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Pairing transition in a double layer with interlayer Coulomb repulsion
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We study the effect of interlayer Coulomb interaction in an electronic double layer. Assuming that each of
the layers consists of a bipartite lattice, a sufficiently strong interlayer interaction leads to an interlayer pairing
of electrons with a staggered order parameter. We show that the correlated pairing state is dual to the excitonic
pairing state with a uniform order parameter in an electron-hole double layer. The interlayer pairing of electrons
leads to strong current-current correlations between the layers. We also analyze the interlayer conductivity and
the fluctuations of the order parameter, which consists of a gapped and a gapless mode.
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Layered electronic systems have attracted substantial at-
tention over several decades because new physical effects can
be observed, which neither exist in a single layer nor in an
isotropic three-dimensional systems. The role of the layered
structures might be important for physical systems ranging
from high-Tc superconductors [1] to new quantum phases in
twisted bilayers with a “magic angle” [2,3]. Another direction
of recent research is associated with multilayer graphene [4]
and transition metal dichalcogenide multilayers [5], where
an anomalous giant magnetoresistance [6], superconductivity
[7], and the formation of exciton condensates [8–13] have
been discussed and observed. Other interesting effects in
layered systems are based on the application of an external
magnetic field. In recent experiments the emergence of novel
correlated many-body states between quasiparticles from dif-
ferent layers was observed [14,15]. In this article we propose
electron interlayer pairing caused by a repulsive interlayer
interaction. As we show in a mean-field calculation, there is
a second-order phase transition from two uncorrelated Fermi
liquids in the two layers to a correlated pairing state if a
critical interaction strength is exceeded. Moreover, we discuss
a duality transformation between the pairing states of an
electronic double layer and the excitonic pairing state in an
electron-hole double layer.

I. MODEL

In an isolated (e.g., graphenelike) two-dimensional layer
the electrons are subject to hopping when we assume that
the Coulomb interaction within the layer is screened and
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renormalizes only the hopping parameters [16–18]. In the case
of two parallel layers there is also a Coulomb interaction
which acts between the electrons of the two layers. This
interlayer Coulomb interaction can be adjusted by inserting
a dielectric material between the layers. Interlayer tunneling
is ignored here to demonstrate only the effect of the interlayer
Coulomb interaction. It may have some effect on the form of
the order parameter though, as it was observed in the case of
an attractive interlayer Coulomb interaction [19]. This model
has some similarity with exciton models in double layers
[20], where we have electrons in one and holes in the other
layer. While the Coulomb interaction between electrons and
holes is attractive, the Coulomb interaction is repulsive in
the electronic case. This implies that we do not expect the
formation of excitonic Cooper pairs but a collective state built
by electron pairs in the two layers, provided the Coulomb
interaction is strong enough and the thermal fluctuations are
weak at sufficiently low temperatures. Then the electronic
Hamiltonian consists of the two independent hopping terms
H↑ (upper layer) and H↓ (lower layer) and the repulsive
interaction of the electrons between the two layers HI with

HI =
∑
r,r′

n↑rUr,r′n↓r′ + H.c., (1)

where r and r′ are lattice sites of each layer and nsr is the
local electron density operator in the layer s =↑,↓. The
interlayer Coulomb interaction Ur,r′ is short ranged in the
lateral direction due to screening [21,22] and can be approx-
imated by the diagonal matrix Ur,r′ ≈ gδr,r′/2, where g is an
effective parameter that decreases with the distance between
the layers and depends on the interlayer dielectric material.
This approximation is valid for interlayer distance that is
large in comparison with the lattice constant of the layers,
as described in Appendix A, where also the dependence of
g on the various physical parameters is given. The resulting
total Hamiltonian H = H↑ + H↓ + HI has the structure of the
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FIG. 1. Mean-field potential. (a) Below critical interaction strength gc. (b) Above critical interaction strength gc.

Hubbard Hamiltonian, provided that we interpret the layer
index as the z component of the electronic spin.

