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Abstract 

Background: The increased availability and usage of modern medical imaging induced a strong need for automatic 
medical image segmentation. Still, current image segmentation platforms do not provide the required functionalities 
for plain setup of medical image segmentation pipelines. Already implemented pipelines are commonly standalone 
software, optimized on a specific public data set. Therefore, this paper introduces the open-source Python library 
MIScnn.

Implementation: The aim of MIScnn is to provide an intuitive API allowing fast building of medical image segmenta-
tion pipelines including data I/O, preprocessing, data augmentation, patch-wise analysis, metrics, a library with state-
of-the-art deep learning models and model utilization like training, prediction, as well as fully automatic evaluation 
(e.g. cross-validation). Similarly, high configurability and multiple open interfaces allow full pipeline customization.

Results: Running a cross-validation with MIScnn on the Kidney Tumor Segmentation Challenge 2019 data set (multi-
class semantic segmentation with 300 CT scans) resulted into a powerful predictor based on the standard 3D U-Net 
model.

Conclusions: With this experiment, we could show that the MIScnn framework enables researchers to rapidly set 
up a complete medical image segmentation pipeline by using just a few lines of code. The source code for MIScnn is 
available in the Git repository: https ://githu b.com/frank krame r-lab/MIScn n.
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Background
Medical imaging became a standard in diagnosis and 
medical intervention for the visual representation of 
the functionality of organs and tissues. Through the 
increased availability and usage of modern medical 
imaging like Magnetic Resonance Imaging (MRI) or 
Computed Tomography (CT), the need for automated 
processing of scanned imaging data is quite strong [1]. 

Currently, the evaluation of medical images is a manual 
process performed by physicians. Larger numbers of 
slices require the inspection of even more image mate-
rial by doctors, especially regarding the increased usage 
of high-resolution medical imaging. In order to shorten 
the time-consuming inspection and evaluation process, 
an automatic pre-segmentation of abnormal features in 
medical images would be required.

Image segmentation is a popular sub-field of image 
processing within computer science [2–7]. The aim of 
semantic segmentation is to identify common features in 
an input image by learning and then labeling each pixel in 
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an image with a class (e.g. background, kidney or tumor). 
There is a wide range of algorithms to solve segmenta-
tion problems. However, state-of-the-art accuracy was 
accomplished by convolutional neural networks and deep 
learning models [7–11], which are used extensively today. 
Furthermore, the newest convolutional neural networks 
are able to exploit local and global features in images [12–
14] and they can be trained to use 3D image information 
as well [15, 16]. In recent years, medical image segmenta-
tion models with a convolutional neural network archi-
tecture have become quite powerful and achieved similar 
results performance-wise as radiologists [10, 17]. Never-
theless, these models have been standalone applications 
with optimized architectures, preprocessing procedures, 
data augmentations and metrics specific for their data 
set and corresponding segmentation problem [14]. Also, 
the performance of such optimized pipelines varies dras-
tically between different medical conditions. However, 
even for the same medical condition, evaluation and com-
parisons of these models are a persistent challenge due to 
the variety of the size, shape, localization and distinctness 
of different data sets. In order to objectively compare two 
segmentation model architectures from the sea of one-
use standalone pipelines, each specific for a single public 
data set, it would be required to implement a complete 
custom pipeline with preprocessing, data augmentation 
and batch creation. Frameworks for general image seg-
mentation pipeline building can not be fully utilized. The 
reason for this are their missing medical image I/O inter-
faces, their preprocessing methods, as well as their lack 
of handling highly unbalanced class distributions, which 
is standard in medical imaging. Recently developed med-
ical image segmentation platforms, like NiftyNet [18], are 
powerful tools and an excellent first step for standardized 
medical image segmentation pipelines. However, they 
are designed more like configurable software instead of 
frameworks. They lack modular pipeline blocks to offer 
researchers the opportunity for easy customization and 
to help developing their own software for their specific 
segmentation problems.

