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Abstract. The continuous improvement of the performance of comput-
ing units makes it possible to cope with increasingly complex tasks. This
results in more complex software systems. However, the development of
such highly complex systems is difficult to achieve using traditional ap-
proaches. Concepts like model-driven software development can weaken
this problem in these constructive phases. However, new challenges arise
for the testing of development artifacts. In order to be able to perform
a real shift left of verification and validation tasks towards early phases
of development, we present a semi-formal approach that enables users to
execute test cases against the system under development (SUD) on the
model-level. Grounded on an Integrated Model Basis which is created
and maintained during development, test reports are automatically de-
rived. This opens up a wide range of possibilities for early and targeted
troubleshooting.
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1 Introduction

Due to the rapid development of hardware, more and more complex tasks can
be mastered. As the complexity of the tasks steadily increases, the complexity
of the software that handles these tasks is growing. In order to handle this
increased complexity of the software development, a new trend has emerged in
development practices.

In contrast to purely code-based approaches, many development tasks are
nowadays handled by model-based ones. These techniques are characterized by
the concepts of abstraction and automation, thus reducing complexity for the
user. Considerable progress has been made in the areas of executable models, es-
pecially in the formal verification of suitable models, and in model-based testing.
This gives insights into the planned system in early phases of development and
enables developers to take appropriate and possibly early (counter-)measures,
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since defects introduced into the system in early phases of development usually
cause significantly higher costs for elimination (time and money) [23][5]. Further,
Jones et al. [13] show how the worst-case scenario of very late discovery of such
defects is the rule rather than the exception. Thus, verification in early phases
of development is significant.

1.1 Problem Statement

The mentioned approaches in the model context either place high demands on
the modeling languages used or work effectively on code artifacts derived from
models or even platform specific artifacts. If one tries to put this into the context
of Model-Driven Architecture (MDA), instances of the Platform-Specific Model
(PSM) or Implementation-Specific Model (ISM) level are usually used for this
purpose [15]. Especially for semi-formal test activities no effective shift left to-
wards early development phases can be achieved, due to missing execution or
simulation concepts.

We want to achieve this kind of functionality by implementing an approach
to perform tests against the system based on model artifacts associated with the
Platform-Independent Model (PIM). This enables the possibility to detect cer-
tain types of defects even earlier and thus reduce the overall costs. In contrast to
purely specification-based tests (black-box), information about the implemen-
tation can be used at this point, allowing more targeted testing in the sense
of gray-box testing. This can be seen as a kind of guidance for the modeler in
addition to classical test results.

Up to our knowledge, there is no semi-formal approach that offers such func-
tionalities. Based on an integrated set of model artifacts of different domains, like
system development and testing, our Abstract Test Execution (ATE) approach is
implemented. Therefore, the modeling expert specifies correlations between ele-
ments of the system model and the test model. From this Integrated Model Ba-
sis, an analysis-specific representation can be derived by using Model-to-Model
(M2M) transformations. On the basis of these transformed model representa-
tions as well as the updated mapping information captured by the Integration
Model, the concept of ATE is applied. Similar to classical testing, reports are
created for the test runs, documenting the results of the execution to support
troubleshooting.

In contrast to the related conference paper [10], the following sections draw
a holistic picture of the concepts around the ATE approach. Furthermore, the
ATE itself is more detailed and reworked with a lightweight formalization. This
is followed by a critical discussion.

1.2 Outline

Following the previously presented introduction and problem statement, the re-
maining contents are structured as follows. In the course of section 2 the foun-
dations are described. This includes the introduction of our running example



(section 2.1) which demonstrates the details of our approach. Further, the In-
tegrated Model Basis (IMB) is presented throughout sections 2.2 and 2.3, using
the running example to give a more intuitive understanding of the concepts.
The main contribution, namely the Abstract Test Execution, is introduced in
section 3. Thereby, the structure of subsections 3.2 to 3.6 reflects the overall
structure of the underlying process. Following section 3, a mixed qualitative
evaluation/discussion of concepts is presented in section 4. In order to set our
approach in context to other research, related work is discussed in section 5.
Finally, a conclusion is drawn and a road map for future topics is elaborated.

2 Foundations

In order to detail the approach outlined in the previous chapter, the necessary
foundations, including the running example, are presented. In particular, the
different model artifacts which are part of the concept are explained. An overview
is given in Figure 1.
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Fig. 1. Model Artifacts in the Context of Abstract Test Case Execution

In the upper part of the figure the Requirements Model is shown, representing
the starting point of any development. In the context of Model-Driven Software
Development (MDSD), both System and Test Models are built upon this basis.
Different types of modeling languages can be applied to create these artifacts,
such as General Purpose Modeling Languages (GPML) or Domain-Specific Mod-
eling Languages (DSML). In this case, the use of two separate model artifacts
is considered to support the automation of subsequent processing steps. There-
fore, it is necessary to define a well-formed relation between these model artifacts,
achieved by the integration component placed in the middle of the figure, namely
the Integration Model. All of these models represent possible interaction points
with the user (User-Specific Integrated Model Basis) For details see section 2.2.

In addition, derived from the User-Specific Integrated Model Basis through
Model-to-Model (M2M) transformations, a so-called Analysis-specific Integrated



Model Basis is introduced (for details see section 2.3). Essentially, the System
and Test Models are mapped to an internal metamodel, which was designed for
the subsequent automated processing (for details see section 2.3).

2.1 Running Example - Automatic Door Control System

As already mentioned, the running example serves for illustrating the different
aspects of our approach. In order to keep this intuitively understandable and
clear, we have chosen a simple example from everyday life. Due to its simplicity,
there are no structural artifacts of the System Model. It is a door control system,
where its control logic is represented by the state machine in Figure 2.

[open == false &&
 motionDetected == false &&

getTimer() > 10 sec.]

