
                                                                                     
The expression of thyroid hormone receptors (THR) is regulated by
the progesterone receptor system in first trimester placental tissue and
in BeWo cells in vitro
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Introduction

Thyroid hormones together with its receptor system are key
metabolic regulators coordinating short-term and long-term
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energy needs [1]. Low thyroid hormone levels can result in early
miscarriages or even prevent women from being able to conceive
[2]. A 2-fold increase of miscarriages and stillbirth rates can result
from untreated hypothyroidism [3]. Hence, the maintenance of a
euthyroid state is crucial for a healthy pregnancy [3].

Thyroxine (T4) is converted into the biological active form T3

through 5-O-deiodinases [4]. T3 binds to the thyroid hormone
receptor and thereby promotes trophoblast differentiation [5].
Thyroid hormones are also responsible for the growth of neuronal
cells, myelinisation and corticogenesis [6]. After the 10th week of
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gestation, high affinity nuclear binding sites for T3 can be found in
the fetal brain [7].

Two genes, THRA (NR1A1) and THRB (NR1A2), encode the
isoforms THRa and THRb which form the four ligand-binding
thyroid receptors THRa1, THRb1, THRb2 and THRb3 and the
four non-ligand binding receptors THRa2, THRDa1, THRDb2 and
THRDb3 [8,9]. THRa1 is expressed in the heart, bone and brain,
whereas THRb1 is mostly expressed by the liver and kidney [10].
The expression of THRa1, THRb1 and the non-ligand-binding-
THRa2 increased with gestational age [11].

The functional THR complex consists of a heterodimer with the
retinoid X receptor (RXR) that binds to a thyroid hormone response
element (TRE) to modulate gene expression [12]. The hormone
T3 regulates gene transcription through binding to THR [13]. The
binding of T3 induces the conformational changes of THRs and
results in dissociation of co-repressors and binding of co-activators
with THRs [10]. After the hormone T3 has bound to the ligand
binding site, specific co-activators like PGC-1, SRC1-3, TRAP and
TRBP are induced [14]. Coactivators only bind to THR in the
presence of T3 and subsequently recruit mediators that further
initiate transcription [15].

The progesterone receptor (PR) as a steroid receptor belongs
like THR to the nuclear receptor superfamily [16]. The oestrogen
receptor (ER), androgen receptor (AR), mineral corticoid receptor
(MR) and glucocorticoid receptor (GR) together with PR form the
superfamily III of the nuclear receptors [17]. Progesterone plays a
major role in the female reproductive system [18].

The anti-progestin Mifepristone induces the withdrawal of
progesterone [19]. Mifepristone acts as an emergency contracep-
tive by blocking or delaying ovulation or as an abortifacient by
transforming the endometrium [20–22]. In women, a single dose of
mifepristone (200 mg) in the secretory phase of the cycle rapidly
renders the endometrium unreceptive, and has been shown to
alter gene expression in the uterus within 6 h of oral administra-
tion [23,24].

Catalano et al. (2007) could demonstrate that the molecular
components necessary to synthesise and metabolise thyroid
hormones are expressed in the endometrium, together with
THRs and the associated receptor modifiers [19]. Transcripts
involved in thyroid hormone metabolism and signalling such as
type II iodothyronine deiodinase and thyroid receptors were found
to be highly regulated by progesterone antagonism in the
endometrium [19].

In a former study we could evaluate a number of nuclear
receptors and its role in first trimester pregnancy and miscarriages
[16]. Recently, we identified enhanced expression of retinoid X
receptor alpha (RXRa) in placentas of miscarriages [25]. RXR as
part of multi-protein complexes also include the THR system and
transcriptional co-regulators and co-repressors [26]. The receptors
bind to DNA response elements and act as ligand-dependent
transcription factors [27]. In the absence of ligands, the receptors
Table 1
Salient features of the primary antibodies used for immunohistochemistry.

Antibody (AB) AB incubation conditions 

THRalpha1

Polyclonal (Rabbit IgG)

Abcam

1:200 in PBS 1 h RT 

THRalpha2

Mouse IgG1

Serotec

1:1000 in PBS 1 h RT 

THRbeta1

Polyclonal (Rabbit IgG)

Novus Biologicals

1:300 in Dako VM 1 h RT 

THRbeta2

Polyclonal (Rabbit IgG)

Upstate (cell signalling solutions)

1:100 in Dako VM 1 h RT 
bind the co-repressors SMRT and NCoR and repress gene
expression [28].