In this work, we push towards constructing an intui-
tive and easy-to-use framework for fast setup of state-of-
the-art convolutional neural network and deep learning 
models for medical image segmentation. The aim of our 
framework Medical Image Segmentation with Convolu-
tional Neural Networks (MIScnn) is to provide a com-
plete pipeline for preprocessing, data augmentation, 
patch slicing and batch creation steps in order to start 
straightforward with training and predicting on diverse 
medical imaging data. Instead of being fixated on one 
model architecture, MIScnn allows not only fast switch-
ing between multiple modern convolutional neural net-
work models, but it also provides the possibility to easily 

add custom model architectures. Additionally, it facili-
tates a simple deployment and fast usage of new deep 
learning models for medical image segmentation. Still, 
MIScnn is highly configurable to adjust hyperparameters, 
general training parameters, preprocessing procedures, 
as well as include or exclude data augmentations and 
evaluation techniques.

Implementation
The open-source Python library MIScnn is a framework 
to setup medical image segmentation pipelines with con-
volutional neural networks and deep learning models. 
MIScnn is providing several core features, which are also 
illustrated in Fig. 1:

• 2D/3D medical image segmentation for binary and 
multi-class problems

• Data I/O, preprocessing and data augmentation for 
biomedical images

• Patch-wise and full image analysis
• State-of-the-art deep learning model and metric 

library
• Intuitive and fast model utilization (training, predic-

tion)
• Multiple automatic evaluation techniques (e.g. cross-

validation)
• Custom model, data I/O, pre-/postprocessing and 

metric support

Data input
NIfTI data I/O interface
MIScnn provides a data I/O interface for the Neuroim-
aging Informatics Technology Initiative (NifTI) [19] file 
format for loading Magnetic Resonance Imaging and 
Computed Tomography data into the framework. This 
format was initially created to speed up the development 
and enhance the utility of informatics tools related to 
neuroimaging. Still, it is now commonly used for shar-
ing public and anonymous MRI and CT data sets, not 
only for brain imaging, but also for all kinds of human 3D 
imaging. A NIfTI file contains the 3D image matrix and 
diverse metadata, like the thickness of the MRI slices.

Custom data I/O interface
Next to the implemented NIfTI I/O interface, MIScnn 
allows the usage of custom data I/O interfaces for other 
imaging data formats. This open interface enables 
MIScnn to handle specific biomedical imaging features 
(e.g. MRI slice thickness), and therefore it avoids losing 
these feature information by a format conversion require-
ment. A custom I/O interface must be committed to the 
preprocessing function and it has to return the medical 
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image as a 2D or 3D matrix for integration in the work-
flow. It is advised to add format specific preprocessing 
procedures (e.g. MRI slice thickness normalization) in 
the format specific I/O interface, before returning the 
image matrix into the pipeline.

Preprocessing
Pixel intensity normalization
Inconsistent signal intensity ranges of images can drasti-
cally influence the performance of segmentation meth-
ods [20, 21]. The signal ranges of biomedical imaging 
data are highly varying between data sets due to different 
image formats, diverse hardware/instruments (e.g. differ-
ent scanners), technical discrepancies, and simply bio-
logical variation [10]. Additionally, the machine learning 
algorithms behind image segmentation usually perform 
better on features which follow a normal distribution. 
In order to achieve dynamic signal intensity range con-
sistency, it is advisable to scale and standardize imaging 
data. The signal intensity scaling projects the original 
value range to a predefined range usually between [0, 1] 
or [− 1, 1], whereas standardization centers the values 
close to a normal distribution by computing a Z-Score 
normalization. MIScnn can be configured to include or 
exclude pixel intensity scaling or standardization on the 
medical imaging data in the pipeline.

Clipping
Similar to pixel intensity normalization, it is also common 
to clip pixel intensities to a certain range. Intensity values 
outside of this range will be clipped to the minimum or 

maximum range value. Especially in computer tomog-
raphy images, pixel intensity values are expected to 
be identical for the same organs or tissue types even in 
different scanners [22]. This can be exploited through 
organ-specific pixel intensity clipping.

