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Fe1+xTe is a two-dimensional van der Waals antiferromagnet that becomes superconducting on anion substi-
tution on the Te site. The properties of the parent phase of Fe1+xTe are sensitive to the amount of interstitial
iron situated between the iron-tellurium layers. Fe1+xTe displays collinear magnetic order coexisting with
low-temperature metallic resistivity for small concentrations of interstitial iron x and helical magnetic order
for large values of x. While this phase diagram has been established through scattering [see, for example, E. E.
Rodriguez et al., Phys. Rev. B 84, 064403 (2011); S. Rößler et al., ibid. 84, 174506 (2011)], recent scanning
tunneling microscopy measurements [C. Trainer et al., Sci. Adv. 5, eaav3478 (2019)] have observed a different
magnetic structure for small interstitial iron concentrations x with a significant canting of the magnetic moments
along the crystallographic c axis of θ = 28◦ ± 3◦. In this paper, we revisit the magnetic structure of Fe1.09Te using
spherical neutron polarimetry and scanning tunneling microscopy to search for this canting in the bulk phase,
and we compare surface and bulk magnetism. The results show that the bulk magnetic structure of Fe1.09Te
is consistent with collinear in-plane order (θ = 0 with an error of ∼5◦). Comparison with scanning tunneling
microscopy on a series of Fe1+xTe samples reveals that the surface exhibits a magnetic surface reconstruction
with a canting angle of the spins of θ = 29.8◦. We suggest that this is a consequence of structural relaxation of
the surface layer resulting in an out-of-plane magnetocrystalline anisotropy. The magnetism in Fe1+xTe displays
different properties at the surface when the symmetry constraints of the bulk are removed.

DOI: 10.1103/PhysRevB.103.024406

I. INTRODUCTION

van der Waals forces differ from ionic and covalent
bonding in terms of the strength and also the range of
forces [1]. Two-dimensional materials that are based on
sheets weakly held together by van der Waals forces have
recently been studied in the context of graphene [2], and
also for the investigation of two-dimensional ferromag-
netism [3]. Two-dimensional magnetic van der Waals crystals
have also been of interest in the context of iron-based super-
conductivity [4–12] with arguably the structurally simplest
such superconductor being the monolayer compound [13]
Fe1+xTe1−y(Se, S)y [14] consisting of weakly bonded iron
chalcogenide sheets. Under anion substitution, an optimal
superconducting transition temperature of ∼14 K has been
reported in Fe1+xTe0.5Se0.5 [15] and ∼10 K in FeTe1−xSx [16].
In this paper, we investigate the difference between the
bulk and surface magnetic structures in the nonsuperconduct-
ing parent compound Fe1+xTe through the use of spherical
neutron polarimetry and spin-polarized scanning tunneling
microscopy in vector magnetic fields.

The single layered chalcogenide Fe1+xTe1−yQy (where
Q = Se or S) has been important in the study of iron-based

superconductors due to its relatively simple single-layer struc-
ture and because it is highly electronically localized [17–20]
in comparison to other iron-based systems. This is a property
that is also reflected in the oxyselenides [21–24]. The elec-
tronic and magnetic properties of Fe1+xTe1−yQy can be tuned
via two variables—the parameter x determines the amount
of interstitial iron located between the weakly bonded FeTe
layers and disordered throughout the crystal, and y is the
amount of anion substitution and provides a chemical route
toward superconductivity. It should be noted that while the in-
terstitial iron is disordered introducing magnetic clusters [25],
the electronic properties have been found to be homoge-
neous [26,27], and they were recently discussed in the context
of device fabrication [28]. The sensitivity of the properties to
stoichiometry is also reflected in Fe1+δSe [29]. There have
been several studies that have shown x and y to be correlated
and hence both influence the superconductivity [30–33]. In
particular, the tetrahedral bond angles [34–37] are altered
with interstitial iron concentration x along with tuning the
material across several magnetic and structural phase tran-
sitions. It is this interplay between the structural, magnetic,
electronic, and superconducting properties that makes this
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material exciting, with the expectation that understanding the
relation between these phases leads to an understanding of
superconductivity.

