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Abstract
Since BRCA1 associated breast cancers are frequently classified as hormone receptor

negative or even triple negative, the application of endocrine therapies is rather limited in

these patients. Like hormone receptors that bind to estrogen or progesterone, thyroid

hormone receptors (TRs) are members of the nuclear hormone receptor superfamily.

TRs might be interesting biomarkers - especially in the absence of classical hormone re-

ceptors. The current study aimed to investigate whether TRs may be specifically express-

ed in BRCA1 associated cancer cases and whether they are of prognostic significance in

these patients as compared to sporadic breast cancer cases. This study analyzed TRα

and TRβ immunopositivity in BRCA1 associated (n = 38) and sporadic breast cancer (n =

86). Further, TRs were studied in MCF7 (BRCA1 wildtype) and HCC3153 (BRCA1mutat-

ed) cells. TRβ positivity rate was significantly higher in BRCA1 associated as compared

to sporadic breast cancers (p = 0.001). The latter observation remained to be significant

when cases that had been matched for clinicopathological criteria were compared (p =

0.037). Regarding BRCA1 associated breast cancer cases TRβ positivity turned out to

be a positive prognostic factor for five-year (p = 0.007) and overall survival (p = 0.026)

while TRα positivity predicted reduced five-year survival (p = 0.030). Activation of TRβ re-

sulted in down-modulation of CTNNB1 while TRα inhibition reduced cell viability in

HCC3153. However, only BRCA1 wildtype MCF7 cells were capable of rapidly degrading

TRα1 in response to T3 stimulation. Significantly, this study identified TRβ to be up-regu-

lated in BRCA1 associated breast cancer and revealed TRs to be associated with pa-

tients’ prognosis. TRs were also found to be expressed in triple negative BRCA1
associated breast cancer. Further studies need to be done in order to evaluate whether

TRs may become interesting targets of endocrine therapeutic approaches, especially

when tumors are triple-negative.
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Introduction
Breast cancers diagnosed in patients carrying a BRCA1 germline mutation display distinct
histo-pathological as well as molecular characteristics and have been observed to differ from
sporadic cases also regarding chemotherapeutic sensitivity [1]. Unlike sporadic cases, BRCA1
associated breast cancers display a higher incidence of medullary or basal-like histology and
might overexpress cell cycle stimulator genes [2–4]. The fact that BRCA1 associated breast can-
cers are mostly diagnosed as being negative for either classical hormone receptors (estrogen re-
ceptor (ER), progesterone receptor (PR)), for human epidermal growth factor receptor-2
(HER2) or for all of them (so called triple negative cases), is considered to be one of the most
characteristic features [2,5]. As a consequence, BRCA1 associated breast cancers require a spe-
cially tailored therapeutic regimen, since the frequent lack of hormone receptors (ER/PR) or
Her2 extensively narrows the application of (anti-)endocrine therapies [5].

Like classical steroid hormone receptors (ER/PR), which are routinely used as predictive
markers, thyroid hormone receptors (TRs) are members of the nuclear hormone receptor su-
perfamily acting via transcriptional cis-regulation of target genes. However, the exact role of
thyroidal effector hormones and TRs in breast cancer remains still to be elucidated. Recently,
expression of TRs has been identified in up to about 79% of breast cancer cases and further-
more TRs have been shown to be associated with clinicopathological parameters such as tumor
size, grade, lymph node involvement and hormone receptor status [6]. In addition, TRs have
been reported to regulate a plethora of genes including those being involved in mediating cell
differentiation, proliferation and apoptosis [7,8] and were found to be predictive for patient
prognosis in hepatocellular carcinoma [8]. Since patients’ TR statuses can be determined easily
by immunohistochemistry and as TRs were demonstrated to be accessible targets [6,9], TRs
might be novel alternative biomarkers, especially for hormone receptor negative or even triple
negative breast cancer patients. With a high percentage of BRCA1 associated breast cancers
being classified as triple-negative, the assessment of TR expression in those patients may turn
out to be attractive in terms of alternative treatment options, applicable especially for breast
cancer patients carrying a BRCA1 germline mutation.

So far, no report exists on immunhistochemical TR reactivity in BRCA1 associated breast
cancer. Therefore, this study aimed to investigate the presence of TRs in breast cancers diag-
nosed in patients carrying a BRCA1 germline mutation as compared to sporadic (i.e. without
any family or personal history of breast cancer) cases. Further, TR immunostaining was tested
for association with clinicopathological parameters and patient survival in breast cancer sam-
ples obtained from BRCA1 carrier vs. sporadic cases. Breast cancer cell lines were used to deter-
mine whether TRs are active in the case of BRCA1 deficiency.