Resampling
The resampling technique is used to modify the width 
and/or height of images. This results into a new image 
with a modified number of pixels. Magnetic resonance 
or computer tomography scans can have different slice 
thickness. However, training neural network models 
requires the images to have the same slice thickness or 
voxel spacing. This can be accomplished through resa-
mpling. Additionally, downsampling images reduces the 
required GPU memory for training and prediction.

One hot encoding
MIScnn is able to handle binary (background/cancer) 
as well multi-class (background/kidney/liver/lungs) seg-
mentation problems. The representation of a binary seg-
mentation is being made quite simple by using a variable 
with two states, zero and one. But for the processing of 
multiple categorical segmentation labels in machine 
learning algorithms, like deep learning models, it is 
required to convert the classes into a more mathematical 
representation. This can be achieved with the One Hot 
encoding method by creating a single binary variable for 

Fig. 1 Flowchart diagram of the MIScnn pipeline starting with the data I/O and ending with a deep learning model
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each segmentation class. MIScnn automatically One Hot 
encodes segmentation labels with more than two classes.

Patch‑wise and full image analysis
Depending on the resolution of medical images, the avail-
able GPU hardware plays a large role in 3D segmentation 
analysis. Currently, it is not possible to fully fit high-res-
olution MRIs with an example size of 400 × 512 × 512 
into state-of-the-art convolutional neural network mod-
els due to the enormous GPU memory requirements. 
Therefore, the 3D medical imaging data can be either 
sliced into smaller cuboid patches or analyzed slice-by-
slice, similar to a set of 2D images [10, 11, 23]. In order 
to fully use the information of all three axis, MIScnn 
slices 3D medical images into patches with a configur-
able size (e.g. 128 × 128 × 128) by default. Depending on 
the model architecture, these patches can fit into GPUs 
with RAM sizes of 4–24 GB, which are commonly used 
in research. Nevertheless, the slice-by-slice 2D analysis, 
as well as the 3D patch analysis is supported and can be 
used in MIScnn. It is also possible to configure the usage 
of full 3D images in case of analyzing uncommonly small 
medical images or having a large GPU cluster. By default, 
2D medical images are fitted completely into the convo-
lutional neural network and deep learning models. Still, 
a 2D patch-wise approach for large resolution images can 
be also applied.

Data augmentation for training
In the machine learning field, data augmentation cov-
ers the artificially increase of training data. Especially in 
medical imaging, commonly only a small number of sam-
ples or images of a studied medical condition is available 
for training [10, 24–27]. Thus, an image can be modified 
with multiple techniques, like shifting, to expand the 
number of plausible examples for training. The aim is 
to create reasonable variations of the desired pattern in 
order to avoid overfitting in small data sets [26].

For state-of-the-art data augmentation, MIScnn inte-
grated the batchgenerators package from the Division 
of Medical Image Computing at the German Cancer 
Research Center (DKFZ) [28]. It offers various data aug-
mentation techniques and was used by the winners of the 
latest medical image processing challenges [14, 22, 29]. 
It supports spatial translations, rotations, scaling, elas-
tic deformations, brightness, contrast, gamma and noise 
augmentations like Gaussian noise.

Sampling and batch generation
Skipping blank patches
The known problem in medical images of the large unbal-
ance between the relevant segments and the background 
results into an extensive amount of parts purely labeled 

as background and without any learning information [10, 
24]. Especially after data augmentation, there is no ben-
efit to multiply these blank parts or patches [30]. There-
fore, in the patch-wise model training, all patches, which 
are completely labeled as background, can be excluded in 
order to avoid wasting time on unnecessary fitting.