Fe1+xTe has been found to display two spatially long-range
correlated magnetic phases as a function of iron concen-
tration x separated by a region of spatially short-ranged
magnetic order [38–40]. For small interstitial iron concen-
trations x � 0.12, the magnetic structure is collinear [41,42]
below a temperature at which a structural transition occurs
from a tetragonal (P4/nmm) to monoclinic (P21/m) unit cell.
Electronically, this also marks a transition from a resistivity
that is “semi/poor”-metallic to being metallic in character
at low temperatures [43]. Despite the metallic character, the
low-energy spin fluctuations are consistent with localized
transverse spin-waves [44,45]. The second magnetic phase at
concentrations x > 0.12 is helical in nature combined with a
“semi/poor”-metallic behavior at all temperatures [46]. The
two disparate magnetic phases induced with the variable x are
separated by a collinear spin density wave [47,48] located near
a Lifshitz point [49]. In addition to the tuning of the magnetic
and crystallographic structures with interstitial iron concentra-
tion, the magnetic excitations also display a large dependence
on x [50,51], even at high energy transfers [35,52–55].

We will focus on the low interstitial iron concentrations
in this study. The magnetic structure for low interstitial iron
concentrations is termed a “double-stripe” structure, and it
has been investigated extensively with both unpolarized and
uniaxial polarized neutron scattering. This collinear magnetic
phase has magnetic moments aligned along the crystallo-
graphic b axis and magnetic Bragg peaks in the neutron cross
section at �Q = ( 1

2 , 0, 1
2 ) or denoted as (π, 0). Being metallic

at low temperatures and easily cleavable offers the opportunity
to apply surface techniques for investigating the electronic and
magnetic properties.

In particular, spin-polarized scanning tunneling mi-
croscopy has been used to manipulate the excess iron
concentration at the surface layer [56,57]. This work has
demonstrated that the surface magnetic structure faithfully
follows the bulk magnetic phase diagram as a function of
interstitial iron in terms of both the crystallographic and
magnetic structures giving consistent results with neutron
scattering on the interstitial iron concentration where the
magnetic and crystallographic structures change. However, an
important difference was observed for the magnetic structure
in the collinear “double-stripe” phase for small values of x.
Tunneling measurements show a periodicity consistent with
the stripe phase reported based on neutron scattering [58],
however recent measurements in vector magnetic fields have
observed a significant out-of-plane canting along the crystal-
lographic c-axis of the magnetic moment of θ ∼ 28◦ where
neutron scattering reports the moments to be entirely in the ab
plane (θ = 0) [59,60]. Interestingly, such a magnetic structure
is consistent with early studies on Fe1.12Te [61]; however,
given more recent work, it is possible that this concentration
was at the boundary between collinear and helical magnetism
possibly complicating the interpretation.

Based on the discrepancy between current neutron diffrac-
tion results, scanning tunneling microscopy (STM), and older
diffraction work, we revisit this problem applying spherical
neutron polarimetry to determine the out-of-plane angle due

FIG. 1. Comparison of magnetic order from neutron scattering
and STM. The axial magnetic structure with the moments aligned
along the crystallographic b axis (θ = 0) contrasts with the canted
structure measured with tunneling measurements where the moments
are canted out of the plane by θ = 28◦ ± 3◦.

to any canting of the spins in bulk single crystals of Fe1+xTe.
This study focuses on the iron-deficient portion of the phase
diagram, which exhibits collinear order because this is where
the differences between neutron scattering and STM are most
prominent.

In this paper, we compare spin-polarized scanning tunnel-
ing microscopy measurements of the magnetism on the sur-
face with a study of the bulk magnetic structure. The two dif-
ferent magnetic structures that will be compared in this paper
are illustrated in Fig. 1. This paper is divided into five sections,
including this Introduction. We first present the results from
spin-polarized scanning tunneling microscopy of the canting
angle in the surface layer. We then investigate the canting
angle in the bulk from spherical neutron polarimetry, and we
analyze the results in terms of a possible canting in the bulk.
We finally compare these results and discuss the differences
and possible origins, including dipolar and anisotropy terms in
the magnetic Hamiltonian. Through this comparison, we find
that the surface layer of the two-dimensional van der Waals
Fe1+xTe magnet exhibits a magnetic surface reconstruction.

II. SPIN-POLARIZED STM MEASUREMENT

We first discuss spin-polarized STM measurements of
Fe1+xTe probing the magnetic structure at the surface.