Patients and Methods

Patients and Specimen Characteristics
Breast cancer patients diagnosed with sporadic (n = 86) or BRCA1 associated breast cancer
(n = 38) were included in this study. The majority of cases were diagnosed with a tumor of
non-specific type (NST, n = 96, 77.4%), high grade (G3, n = 77, 62.6%) or staged higher than
pT1 (n = 78, 62.9%). A significant number of patients also presented with either lymph node
(n = 66, 57.9%) or distant metastasis (n = 70, 63.1%).

Formalin fixed paraffin embedded (FFPE) breast cancer tissue was collected from patients
who had undergone surgery due to a malignant tumor of the breast, either without positive
family history of breast cancer (sporadic cancer cases, n = 86) or with the diagnosis of carrying
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a BRCA1 germline mutation (n = 38). Breast cancer tissue was gained at surgery and under-
went routine histopathological processing and examination.

Study Design
Patients were recruited at the Department of Gynecology and Obstetrics at the Ludwig-
Maximilians-University of Munich, Germany between 1987 and 2009. Women only diagnosed
for benign tumors of the breast or for in situ carcinoma were excluded from the study. Clinical
as well as follow-up data were retrieved retrospectively from patients’ charts, from the Munich
Cancer Registry or by direct contact. Overall mean survival of the cohort was 7.3 years (95%
CI: 6.2–8.3 years) and mean follow up time was 6.6 years (95% CI: 5.7–7.5 years). The outcome
assessed was patient five-year and overall survival. Mean age (± STDV) of the cohort was
50.0 ± 13.3 years (BRCA1 associated cases: 41.9 ± 10.8 years; sporadic breast cancer: 53.7 ± 12.8
years).

Ethical Approval
All patient data were fully anonymized and the study was performed according to the stan-
dards set in the declaration of Helsinki 1975. All tumor tissue used was left-over material that
had initially been collected for histo-pathological diagnostics. All diagnostic procedures had al-
ready been fully completed when samples were retrieved for the study. The current study was
approved by the Ethics Committee of the Ludwig-Maximilians-University, Munich, Germany
(approval number 048-08). Authors were blinded from the clinical information during
experimental analysis.

Assay Methods
Mutation Screening. Mutation screening was performed in a standardized manner at a

German center for BRCA1mutation testing (Technical University of Munich, Munich, Ger-
many) as described by Fischer et al. [10]. In brief, PCR products comprising all coding exons of
the BRCA1 gene were analyzed by high performance liquid chromatography (dHPLC) fol-
lowed by sequencing of conspicuous amplicons or by direct sequencing of all BRCA1 ampli-
cons. The NCBI (National Center for Biotechnology Information) cDNA sequence U14680.1
(BRCA1) served as a reference. Multiplex ligation-dependent probe amplification (MLPA) was
used to screen for deletions or duplications in BRCA1 in case of negative sequencing results. So
called variants of unknown significance (VUS) characterized as Class III were not considered
as mutations.

Cell Culture. MCF7 (BRCA1wt) and HCC3153 (BRCA1943ins10) breast cancer cell lines
were bought from the European Collection of Cell Cultures (MCF7) or were gently provided
by Adi F. Gazdar (Hamon Center for Therapeutic Oncology Research and Department of Pa-
thology, University of Texas Southwestern Medical Center, Dallas, TX) (HCC3153). While
MCF7 carry a wildtype BRCA1 allele, HCC3153 show a homozygous insertion in exon eleven
of BRCA1 (BRCA1943ins10) leading to a premature stop codon and thus encoding a truncated
BRCA1 protein [11]. Cells were cultured in DMEM (Biochrom, Berlin, Germany) containing
stable glutamine and supplemented with 10% fetal bovine serum (FBS) without antibiotics/
antimycotics. Mycoplasma testing was performed routinely.

Seeding densities were as follows: 24 well plate or 4-perm Chamberslide—7.5 x 104 cells per
well, 96 well plate—3.0 x 103 cells per well (stimulation assays) and 6.0 x 103 cells per well
(siRNA knockdown), Quadriperm—7.5 x 105 cells per well.