[open == true &&
 motionDetected == true]

[lockCmd == true]

 [lockCmd == false]
Open

entry/ resetTimer()
          open = true
do/ incrementTimer()

[motionDetected == true]

Locked

entry/ locked = true

Closed

entry/ locked = false
          open = false

Fig. 2. Behavior System Model for the Automatic Door Control System

The control logic defines three different states, namely Open, Closed and
Locked. The door is able to query the status of a sensor, which reveals if the
door is open or closed (open). This is supplemented by a sensor for detecting
movement at close range (motionDetected). Besides the sensors of the system,
a conventional lock is provided for manually locking of the door, which sends
a lockCmd to the door control unit on actuation. Apart from the event-driven
points of interaction, a time-triggered component is part of the door control unit.
Precisely, as soon as a timer of ten seconds has elapsed, the closing of the door
is initiated, unless motion is detected by the sensor.

Starting with this System Model artifact, the proposed running example
is extended and constantly used in the following sections to illustrate certain
aspects of our contributions.

2.2 User-specific Integrated Model Basis

As already mentioned above, the so-called User-specific Integrated Model Basis
(Omni Model for short) represents the data side of the approach. In particular,
this combination of model artifacts represents the action point for the users
of the subsequent automated processing chain. In principle, any development
model can be integrated, provided their metamodels are completely available.
This approach forces the separation of concerns on the model-level, which has a
positive impact on the significance of the resulting tests [25]. An essential role
and the minimal amount of model information is given by the System Model,



the Test Model and the integration of these two artifacts modeled within the
Integration Model. In this context, most of the relevant aspects of these artifacts
have already been introduced in earlier publications by Rumpold and Pröll (for
details see [28][27]).

System Model - In the context of MDSD, this model covers both structural
and behavioral aspects of the SUD. Different modeling languages can be used,
depending on the application domain and the expertise of the developers. E.g.
GPMLs such as the SysML [19] or DSMLs used in the context of the embedded
MDSD tool radCase [7] from IMACS can be used.

Test Model - The same applies to the model artifacts concerning test model-
ing. The choice of the metamodel should be based primarily on aspects such as
expertise of the test engineers and sufficient tool support. E.g. GPML-based ap-
proaches such as the UML Testing Profile [21] or proprietary modeling languages
can be used.

Other Domain-Specific Development Models - The combination of different
models is not limited to the two domains already mentioned. If information about
e.g. temporal behavior, safety or security of the SUD is considered in separate
DSMLs, it can be linked to the Integrated Model Basis. Even if this information
has no direct influence on the processing and thus results of the ATE, such
information can be included in the context of post-processing. For subsequent
troubleshooting, correction and, under certain circumstances, transitive defect
effects can be determined.

Integration Model - This model artifact provides the link between the sets
of different domain-specific models. In order to map the relationships between
the models, the structural decomposition of the instantiated SUD is primar-
ily modeled. This enables purely structural mappings between instance- and
component-related parts of the different models. Beyond the structural map-
pings, additional information on elements of the structural decomposition can
be added to the Integration Model (see aspects concept in [26]).

In addition, these mappings between models participating in the Integrated
Model Basis can be specified for behavioral model elements. These mappings rep-
resent a key concept in the implementation of the ATE, since this enables the
synchronization of different types of models of the same behavioral aspect. I.e.
a series of synchronization points (so-called IMSyncPoints) is defined for each
behavior model, which are connected to elements of the System Model as well as
the Test Model. Furthermore, different types of synchronization points are distin-
guished. Besides the conventional IMSyncPoints there are IMSyncEntryPoints
and IMSyncExitPoints representing the entry and the exit of a synchronization
sequence respectively. The level of detail or completeness of these mappings has
a decisive influence on the test results determined in the context of the ATE.
Therefore, careful modeling must be carried out to avoid deducing false conclu-
sions from the corresponding results.



Application to the Running Example In order to illustrate the concepts of
the Integrated Model Basis, the concrete instances of the models in the context
of the Automatic Door Control System will be discussed below.

[open == true &&
 motionDetected == false &&

getTimer() > 10 sec.]

[open == false &&
 motionDetected == true]

[lockCmd == true] [lockCmd == false]

System Model Test ModelIntegration Model

<<VP>>
open == true

<<VP>>
locked == false

<<TestStep>>
lockCmd = true<<IMSyncEntryPoint>>

<<IMSyncExitPoint>>

<<IMSyncExitPoint>>

Locked

entry/locked = true

Closed

entry/ locked = false
          open = false

Open

entry/ resetTimer()
          open = true
do/ incrementTimer()

[motionDetected == true]

<<VP>>
locked == true

Fig. 3. Excerpt of the User-specific Integrated Model Basis for the Automatic Door
Control System

Figure 3 shows the relationships between the individual model instances. On
the left side of the figure, the state machine previously introduced in Figure 2
represents the behavioral model of the SUD. The model elements arranged in
the middle of this figure show synchronization points and thereby specify the be-
havioral mappings across the development domains. On the right side, a activity
chart based Test Model consisting of Test Steps and Verification Points (VP)
is conducted. In principle, two different test cases can be derived (see right side
of Figure 7) from this model, which are evaluated against the system as part of
the ATE.

2.3 Analysis-specific Integrated Model Basis
In Figure 1 the user-specific and the analysis-specific view of the model ba-
sis was shown. Basically, the analysis-specific representation of the Integrated
Model Basis decouples the algorithmic implementation from the specifics of the
respective application context. In contrast to the manual modeling of the model
artifacts, the analysis-specific variant is derived automatically. This is done by
a set of transformation steps describing a model transformation. These steps
are specified on the metamodel-level. The components of this target metamodel,
relevant for ATE as well as the concepts of the transformations, are explained
in the following.