A. Experimental details

Spin-polarized STM measurements were conducted on
samples of Fe1+xTe with excess iron concentrations x ranging
from 5% to 11.5%. The measurements were performed using
a home-built cryogenic STM operating at a base temperature
of 2 K and mounted in a Vector magnet that is capable of
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FIG. 2. (a) Spin-polarized STM image of the surface of an Fe1.1Te sample with a bias voltage of 100 mV and a set point current of 50 pA.
Recorded with an applied magnetic field of 2 T applied out of the plane of the image along the sample c axis. (b) As (a) but with the direction of
the applied magnetic field reversed. (c) Half the difference of the images shown in (a) and (b), directly proportional to the sample magnetization
along the c axis. Inset: The Fourier transform of (c) showing the magnetic ordering vector (qa). (d) The average of the images (a) and (b),
directly proportional to the non-spin-polarized component of the tunneling current. Inset: the Fourier transform of (d) showing the atomic peaks
due to the Te lattice. (e) The out-of-plane canting angle (θ ) measured from images recorded with three orthogonal directions of applied field.
(f) Histograms of the absolute value of the measured out-of-plane canting angle for data sets of three-dimensional spin-polarization data
recorded on different samples of FeTe. The red data points corresponds to the data shown in (e). Solid lines represent fits of a Gaussian
function plus a linear background.

applying a field of up to 5 T in any direction relative to the
sample [62]. Atomically clean surfaces for STM measurement
were prepared by cleaving the samples in situ at a temperature
of ∼20 K [63]. Magnetic tips were created by collecting ex-
cess Fe atoms from the sample surface [56,57,60]. In this way,
the tunneling current between the STM tip and the sample
becomes sensitive to the relative angle between the magne-
tization of the tip and the sample. The tunneling current (ISP)
due to the spin polarization of the tip (Ptip) and the sample
(Psample) can be expressed as [64]

ISP = I0[1 + PtipPsample cos(φ)], (1)

where φ is the angle between the tip and sample magne-
tizations. Figure 2(a) shows a typical spin-polarized STM
topographic image of the iron telluride surface (Fe1.1Te). The
excess iron atoms are seen in the STM images as bright
protrusions on the surface. The bi-collinear antiferromagnetic
order is imaged as a stripelike modulation running parallel to
the sample b axis with a wave vector (qa) along the sample
a axis. The imaged wavelength and direction of this ordering
is in excellent agreement with that determined from neutron
scattering [38,65]. For ferromagnetic tips, the magnetization
of the tip is found to follow the direction of an applied mag-
netic field [56,59,60]. Therefore, imaging the surface with
the tip polarized by a field applied 180◦ to the original field
orientation results in a π -phase reversal of the imaged mag-
netic order. This reversal of the imaged magnetic order can

be seen by comparing images recorded with opposite applied
field orientations shown in Figs. 2(a) and 2(b).

B. STM results

It is possible, through Eq. (1), to directly measure the sam-
ple’s surface spin polarization from the spin-polarized STM
images. This is done by taking the difference of the images
recorded with oppositely polarized tips, which is proportional
to 2PtipPsamplecos(φ). Figure 2(c) shows such a difference im-
age showing the component of the sample’s magnetic order
that is parallel to the crystal c axis. The sum of the two
images recorded with oppositely polarized tips resembles the
topography that would be recorded if the sample was imaged
with a non-spin-polarized tip [Fig. 2(d)].

By recording spin-polarized STM images with magnetic
field applied in three orthogonal spatial directions, it is possi-
ble to determine the precise orientation of the sample’s spin
structure at the surface [60,66]. The out-of-plane canting an-
gle (θ ) of the surface spins resulting from this measurement is
shown in Fig. 2(e). Clear canting of the spins away from the
ab plane can be observed. By plotting the absolute value of
this angle as a histogram, shown in Fig. 2(f), a clear peak at
∼30◦ can be observed. This measurement has been repeated
for a sample of Fe1.05Te, the results of which are also shown in
Fig. 2(f). We determine the out of plane canting of the surface
spins by fitting a Gaussian distribution plus a linear back-
ground to the data. By combining the fits to both data sets, we
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TABLE I. Results from six different independent SP-STM mea-
surements on different samples of Fe1+xTe with different magnetic
tips. The table shows the intensity of the imaged magnetic order
when the tip spin is parallel to the crystal b axis and when the tip
spin is parallel to the crystal c axis and the resulting canting angle of
the surface spins.