Immunostaining. Immunohistochemistry of TRα and TRβ on FFPE sections has been ex-
tensively described by our group [6,12]. In brief, rabbit polyclonal antibodies detecting TRα
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(Abcam, Cambridge, UK); Zytomed, Berlin, Germany) or TRβ (Zytomed)) were stained by em-
ploying commercially available kits (Vectastain Elite rabbit-IgG-Kit (VectorLabs, Burlingame,
CA); ZytoChem Plus HRP Polymer System (Zytomed). Appropriate positive (struma and vagi-
nal tissue [6]) and negative controls were included in each experiment (Fig 1). Tissue sections
treated with pre-immune IgGs (supersensitive rabbit negative control, BioGenex, Fremont,
CA) instead of the primary antibody served as negative controls. Immunoreactivity was quanti-
fied by applying a well-established semiquantitaive scoring system (IR-score; also known as
Remmele’s score) by two independent observers by consensus. This scoring method has al-
ready been used in numerous studies [6,13–15] and quantifies immunoreactivity by multiplica-
tion of optical staining intensity (graded as 0: no, 1: weak, 2: moderate and 3: strong staining)
and the percentage of positive stained cells (0: no staining, 1:� 10% of the cells, 2: 11–50% of
the cells, 3: 51–80% of the cells and 4:� 81% of the cells). According to previously published
data tissue samples that had been assigned an IRS higher than 2 were scored as positive [16,17].

Double immunofluorescence of FFPE tissue sections was done as explained in [18] using
TRα2 (Abcam) and TRβ (Zytomed. Berlin, Germany) as primary antibodies.

MCF7 (BRCA1wt) and HCC3153 (BRCA1943ins10) were grown on glass slides and fixed in
3.7% neutral buffered formaline (15 min). Following PBS washes and blocking in PBS 0.1%
TritonX for one hour cells were stained by immunocytochemistry as described in [18] using
TRα (diluted 1:200 in PBS) and TRβ (diluted 1:400 in PBS) antibodies.

For immunofluorescence cells were treated with T3 (10-7 M) for two hours under serum
free conditions, processed as depicted above and stained for rabbit-anti-TRα1 (Abcam) or co-
stained for rabbit-anti-TRα1 and for mouse-anti-ubiquitin (Enzo Life Sciences, Farmingdale,
NY). Primary antibodies were diluted 1:100 and incubated overnight at 4°C. Secondary anti-
bodies (goat-anti-rabbit-Cy2, goat-anti-mouse-Cy3; Jackson Immunolabs, West Grove, PA)
were diluted 1:300 and incubated for 30 min at room temperature. Finally, samples were cov-
ered in Vectashield (VectorLabs) mounting medium containing DAPI and were imaged on a
Leica confocal microscope (Leica TCS SP5 II, Leica, Wetzlar, Germany).

Western Blotting. Cells were seeded in 24 well plates and medium was changed to serum
free DMEM two hours after plating. Cells were transfected using THRA-specific siRNA (si2,

Fig 1. TRα and TRβ immunostaining. Positive TRα (A) and TRβ (D) staining was detected in breast cancer
tissue. Negative (TRα (B) and TRβ (E)) and positive controls (TRα (C) and TRβ (F)) were performed to
validate staining specificity. Thyroid gland and vaginal epithelium served as tissue positive controls for TRα
(C) and TRβ (F), respectively. Scale bar represents 100 μm and applies to A-F. Representative
photomicrographs are shown.

doi:10.1371/journal.pone.0127072.g001
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si3; both from Qiagen, Hilden, Germany) or scrambled control RNA (AllStars negative control,
Qiagen) for 24 hours as per manufacturer’s protocol using HiPerFect (HiP) transfection re-
agent (Qiagen) [18] straight after changing to serum free DMEM or were stimulated with T3
(10-7 M for two hours) the next day. siRNAs targeting THRA (si2, si3, both from Qiagen, Hil-
den, Germany) were used. A scrambled siRNA (AllStars negative control, Qiagen) and samples
treated with the transfection reagent only served as controls.

Protein samples were quantified, processed and blotted as explained elsewhere [18]. Anti-
bodies detecting TRα1 and Histone H2B were from Abcam (Cambridge, UK) and diluted
1:500 in 2% marvel TBST. Histone H2B was used as a loading control.