Analysis-specific Metamodel In order to be able to map multiple models in
the context of model-centric testing, the Execution Graph ++ (EGPP) meta-
model was developed. In the context of Pröll et al. [26] the metamodel simulta-
neously representing the structure, control flow and data flow information of a
system, was introduced. Basically, the control flow information is described by
nodes (EGPPNode) and edges (EGPPTransition). In addition, structure informa-
tion can be modeled by nesting these control flow structures, since special nodes
(EGPPGraph) can contain control flow (sub-)graphs. The data flow information
(EGPPTaggedData) completes the information set and annotates nodes and edges
of the model. In particular, the annotated data are atomic with regard to the
included expressions, such that only one expression is captured per node/edge.

In general, an instance of the EGPP describes behavior by sequences of states,
which can be applied to both a Test Model and a System Model. Each of these
states consists of an active node of the control flow and a set of variable as-
signments. A variable state is updated by the assignments of the active node,
assuming the intermediate guards could be fulfilled. If an assignment is made
in the node, it is further identified by a EGPPInputNode, if only a condition is
checked, a EGPPOutputNode is modeled. The latter type of node is used when
mapping Test Models, particularly to check the current state from a data flow
perspective. In case of the control flow perspective, IMSyncPoints concept of the
Integration Model is evaluated. If such a connection between EGPPNodes of a Test
Model and a System Model is specified, an additional condition is imposed on
the control flow. Especially in case of IMSyncEntryPoints or IMSyncExitPoints
this means that the evaluation of the test case against the system has to start
or end at the referenced points of the control flow.

Model-to-Model Transformations As shown in Figure 1, both the original
System and the Test Model are transformed into the EGPP metamodel by a
horizontal exogenous M2M transformation. Different patterns are implemented
such that a uniform representation is created for both aspects independent of
the user-specific metamodel. The basic concepts of these patterns are shown
in Figure 4. Further, it is crucial that the transformation rules defined for this
purpose do not change the semantics of the original models, but at best refines
them.

On the left side of Figure 4, the System Model is considered. In case of
purely structuring model elements of the original model, a construct is created
in the EGPP context, which cyclically embeds all included components (SSM)
and behavioral models (SBM) in its flow. In contrast, the behavioral models are
not enriched with any synthetic control structures, as long as the original model
already provides a defined initial and final state. At this point, it is important
to preserve the original specification of system states.

In contrast, the right side of the graph shows the pattern for the Test Model.
Here, the different test levels are aligned to the integration levels of the System
Model. In this hierarchy the highest level model is the System Test Model (STM),
which specifies consistent test cases at the integration level, but can include lower
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Fig. 4. EGPP Model Patterns for System and Test Context

integration levels, such as an Integration Test Model (ITM). This is done through
all the integration levels considered down to the unit level, which is illustrated
in the right-hand part of Figure 4.

In addition to the control flow and structure-giving patterns, the data flow
is transformed realized in the form of a pseudo-code-like language, which is out
of scope for this contribution. According to this language the EGPPTaggedData
elements are filled with information during the transformation.

In addition to the M2M transformations of the System and Test Models,
the mapping information is updated between artifacts of these modeling do-
mains captured by the integration model. This update includes the creation of
new mappings between transformed model elements of the respective EGPP
instances, provided that their original model elements are already part of a
mapping relation specified by the Integration Model. Normally, no manual in-
tervention is necessary, provided that the M2M transformations are specified
completely regarding the conventions mentioned above.

Application to the Running Example The application of these transforma-
tion rules converts the Integrated Model Basis already introduced in Figure 3
into the following variant (see Figure 5).

Basically, the two graphs are very similar, since the original model elements
have been transformed into EGPPNodes. Model elements with sharp corners rep-
resent EGPPInputNodes and round corners represent EGPPOutputNodes. Excep-
tions are the dashed model elements of the Integration Model, arranged in the
middle of this figure. The annotated data flow information is stored in the code
fragments, which reflects the EGPPTaggedData. Furthermore, an explicit final
state was added to the original System Model, which can be reached by all
original states.



Code:
[open == true &&
 motionDetected == false &&
getTimer() > 10 sec.]

Code:
[open == false &&
 motionDetected == true]

Code:
[lockCmd == true]Code:

 [lockCmd == false]

System Model EGPP Test Model EGPPIntegration Model

<<IMSyncEntryPoint>>

<<IMSyncExitPoint>>

<<IMSyncExitPoint>>

Open

Code:
 resetTimer();
 open = true;
 incrementTimer();

Closed

Code:
 locked = false;
 open = false;

Locked

Code:
 locked = true;

Code:
[motionDetected == true]

lockedFalse

Code:
 locked == false

lock

Code:
 lockCmd = true;

lockedTrue

Code:
 locked == true

openTrue

Code:
 open == true

Fig. 5. Excerpt of the Analysis-specific Integrated Model Basis for the Automatic Door
Control System

3 Abstract Test Execution

Several input artifacts are required to perform the process of Abstract Test Exe-
cution. These input artifacts are given by the Analysis-Specific Integrated Model
Basis. As mentioned in section 2.3, this model basis mainly consists of two model
artifacts which are interconnected by a third model artifact, namely the Inte-
gration Model.

3.1 Overall Process

Both main artifacts, namely the System Model and the Test Model, are instance
models of the EGPP metamodel. The System Model describes the structure and
behavior of the system, while the Test Model represents the intended behavior of
the system. The Integration Model can be used to define so called IMSyncPoints
and is based on a corresponding metamodel. IMSyncPoints are used to define
entry points and exit points of the execution of abstract test cases.

The test cases are derived from the Test Model. The process is detailed in
the following section 3.2.

The process of ATE uses the System Model, the Integration Model and the
generated set of abstract test cases to perform testing. The general approach is
visualized in Figure 6. Every abstract test case contained in the generated set is
evaluated one after the other. This evaluation process of each abstract test case
consists of multiple steps, which ultimately result in a test report.