Batch management
After the data preprocessing and the optional data aug-
mentation for training, sets of full images or patches 
are bundled into batches. One batch contains a num-
ber of prepared images which are processed in a single 
step by the model and GPU. Sequential for each batch 
or processing step, the neural network updates its inter-
nal weights accordingly with the predefined learning 
rate. The possible number of images inside a single batch 
highly depends on the available GPU memory and has to 
be configured properly in MIScnn. Every batch is saved 
to disk in order to allow fast repeated access during the 
training process. This approach drastically reduces the 
computing time due to the avoidance of unnecessary 
repeated preprocessing of the batches. Nevertheless, this 
approach is not ideal for extremely large data sets or for 
researchers without the required disk space. In order to 
bypass this problem, MIScnn also supports “on-the-fly” 
generation of the next batch in memory during runtime.

Batch shuffling
During model training, the order of batches, which are 
going to be fitted and processed, is shuffled at the end 
of each epoch. This method reduces the variance of the 
neural network during fitting over an epoch and lowers 
the risk of overfitting. Still, it must be noted, that only the 
processing sequence of the batches is shuffled and the 
data itself is not sorted into a new batch order.

Multi‑CPU and ‑GPU support
MIScnn also supports the usage of multiple GPUs and 
parallel CPU batch loading next to the GPU comput-
ing. Particularly, the storage of already prepared batches 
on disk enables a fast and parallelizable processing with 
CPU as well as GPU clusters by eliminating the risk of 
batch preprocessing bottlenecks.

Deep learning model creation
Model architecture
The selection of a deep learning or convolutional neural 
network model is the most important step in a medical 
image segmentation pipeline. There is a variety of model 
architectures and each has different strengths and weak-
nesses [12, 13, 15, 16, 31–37]. MIScnn features an open 
model interface to load and switch between provided 
state-of-the-art convolutional neural network models like 
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the popular U-Net model [12]. Models are represented 
with the open-source neural network library Keras [38] 
which provides a user-friendly API for commonly used 
neural-network building blocks on top of TensorFlow 
[39]. The already implemented models are highly con-
figurable by definable number of neurons, custom input 
sizes, optional dropout and batch normalization layers 
or enhanced architecture versions like the Optimized 
High Resolution Dense-U-Net model [15]. Additionally, 
MIScnn offers architectures for 3D, as well as 2D medi-
cal image segmentation. This model selection process is 
visualized in Fig.  2. Besides the flexibility in switching 
between already implemented models, the open model 
interface enables the ability for custom deep learning 
model implementations and simple integrating these cus-
tom models into the MIScnn pipeline.

Metrics
MIScnn offers a large quantity of various metrics which 
can be used as loss function for training or for evalua-
tion in figures and manual performance analysis. The 
Dice coefficient, also known as the Dice similarity index, 
is one of the most popular metrics for medical image 
segmentation. It scores the similarity between the pre-
dicted segmentation and the ground truth. However, it 
also penalizes false positives comparable to the precision 
metric. Depending on the segmentation classes (binary 
or multi-class), there is a simple and class-wise Dice 
coefficient implementation. Whereas the simple imple-
mentation only accumulates the overall number of cor-
rect and false predictions, the class-wise implementation 
accounts the prediction performance for each segmenta-
tion class which is strongly recommended for commonly 

class-unbalanced medical images. Another popular sup-
ported metric is the Jaccard Index. Even though it is simi-
lar to the Dice coefficient, it does not only emphasize on 
precise segmentation. However, it also penalizes under- 
and over-segmentation. Still, MIScnn uses the Tversky 
loss [40] for training. Comparable to the Dice coefficient, 
the Tversky loss function addresses data imbalance. Even 
so, it achieves a much better trade-off between preci-
sion and recall. Thus, the Tversky loss function ensures 
good performance on binary, as well as multi-class seg-
mentation. Additionally, all standard metrics which are 
included in Keras, like accuracy or cross-entropy, can be 
used in MIScnn. Next to the already implemented met-
rics or loss functions, MIScnn offers the integration of 
custom metrics for training and evaluation. A custom 
metric can be implemented as defined in Keras, and sim-
ply be passed to the deep learning model.