As a systematic analysis of the expression of THRs in first
trimester placentas is still missing, the aim of this study was to
investigate the expression of the THR isoforms THRa1, THRa2,
THRb1 and THRb2 on protein and on mRNA-level in first trimester
placentas and to further analyse the interaction of RU486 with PR
as well as THR.

Material and methods

Tissue sample

Samples from elective terminations of pregnancy (ETP, 20
cases) and samples from elective terminations of pregnancy
induced by mifepristone (RU 486, 13 cases) were also used. The
mean age of women in case of ETP was 29.7 � 6.0 years and in case
of RU 486 induced termination was 26.4 � 7.6 years (p > 0.05). The
mean gestational age for the group of ETP was 8.4 � 1.9 weeks and in
case of RU 486 was 9.8 � 2.2 weeks (p > 0.05). Hypothyroidism as
well as hyperthyroidism has been excluded in all patients participated
in our study. In all samples karyotyping analysis excluded chromo-
somal abnormalities [29]. This study was approved by the Ethical
Committee of the Medical School, Ludwig-Maximilian-University of
Munich. Informed consent was obtained from the patients.

Immunohistochemistry

Formalin-fixed paraffin-embedded sections (3 mm) were
deparaffinised, rehydrated and subjected to epitope retrieval.
Sections were blocked with 3% H2O2 in methanol (20 min) for
endogenous peroxidase activity. Non-specific binding of the
primary antibodies was blocked. Incubation with the primary
antibodies followed. Salient features of the antibodies used are
presented in Table 1. Reactivity was detected by using the
Vectastain Elite ABC-Kit (Vector Laboratories, Burlingame, CA,
USA) according to the manufacturer’s protocol. Colon (THRa1),
term placenta (THRa2) and breast cancer tissue (THRb1, THRb2)
were used for positive control staining (Fig. 1). Replacement of the
primary antibody with mouse or rabbit IgG, respectively served as
negative control (Fig. 1). Per slide, ten fields were examined with
the semi-quantitative immunoreactive score (IRS) [30]. The
immunoreactive score (IRS) is a semiquantitative method to
analyse the intensity and distribution pattern of antigen expres-
sion. It is calculated by multiplying the optical staining intensity
(graded as 0 = none, 1 = weak, 2 = moderate, 3 = strong staining)
with the percentage of positively stained cells (0 = no staining,
1 < 10% of the cells, 2 = 11–50% of the cells, 3 = 51–80% of the cells
and 4 > 81% of the cells) [31]. The staining intensity and the
percentage of positively stained cells are estimated optically by
Blocking solution Blocking conditions

Reagent 1 (Polymer kit) 5 min

Reagent 1 (Polymer kit) 5 min

Reagent 1 (Polymer kit) 5 min

Reagent 1 (Polymer kit) 5 min



Fig. 1. Colon tissue was used for positive control staining of THRa1 antibodies. THRa1 expression is found specifically in the nucleus of the mucosa (epithelium and

pericryptal fibroblast sheath, A). Isotype control staining is shown in B. Term placental tissue was used as for THRa2 positive control staining. THRa2 expression is found in

nuclei of villous as well as extravillous trophoblast cells (C). Isotype control staining is shown in D. Breast cancer tissue was used for positive control staining of THRb1

antibodies. THRb1 expression is found specifically in the nucleus of the cancer cells with high intensity as well as the surrounding stroma with lower intensity (E). Isotype

control staining is shown in (F). Breast cancer tissue was also used for positive control staining of THRb2 antibodies. THRb2 expression is found specifically in the nucleus of

the cancer cells and not in surrounding stroma (G). Isotype control staining is shown in H.
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the observer. Two independent observers evaluated the IRS score
for each slide.

Stimulation of trophoblast tumour cells BeWo with progesterone

The chorioncarcinoma cell line BeWo was obtained from the
European Collection of cell cultures (ECACC, Salisbury, UK). BeWo
cells were grown on sterile 24 Multiwell slides at a density of
1 million cells/ml DMEM medium. After 24 h, the cells were
stimulated with 0.01 mM or 0.1 mM human progesterone (Sigma-
Aldrich, Munich, Germany) for 2 h. Control cells were incubated
without stimulants. For the investigation of the total RNA, the
NucleoSpin RNAII Kit (Macherey-Nagel, Düren, Germany) was
applied according to the manufacturer’s protocol.