Sample no. x (%) I(qa)||b I(qa)||c θ (deg)

1 5 0.1221 0.0550 24.2527
2 10 0.2246 0.1570 34.9522
2 10 0.1542 0.1721 48.1350
2 10 0.2719 0.0186 3.9146
2 10 0.2243 0.1761 38.1379
3 11.5 0.2248 0.1275 29.5626

obtain an average out-of-plane canting angle of 30.3◦ ± 2.0◦.
This substantial canting of the surface spins is seen across
multiple samples and has been observed in previous STM
studies on this compound [59,60].

We have also conducted further studies on other samples of
Fe1+xTe, where measurements were only recorded with the tip
polarized along the crystal b and c axes. The data are shown
in Table I. The intensity of the magnetic peak I(qa) for field
applied along the crystallographic b and c axes, respectively,
and the corresponding canting angle (θ ) are shown. The aver-
age out-of-plane canting angle obtained from these values is
29.8◦ ± 13.7◦. The error bar here contains contributions from
variations in the magnetic properties of the STM tips, differ-
ences between samples, and the alignment of the magnetic
field plane with the crystallographic axis of the sample. This
is the magnetic structure shown in Fig. 1(b).

III. NEUTRON SCATTERING EXPERIMENTS

Having discussed the canted magnetic structure at the
surface, we now apply neutron scattering to study the bulk
magnetism. Neutron scattering, unlike x-rays or photon-based
measurements, is a bulk measurement of materials due to
the interaction between neutrons and matter being mediated
by nuclear interactions. For example, for single crystalline
Fe1.09Te with a neutron wavelength of λ = 1.1 Å, the 1/e
scattering length for the sum of absorption and incoherent
cross sections is ∼2 cm. The results presented in this section
are therefore a measure of the bulk averaged response. Neu-
trons carry a magnetic moment making them sensitive to the
localized magnetic moments in materials.

A. Experimental details

To investigate the polarization matrix of the magnetic or-
der in Fe1+xTe sensitive to the orientation of the local iron
moments, we used the CRYOPAD (Cryogenic Polarization
Analysis Device) developed at the ILL [67,68]. Unlike con-
ventional polarization measurements, which involve study-
ing spin flip scattering along a particular crystallographic
axis, CRYOPAD allows all components of the polarization
matrix to be studied governed by the Blume-Maleev equa-
tions [69,70]. Single crystals of Fe1.09Te were synthesized by
the Bridgemann method [49,65]. All measurements discussed

here were done at a base temperature of 2 K using the IN20
spectrometer with the sample aligned such that Bragg peaks
of the form (H 0 L) lay within the horizontal scattering plane.
The structural and magnetic transition in this material occurs
at ∼60 K resulting in structural domains present at low tem-
peratures [71]. The possible symmetry operations resulting
from these domains are displayed in Table III and discussed
below.

Spherical neutron polarimetry is sensitive to the direction
of the ordered magnetic moment, spin chirality, and coupling
between nuclear and magnetic cross sections [69]. In the case
of structural domains that exist at low temperature (which
average out the off-diagonal elements) from the structural
transition (Table III) and in the absence of spin chirality and
coupling to a nuclear cross section, the polarization matrix
measured with spherical neutron polarimetry becomes diago-
nal and takes the following form:

Pi j =

⎛
⎜⎜⎝

−1 0 0

0 |M⊥,y|2−|M⊥,z |2
| �M⊥|2 0

0 0 − |M⊥,y|2−|M⊥,z |2
| �M⊥|2

⎞
⎟⎟⎠,

where �M⊥ ≡ �Q × �M × �Q. Here �Q ≡ �ki − �k f is the momen-
tum transfer and �M is the magnetic moment direction. The
matrix element Pxx ≡ P11 is strictly = −1 and deviations from
this are a measure of the neutron beam polarization. It is
important to note that the polarization matrix does not provide
information on the magnitude of �M, but only the direction.

In this experiment, the polarization matrix was measured
at six magnetic Bragg peaks at T = 2 K. The full experimen-
tal polarization matrices Pmeasured

i j for these Bragg peaks are
shown in Table II. The calculated matrices Paxial

i j and Pcanted
i j

shown in the table are discussed below in the context of our
comparison with tunneling and previous neutron results.