For a bipartite lattice (e.g., a honeycomb lattice or sim-
ple square lattice) at half filling we introduce a sublattice
representation of the coordinates r = (R, j), with j = 1 and
2 for sublattices A and B, respectively. The coordinates R
refer to sublattice A only. Then the hopping Hamiltonians
Hs (s =↑,↓), in terms of fermionic creation (annihilation)
operators ĉ†

s;R (ĉs;R), read as

Hs =
2∑

j=1

∑
R,R′

h j;RR′ ĉ†
s;R · σ j ĉs;R′ , (2)

where σ j=1,2 are Pauli matrices. The fermionic annihilation

operators are written as column vectors ĉs;R = (cs;R, ds;R )T,

whose upper (lower) component refers to sublattice A (B).
The interaction term (1), together with the diagonal approx-
imation, then becomes

HI = g

2

∑
R

n↑Rn↓R, nsR = c†
sRcsR + d†

sRdsR. (3)

A. Mean-field analysis

As a possible ansatz for the local-order parameter we
consider a staggered order parameter with opposite signs on
the two sublattices:

�↑↓; j = −(−1) j�, �↓↑; j = �∗
↑↓; j, (4)

where a global phase of � reflects the global U(1) invariance
of the model. A special mean-field solution fixes this phase.
For simplicity, we can choose a real positive � for the sub-
sequent calculation. The staggered order parameter is similar
to the order parameter of an antiferromagnetic phase in the
Hubbard model. The staggering sign translates into a σ3 Pauli
matrix in the corresponding quadratic mean-field Hamiltonian
(cf. Appendix B):

HMF=
∑
RR′

(
ĉ†
↑;R

ĉ†
↓;R

)T(∑
j h j;RR′σ j �σ3δRR′

�σ3δRR′
∑

j h j;RR′σ j

)(
ĉ↑;R′

ĉ↓;R′

)
.

(5)

In the staggered order parameter we can replace (−1) j by a
general phase factor exp(iϕ j ) with some phases ϕ j . It turns
out, though, that only ϕ j = π j gives a stable mean-field
solution. The Fourier-transformed kernel matrix in Eq. (5)
is a 4 × 4 matrix with the twofold degenerate eigenvalues
±Eq, with Eq =

√
�2 + h2

1;q + h2
2;q (cf. Appendix C). With

this result we can treat the grand-canonical free-energy

F = −β−1 log Tr e−βH , β = 1/kBT, (6)

in the mean-field approximation. It is plotted for the subcrit-
ical interaction strength g < gc in Fig. 1(a) and for g > gc

in Fig. 1(b). Thus, depending on the interaction strength g,
the free energy has either a single minimum at � = 0 for
interaction g � gc or a continuously degenerate minimum
for g > gc. The continuous degeneracy implies a gapless
Goldstone mode. The corresponding phase transition and its
consequences for transport properties and the gapless fluctua-
tions of the order parameter are discussed subsequently.

To obtain the value of � we solve the mean-field equation
δ�F = 0. This reads for solutions � �= 0 as

1

g
= 1

4

∫
tanh(

√
E2 + �2/2kBT )√
E2 + �2

ρ(E )dE , (7)

where ρ(E ) is the density of states (DOS). The solution of
this equation provides us the value of � as a function of the
temperature and the coupling strength g. This is visualized
in Fig. 2(a). Moreover, the critical temperature Tc for the
pairing transition is plotted as a function of g in Fig. 2(b).
Here we compare the electron dispersion of a honeycomb
lattice (with a linearly vanishing DOS at E = 0) and of
the square lattice (with a logarithmically divergent DOS at
E = 0). The honeycomb lattice has a nonzero threshold of g
for a pairing transition, whereas a square lattice has always
a nonzero transition temperature for any nonzero interaction.
In contrast to the constant DOS ρ̄, which gives the critical
temperature Tc ∝ t exp(−1/gρ̄ ), the logarithmic DOS causes
a renormalization of the effective coupling gρ̄ to larger values.
It is also possible to use other dispersions to enhance the
critical temperature, e.g., with a van Hove singularity at the
Fermi level [20].
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FIG. 2. (a) Solution of the gap equation for different temperature values from left to right: T/t = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,
0.45, and 0.5. (b) Comparison of the critical temperatures as functions of the interaction strength for the square lattice [blue (gray in printed
version) curve] and the honeycomb lattice (black curve) in units of the hopping amplitude t .