Evaluation of THRA and THRB expression with real time RT-PCR

(TaqMan)

RNA extraction from placental tissue

Total RNA was extracted from placental tissue of 10 women
with elective terminations of pregnancy induced by mifepristone
and 15 normal controls. Therefore the Rneasy Lipid Tissue Mini Kit
(Qiagen, Hilden, Germany) was used according to the manufac-
turer’s protocol.

Reverse transcription

The Reverse Transcription (RT) was performed with the High
Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Weiterstadt, Germany) according to the protocol.

Real-time reverse transcription-PCR

In optical 96-well reaction microtiter plates covered with
optical caps the Real-Time Reverse Transcription PCRs were
accomplished in a volume of 20 ml, containing 1 ml TaqMan1

Gene Expression Assay 20x (Hs00268470_m1 for THRA and
Hs00230861_m1 for THRB, both Applied Biosystems), 10 ml
TaqMan1 Universal PCR Master Mix 2x (Applied Biosystems),
8 ml H2O (DEPC treated DI water, Sigma, Taufkirchen, Germany)
and 1 ml template. Thermal cycling conditions were 20 s at 95 8C,
followed by 40 cycles of amplification with 3 s at 95 8C and 30 s at
60 8C. The ABI PRISM 7500 Fast (Applied Biosystems) was used for
the PCR assays. Quantification was carried out by the 2�

DDCT

method using GAPDH (Hs99999905_m1) as housekeeping gene.

Statistical evaluation

The SPSS/PC software package, version 20 (SPSS GmbH, Munich,
Germany) was used for data collection and processing as well as
analysis of statistical data. Values with p < 0.05 were considered
statistically significant.

Results

Immunohistochemistry

THRalpha1

We identified a strong expression of THRa1 with a median of
7.5 in nuclei of villous trophoblast cells (Fig. 2A). Nuclei of
cytotrophoblast cells as well as the syncytiotrophoblast are stained
with high intensity and quantity. A similar result was found in
the decidua. We identified a strong expression of THRa1 with a
median of 6 in nuclei of decidual cells (Fig. 2B). In placental tissue
of termination of pregnancy induced by mifepristone (RU 486), a
significantly lower expression was found with a median expres-
sion of 4 (p < 0.001) in the syncytiotrophoblast (Fig. 2C) and a
median expression of 3 (p = 0.04) in the decidua (Fig. 2D). A



Fig. 2. THRa1 expression is found with high intensity and distribution in normal villous trophoblast cells (A) and in the decidua (B). In placental tissue of women with

termination of pregnancy induced by mifepristone (RU 486) we found a significant downregulation of THRa1 in villous trophoblast cells (C) and in the decidua (D). A

summary of the staining results is given in Box plot analysis for villous trophoblast tissue (E) and the decidua (F). The boxes represent the range between the 25th and 75th

percentiles with a horizontal line at the median. The bars delineate the 5th and 95th percentiles. The circle indicates values more than 1.5 box lengths.
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summary of the staining results of villous tissue is presented in
Fig. 2E and a summary of staining results in decidual tissue are
shown in Fig. 2F.

THRalpha2

We identified a very intense expression of THRa2 with a
median of 9 in nuclei of villous trophoblast cells (Fig. 3A). Nuclei of
cytotrophoblast cells as well as the syncytiotrophoblast are stained
with high intensity and quantity. A median expression was found
in the decidua. We identified an expression of THRa2 with a
median of 4 in nuclei of decidual cells (Fig. 3B). In placental tissue
of patients with termination of pregnancy induced by mifepristone
(RU 486), a significantly lower expression was found with a median
expression of 4 (p = 0.004) in the syncytiotrophoblast (Fig. 3C) and
a non-significant change with a median expression of 3.5
(p = 0.145) in the decidua (Fig. 3D). A summary of the staining
results of villous tissue is presented in Fig. 3E and a summary of
staining results in decidual tissue are shown in Fig. 3F.