Quantitative Real-time PCR. Total mRNA was isolated employing the NucleoSpin RNA
II kit (Machery-Nagel, Düren, Germany). Having adjusted RNA concentrations cDNA synthe-
sis was carried out as described elsewhere [19]. Gene expression of THRA, THRB and CTNNB1
was quantified by TaqMan real-time PCR and ACTB was used as a housekeeping gene. PCR
conditions were: 20 s at 95°C and 40 cycles of 3 s (95°C) plus 30 s (60°C) employing the follow-
ing primers (all from Applied Biosystems, Carlsbad, CA): THRA (Hs00268470_m1), THRB
(Hs00230861_m1), CTNNB1 (Hs00170025_m1), ACTB (Hs99999903_m1). Differences in
gene expression were calculated using the Rest2009 software [20] and graphs were built after-
wards from Rest2009 outputs.

BrdU andWST-1 measurements. Cells were seeded in 96 well plates and medium was
changed to DMEM w/o FBS two hours after plating. Cells were treated with 2-(2-
(-(4-Nitrophenyl)-4-piperidinylidene)-acetyl-N-(3-(trifluoromethyl)phenyl)-1-hydrazine Car-
boxamide (1–850, Merck, Darmstadt, Germany) at concentrations of 10-5 M and 10-4 M. Con-
trols treated with equal amounts of carrier solution (DMSO) served as controls. Cells were
stimulated for six days before proliferation and viability were quantified by BrdU and WST-1
(both Roche, Penzberg, Germany), respectively. SiRNA transfections were performed as de-
scribed before [18]. Cells were transfected in serum-free DMEM using siRNAs targeting THRA
(si2, si3; both from Qiagen) while samples just treated with a scrambled siRNA (AllStars nega-
tive control, Qiagen) were included in each experiment. Cell viability was quantified by WST-1
six days after transfection.

Statistical Analysis Methods
This study has been carried out according to the REMARK (Reporting Recommendations for
Tumor Marker Prognostic Studies) criteria [21].

The IBM statistic package SPSS (version 22) was used to test data for statistical significance.
Fisher’s exact test and the Mann-Whitney test were used. Survival times were compared by
Kaplan-Meier graphics and differences in patient overall survival times were tested for signifi-
cance by using the chi-square statistics of the log rank test. Cell culture experiments were re-
peated three times achieving equal results and data were assumed to be statistically different in
case of p< 0.05.

Statistical analyses were done in the whole sample as well as in a group of 56 patients (n
(sporadic) = 28, n (BRCA1 associated) = 28) that had been matched (p = 1.000) according to
tumor size, lymph node status, presence of metastasis and tumor grade.

Results

Study Cohort
Most cases investigated were diagnosed with invasive breast cancer of non-specific type (NST,
n = 96, 77.4%) or of low differentiation (G3, n = 77, 62.6%). Patients carrying a BRCA1muta-
tion (n = 38) were diagnosed with high grade (G3, p = 0.025), pT1 (p = 0.008) and pN0
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(p = 0.040) staged breast cancer significantly more often than sporadic cancer cases (n = 86). In
addition, BRCA1mutated and sporadic breast cancers differed regarding patient age
(p< 0.001). With respect to hormone receptor expression, BRCA1mutant carcinomas were
significantly more frequently found to be ER negative (p = 0.001), PR negative (p = 0.001) or
even triple negative (p = 0.002). Interestingly, overall survival rate of patients carrying a
BRCA1 germline mutation was significantly higher than in sporadic breast cancer cases
(p< 0.001). Patient characteristics and absolute numbers are listed in Table 1.

To compare further BRCA1 associated vs. sporadic cases, a second study panel of 56 patients
that had been matched (p = 1.000) according to tumor size, lymph node status, presence of me-
tastasis and tumor grade, was selected from the whole study cohort (Table 2). This matched

Table 1. Patient characteristics (whole sample).

breast cancer type BRCA1 sporadic breast cancer

BRCA1 sporadic TRα TRβ TRα TRβ

p negative positive p negative positive p negative positive p negative positive p