Model utilization
With the initialized deep learning model and the fully 
preprocessed data, the model can now be used for 
training on the data to fit model weights or for predic-
tion by using an already fitted model. Alternatively, the 
model can perform an evaluation, as well, by running a 
cross-validation for example, with multiple training and 
prediction calls. The model API allows saving and load-
ing models in order to subsequently reuse already fitted 
models for prediction or for sharing pre-trained models.

Training
In the process of training a convolutional neural net-
work or deep learning model, diverse settings have to 
be configured. At this point in the pipeline, the data 

Fig. 2 Flowchart visualization of the deep learning model creation and architecture selection process
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augmentation options of the data set, which have a large 
influence on the training in medical image segmenta-
tion, must be already defined. Sequentially, the batch 
management configuration covered the settings for the 
batch size, and also the batch shuffling at the end of each 
epoch. Therefore, only the learning rate and the number 
of epochs are required to be adjusted before running the 
training process. The learning rate of a neural network 
model is defined as the extend in which the old weights 
of the neural network model are updated in each itera-
tion or epoch. In contrast, the number of epochs defines 
how many times the complete data set will be fitted into 
the model. Sequentially, the resulting fitted model can be 
saved to disk.

During the training, the underlying Keras framework 
gives insights into the current model performance with 
the predefined metrics, as well as the remaining fitting 
time. Additionally, MIScnn offers the usage of a fitting-
evaluation callback functionality in which the fitting 
scores and metrics are stored into a tab separated file or 
directly plotted as a figure.

Prediction
For the segmentation prediction, an already fitted neu-
ral network model can be directly used after training or 
it can be loaded from file. The model predicts for every 
pixel a Sigmoid value for each class. The Sigmoid value 
represents a probability estimation of this pixel for the 
associated label. Sequentially, the argmax of the One Hot 
encoded class are identified for multi-class segmentation 
problems and then converted back to a single result vari-
able containing the class with the highest Sigmoid value.

When using the overlapping patch-wise analysis 
approach during the training, MIScnn supports two 
methods for patches in the prediction. Either the predic-
tion process plainly creates distinct patches and treats 
the overlapping patches during the training as purely 
data augmentation, or overlapping patches are created 
for prediction. Due to the lack of prediction power at 
patch edges, computing a second prediction for edge pix-
els in patches, by using an overlap, is a commonly used 
approach. In the following merge of patches back to the 
original medical image shape, a merging strategy for the 
pixels is required, in the overlapping part of two patches 
and with multiple predictions. By default, MIScnn calcu-
lates the mean between the predicted Sigmoid values for 
each class in every overlapping pixel.

The resulting image matrix with the segmentation 
prediction, which has the identical shape as the origi-
nal medical image, is saved into a file structure accord-
ing to the provided data I/O interface. By default, using 
the NIfTI data I/O interface, the predicted segmentation 

matrix is saved in NIfTI format without any additional 
metadata.

Evaluation
MIScnn supports multiple automatic evaluation tech-
niques to investigate medical image segmentation 
performance: k-fold cross-validation, leave-one-out 
cross-validation, percentage-split validation, hold-out 
sets for testing (data set split into test and train set with 
a given percentage) and detailed validation in which it 
can be specified which images should be used for train-
ing and testing. Except for the detailed validation, all 
other evaluation techniques use random sampling to cre-
ate training and testing data sets. During the evaluation, 
the predefined metrics and loss function for the model 
are automatically plotted in figures and saved in tab 
separated files for possible further analysis. Next to the 
performance metrics, the pixel value range and segmen-
tation class frequency of medical images can be analyzed 
in the MIScnn evaluation. Also, the resulting prediction 
can be compared directly next to the ground truth by 
creation image visualizations with segmentation overlays. 
For 3D images, like MRIs, the slices with the segmenta-
tion overlays are automatically visualized in the Graphics 
Interchange Format (GIF).