THRbeta1

We identified an expression of THRb1 with a median of 4 in
nuclei of villous trophoblast cells (Fig. 4A). Nuclei of cytotropho-
blast cells as well as the syncytiotrophoblast are both stained. A
similar result was found in the decidua. We identified an
expression of THRb1 with a median of 3 in nuclei of decidual
cells (Fig. 4B). In placental tissue of termination of pregnancy
induced by mifepristone (RU 486), a significantly lower expression
was found with a median expression of 3 (p = 0.023) in the
syncytiotrophoblast (Fig. 4C). A non-significant change with a
median expression of 2 (p = 0.069) was found in the decidua
(Fig. 4D). A summary of the staining results of villous tissue is
presented in Fig. 4E and a summary of staining results of decidual
tissue are shown in Fig. 4F.
THRbeta2

We identified an intense expression of THRb2 with a median
of 6 in nuclei of villous trophoblast cells (Fig. 5A). Nuclei of
cytotrophoblast cells as well as the syncytiotrophoblast are both
stained. A similar result was found in the decidua. We identified an
expression of THRb2 with a median of 4 in nuclei of decidual cells
(Fig. 5B). In placental tissue of women with termination of
pregnancy induced by mifepristone (RU 486), the same median
expression was found (IRS = 6, p = 0.098) in the syncytiotropho-
blast (Fig. 5C) and a non-significant change with a median
expression of 3.5 (p = 0.14) in the decidua (Fig. 5D). A summary of
the staining results of villous tissue is presented in Fig. 5E and a
summary of staining results in decidual tissue are shown in Fig. 5F.

Evaluation of THRA and THRB expression with real time RT-PCR

(TaqMan)

We identified an expression of THRA and THRB in all cases
investigated. The mRNA expression of THRA was significantly
down-regulated to a 0.36-fold expression in placental tissue of
women with termination of pregnancy induced by mifepristone
(RU 486) (p = 0.022, Fig. 6A). The mRNA expression of THRB was
down-regulated to a 0.51-fold expression in placental tissue of
women with termination of pregnancy induced by mifepristone
(RU 486) without reaching significance (p = 0.39, Fig. 6B).

Stimulation of trophoblast tumour cell line BeWo with progesterone

Stimulation of BeWo cells with 0.01 mM human progesterone
led to a 1.3-fold increased expression of THRA after 2 h of
cultivation time (Fig. 7, p < 0.001). Addition of 0.1 mM progester-
one to BeWo cells also led to a significant increased progesterone
production of BeWo cells (Fig. 7, 1.15-fold, p = 0.02). Addition of



Fig. 3. THRa2 expression is found with high intensity and distribution in normal villous trophoblast cells (A) and in the decidua (B). In placental tissue of women with

termination of pregnancy induced by mifepristone (RU 486) we found a significant downregulation of THRa2 in villous trophoblast cells (C) but not in the decidua (D). A

summary of the staining results is given in Box plot analysis for villous trophoblast tissue (E) and the decidua (F).

Fig. 4. THRb1 expression is found with median intensity and distribution in normal villous trophoblast cells (A) and in the decidua (B). In placental tissue of women with

termination of pregnancy induced by mifepristone (RU 486) we identified a significant downregulation of THRb1 in the villous trophoblast (C) but not in the decidua (D). A

summary of the staining results is given in Box plot analysis for villous trophoblast tissue (E) and the decidua (F).
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Fig. 5. THRb2 expression is found with high intensity and distribution in normal villous trophoblast cells (A) and with median expression in the decidua (B). In placental tissue

of women with termination of pregnancy induced by mifepristone (RU 486) we found no significant change of THRb2 in villous trophoblast cells (C) as well as in the decidua

(D). A summary of the staining results is given in Box plot analysis for villous trophoblast tissue (E) and the decidua (F).
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0.01 mM as well as 0.1 mM human progesterone to BeWo cells in

vitro induced a 1.1-fold increased expression of THRB after 2 h of
cultivation time (Fig. 8), without reaching significance (p > 0.05).

Comments

It is already known for decades that steroid hormone receptors
like the progesterone receptor and thyroid hormone receptors
exhibit striking structural and functional similarity [32].
Early investigation of these two receptor families suggested that
nuclear receptors may enhance transcription of target genes by
similar mechanisms [33]. Zhang et al. observed transcriptional
Fig. 6. Results of gene expression analysis with TaqMan RT-PCR. THRA expression is sho

women with termination of pregnancy induced by mifepristone (RU 486). In addition, we

mifepristone (RU 486) induced termination of pregnancy (B).
interference in a ligand-dependent manner between progesterone
receptor B (PR-B) and THR a/b in transient transfection experi-
ments [33].