Histology

non NST 8 20 ns 4 4 ns 3 5 ns 9 11 ns 15 5 ns

NST 30 66 17 13 15 15 27 39 52 14

Grading

G1, G2 8 38 0.025 2 6 ns 5 3 ns 12 26 ns 28 10 ns

G3 29 48 18 11 12 17 24 24 39 9

pT

pT1 21 25 0.008 12 9 ns 9 12 ns 14 11 ns 18 7 ns

pT2-4 17 61 9 8 9 8 22 39 49 12

pN

pN0 20 28 0.040 13 7 ns 7 13 ns 13 15 ns 19 9 ns

pN1-3 15 51 6 9 10 5 20 31 42 9

pM

pM0 18 23 ns 11 7 ns 7 11 ns 14 9 0.011 16 7 ns

pM1 18 52 8 10 11 7 15 37 41 11

ER

negative 27 27 0.001 14 13 ns 15 12 ns 12 15 ns 21 6 ns

positive 11 44 7 4 3 8 21 23 33 11

PR

negative 27 25 0.001 14 13 ns 14 13 ns 13 12 ns 21 4 ns

positive 11 46 7 4 4 7 20 26 33 13

Her2

negative 22 29 ns 10 12 ns 10 12 ns 14 15 ns 21 8 ns

positive 6 20 4 2 3 3 12 8 17 3

Triple
negative

no 17 57 0.002 10 7 ns 7 10 ns 29 28 ns 43 14 ns

yes 12 7 5 7 7 5 3 4 6 1

Patient
age

� 42 y 22 19 <
0.001

12 10 ns 8 14 ns 6 13 ns 14 5 ns

> 42 y 16 66 9 7 10 6 30 36 52 14

doi:10.1371/journal.pone.0127072.t001
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group did not significantly differ regarding histologic subtype, ER, PR or Her2. However, pa-
tient age remained to be different in matched groups (p = 0.011).

TRs are Frequently Expressed in BRCA1 Associated Breast Cancer
TRs were found to be expressed in breast cancer tissue through a nuclear staining signal
(Fig 1A and 1D). Specificity of TR staining was controlled by incubating breast cancer tissue
sections with species-matched control serum instead of the primary antibody. No staining sig-
nal was visible in these control sections (Fig 1B and 1E). Tissue sections of thyroid gland stru-
ma (Fig 1C) and vaginal epithelium (Fig 1F) constantly presented a high TR immunoreactivity
and were thus chosen as positive controls.

Regarding sporadic cancer cases (Fig 2A and 2D) 57 out of 86 (66.3%) stained positive for at
least one of the two TRs (i.e. T0052α (50/86) and/or TRβ (19/86)), 12 out of 86 (14.0%) were

Table 2. Patient characteristics (matched groups).

BRCA1 sporadic breast cancer

TRα TRβ TRα TRβ

negative positive p negative positive p negative positive p negative positive p

Histology

non NST 2 3 ns 3 2 ns 5 1 ns 6 0 ns

NST 12 11 13 10 11 11 18 4

Grading

G1, G2 2 5 ns 5 2 ns 3 4 ns 6 1 ns

G3 12 9 11 10 13 8 18 3

pT

pT1 7 6 ns 7 6 ns 9 4 ns 11 2 ns

pT2-4 7 8 9 6 7 8 13 2

pN

pN0 10 5 ns 6 9 ns 8 7 ns 12 3 ns

pN1-3 4 9 10 3 8 5 12 1

pM

pM0 7 4 ns 5 6 ns 8 3 ns 10 1 ns

pM1 7 10 11 6 8 9 14 3

ER

negative 9 10 ns 13 6 ns 9 8 ns 14 3 ns

positive 5 4 3 6 7 4 10 1

PR

negative 10 10 ns 12 8 ns 10 6 ns 14 2 ns

positive 4 4 4 4 6 6 10 2

Her2

negative 8 9 ns 9 8 ns 7 6 ns 11 2 ns

positive 2 2 3 1 7 2 9 0

Triple negative

no 7 7 ns 7 7 ns 12 6 ns 16 2 ns

yes 4 4 6 2 3 3 5 1

Patient age

� 42 y 8 7 ns 7 8 ns 3 2 ns 4 1 ns

> 42 y 6 7 9 4 13 10 20 3

doi:10.1371/journal.pone.0127072.t002
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scored as double positive (i.e. expressing TRα and TRβ at the same time) and 33.7% (29/86)
were double negative. The majority of BRCA1mutated tumors (30/38; 78.9%) were scored as
positive for TRα and/or TRβ while only eight (8/38; 21.1%) cases expressed neither TRα nor
TRβ. 17/38 (44.7%) cases stained positive for TRα (Table 3, Fig 2B and 2C), and 20/38 (52.6%)
stained positive for TRβ (Table 3, Fig 2E and 2F). Finally, seven out of the 38 (18.4%) patients
included were diagnosed a double positive tumor (i.e. a tumor expressing both TRα and TRβ at
the same time). Regarding TRα positivity, there was no significant difference comparing spo-
radic (50/86; 58.1%) vs. BRCA1 associated cases (17/38; 44.7%; Fig 2A–2C). As compared to
BRCA1mutated cases (20/38; 52.6%) significantly fewer sporadic cancers (19/86; 22.1%) ex-
pressed TRβ (p = 0.001, Fig 2D–2F). With respect to TRβ this effect remained to be significant
when cancers of high grade (p< 0.001) or of negative lymph node status (p = 0.039) were com-
pared. Furthermore, also in the matched group, TRβ positivity was associated with the presence