B. Neutron scattering results

Figure 1 illustrates the two magnetic structures to which
we will compare the polarized neutron scattering results in
this section. The reported structure based on neutron diffrac-
tion on single crystals and also powders suggests that the
structure is collinear with the moments aligned along the
crystallographic b axis [Fig. 1(a)]. The structure is often
referred to as a “double-stripe” magnetic structure. This is
contrasted to a recent magnetic structure reported using scan-
ning tunneling microscopy [Fig. 1(b)]. The magnetic structure
obtained from STM has magnetic moments that are collinear
but canted along the crystallographic c axis by an angle of
θ = 29.8◦ ± 13.7◦. For the purposes of this section, we refer
to the neutron scattering structure, which is aligned along the
b axis as “axial,” and the structure reported by spin-polarized
tunneling microscopy, which is aligned as “canted.” We now
discuss the application of neutron spherical polarimetry to
revisit the bulk magnetic structure of collinear Fe1+xTe.

While the application of unpolarized neutron powder
diffraction and also uniaxial polarized neutrons may arguably
be ambiguous in determining canting of the magnetic mo-
ments due to the number of accessible peaks and statistics
for low interstitial iron concentrations, spherical neutron

024406-4



MAGNETIC SURFACE RECONSTRUCTION IN THE VAN … PHYSICAL REVIEW B 103, 024406 (2021)

TABLE II. A list of the experimentally measured polarization matrices at T = 2 K measured on IN20. The calculated matrix elements [72],
assuming 100% beam polarization, are shown for the axial spin structure and the canted magnetic structure with θ = 28◦ for comparison.

�Q Pmeasured
i j Paxial

i j Pcanted
i j (θ = 28◦)

(
1
2 , 0, 1

2

)
⎛
⎝−0.896(3) 0.064(4) −0.002(4)

−0.086(3) −0.879(3) −0.018(4)
−0.049(4) −0.032(4) 0.882(3)

⎞
⎠

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎝−1 0 0

0 −0.768 0
0 0 0.768

⎞
⎠

(
3
2 , 0, 3

2

)
⎛
⎝ −0.889(9) 0.048(10) −0.025(11)

−0.068(10) −0.887(9) −0.010(15)
−0.058(11) −0.004(11) 0.874(9)

⎞
⎠

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎝−1 0 0

0 −0.768 0
0 0 0.768

⎞
⎠

(
3
2 , 0, 1

2

)
⎛
⎝ −0.887(9) 0.042(10) −0.039(11)

−0.071(10) −0.877(9) −0.016(15)
−0.042(11) −0.020(10) 0.887(9)

⎞
⎠

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎝−1 0 0

0 −0.636 0
0 0 0.636

⎞
⎠

(
1
2 , 0, 3

2

)
⎛
⎝−0.887(3) 0.068(4) −0.003(4)

−0.060(3) −0.880(3) −0.016(4)
−0.048(4) −0.031(4) 0.884(4)

⎞
⎠

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎝−1 0 0

0 −0.946 0
0 0 0.946

⎞
⎠

(
1
2 , 0, 5

2

)
⎛
⎝−0.894(7) 0.059(8) −0.032(8)

−0.055(8) −0.883(7) −0.013(8)
−0.068(8) −0.022(8) 0.882(7)

⎞
⎠

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎝−1 0 0

0 −0.979 0
0 0 0.979

⎞
⎠

(
5
2 , 0, 1

2

)
⎛
⎝−0.846(15) 0.029(17) −0.007(18)

−0.10(2) −0.884(15) −0.003(18)
−0.050(18) −0.043(18) 0.859(16)

⎞
⎠

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎝−1 0 0

0 −0.618 0
0 0 0.618

⎞
⎠

polarimetry is very sensitive to this canting. We illustrate
this in Fig. 3, which displays a color representation of the
calculated polarization matrices at the magnetic momentum
positions �Q = ( 1

2 , 0, 3
2 ) and ( 1

2 , 0, 1
2 ). Three different mod-

els are presented. Panel (a) displays a calculation based on
the canted model proposed by tunneling measurements for
a single structural and magnetic domain crystal. This cal-
culation shows nonzero off-diagonal values for the matrix
elements for the Pyz and Pzy positions. However, Fe1+xTe
undergoes a structural distortion from a tetragonal to a mon-
oclinic unit cell that is coincident with magnetic ordering.
The four domains are related by symmetry as displayed in
Table III. The corresponding matrix including the effects of
domains is diagonal and is illustrated in Fig. 3(b). The magni-
tudes of the matrix elements |Pyy| �= |Pzz|. This contrasts with
the case in which the magnetic moments point within the ab
plane as termed “axial” in this paper and schematically shown
in Fig. 3(c), where |Pyy| = |Pzz|.