At first, the abstract test case is merged into the System Model. Differ-
ent cases for the merging exist which results in a vast range of different paths
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Fig. 6. Overall ATE Process

describing the majority of all possible data flows and control flows. We iden-
tify some basic merging rules, which are described in section 3.3. Besides the
merging process, the data flow and the control flow of these paths are assessed.
Therefore, basic data flow specific faults are taken into account as well as control
flow specific characteristics. This baseline is detailed in section 3.4. In addition,
the preliminary results gathered by this analysis are collected and classified. The
result classes are described in section 3.5.

Then, one of these preliminary results is chosen to be the representative re-
sult of the ATE. Finally, a human-readable test report is generated from the
representative result. These steps are detailed in section 3.6. For further un-
derstanding, all the mentioned process steps are illustrated along the running
example.

3.2 Preprocessing and Derivation of Abstract Test Cases

A model is viewed as a graph consisting of nodes and edges. A Test Model com-
prises two kinds of nodes and unidirectional edges. As described in 2.2, such
models are structurally based on activity diagrams that can preserve a chain
of events by transforming them into a fixed sequence of nodes enclosed by an
initial and a final node. Contained nodes are connected by unidirectional edges.
Generally, a distinction is made between nodes that contain instructions which
either send stimuli to the SUT or check whether certain outputs of the system
meet predefined conditions. Due to the abstract nature of the ATE approach,
we distinguish between instructions that modify variables of the SUT or check
for certain variable values. Nodes included in a Test Model can either contain
one instruction that is capable of modifying exactly one system variable or any
number of conditions to challenge the system state. The former are called Test



Steps while the latter are referred to as Verification Points. During transfor-
mation from the user-specific input model to its analysis-specific EGPP-based
form, it is ensured that non-atomic nodes are transferred into an atomic form.
Furthermore, nodes of type Test Step are transformed into EGPPInputNodes
while Verification Points are converted into EGPPOutputNodes as described in
section 2.3. Depending on the Test Model as an EGPP-based artifact, a data
flow analysis is performed which is able to mimic combinations of structural as
well as data flow coverage metrics to derive sets of abstract test cases.

Code:
[open == true &&
 motionDetected == false &&
getTimer() > 10 sec.]

Code:
[open == false &&
 motionDetected == true]

Code:
[lockCmd == true]Code:

 [lockCmd == false]

System Model EGPP Test Cases EGPPIntegration Model

<<IMSyncEntryPoint>>

<<IMSyncExitPoint>>

<<IMSyncExitPoint>>

Open (O)

Code:
 resetTimer();
 open = true;
 incrementTimer();

Closed (C)

Code:
 locked = false;
 open = false;

Locked (L)

Code:
 locked = true;

Code:
[motionDetected == true]

lockedFalse (lF)

Code:
 locked == false

lock (l)

Code:
 lockCmd = true;

lockedTrue (lT)

Code:
 locked == true

openTrue (oT)

Code:
 open == true

Fig. 7. EGPP Representation of Running Example

In the context of the running example, two test cases are extracted from the
Test Model (see Figure 5) and presented in Figure 7. The test case on the left
hand side checks whether the internal system variable open is set to true while
the system state is initialized as Open. The other test case determines whether
the system switches correctly into the Locked system state after initializing the
system to the Closed state and sending the lockCmd = true stimulus to it.

3.3 Path Merging based on Integrated Model Basis Mappings

Like the Test Model described in section 3.2, the SystemModel supports different
model elements. Generally speaking, the System Model can have nodes that
contain instructions that modify the system state and conditional transitions
that restrict the change of system states (referred to as Guards).

Nodes of the System Model and Test Steps of the Test Model contain instruc-
tions capable of altering the system state. Verification Points of a Test Model
and instructions of guarded transitions of the System Model share the same kind



of instructions to validate the system state. Overall, the Test Model and the Sys-
tem Model contain two different kinds of instructions which represent the basic
blocks of the merging process.

Furthermore, the EGPP-based structure of the SystemModel and Test Model
is defined by an initial node and a final node. This common structure of the mod-
els naturally specifies the entry point and exit point for ATE. However, due to
the potentially multi-layered structure of the input models (cf. section 2.3) more
than two entry and exit point pairs may exist. Therefore, we introduce the pos-
sibility to specify explicit connections between both models to determine the
entry point as well as the exit point of the ATE to restrict the number of model
artifacts taken into account. In contrast to the fact that end connections are
mandatory for the control flow analysis of ATE, the definition of entry connec-
tions are optional. In addition, entry connections can be used to initialize the
system state different to the initial system state as visualized in Figure 7.

After the determination of an entry point for the ATE, the merging process
is carried out step by step. Every step inserts one node of the test case into the
system. The process starts by merging the first node of the test case into the
System Model and ends with the test case being completely merged. Depending
on the System Model, several possibilities exist for inserting a node of the test
case into the System Model. The most basic merging approach is to take every
permutation into account but this can lead to a state explosion. In order to
tackle this challenge, the merging process performs the following rules:

1. The sequence of nodes of the test case and System Model is kept.
2. Incoming transitions of a system node are not separated by nodes of the test

case
3. Verification Points are inserted after nodes of the System Model
4. Test Steps of a segment are inserted directly after the leading Verification

Point

Generally speaking, these rules limit the set of permutations without loss of
generality on the final result of the ATE. The effect of the rules is discussed in
section 4. Moreover, we name the set of all permutations the path space P and
the subset of permutations created by applying the rules as the limited path
space Plim.

The first rule ensures that the control flow of the system is maintained by
keeping the general structure of the test case during merging. Subsequently,
nodes of the test case can only be inserted into the System Model, if the given
order of test nodes is preserved, which represents the first step of limiting the
path space.

The second rule is used to imitate more classical testing approaches. From
a classical testing point of view, stimuli are sent to the system to initialize a
change of system state. In more detail, the stimuli are used to satisfy some
condition which guard the change of system state. From our abstract testing
point of view, nodes of the test case can be inserted directly before a node of
the System Model or before an incoming transition of a node of the System
Model. In order to preserve the behavior of classical testing, rule two allows the



insertion of nodes of the test case before an incoming transition of the system
model which is used to imitate the classical testing approach.