Fig 2. TRα and TRβ staining in breast cancer tissue. Representative photomicrographs of TRα and TRβ
immunohistochemistry staining in breast cancer tissue are shown. TRα was found to be abundantly
expressed though there was no significant difference regarding the number of TRα positive cases when
sporadic (A) vs. BRCA1 (B) mutated cancers were compared (C). Representative images of a TRβ staining
scored as negative (D) and a TRβ staining scored as positive (E) in spontaneous (D) and BRCA1mutated
(E) cancer tissue are presented, respectively. TRβ was found to be expressed more frequently in BRCA1
mutated (E) cases as compared to spontaneous breast cancers (D). The fraction of TRβ positive cases in
each group is illustrated in F. Significant changes are indicated by stars (*) and scale bar (applies to A, B, D
and E) represents 100 μm.

doi:10.1371/journal.pone.0127072.g002

Table 3. Overall TR immunoreactivity.

n %

total BRCA1 38 30.6

sporadic 86 69.4

BRCA1 TRα negative 21 55.3

positive 17 44.7

TRβ negative 18 47.4

positive 20 52.6

sporadic breast cancer TRα negative 36 41.9

positive 50 58.1

TRβ negative 67 77.9

positive 19 22.1

doi:10.1371/journal.pone.0127072.t003
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of mutant BRCA1 (p = 0.037). Again, we did not observe a significant difference in receptor ex-
pression ratios in the case of TRα comparing sporadic (12/28; 42.9%) vs. BRCA1 (14/28;
50.0%) associated cases. TRα and TRβ were not correlated among each other, neither in spo-
radic nor in BRCA1 associated cases. However co-expression of both receptors as determined
by staining serial sections (Fig 3A) or by double-immunofluorescence (Fig 3B) was observed in
some cells. Finally, in BRCA1mutated cases there was no relation of TR positivity and circulat-
ing hormone levels (Table 4).

Fig 3. Co-localisation of TRα and TRβ. Co-localisation of TRα and TRβwas observed in some tumor cells as shown by staining serial slides (A) or by co-
staining of TRs (TRα2: red signal, TRβ: green signal, DNA: blue signal) by double-immunoflourescence (B). Scale bars represent 100 μm and representative
photomicrographs are shown.

doi:10.1371/journal.pone.0127072.g003

Table 4. TSH, fT3 and fT4 serum levels.

BRCA1 sporαdic BRCA1 sporαdic

BRCA1 sporadic p TRα
neg.

TRα
pos.

p TRα
neg.

TRα
pos.

p TRβ
neg.

TRβ
pos.

p TRβ
neg.

TRβ
pos.

p

TSH

ref. range 10 20 5 5 12 8 4 6 17 3

< ref.
range

2 4 ns 1 1 ns 3 1 ns 2 0 ns 2 2 ns

> ref.
range

1 2 ns 0 1 ns 1 1 ns 0 1 ns 0 2 0.043

fT3

ref. range 6 10 3 3 6 4 4 2 7 3

< ref.
range

0 0 na 0 0 na 0 0 na 0 0 na 0 0 na

> ref.
range

0 0 na 0 0 na 0 0 na 0 0 na 0 0 na

fT4

ref. range 7 11 3 4 8 3 4 3 8 3

< ref.
range

0 0 na 0 0 na 0 0 na 0 0 na 0 0 na

> ref.
range

0 2 ns 0 0 na 1 1 ns 0 0 na 1 1 ns

TSH and thyroid hormone levels in breast cancer patients as quantified at time of first diagnosis are shown. Since clinical data were retrieved

retrospectively, data regarding thyroid function were not available in all the cases. ref = reference, ns = not significant, na = not applicable