B. Duality transformation

It should be noticed that we can replace the electrons
in the lower layer by holes and the repulsive interaction
by an attractive interaction g → −g. The resulting hopping
Hamiltonian H↑ − H↓ − HI describes electrons in the upper
layer and holes in the lower layer which attract each other
through an attractive interlayer Coulomb interaction. This
duality transformation can also be applied to the mean-field
Hamiltonian HMF. It amounts to the replacement of the stag-
gered order parameter of the electronic system by a uniform
order parameter for the electron-hole system. The latter means
formally replacing the Pauli matrix σ3 by the 2 × 2 unit
matrix σ0 in Eq. (5). This leads to the following mean-field
Hamiltonian of the exciton gas [22]:

Hexc =
∑
RR′

(
ĉ†
↑;R

ĉ†
↓;R

)T(∑
j h j;RR′σ j �σ0δRR′

�σ0δRR′ −∑
j h j;RR′σ j

)(
ĉ↑;R′

ĉ↓;R′

)
,

(8)

where ĉ†
↓;R′ is the creation operator for a hole (i.e., an an-

nihilation operator of an electron) in the lower layer. This
Hamiltonian has the same dispersion Eq as the Hamiltonian
HMF of the electronic double layer, implying that the two
problems can be mapped formally onto each other. In other
words, both systems describe pairing of particles, where the
main difference is that the order parameter is uniform in
the electron-hole double layer and staggered with respect to
the two sublattices in the electron-electron double layer. Here
it should be pointed out that a modulated order parameter is
a common phenomena in many condensed-matter systems,
which can be of different origins. Typical cases are the Fulde-
Ferrell-Larkin-Ovchinnikov phase in superconductors [23,24]
or the formation and melting of the Wigner crystal phase in
bilayer systems, which has been intensively studied in Refs.
[25–28].

C. Current-current correlations

To analyze the effect of the interlayer Coulomb interaction
we create a local current density at time t = 0 at site R′ on

the lower layer which oscillates with frequency ω. Then we
measure the local current at time t > 0 at site R on the upper
layer, in analogy to the drag effect [21,22]. This measurement
probes how much a local current in the lower layer will
generate currents in the upper layer. It can be described in
terms of linear response theory, which is associated with the
current-current correlator between the two layers and reads

Cμν (R, R′; ω) = i lim
α→0

∫ ∞

0
dt e−i(ω−iα)t 〈 ĵμ↑(R, t ) ĵν↓(R′, 0)〉,

〈· · · 〉 = Tr[e−βH · · · ]/Tre−βH , (9)

with a positive parameter α. For low temperatures the Fourier
components of the correlator become the following (cf. Ap-
pendix D):

C̃μμ(q; ω) ≈ �

4π
F

(
q

�
;
ω

�

)
, (10)

with

F (q̄; ω̄) =
∫ ∞

1
dx

[
1√

x2(−iα + ω̄ + 2x)2 − q̄2(x2 − 1)

− 1√
x2(−iα + ω̄ − 2x)2 − q̄2(x2 − 1)

]
. (11)

Its real part is plotted in Fig. 3 and exhibits a singularity at
qsing(ω) with

qsing(ω) =
√

4�2 − ω2. (12)

The singular wave vector is visualized in Fig. 3(b). It cor-
responds with an inverse length scale (wavelength) for the
spatial distribution of the current in the upper layer, caused by
the local current in the lower layer with frequency ω. As long
as the frequency is less than the gap 2�, there is a mode with a
finite wavelength. When ω is equal to the gap, this wavelength
diverges and the strongest correlation appears with a zero
mode qsing(2�) = 0. And finally, when ω exceeds the gap,
qsing(ω) becomes imaginary, which indicates an exponential
spatial decay of the strongest correlation.
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FIG. 3. (a) The real part of the current-current correlator of Eq. (11) as a function of the momentum for different frequencies. (b) Position
of the singularity in the correlator at the edge of the gap for different frequencies and momenta according to Eq. (12).