Figure 4 illustrates a comparison of our results to the
predicted matrix from both magnetic structures. Figures 4(a)
and 4(b) illustrate histograms of the calculated polarization
matrix elements for both the canted [tunnelling, Fig. 4(a)]
and axial [neutron, Fig. 4(b)] magnetic structures. The canted
magnetic structure results in polarization matrix elements for
a range of values from −1 → 1. The largest number of ma-
trix elements appear at 0 resulting from the averaging over
domains, meaning that all off-diagonal matrix elements are
calculated to be 0 (Fig. 3). The axial magnetic structure,
in contrast, only displays three matrix elements ([−1, 0, 1]),
distinguishing it from the canted magnetic structure.

A histogram of the experimentally measured polarization
matrix elements is plotted in Fig. 4(c) and shows a distribution
of measured elements centered around three values, in qualita-
tive agreement with the axial (neutron) magnetic structure. We
note that there is a large distribution around Pi j = 0 and it is

further shown in the table displayed above (see Table II). The
origin of this error results from the incomplete polarization
of the beam and also due to small misalignments (∼1◦–2◦,
see the Appendix of Ref. [73] for an analysis of the errors)
of the sample with respect to the beam polarization. Based
on the comparison between Figs. 4(a)–4(c), the neutron data
are consistent with the axial magnetic structure rather than the
prediction of a broad spread of matrix elements which would
result from a canted magnetic structure. This is further illus-
trated in Figs. 4(d) and 4(e), which show the calculated matrix
elements as a function of the measured matrix elements. The
spread of the data from a single straight line is a measure of
the “goodness of fit.” The canted magnetic structure in panel
(c) clearly provides a much poorer description of the data over
the axial one displayed in panel (d).

Figure 5 shows a plot of χ2 (a measure of the goodness of
fit) as a function of canting angle θ quantifying the sensitiv-
ity of our measurement using spherical polarimetry and also
establishing a measure of the error bar in our experiment. For
this figure, we have defined χ2 in terms of the measured and
calculated polarization matrix elements Pi by

χ2 ≡
∑
i, j

∑
α

(
Pmeasured,α

i j − Pcalculated,α
i j

)2
, (2)

where the summation index α is taken over all Bragg peaks,
and the indices i j are the matrix elements probed in this
experiment. The plot of χ2 as a function of canting angle
for the six Bragg peaks (Table II) studied on IN20 shows a
broad minimum near θ ∼ 0◦ and a distinct maximum with
θ = 90◦ when the moments are pointing along the crystal-
lographic c axis. The vertical red line in Fig. 5(a) is the
canted θ = 28◦ ± 3◦ proposed by tunneling measurements.
The χ2(θ ) curve clearly shows that our spherical neutron
polarimetry data are inconsistent with a canted structure with
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FIG. 3. A color schematic of the polarization matrix for the spin
models under consideration for the Q-vectors Q = (1/2, 0, 1/2) and
(1/2, 0, 3/2): (a) for a single domain of the double-stripe order with
canted spins with θ = 28◦, (b) for multiple domains of the same
order as in (a) using the symmetry relations in Table III, and (c) for
the axial order with spins pointing along b. X , Y , and Z are the
spin components along the three spatial directions; color encodes the
polarization.

a broad minimum observed near θ = 0◦, which is the ax-
ial structure found previously in powders and single-crystal
unpolarized neutron measurements. The nature of the broad
minimum in the χ2 surface indicates an underlying error
bar in the magnetic structure measured here of ∼ ± 5◦. The
neutron scattering data show that the magnetic structure in
iron-deficient Fe1.09Te is inconsistent with the magnitude of
the canted magnetic structure reported for the single-layer
limit in tunneling measurements.

TABLE III. Low-temperature structural domains considered here
for the magnetic structural analysis.

1 x y z
2 x y −z
3 −x −y z
4 −x −y −z

FIG. 4. A summary of the spherical polarimetry data from IN20
measured for Fe1.09Te and compared against calculations. (a,b) His-
tograms of the polarization matrix elements Pi j for calculations based
on the canted and axial magnetic structures, respectively. (c) The
same histogram for the measured matrix elements. (d,e) Plots of the
calculated polarization matrix elements as a function of measured
values for both the canted and axial magnetic structures.