doi:10.1371/journal.pone.0127072.t004
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Both, ER and PR, were expressed in about one-third (ER: 11/38, PR: 11/38) of BRCA1mu-
tant breast cancer. Information on Her2 was only available in 28 BRCA1mutated cases, and six
of these 28 patients (6/28, 21.4%) were scored as Her2 positive. Sufficient information to con-
clude on potential presence of triple negativity was available in 29 of 38 BRCA1 associated can-
cers. Twelve out of these 29 cases were finally classified as triple negative (12/29, 41.4%) while
the remaining 17 cases were scored positive for at least one of the three hormone receptors
(ER, PR, Her2). Interestingly, nine of these twelve (9/12, 75.0%) triple negative BRCA1 associ-
ated breast cancer cases were found to express at least one of the two TRs. TRα was detected in
seven out of twelve (7/12, 58.3%) and TRβ was detected in five of twelve (5/12, 41.7%) triple
negative breast cancer cases, respectively. Three triple negative cases (3/12, 25.0%) stained posi-
tive for both TRs at the same time while another three cases (3/12, 25.0%) expressed neither
TRα nor TRβ.

TRα and TRβ are of Opposing Prognostic Significance in BRCA1
Related Breast Cancer
Five year survival of TR positive vs. negative cases was compared. TRα positivity was associated
with significantly reduced five-year survival in BRCA1 carriers (p = 0.030) (Fig 4A), while no
effect of TRα on patient survival was observed in sporadic cancer cases (Fig 4B). In contrast,
BRCA1 associated cancers characterized as TRβ positive presented a significantly higher five-

Fig 4. TR immuno-positivity predicts prognosis. Survival of TRα positive vs. negative cases (A, B) and
TRβ positive vs. negative cases (C, D) was plotted in accordance with Kaplan-Meier survival curves. TRα
was a negative predictor regarding five-year survival of patients carrying a BRCA1mutation (A). In sporadic
cancer cases TRα was not associated with five-year survival (B). TRβ positivity was associated with a
significantly prolonged overall survival in patients carrying a BRCA1mutation (C). In sporadic cancer cases
TRβ failed to predict prognosis (D).

doi:10.1371/journal.pone.0127072.g004
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year survival rate as compared to TRβ-negative patients (p = 0.007), while TRβ failed to be of
prognostic significance in sporadic breast cancer. Regarding BRCA1 associated cancer cases
neither TRα nor TRβ presented a significant association to any of the clinicopathological vari-
ables examined (Table 1). However, to reduce the effect of possible confounders, survival anal-
ysis was also performed in selected subgroups classified as NST, high grade, pN1-3, presence of
metastasis, ER negative, PR negative and patient age below 42 years. TRα and TRβ remained to
be predictive for five-year survival (TRα positivity—reduced five-year survival; TRβ positivity
—advanced five-year survival) in breast cancer of non-specific type (TRα: p = 0.024; TRβ:
p = 0.014), in high grade cancer (TRα: p = 0.042; TRβ: p = 0.005) and in patients aged younger
than 42 years (TRα: p = 0.045; TRβ: p = 0.019). Further, TR positivity was also associated with
five-year survival (TRα positivity—reduced five-year survival; TRβ positivity—advanced five-
year survival) in ER negative (TRα: p = 0.032; TRβ: p = 0.020), PR negative (TRα: p = 0.011;
TRβ: p = 0.029) BRCA1mutated breast cancer. Finally, TRβ positivity predicted a higher
5-year survival rate in metastasized (TRβ: p = 0.036) or lymph node positive (TRβ: p = 0.031)
BRCA1mutated cancer.

More importantly, TRβ positivity predicted longer overall survival in BRCA1mutated pa-
tients (p = 0.026) (Fig 4C). Again, no relation was found between TRβ and overall survival in
sporadic breast cancer (Fig 4D). TRβ remained to be a positive prognostic factor in BRCA1mu-
tated cancers classified as NST (p = 0.036), high grade (p = 0.018), ER negative (p = 0.020) or
PR negative (p = 0.029). However, though TRβ was also related to favorable prognosis in me-
tastasized cancers (p = 0.036), it failed to be of prognostic significance in lymph node positive
(p = 0.108) cases. The association of TRα positivity and reduced overall survival rate of BRCA1
related cases was of borderline significance (p = 0.064).

Regarding the matched group, TRβ remained to be predictive for advanced overall survival
in BRCA1 associated cases (p = 0.018), while survival rates of TRβ positive vs. negative cases
did not differ among sporadic breast cancers. A trend of TRα positivity being associated with
reduced overall survival (p = 0.059) was observed in patients of the matched group carrying a
BRCA1 germline mutation. Again TRα was not predictive for sporadic breast cancer
overall survival.