The third rule aligns with entrenched code-based testing activities. From
a classical testing point of view, a test case must interact with the SUT to
verify its functionality. In consequence, if the test case does not interact with
the SUT, the test case fails. Due to the abstract nature of this approach, test
cases may be defined that rely on induced variables by the test cases rather than
variables induced by the system. This could potentially lead to a test case that
is falsely successful. To reduce the risk of such test cases, rule three is defined
(cf. Section 4).

The last rule leads to a significant reduction of the path space. Two aspects
come into play. First, due to the abstract nature of this approach, time-dependent
variables are out of scope. As a result, the sequence of Test Steps of a Segment can
be ignored since Test Steps represent stimuli to the system which are affected by
timing. Here, a Segment refers to all nodes between two successive Verification
Points. Second, stimuli to the system are bound to a change of system state.
Therefore, if more than one node of the System Model is contained in a Segment,
the test may fail by mistake. To cope with this problem, we allow the over-
assignment of variables to declare all assignments of variables induced by Test
Steps of a Segment as valid. A more in-depth description of the over-assignment
of variables and the resulting effect can be found in section 4.
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lT l l

lT lT

Fig. 8. Limited Tree of Paths of the Running Example



To visualize the merging process, a tree can be formed which contains the
limited subset of permutations Plim. Figure 8 shows the path tree of the running
example. For better understanding, the Segments of the path p1 are visualized
by dashed boxes. In addition, nodes of the System Model and Test Model are
visualized by squares which have rounded or sharp corners. The former repre-
sent nodes that contain instructions which verify the system state. The latter
illustrates nodes that consist of instructions which modify the system state. The
naming refers to Figure 7 while the following sections utilize the abbreviations
in brackets. Guarded transitions are referenced by their respective identifier αx,
which can also be found in Figure 7. Due to loops in the representative System
Model, the tree of paths contains an infinite number of paths. Therefore, nodes
labeled with γ or δ can be substituted by nodes enclosed by the box with the
same label.

3.4 Evaluation of Path Space

In reality, paths are not evaluated as a whole. Instead, the evaluation process is
triggered after a new Segment is formed by injecting a Verification Point into
the System Model.

The analysis of such a segment is carried out with the help of a combination
of data flow and control flow analysis. The former is used to determine whether
the instructions of guarded transitions and Verification Points can be fulfilled.
The latter is used to check if the test case is solvable from a structural point of
view and if the final system state is reached after the data flow is completely
analyzed.

Generally, data flow analysis is an approach of collecting information about
possible values of system variables. We use this analysis to execute and eval-
uate the instructions contained in the nodes of the segment currently being
analyzed. During this process, several faults can be detected. We define D :=
{d1, d2, d3, d4, d5, d6} as the set of data flow based faults. In the following, these
cases are described.

d1 Instruction of node not solvable
d2 Guard of transition not solvable
d3 Undeclared or uninitialized variable
d4 Missing end point for data flow analysis
d5 Guard contains time-dependent variable
d6 Guard fulfilled by over-assigned variable

As previously detailed, several paths emerge which are likely to solve the test
case. Test cases contained in the resulting Plim consists of nodes of the EGPP
Test Model and nodes and transitions of the EGPP System Model. The merg-
ing process removes the boundaries between these models, which causes the
evaluation to distinguish only between variable-verifying instructions (VVI) and
variable-modifying instructions (VMI). Such verifying instructions are Boolean
expressions which can be evaluated to true or false. On the one hand, we con-
sider the latter result as unwanted behavior and register a fault in the event of



such a case. On the other hand, if the Boolean expression results in true, the
associated Guard or Verification Point is successfully solved.

Algorithm 3.1: evalSegment(s)

procedure evalSegment(s)
for each e ∈ getElements(s)

do


if instanceof(getInst(e), V MI)
then storeValuesOfElement(e)
else if instanceof(getInst(e), V V I)
then verifyElement(e)

persistLastStoredVariableValues()

procedure verifyElement(e)
if newFaultsRegistered(checkPreconditions(e))
then return

if instanceof(e, node)

then
{
if ! verifyInst(getInst(e)) XOR isOverassigned(getInst(e))
then registerFault(d1, e)

else if instanceof(e, edge)

then


if verifyInst(getInst(e))

then
{
if isOverassigned(getInst(e))
then registerFault(d6, e)

else registerFault(d2, e)

procedure checkPreconditions(e)
for each v ∈ getVariables(getInst(e))

do


if isTimeDependentVariable(v)
then registerFault(d5, e)

if size(getStoredValues(v)) == 0
then registerFault(d3, e)

procedure isOverassigned(i)
for each v ∈ getVariables(i)

do
{
if size(getStoredValues(v)) > 1
then return (true)

return (false)

procedure storeValuesOfElement(e)
if instanceof(e, node)
then store(getLHS(getInst(e)),

eval(getRHS(getInst(e)),
getPermutatedVariableAssignments(getInst(e))))

procedure verifyInst(i)
for each va ∈ getPermutatedVariableAssignments(i)

do
{
if eval(i, va)
then return (true)

return (false)



Algorithm 3.1 presents the procedure to evaluate a Segment which is detailed
in the following. However, one of the requirements for the ATE is that an end
connection is specified in the Integration Model that defines the desired exit
point as specified in section 3.3. If no end connection is defined, the fault d4 is
reported and the segment evaluation of the path is skipped.

If a variable-verifying instruction fails as part of a transition, the fault d2 is
registered, otherwise if it is part of a node, the fault d1 is registered. However,
as a first step of evaluating instructions, affected variables need to be resolved.
If they are not initialized or undeclared, the fault d3 is listed.