IV. DISCUSSION

A comparison of the spherical neutron polarimetry with
spin-polarized STM shows clearly that for Fe1+xTe, a surface
magnetic reconstruction forms where the spins on the iron
site tilt out of the ab-plane. In the following, we will discuss
possible mechanisms leading to this reconstruction.

A. Surface relaxation—Density functional theory calculations

To attempt to explain the difference between the mea-
sured magnetic structure of the surface and the bulk, we
have performed DFT calculations on an FeTe slab where the
surface was allowed to relax from the lattice positions in
the bulk. First-principles calculations were performed using
the Quantum ESPRESSO [74] code. We employed optimized
norm-conserving Vanderbilt pseudopotentials [75] with the
Perdew-Burke-Ernzerhof exchange-correlation functional in
the generalized gradient approximation [76]. For the calcu-
lation, four layers of FeTe, without excess iron atoms (x = 0),
with a vacuum region of 13 Å in the z direction, bicollinear
magnetic order along x, and ferromagnetic order along z were
considered. The z-length of the unit cell was kept fixed during
variable cell relaxation runs and spin-polarization taken into
account. We chose a kinetic energy cutoff for the plane waves
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FIG. 5. A parametrization of the goodness of fit (χ2) to the data
as a function of canting angle θ as defined in the text. A neutron beam
polarization of 0.88 was taken for the analysis. (a) χ2 over the full
range of canted angles from 0◦ to 180◦. (b) χ 2 in a narrow range of
angles from 0◦ to 5◦.

of 80 Ry, a Methfessel-Paxton [77] smearing of 0.02 Ry,
and an 8 × 16 × 1 Monkhorst-Pack [78] k-mesh. Details of
the crystal structure and atomic positions were taken from
experiment [41] and then geometrically relaxed. The surface
layer was found to relax away from the bulk layer to such an
extent that the c axis parameter of the surface layer changes
from 6.2 to 6.8 Å. The lateral position of the surface layer also
changes from that of the bulk with the Fe atoms of the surface
layer displaced by up to 10 pm from the unrelaxed position.
Furthermore, slight changes in the length of the Fe − Te bonds
of up to 3 pm were observed. This reconstructed structure is
illustrated schematically in Fig. 6(a).

B. Magnetic dipole interactions

As a potential explanation for the canting of the spins in the
surface layer, we have considered the magnetic dipole interac-
tion between the Fe atoms. We have constructed a numerical
model of the surface of Fe1+xTe to calculate the preferred spin
orientation of the surface Fe atoms given dipolar interactions
with the layer below. The model consists of a bulk layer of
101 × 101 Fe atoms with a surface layer of 41 × 41 Fe atoms.
The spins of each Fe atom were fixed into the bicollinear
AFM order with their in-plane component fixed to point along
the crystallographic b axis. The magnetic moment of each Fe
atom was taken to be 2μB [65]. The energy of the interaction
of the dipoles in the system is then determined by numerically
summing over all the spins in the system. The equation for

bulk surface(a) (b)

0 90 180 270 360
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FIG. 6. (a) Structural model of the surface layer relaxed in DFT
calculations. The relaxation of the top surface layer can be seen.
(b) Calculation of the energy per Fe atom due to the dipole interaction
as a function of out-of-plane canting angle θ of a bilayer of FeTe as
described in the text. The maximum energy per Fe atom due to the
dipole interaction is found from this calculation to be 3.3 μeV. The
energy minimum is found at θ = ±90◦, i.e., out of the surface plane.

this process is

E =
∑
i �= j

μ0

4π |ri j |2
[
μi · μ j − 3

|ri j |2 (μi · ri j )(μ j · ri j )

]
, (3)

where the indices i and j indicate the different Fe positions
in both layers. By varying the canting angle θ of the surface
spins, we determined how the energy of the dipole interaction
varies as a function of θ ; this is shown in Fig. 6(b). We deter-
mine from this analysis that the dipole interaction in Fe1+xTe
would favor aligning the Fe spins along the crystallographic
c axis, a result that is in good agreement with the effects of
magnetic dipole interactions in bulk crystals [79]. Indeed, if
one were to consider only dipole interactions in addition to
the AFM ordering in the bulk, then the magnetic moments of
the Fe would align with the sample c axis. The fact that this
is not observed in neutron scattering measurements leads us
to the conclusion that a substantial magnetic anisotropy from
the crystalline electric field keeps the Fe spins pointing in the
ab plane. We note that the tendency of the magnetic dipole in-
teraction to favor out-of-plane order is stronger for the surface
layer than it is in the bulk. The energy scale associated with
the dipolar interaction per Fe spin is ∼μeV.