The ω dependence of the q = 0 component of the current-
current correlator also has a characteristic behavior at the gap:

Re C̃μμ(0; ω) = 1

4π

�2

ω
log

∣∣∣∣2� + ω

2� − ω

∣∣∣∣, (13)

Im C̃μμ(0; ω) = 1

4

�2

ω
[�(ω − 2�) + �(−ω − 2�)]. (14)

D. Interlayer conductivity

From the current-current correlator we obtain the interlayer
conductivity tensor as [29]

σμν (ω, T ) ∼ i

ω
[C̃μν (0; ω) − C̃μν (0; 0)]. (15)

This gives the following for the diagonal conductivity:

σμμ(ω, T ) = i
∫

d2k

(2π )2

f β (−Ek ) − fβ (Ek )

4E3
k

[
�2

ω − iα + 2Ek

− �2

ω − iα − 2Ek

]
, (16)

with the Fermi-Dirac function fβ (Ek ) at inverse temperature
β. The real and imaginary parts read at low temperatures as

Re σμμ(ω, 0) = �2

4ω2
[�(ω − 2|�|) − �(−ω − 2|�|)], (17)

Im σμμ(ω, 0) = 1

4π

�2

ω2
log

∣∣∣∣ 4|�|2
ω2 − 4|�|2

∣∣∣∣. (18)

The real part of the conductivity is zero when the frequency is
less than the gap. But when ω reaches the gap, it jumps to a
finite value, indicating that there is a current between the two
layers when the photon energy h̄ω is equal or larger than the
gap. This jump is similar to the jump observed for pairing in
electron-hole layers at ω = 0 and T > 0 [30]. The imaginary
part, on the other hand, is always nonzero in the pairing phase
and has a logarithmic divergence when the real part jumps (cf.
Fig. 4).

E. Quantum fluctuations of the order parameter

Quantum fluctuations around the mean-field solution con-
sist of two spectral branches in the low-energy sector: a
gapless branch due the degenerate ring of Fig. 1 and a gapped
branch. The dispersion of both branches can be evaluated
within the low-energy approximation and a gradient expan-
sion p ∼ 0 (cf. Appendix E):

Elong(p) ≈ p2 + 6�2

12π�
, Etrans(p) ≈ p2

8π�
, (19)

indicating a stable mean-field solution. The result for a hon-
eycomb lattice is visualized in Fig. 4(b).

F. Discussion and summary

In an electronic double layer there is an interlayer pairing
transition due to a strong Coulomb interaction. Its critical
temperature Tc increases almost linearly with large coupling
strength (cf. Fig. 2). For weak coupling the behavior depends
on the details of the DOS: On the honeycomb lattice Tc = 0
if g < gc and for the square lattice Tc vanishes exponentially
with 1/g. The pairing phase is accompanied by strong inter-
layer current-current correlations. These correlations diverge
if the relation q2 + ω2 = �2 is satisfied (cf. Fig. 3). This
reflects a long-range current-current correlation if ω2 = �2

holds. The real part of the interlayer conductivity is nonzero
only for frequencies ω larger than the gap of the pairing phase.
Although there is a divergent current-current correlation for ω

less than the gap, the real part of the interlayer conductivity
σμμ is zero. Due to this characteristic behavior the drag
effect would be a good candidate to identify experimentally
the pairing phase in electronic double layers. The effective
coupling strength can be tuned by the interlayer distance and
by the coefficient of the interlayer dielectric material, which
enables the experiment to drive through the pairing transition.
Moreover, the lattice structure of the layers determines the
density of states. This could be used, for instance, by applying
a strain field, to change the pairing transition temperature. And
finally, the duality relation provides a basis to compare the
large number of experiments on excitonic double layers with
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FIG. 4. (a) Real and imaginary part of the conductivity according to Eqs. (17) and (18). (b) Gapless and gapped spectral branches of the
order parameter fluctuations, calculated for � = 0.125t (blue lines), � = 0.25t (black lines), � = 0.375t (red lines), and � = 0.5t (green
lines). Only positive energies at positive momenta are shown. The momentum KBZ is the square root of Brillouin zone area. (For paper printed
black-white version: smallest � has been used to calculate the lowest gapped and upper higher gapless curve.)

more recent experiments on electronic double layers in order
to clarify some of the recent experimental results.
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APPENDIX A: EFFECTIVE ELECTRON-ELECTRON
INTERACTION

Using the results from Ref. [28], the effective electron-
electron interaction parameter g is given by