Due to the fact that this approach is based on data flow and control flow
analysis, time-dependent variables are out of scope. In general, however, there
are test cases that rely on such variables. In order to be able to evaluate such test
cases, the over-assignment of variables within a segment is allowed, which leads
to multiple valid values at a time. However, after a segment is evaluated, only the
value last-set remains valid, while the others are invalidated. Further, the usage
of over-assigned variables is only allowed to evaluate verifying instructions of
transitions, but in any case a fault is logged. If the instruction can be fulfilled by
over-assigned variables, the fault d6 is noted, otherwise the fault d5 is captured. If
an over-assigned variable is used to solve such an instruction of a node, the fault
d1 is added to the set of registered data flow faults for this path. As presented,
the topic of over-assigned variables is addressed in detail in section 4.

On the one hand the data flow of the path is analyzed, on the other hand
control flow analysis is used to structurally evaluate the path. Due to the end
connections contained in the Integration Model, it can be distinguished if the
system has reached the desired system state after the last node of the test case
is merged into the System Model. The result is categorized into one of four
fault classes. The set of the characteristics based on control flow is defined as
C := {c1, c2, c3, c4}.

c1 All verifying instructions of path are fulfilled and the last verification point
is solved by the instructions of one of the marked system nodes

c2 All verifying instructions of the path are fulfilled and the last verification
point could be satisfied using the instructions of one of the marked system
nodes

c3 At least one verification point of the path could not be fulfilled, but a system
node marked as exit point is part of the path

c4 At least one verification point of the path is not solvable and no system node
marked as exit point is part of the path

In general, we distinguish between test cases that can or cannot be fulfilled.
If the test case can be fulfilled, it is differentiated whether the last verification
point and the instruction of the system node used to fulfill the VP are connected
by an end connection. If the test case is not solvable, it is determined whether
an end node is generally found or not. These cases result in the four control flow
specific fault classes listed above.

Overall, a set O := {R1, . . . , R|Plim|} is iteratively formed containing result
sets R := DH ∪ CNI derived from the segments of the paths p included in the



limited path space Plim. The set R consists of the set DH := D ×H containing
the detected data flow faults D combined with hints H on their cause and a
set CNI := C × {NI} of control flow characteristics C with the symbol NI
as a pair. This symbol signals the absence of a hint resulting in the extended
set HNI := H ∪ {NI}. Generally, hints can be instructions or variables of the
System Model and Test Model.

R1 = {(d2, α1), (d1, lT ), (c4, NI)}
R2 = {(d2, α1), (d2, α2), (d1, lT ), (c4, NI)}
R3 = {(d2, α1), (d2, α2), (d2, α1), (F1, lT ), (c4, NI)}
R4 = {(d2, α1), (d2, α2), (d1, lT ), (c3, NI)}
R5 = {(d1, lT ), (c4, NI)}
R6 = {(c1, NI)}
R7 = {(d2, α1), (d1, lT ), (c4, NI)}
R8 = {(d2, α3), (d1, lT ), (c3, NI)}

In context of the running example, the set of detected faults and characteristics
stated above are based on the paths px given by Figure 8. In this case, the set
of hints is defined as H = {O,C,L, α1, α2, α3, α4, oT, lF, l, lT}. The result sets
Rx are directly derived from their respective paths by their identifier px → Rx

with x ∈ {1, . . . , 8}.
For Example, the set R1 consist of three elements. The first elements gives in-

formation that the guard open == false && motionDetected == true could
not be satisfied. The second element can be interpreted in that way that the
Verification Point locked == true is not solvable. The last element marks the
evaluation of this path as finished and states that at least one Verification Point
could not be fulfilled and the test case could not be solved structurally, since an
end connection exits which connects the Verification Point lockedTrue with the
system state Locked, but this system state is not part of the analyzed path.

3.5 Result to Verdict Mapping

The next step covers the classification of the result sets R ∈ O. For this purpose,
we define the set of verdicts V := {v1, v2, v3, v4}. In general, we distinguish
between the four verdicts Passed (v1), Probably Passed (v2), Inconclusive (v3)
and Failed (v4). The test verdicts Passed, Inconclusive and Failed are based on
TTCN-3’s verdict set [8], extended by the new test verdict Probably Passed. We
justify the extension of the classical verdict set to signal the existence of aspects
which cannot be evaluated due to the abstract nature of this approach.

A path that is classified as Passed fulfills all variable-verifying instructions
contained in the path based on its data flow. The classifications Probably Passed
and Inconclusive indicate that some information is missing. In the case of In-
conclusive, these information can be added to the source models by the modeler.
Otherwise, this information cannot be provided in the case of Probably Passed,



as the exact runtime behavior of the system cannot be determined by the ATE.
We leave this feature over to code-based testing mechanisms. The last verdict
marks paths where the evaluation of variable-verifying instructions leads to a
negative result (false).

M : R→ V



v1, if ∃(f, h) ∈ R. f = c1 ∧ |R| = 1
v2, if ∃(f, h) ∈ R. f = di such that i ∈ {5, 6}∧

∀(f, h) ∈ R. f 6= dj such that j ∈ {1, 2, 3, 4}
v3, if ∃(f, h) ∈ R. f = di such that i ∈ {3, 4}∧

∀(f, h) ∈ R. f 6= dj such that j ∈ {1, 2}
v4, otherwise

The presented verdicts are concluded by the cases of the function shown
above. It is used to derive a verdict from a result set. Generally, a pessimistic
approach is chosen for the determination of verdicts. For example, a missing end
connection d4 does not necessarily lead to a failing test case, but considering the
displayed function, it is marked as Inconclusive, although the missing connection
has no effect on the data flow on the one hand. On the other hand, this feature
can significantly impact the runtime of the ATE, which may result in the test
case not being able to be analyzed by the ATE in the worst case. To prevent
such behavior, the classification process is based on very strict and pessimistic
rule set, in the sense that the worst possible result is always expected which
reflects the core classical testing approaches.