Results
Here, we analyze and evaluate data from the Kidney 
Tumor Segmentation Challenge 2019 using MIScnn. The 
main idea for this experiment is to demonstrate the ‘out-
of-the-box’ performance of MIScnn without thorough 
and time-consuming optimization on the data set or on 
the medical abnormality. All results were obtained using 
the scripts shown in the Appendix.

Kidney Tumor Segmentation Challenge 2019 (KiTS19)
With more than 400,000 kidney cancer diagnoses world-
wide in 2018, kidney cancer is under the top 10 most 
common cancer types in men and under the top 15 in 
woman [41]. The development of advanced tumor visu-
alization techniques is highly important for efficient sur-
gical planning. Due to the variety in kidney and kidney 
tumor morphology, the automatic image segmentation is 
challenging but of great interest [29].

The goal of the KiTS19 challenge is the development of 
reliable and unbiased kidney and kidney tumor seman-
tic segmentation methods [29]. Therefore, the challenge 
built a data set for arterial phase abdominal CT scan of 
300 kidney cancer patients [29]. The original scans have 
an image resolution of 512 × 512 and on average 216 
slices (highest slice number is 1059). For all CT scans, 
a ground truth semantic segmentation was created by 
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experts. This semantic segmentation labeled each pixel 
with one of three classes: Background, kidney or tumor. 
An example CT scan including annotation is shown in 
Fig. 3. 210 of these CT scans with the ground truth seg-
mentation were published during the training phase of 
the challenge, whereas 90 CT scans without published 
ground truth were released afterwards in the submission 
phase. The submitted user predictions for these 90 CT 
scans will be objectively evaluated and the user models 
ranked according to their performance. The CT scans 
were provided in NIfTI format in original resolution 
and also in interpolated resolution with slice thickness 
normalization.

Validation on the KiTS19 data set with MIScnn
For the evaluation of the MIScnn framework usability 
and data augmentation quality, a subset of 120 CT scans 
with slice thickness normalization were retrieved from 
the KiTS19 data set. An automatic threefold cross-vali-
dation was run on this KiTS19 subset with MIScnn. In 
order to reduce the overfitting risk, the cross-validation 
testing sets had no influence on the fitting process and 
were not used for any automatic hyper parameter tuning.

MIScnn configurations
The MIScnn pipeline was configured to perform a multi-
class, patch-wise analysis with 80 × 160 × 160 patches 
and a batch size of 2. The pixel value normalization by 
Z-Score, clipping to the range −  79 and 304, as well as 
resampling to the voxel spacing 3.22 × 1.62 × 1.62.

For data augmentation, all implemented techniques 
were used. This includes creating patches through ran-
dom cropping, scaling, rotations, elastic deformations, 
mirroring, brightness, contrast, gamma and Gaussian 
noise augmentations. For prediction, overlapping patches 
were created with an overlap size of 40 × 80 × 80 in x, y, z 
directions. The standard 3D U-Net with batch normaliza-
tion layers were used as deep learning and convolutional 
neural network model. The training was performed using 
the Tversky loss for 1000 epochs with a starting learning 
rate of 1E−4 and batch shuffling after each epoch.

The cross-validation was run on two Nvidia Quadro 
P6000 (24 GB memory each), using 48 GB memory and 
taking 58 h.

Results
With the MIScnn pipeline, it was possible to successfully 
set up a complete, working medical image multi-class 
segmentation pipeline. The threefold cross-validation of 
120 CT scans for kidney and tumor segmentation were 
evaluated through several metrics: Tversky loss, soft Dice 
coefficient, class-wise Dice coefficient, as well as the sum 
of categorical cross-entropy and soft Dice coefficient. 
These scores were computed during the fitting itself, as 
well as for the prediction with the fitted model. For each 
cross-validation fold, the training and predictions scores 
are visualized in Fig. 4 and sum up in Table 1.

The fitted model achieved a very strong performance 
for kidney segmentation. The kidney Dice coefficient had 
a median around 0.9544. The tumor segmentation pre-
diction showed a considerably high but weaker perfor-
mance than the kidney with a median around 0.7912.