2

g
= 1

|B|
∫

B

1

Up
d2 p, (A1)

where B is the Brillouin zone, |B| is its area, and

Up ≈ h̄Ū e−pD/h̄

p + a(p)
(A2)

is the screened Coulomb interaction. Ū = 2π |B|κe2/(h̄2ε) =
4π2κe2/(εb2) is the interaction strength, ε is the dielectric
constant κ = 9 × 109 N × m2/C2, e is the electron charge, m
is the electron mass, a = h̄2ε/(κe2m), and D is the thickness
of the dielectric interlayer, which fills the space between the
two layers. a(p) is the material specific function:

a(p) = 4h̄

a
+ 4h̄2[1 − exp (−2pD/h̄)]

a2 p
. (A3)

APPENDIX B: MEAN-FIELD ANSATZ

Using local canonical anticommutation relations for the
fermionic second quantization operators

{ĉ†
i,s, ĉi′,s′ } = δii′δss′ , (B1)

where s and s′ refer to the layer index and ĉ1,s = cs, ĉ2,s = ds,
and correspondingly for ĉ†

i,s as defined in the main text, it is
easy to show the following identity which is valid at every
lattice site R (from right to left):

g

2
n↑n↓ = g

2
(n↑ + n↓) − g

8

3∑
μ=0

[(ĉ†
↑σμĉ↓)(ĉ†

↓σμĉ↑)

+ (ĉ†
↓σμĉ↑)(ĉ†

↑σμĉ↓)], (B2)

where σμ=1,2,3 are Pauli matrices and σ0 is a two-dimensional
unity matrix. In the mean-field approximation we put densities
in both layers at the same value (zero at half filling) and
introduce the following order parameters:

�μ = −g

4
〈ĉ†

↑;Rσμĉ↓;R〉, �∗
μ = −g

4
〈ĉ†

↓;Rσμĉ↑;R〉. (B3)

The only order parameter which has a stable mean-field
solution is �3, which is exclusively considered in this paper.
Because of the U(1) symmetry of the problem, there are
infinitely many solutions which describe thermodynamically
one and the same system. In the special solution which is
discussed in the main text, we consider a purely real order
parameter and call it �. Equation (B2) is easily generalized to
generic nonlocal interactions on bipartite lattices:∑

R,R′
UsR;s′R′ns;Rns′;R′ ,

ns;R = (ĉ†
s;R ĉs;R ) = c†

s;Rcs;R + d†
s;Rds;R. (B4)

Here we can prepare the product of two densities as

ns;Rns′;R′ = ns;R + ns′;R′ − 1

4

3∑
μ=0

[(ĉ†
s;Rσμĉs′;R′ )(ĉ†

s′;R′σμĉs;R )

+ (ĉ†
s′;R′σμĉs;R )(ĉ†

s;Rσμĉs′;R′ )], (B5)

which is valid for all combinations of indices, i.e., for s = s′
and R = R′ too.
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APPENDIX C: EIGENBASIS OF THE MEAN-FIELD HAMILTONIAN

In general, the Fourier-transformed kernel matrix of the mean-field Hamiltonian Eq. (5) reads as

Kq =
(∑

j h j;qσ j �e−iφσ3

�eiφσ3

∑
j h j;qσ j

)
. (C1)

It has the following orthogonalized and normalized eigenvectors:

(i) for the negative eigenvalue (lower band) −Eq = −
√

h2
1,q + h2

2,q + �2:

|−, 1, q〉 = 1√
2Eq

⎛
⎜⎜⎝

−e−iφ (h1,q − ih2,q)

e−iφEq

0
�

⎞
⎟⎟⎠, |−, 2, q〉 = 1√

2Eq

⎛
⎜⎜⎝

−e−iφ�

0
Eq

−(h1,q + ih2,q)

⎞
⎟⎟⎠, (C2)

(ii) for the positive eigenvalue (upper band) +Eq = +
√

h2
1,q + h2

2,q + �2:

|+, 1, q〉 = 1√
2Eq

⎛
⎜⎜⎝

−e−iφ (h1,q − ih2,q)

−e−iφEq

0
�

⎞
⎟⎟⎠, |+, 2, q〉 = 1√

2Eq

⎛
⎜⎜⎝

e−iφ�

0
Eq

h1,q + ih2,q

⎞
⎟⎟⎠. (C3)

APPENDIX D: CURRENT-CURRENT CORRELATIONS

We expand the correlator of Eq. (9) in terms of the eigenstates {|n〉} with the corresponding eigenvalues {En} of the mean-field
Hamiltonian Eq. (5) (cf. Appendix C). This gives