Rx R1 R2 R3 R4 R5 R6 R7 R8

M(Rx) v1 v1 v1 v1 v1 v4 v1 v1

Table 1. Mapped Results of the Running Example

Table 1 shows the results of determining the verdicts of the result sets of the
running example. Here, seven out of eight result sets are classified as Failed. The
remaining result set R6 derived from the path p6 is marked as Passed.

3.6 Result Selection and Test Report

The last step of the ATE is the selection of one result set as the final result of
the ATE. In contrast to the pessimistic approach of the verdict determination,
the process of result selection follows a more optimistic approach. Here, the
best result set is selected based on their classification. The best case describes
result sets that are identified as Passed, in contrast to the worst case, which is
a result set marked as Failed. In addition, test cases rated as Inconclusive can
be improved by enriching the model in that way that the test case may pass



later. Furthermore, test cases assessed as Probably Passed cannot be improved
by adding information. Therefore, we define that the verdict Probably Passed
represents a better case than the verdict Inconclusive. As a result, the verdicts
are weighted as follows: v4 > v3 > v2 > v1.

Σ : O → Obest :={Ri | ∃Ri∀Rj . i, j ∈ {1, . . . , |Plim|}
such that i 6= j ∧M(Ri) ≥M(Rj) ∧ |Ri| < |Rj |}

In general, the selection of the best result set as the final test report for the
test case is performed in two steps. For this purpose, the function Σ is defined
to select in the first step the happy cases Obest ⊆ O. Second, if |Obest| > 1 the
result sets R ∈ Obest which represents the path with the least steps is chosen as
the test report. In context of the running example O = ORE , Σ(ORE) = {R6}
with M(R6) = v4 which indicates that the test case presented as the running
example passed.

Subsequently, the test report reflects the faults and characteristics derived by
the ATE to give the modeler hints on possible causes. Therefore, our approach
can be seen as Gray-Box Testing as detailed in section 1.

4 Qualitative Evaluation and Critical Discussion

Following the introduction of basics and implementation of the Abstract Test
Execution, the approach will be further evaluated qualitatively and critically
discussed in the course of this chapter. At the beginning the evaluation of Hage-
mann et al. [10] should be mentioned, which has already been carried out in the
context of the conference contribution. In the course of that evaluation, excerpts
from the Automotive Light Control System, originally utilized by Peleska et al.
[22], were used to demonstrate the proof of concept. There, a wide variety of
defects were introduced into the model through a mutation analysis. Then test
cases capable of detecting these defects were tested against the mutated system
models using our approach. As a result, this demonstrated the ability of the
approach to verify test cases against the system model in an abstract way. This
was subsequently done for other parts of the system model, which supports the
drawn picture. The same approach was applied to the Ceiling Speed Monitoring
model of the University of Bremen, again showing the same possibilities and
limitations [3].

In order to provide a meaningful extension of the previous findings on our
approach to Abstract Test Execution, a qualitative evaluation is carried out.
Here, the results gathered so far are compared to the state of the art and put
in relation to the technical background of the approach. In order to be able to
conduct such a discussion in a reasonable manner, a brief overview of the state
of the art is given in advance, which should be seen in relation with the content
of the section on related work.

In today’s software development, different kinds of tests are performed de-
pending on the applied development process and the desired level of integration



of the software. Depending on the integration level, different knowledge bases
are assumed and usually special techniques are used to derive possible test cases
from development artifacts. The palette here ranges from black box to white
box procedures. In order to execute such test cases, the SUT must be available
in a (partially) executable version. Depending on the test level, concepts such
as mocking or stubbing are often used to simulate system parts which are miss-
ing or lie outside the development context. In contrast to this, the concept of
Abstract Test Execution, where only model artifacts are used to derive the test
results, is used.
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Fig. 9. Path Space limited by rule one

Based on the findings in section 3, we identify that the limitation of path
space by merging rules and subsequently their potential impact on the test report
needs to be discussed. For better understanding, a path space is generated from
the minimal System Model Init→ [S1] x−→ [S2] and Test Model Init→ [TS]→
(V P ) → End. The System Model consists of the two system nodes S1 and S2
with the exception that S2 is guarded by x. The Test Model includes the node TS
as a Test Step and the node V P as a Verification Point. The representative and
slightly limited tree of paths is shown in Figure 9. It is derived by taking merging
rule one into account. This fundamental tree of paths represents all cases that
could come into play. The included paths can be identified by a letter attached
to the end node of each path. In addition, paths that violate the remaining rules
are flagged by the numerical identifier of the violated rule. Since the first rule
guarantees the consistency of the test cases, the importance of this rule does not
need to be discussed further.



The second rule is another approach to reduce the level of abstraction and
to bring the approach of ATE more in line with classical testing approaches.
Unlike rule one which focuses on the sequence of nodes, this rule focuses on the
sequence of edges or guarded edges in particular. From the viewpoint of classical
testing, stimuli applied to the system are used to trigger a change of the system
state. In case of ATE, such stimuli are expressed as Test Steps. Furthermore,
the change of system state is usually bound to conditions. The Test Steps are
then used to fulfill the conditions bound to a specific system state to change the
system state to that state. Such conditions are modeled by enriching edges of the
System Model with instructions. Previously, we referred to such enriched edges
as guarded transitions or Guards. Unguarded edges can therefore be ignored,
since the change of system state is not bound to any condition. Subsequently, if
a guarded edge is inserted before the Test Step that simulates stimuli required
to satisfy the guard of the edge, the path can never be fulfilled as represented
by the paths b and c. In addition, paths e and h exist where the guarded edge
is inserted before the Verification Point VP. In this case, the paths are able to
meet the requirements of the test cases, since instructions contained in guards
generally cannot change the data flow. However, the paths g and i exists which
are not excluded by appliance of rule two. As a result, the paths e and h can be
excluded without harming the final result of ATE.