C. Magnetocrystalline anisotropy

The energy scale of the dipolar interaction is extremely
small in comparison to the measured ∼5 meV anisotropy gap
found with neutron inelastic scattering [50]. Both the direction
and the magnitude of magnetic dipole interactions suggest that
these are not sufficiently strong to explain the out-of-plane
tilting of the magnetization in the surface layer. This leaves
the magnetocrystalline anisotropy resulting from crystalline
electric field effects [80,81] as a possible origin for the mag-
netic surface reconstruction. In bulk Fe1+xTe, the magnetic
anisotropy results in an in-plane orientation of the spins [56].
At the surface, the broken symmetry resulting from the loss
of a mirror plane and structural relaxation of the surface layer
discussed above imply that the magnetic anisotropy can differ
significantly.
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V. CONCLUSIONS

The spherical neutron polarimetry results show a distinct
difference between the bulk magnetic structure in Fe1.09Te
measured with neutron scattering and the canted magnetic
structure reported with tunneling measurements in the single-
layer limit. This illustrates a difference between bulk and
surface magnetism in this Van der Waals magnet. It should be
noted that the cases of tunneling from a surface and neutron
scattering from the bulk are not studying the exact same sit-
uation. In the bulk neutron response, each magnetic Fe1+xTe
layer effectively represents a mirror plane. This is not the case
of a hard surface as is the situation in tunneling. Therefore,
from a symmetry perspective, there is no constraint forcing
both situations to be identical.

The magnetic moments in Fe1.09Te interact through either
effects of bonding (including possible itinerant interactions
such as RKKY exchange) or dipolar interactions. For in-
teractions within the ab plane of Fe1.09Te, these should be
dominated by the effects of bonding which result in strong
dispersion of the magnetic excitations along these direc-
tions [53]. The situation along the c-axis is less clear as
the FeTe layers are only weakly bonded through Van der
Waals forces. However, dipolar forces that decay ∼ 1

r3 are
still present in the magnetic Hamiltonian, and these could
be strongly influential to the magnetic correlations along the
crystallographic c-axis. Magnetic neutron inelastic scattering
has indeed found the weak c-axis correlations [50,82] occur-
ring without the presence of strong bonding and only van der
Waals forces.

Another effect not directly tied to the crystalline electric
field effects discussed above that may be the origin of the
difference between surface (tunnelling) and bulk (neutron)
responses is interstitial iron. Previous neutron scattering re-
sults have shown a strong connection between the magnetic
correlations and the interstitial iron concentration x [50,83].

With increasing interstitial iron concentration, the crystallo-
graphic c-axis decreases, which could in turn increase the
importance of the dipolar terms in the magnetic Hamiltonian.
The interstitial sites may also be magnetic, and this could
influence the structure in the FeTe plane.

We note that differences in the magnetic structure and pe-
riodicity between tunneling and bulk neutron scattering have
been reported before. Comparative measurements done in su-
perconducting La2−xSrxCuO4 [84] with tunneling and neutron
scattering have observed different wave vectors, but a similar
response in the dynamics. The role of dipolar and crystalline
electric field terms in the magnetic Hamiltonian may be an
issue that needs to be considered in all magnetic layered and
two-dimensional structures.

While further calculations will be required to ultimately
understand the difference in magnetic structures observed on
the surface and the bulk, our study illustrates the sensitivity
and difference between the magnetism in the Fe1.09Te van
der Waals magnet between the bulk and the surface. This
has been established through a comparison between spheri-
cal polarimetry to determine that the bulk magnetic structure
of iron-deficient Fe1.09Te has θ = 0◦ ± 5◦, while using spin-
polarized STM to characterize the surface magnetic order. We
suggest the difference between magnetic structures found be-
tween scanning tunneling microscopy and neutron scattering
originates from the relaxation of the surface layer and the
corresponding changes in magnetocrystalline anisotropy.
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