Cμν (R, R′; ω) = lim
α→0

∑
n,m

[ f β (Em) − fβ (En)]
〈n| ĵμ↑(R)|m〉〈m| ĵν↓(R′)|n〉

ω − iα − Em + En

, (D1)

where fβ (En) is the Fermi-Dirac distribution at inverse temperature β. Then the Fourier-transformed correlator becomes

C̃μν (q; ω) =
∫

d2k

(2π )2

∑
n,m

[ f β (Em,k ) − fβ (En,k )]
〈n, k + q| ĵμ↑|m, k〉〈m, k| ĵν↓|n, k + q〉

ω − iα − Em,k + En,k+q

, (D2)

which can be expanded for small q to give

C̃μμ(q; ω) ≈
∫

d2k

(2π )2

f β (−Ek ) − fβ (Ek )

2E2
k

⎡
⎣ �2

ω − iα + 2Ek + q·k
Ek

− �2

ω − iα − 2Ek − q·k
Ek

⎤
⎦. (D3)

This correlation is nonzero only in the gapped phase, while it vanishes in the gapless phase. The angular integration is performed
using the relation

1

2π

∫ 2π

0

dφ

A ± B cos φ
= 1√

(A − B)(A + B)

to yield at low temperatures Eq. (10).

APPENDIX E: QUANTUM FLUCTUATION TERM

To obtain the spectra of order parameter fluctuations we assume small quantum deviations from the mean-field values �∗ →
�∗δRR′ + B†

RR′ and � → �δRR′ + BRR′ . The effective Hamiltonian for the fluctuating order parameter B can be found from the
second order of the Schrödinger perturbation theory if we treat the term

K(1)
RR′ =

(
0 B†

RR′σ3

BRR′σ3 0

)
, i.e., K(1)

p =
(

0 B†
pσ3

B−pσ3 0

)
, (E1)

as a small perturbation. (The first-order term is zero because of the mean-field condition.) In Fourier representation we have

δH = 1

2

∫
d2 p

|BZ|
∫

d2q

|BZ|
∑
n,m

[ fβ (En,q) − fβ (Em,q)]
〈n, q + p|K(1)

p |m, q〉〈m, q|K(1)
−p|n, q + p〉

En,q+p − Em,q − iα
, (E2)
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where α is to be sent to zero and the average is performed over the eigenstates of the mean-field Hamiltonian given in
Appendix C. Because of the Fermi functions combination, only interband matrix elements contribute. After some algebra we get

δH =
∫

d2 p

|BZ| (B†
p B−p)

(
A11,p A12,p

A21,p A22,p

)(
Bp

B†
−p

)
, (E3)

where

A11,p = A22,p = 1

2

∫
d2q

|BZ| [ fβ (−Eq) − fβ (Eq)]
hq · hq+p + EqEq+p

(Eq + Eq+p)EqEq+p
, (E4)

A12,p = A∗
21,p = −1

2

∫
d2q

|BZ| [ fβ (−Eq) − fβ (Eq)]
e2iφ�2

(Eq + Eq+p)EqEq+p
, (E5)

where hq · hq+p = h1,qh1,q+p + h2,qh2,q+p. In order to approach the structure of elementary excitations above the mean-field
ground state, we have to subtract Eq. (E3) from the mean-field background energy:

δHMF =
∫

d2q

|BZ|
fβ (−Eq) − fβ (Eq)

2Eq

∫
d2 p

|BZ| (B†
pBp + B−pB†

−p). (E6)

Elementary manipulations turn the combination of Fermi functions into the hyperbolic tangent of Eq. (7). We proceed further
for the T = 0 and effective low-energy Dirac approximation. Performing the gradient expansion to quadratic order, we get

δHMF − δH ≈ 1

4π

∫
d2 p

(2π )2

(
B†

p

B−p

)T(
� + 5

12�
p2 e−2iφ

(
� − 1

12�
p2

)
e2iφ

(
� − 1

12�
p2

)
� + 5

12�
p2

)(
Bp

B†
−p

)
. (E7)

The diagonalization can be readily done by a unitary rotation into the real base. For small momenta, the two (longitudinal and
transversal) spectral branches are

Elong(p) ≈ p2 + 6�2

12π�
, Etrans(p) ≈ p2

8π�
. (E8)
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