Besides the computed metrics, MIScnn created seg-
mentation visualizations for manual comparison between 
ground truth and prediction. As illustrated in Fig. 5, the 
predicted semantic segmentation of kidney and tumors is 
highly accurate.

Discussion
MIScnn framework
With excellent performing convolutional neural net-
work and deep learning models like the U-Net, the urge 
to move automatic medical image segmentation from 
the research labs into practical application in clinics is 
uprising. Still, the landscape of standalone pipelines of 
top performing models, designed only for a single spe-
cific public data set, handicaps this progress. The goal of 
MIScnn is to provide a high-level API to setup a medi-
cal image segmentation pipeline with preprocessing, data 
augmentation, model architecture selection and model 
utilization. MIScnn offers a highly configurable and 
open-source pipeline with several interfaces for custom 
deep learning models, image formats or fitting metrics. 

Fig. 3 Computed Tomography image from the Kidney Tumor 
Segmentation Challenge 2019 data set showing the ground truth 
segmentation of both kidneys (red) and tumor (blue) [29]
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The modular structure of MIScnn allows a medical image 
segmentation novice to setup a functional pipeline for a 
custom data set in just a few lines of code. Additionally, 
switchable models and an automatic evaluation function-
ality allow robust and unbiased comparisons between 
deep learning models. A universal framework for medi-
cal image segmentation, following the Python philosophy 
of simple and intuitive modules, is an important step in 
contributing to practical application development.

Use case: Kidney Tumor Segmentation Challenge
In order to show the reliability of MIScnn, a pipeline was 
setup for kidney tumors segmentation on a CT image 

Fig. 4 Performance evaluation of the standard 3D U-Net model for kidney and tumor prediction with a threefold cross-validation on the 120 CT 
data set from the KiTS19 challenge. Left: Tversky loss against epochs illustrating loss development during training for the corresponding test and 
train data sets. Each point represents the average Tversky loss between the cross-validation folds. Center: Class-wise Dice coefficient against epochs 
illustrating soft Dice similarity coefficient development during training for the corresponding test and train data sets. Each point represents the 
average soft Dice similarity coefficient between the cross-validation folds. Right: Dice similarity coefficient distribution for the kidney and tumor for 
all samples of the cross-validation

Table 1 Performance results of  the  threefold cross-
validation for  tumor and  kidney segmentation 
with  a  standard 3D U-Net model on  120 CT scans 
from the KiTS19 challenge

Each metric is computed between the provided ground truth and our model 
prediction and then averaged between the three folds

Metric Training Validation

Tversky loss 0.3672 0.4609

Soft Dice similarity coefficient 0.8776 0.8235

Categorical cross-entropy − 0.8584 − 0.7899

Dice similarity coefficient: background – 0.9994

Dice similarity coefficient: kidney – 0.9319

Dice similarity coefficient: tumor – 0.6750

Fig. 5 Computed Tomography scans of kidney tumors from the Kidney Tumor Segmentation Challenge 2019 data set showing the kidney (red) 
and tumor (blue) segmentation as overlays. The images show the segmentation differences between the ground truth provided by the KiTS19 
challenge and the prediction from the standard 3D U-Net models of our threefold cross-validation
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data set. The popular and state-of-the-art standard 
U-Net were used as deep learning model with up-to-date 
data augmentation. Its predictive power was very impres-
sive in the context of using only the standard U-Net 
architecture with mostly default hyperparameters. In the 
medical perspective, through the variety in kidney tumor 
morphology, which is one of the reasons for the KiTS19 
challenge, the weaker tumor results are quite reasonable 
[29]. Also, the models were trained with only 38% of the 
original KiTS19 data set due to 80 images for training 
and 40 for testing were randomly selected. The remaining 
90 CTs were excluded in order to reduce run time in the 
cross-validation. Nevertheless, it was possible to build a 
powerful pipeline for kidney tumor segmentation with 
MIScnn resulting into a model with high performance, 
which is directly comparable with modern, optimized, 
standalone pipelines [12, 13, 16, 32]. We proved that with 
just a few lines of codes using the MIScnn framework, it 
was possible to successfully build a powerful pipeline for 
medical image segmentation. Additionally, fast switching 
the model to a more precise architecture for high resolu-
tion images, like the Dense U-Net model, would probably 
result into an even better performance [15]. However, 
this gain would go hand in hand with an increased fitting 
time and higher GPU memory requirement, which was 
not possible with our current sharing schedule for GPU 
hardware. Nevertheless, the possibility of swift switch-
ing between models to compare their performance on a 
data set is a promising step forward in the field of medi-
cal image segmentation.