Wagner et al. showed that the nuclear receptor co-repressor
(NCoR) and the silencing mediator for the retinoid and the thyroid
hormone receptor (SMRT) are differentially associated with the
progesterone receptor. This differential association depends on the
type of ligand bound to the receptor [34]. Not only co-repression
but also ligand-dependent transcriptional activation by nuclear
receptors is mediated by interactions with co-activators [35]. A
consensus interaction motif (LXXLL) has been identified in a
number of co-activators such as the steroid receptor coactivator-1
wn in A. We identified a significant downregulation of THRA in placental tissue of

 identified no significant downregulation of THRB in placental tissue of women with



Fig. 7. THRA expression of BeWo cells after stimulation with progesterone. Results of gene expression analysis after stimulation with 0.01 mM progesterone in comparison

with unstimulated controls are shown in the two left columns and results of gene expression analysis after stimulation with 0.1 mM progesterone in comparison with

unstimulated controls are shown in the two right columns.
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(SRC-1) [36]. SRC-1 contains three LXXLL motifs in the centre
(nuclear receptor binding domain-1, NBD-1) [37]. Moreover, an
isoform of SRC-1, SRC-1E, which lacks the LXXLL motif in NBD-2,
exhibited enhanced ligand-stimulated transactivation of both THR
and PR on their response elements [38].

Despite the new finding within our study that progesterone
regulates THRA in the trophoblast, former investigations showed
Fig. 8. THRB expression of BeWo cells after stimulation with progesterone. Results of ge

with unstimulated controls are shown in the two left columns and results of gene exp

unstimulated controls are shown in the two right columns.
that the two thyroid hormone receptor genes (THRA and THRB)
have opposite effects on oestrogen-stimulated sex behaviour [39].
Thyroid hormones can interfere with oestrogen stimulation via the
oxytocin receptor promoter [39].

Additional studies confirmed that agonist-bound PR interacts
with steroid receptor co-activators such as SRC-1. RU486 bound to
PR, on the other hand, activates both co-activator SRC-1 but also
ne expression analysis after stimulation with 0.01 mM progesterone in comparison

ression analysis after stimulation with 0.1 mM progesterone in comparison with
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SMRT in vitro. SMRT is the silencing mediator for RXR and THR [40].
Peterson et al. found that SMRT plays a positive role in regulating
ERa transcriptional activity [41]. Karmakar and co-workers found
that the SRC-3 co-activator and the SMRT co-repressor directly
interact with each other and form a trimeric complex with ERa
[42]. It also is possible that SMRT can interact with the PR and
cyclin D1 genes via interactions with the ligand-independent AF1
domain of ERa [42]. Based on the described results we could also
identify a positive correlation between THRa1/b1 expression and
the ER/PR status of breast cancer patients [43,44].

Mifepristone (RU486), the first PR antagonist which has been
used in clinical practice is also a potent antagonist of the
glucocorticoid receptor (GR) and the androgen receptor (AR)
[45–47]. Progesterone dependent phosphorylation of PR serine
294 has been shown to be mandatory for PR transcriptional
activation [48,49]. RU 486 triggers this by activating phosphor-
ylation and inhibits interaction with an unknown partner that
is mandatory for PR degradation [50]. This mechanism may be
responsible for the stabilisation of the PR-RU 486 complex in the
nucleus that could be responsible for partial agonist effects of RU
486 [51].

A very recent publication on THR expression in the corpus
luteum of rats during gestation showed that the expression of
THRa1 and THRb1 throughout gestation showed a pattern similar
to the profile of circulating progesterone [52]. In parallel to the
decline of progesterone later on in pregnancy, the expression of
THRa1 and THRb1 also declines [52].

Results obtained in this study show that the nuclear expression
of THRa1, THRa2 and THRb1 on protein level is decreased in
mifepristone (RU 486) treated villous trophoblast tissue. On mRNA
level, we also found a significantly reduced expression of THRA in
the placenta. Interaction of RU 486 with the progesterone receptor
may be responsible for that down regulation.
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