doubtful is based
on the fact that then the respective observables that determine
work and heat do not commute. Hence, their simultaneous
measurement is excluded by the laws of quantum mechanics.
The condition that measurements “need to be error free”, cited
from Ref. [5], refers to one of the mathematical properties
that generalized energy measurements must satisfy in order
to yield the Crooks and the Jarzynski fluctuation relations
[12,13] but has not been made in the context of the first law.

Finally, we would like to stress that, by its very definition,
the Hamiltonian of mean force describes thermodynamic
equilibrium. Expressions, such as the nonequilibrium free
energy in Eq. (5) of Ref. [8] or the corresponding fluctuating
nonequilibrium free energy in Eq. (5) of Ref. [11], based on
the Hamiltonian of mean force and the system’s pdf at time t
and at the position of a random trajectory, are mere postulates
without a deeper rational. The latter object, resulting in the
described way from the pdf, is by construction a function of
the starting point of the considered random trajectory and
a functional of the random force having acted up to time t .
This very construct does not follow as a transformation of
a pdf according to the proper rules of probability theory. It,
therefore, is not normalized with respect to the starting point
and, hence, has no obvious probabilistic meaning, see the
Supplemental Material [14].
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