Road map and future direction
The active MIScnn development is currently focused 
on multiple key features: Adding further data I/O inter-
faces for the most common medical image formats like 
DICOM, extend preprocessing and data augmenta-
tion methods, implement more efficient patch skipping 
techniques instead of excluding every blank patch (e.g. 
denoising patch skipping) and implementation of an 
open interface for custom preprocessing techniques for 
specific image types like MRIs. Next to the planned fea-
ture implementations, the MIScnn road map includes the 
model library extension with more state-of-the-art deep 
learning models for medical image segmentation. Addi-
tionally, an objective comparison of the U-Net model 
version variety is outlined to get more insights on differ-
ent model performances with the same pipeline. Com-
munity contributions in terms of implementations or 
critique are welcomed and can be included after evalua-
tion. Currently, MIScnn already offers a robust pipeline 
for medical image segmentation, nonetheless, it will still 
be regularly updated and extended in the future.

MIScnn availability
The MIScnn framework can be directly installed as a 
Python library using pip install miscnn. Additionally, 
the source code is available in the Git repository: https 
://githu b.com/frank krame r-lab/MIScn n. MIScnn is 
licensed under the open-source GNU General Pub-
lic License Version 3. The code of the cross-validation 
experiment for the Kidney Tumor Segmentation Chal-
lenge is available as a Jupyter Notebook in the official Git 
repository.

Conclusions
In this paper, we have introduced the open-source 
Python library MIScnn: A framework for medical image 
segmentation with convolutional neural networks and 
deep learning. The intuitive API allows fast building 
medical image segmentation pipelines including data 
I/O, preprocessing, data augmentation, patch-wise analy-
sis, metrics, a library with state-of-the-art deep learning 
models and model utilization like training, prediction, as 
well as fully automatic evaluation (e.g. cross-validation). 
High configurability and multiple open interfaces allow 
users to fully customize the pipeline. This framework 
enables researchers to rapidly set up a complete medical 
image segmentation pipeline by using just a few lines of 
code. We proved the MIScnn functionality by running 
an automatic cross-validation on the Kidney Tumor Seg-
mentation Challenge 2019 CT data set resulting into a 
powerful predictor. We hope that it will help migrating 
medical image segmentation from the research labs into 
practical applications.

Availability and requirements

Project name: MIScnn
Project home page: https ://githu b.com/frank krame 
r-lab/MIScn n
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 3.6; Tensorflow 2.2.0
License: GPL-3.0 License
Any restrictions to use by non‑academics: None

Abbreviations
MIScnn: Medical Image Segmentation with Convolutional Neural Networks; 
CT: Computed tomography; I/O: Input/output; MRI: Magnetic Resonance 
Imaging; NifTI: Neuroimaging Informatics Technology Initiative; GPU: Graphics 
processing unit; RAM: Random Access Memory; CPU: Central Processing Unit; 
API: Application programming interface; KiTS19: Kidney Tumor Segmentation 
Challenge 2019.

https://github.com/frankkramer-lab/MIScnn
https://github.com/frankkramer-lab/MIScnn
https://github.com/frankkramer-lab/MIScnn
https://github.com/frankkramer-lab/MIScnn
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