Since test cases in which a Verification Point can be fulfilled without the
use of system nodes can be considered a bad test design, such test cases can be
excluded. Structurally, this can be done by forced insertion of Verification Points
after nodes of the System Model. For this purpose, rule three is conducted. The
enforcement of this rule prevents verification points from being injected between
the initial node and the first system node during merging process. Generally,
this leads to the path space always being shortened by exactly one path. In case
of the generic path space, the path j is therefore excluded.

The fourth and last merging rule excludes the most paths from the path
space shown in Figure 9, but may affect the outcome of the ATE as described
in section 3.4. In this context, this rule has the power to exclude six of the
represented ten paths. In general, rule four is used to dictate the structure of
segments. A segment consists of system nodes and Test Steps followed by a Ver-
ification Point. This rule forces test steps of a segment to be inserted before the
system nodes of the segment. This results in the structure that a segment starts
with Test Steps followed by system nodes and ends with a Verification Point.
This change is generally not problematic and mimics a more natural approach of
testing. However, if more than one guarded system node is included in the seg-
ment the analysis may inadvertently fail. We justify this rule with the abstract
character of this approach and the resulting incompatibility with time-dependent
system states. Since Test Steps simulate stimuli to trigger system changes that
are inseparably linked to time aspects, the concept of the over-assignment of
variables is introduced to overcome the incapability of temporal considerations.
Here, variables can have more than one valid value during segment analysis as
presented in section 3. This solves the problem of temporal incompatibility, since



the needed stimuli to solve a test case are delivered at the right time, but due
to the uncertainty factor, test cases solved with the help of such variables are
marked to maintain the pessimistic evaluation of the ATE approach.

In conclusion, the limited path space Plim of the generic Test Model and
the generic System Model holds the two paths g and h which underlines the
possibility that the instruction of the Verification Point VP verifies either the
system state S1 or the system state S2.

5 Related Work

In the context of test execution at model level, the execution of the modeled
functionality itself plays a central role. This was originally applied in the engi-
neering context and is known as Model-In-The-Loop Testing [24]. Furthermore,
it is important to be able to manipulate the execution of the model with stimuli,
as well as to verify the system state (internal or external). In literature, there
are many ways of doing this, but there are some parts that differ significantly
from our approach.

First, approaches are discussed that consider the model artifacts as input and
convert the model into code for execution. For example, this is the basis for the
simulation/execution of Matlab/Simulink models, which are therefore converted
into C code [14] [6]. The same applies to the approach of Anlauf et al., which is
based on so-called Extensible Abstract State Machines [1]. In comparison to the
approach presented, however, this type of execution is not applicable to other
original models. Zentai et al. have implemented this in a similar way in the
context of the MDA-oriented test methodology using the IBM Rhapsody tool
and its simulation capabilities [29]. This mitigates the above mentioned problem
of input models, but still requires the detour via code representation.

A similar variant for the execution of model artifacts is given by the Founda-
tional Subset for UML (fUML), which represents a subset of UML that has been
substantiated with clean semantics [20] [18]. In particular, execution engines
have been implemented for this modeling language, which no longer requires up-
stream translation into code artifacts [9]. This was implemented by Arnaud et
al. and extended by more formal concepts like symbolic execution [2]. Similarly,
Iftikhar et al. introduced a virtual machine for the execution of timed automata
[12]. The disadvantages of such approaches are the same as those mentioned
above.

In the context of execution engines, there are approaches that rely on model
interpreters. In most cases, a internal model artifact is created for this pur-
pose, which is derived from the input model. Within the MoMuT::UML project,
for example, UML models are translated into Object Oriented Action Scripts
(OOASs) for the purpose of mutation analysis, which in turn are animated by
an interpreter [16]. The test cases are evaluated in this context by means of
conformance checks on these representations. This evaluation is realized in par-
ticular by formal approaches, which in turn entails limitations.



In contrast to these approaches are the formal verification approaches, which
are not the same as executing and testing a SUT, but have a similar goal. In
particular, such approaches place special demands on the input models, which
usually severely limits their applicability. Various model checking approaches
have been presented for decades, but most of them are strongly optimized for the
respective application context [17][12][11][4]. At this point, again, our presented
approach is much more flexible and does not require the detailed knowledge of
formal technologies.

6 Conclusion and Outlook

Within the scope of this work, we have presented a promising approach to the
challenges initially displayed. Especially the ability to perform tests in early
phases of model-centric software development represents a significant improve-
ment. Based on the presented foundations regarding modeling and analysis-
specific constructs, the concept of Abstract Test Execution was presented, which
performs a comprehensive analysis of the System Model in the context of previ-
ously generated test cases. In particular, the concept behind the integrated eval-
uation of control and data flow properties was presented in detail. The results
of this analysis can be compared to a classical test report. In contrast, the range
of verdicts has been extended to explicitly represent novel evaluation results in
the modeling context and to introduce no room for interpretation within the set
of possible results. In the course of the discussion on the presented approach,
the meaningfulness of the concept as well as its limitations were particularly
emphasized.

At the same time, these limitations indicate possible starting points for im-
provements and extensions of the current approach. On the one hand, the ap-
proach could be extended by concepts that allow time considerations to be car-
ried out on the basis of runtime estimates. For this purpose, however, the model
has to be enriched with information or at least given access to data about exe-
cution times on the target platform or target technology used. However, this is
in some ways contradictory to our overarching goal of applying the approach as
early as possible in order to receive early and automated feedback.

On the other hand, the approach could be improved in such a way that not
only a set of test cases is evaluated against the System Model, but a complete
test model. From a technical point of view, this could result in a significant
performance gain, since test sequences that appear in several test cases could be
evaluated once.

An abstract view on the presented approach could be a possible development
towards an automated decision support for model-centric software development
approaches. Based on the collected test results of the Abstract Test Execution,
this could for example include concrete suggestions for improving or extending
the current model.
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