TRs are active in BRCA1mutant HCC3153
TRβ overexpression in BRCA1 mutant cases was confirmed on protein and mRNA level in
HCC3153 carrying a homozygous insertion in BRCA1 as compared to BRCA1 competent
MCF7 (Fig 5). In line with our observation made in sporadic vs. BRCA1 associated patients
TRβ protein positivity rate was increased 8.4-fold in HCC3153 as compared to MCF7
(p = 0.009) (Fig 5A and 5C). THRBmRNA was increased in HCC3153 by a mean factor of 3.7
(S.E. range: 2.3–7.6) as compared to MCF7 (p = 0.034) (Fig 5E). Though there was no differ-
ence regarding TRα immunopositivity (Fig 5A and 5B), THRAmRNA was found to be elevat-
ed in HCC3153 by a mean factor of 9.3 (S.E. range: 5.3–20, p< 0.001) (Fig 5D).

We further questioned whether TRs are active in the BRCA1 deficient HCC3153 cell line.
TRβ activation was shown to repress CTNNB1, the gene encoding tumor promoting β-catenin
[22], while TRα activation was reported to induce CTNNB1 [23]. Hence T3 stimulation was
performed in HCC3153 silenced for THRA as well as in HCC3153 transfected with an off-
target control siRNA. In scrambled control (scr) transfected cells treated with T3 CTNNB1 ex-
pression was induced by a mean factor of 1.3 (S.E. range: 1.1–1.9, p< 0.001) while those
HCC3153 silenced for THRA appeared to repress CTNNB1 when stimulated with T3. Both
THRA specific siRNAs were able to reverse the T3 effect on CTNNB1 observed in scr treated
cells resulting in repression of CTNNB1 by a mean factor of si2: 0.69 (S.E. range: 0.61–0.86;
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p = 0.023) or si3: 0.60 (S.E. range: 0.54–0.70; p = 0.034) in those cells silenced for THRA and at
the same time treated with T3 (Fig 6A).

TRα has been reported to act as a proliferation factor [24]. When HCC3153 were treated with
the non-selective TR blocker 1–850 their proliferation (as quantified by BrdU incorporation) and
viability (as quantified byWST-1 turnover) was found to be significantly reduced as compared to
carrier solution (DMSO) treated samples. Median reduction of proliferation was 0.50 (p = 0.004)
in samples treated with 10-5 M of 1–850 and 0.52 (p = 0.004) when cells were incubated with
1–850 at a concentration of 10-4 M (Fig 6B). Median viability was also decreased in HCC3153
stimulated with 1–850 (10-5 M: 0.64-fold, p = 0.004; 10-4 M: 0.73-fold, p = 0.004) (Fig 6C). Knock-
ing down THRA in HCC3153 significantly lowered median cell viability (si2: 0.43-fold, p = 0.004;
si3: 0.79-fold, p = 0.004) as determined byWST-1 assay (Fig 6D).

Knockdown efficiency was validated and THRAmRNA was significantly reduced in sam-
ples silenced for THRA (si2: 0.47-fold (S.E. range: 0.33–0.61), p = 0.027; si3: 0.24-fold (S.E.
range is 0.17–0.39), p = 0.024) as compared to transfection reagent treated samples (HiP) (Fig
6E). THRAmRNA was also significantly repressed in THRA silenced samples (si2: 0.59-fold (S.
E. range: 0.55–0.66), p = 0.033; si3: 0.31-fold (S.E. range is 0.19–0.43), p< 0.001) when com-
pared to samples that had been transfected with the off target control (scr) (Fig 6E). THRA
knockdown did not affect THRBmRNA expression (Fig 6E). Samples silenced for THRA
showed significantly reduced TRα protein (Fig 6F) as compared to HiP treated (median reduc-
tion (si2): 0.27-fold, p = 0.02; median reduction (si3): 0.18-fold, p = 0.02) and as compared to
scr transfected (median reduction (si2): 0.36-fold, p = 0.02; median reduction (si3): 0.24-fold,
p = 0.02) samples.

BRCA1mutant cells fail to degrade TRα1
Wildtype BRCA1 has been reported to regulate protein half-life of nuclear hormone receptors
e.g. progesterone receptor via its ubiquitinilation and sumoylation activity [25]. Though TRs

Fig 5. TRβ is strongly expressed in the absence of functional BRCA1. TRβ was significantly over-
expressed on protein (A, C) and mRNA level (E) when BRCA1 competent MCF7 and HCC3153 carrying stop
mutation in BRCA1were compared. However, in the case of TRα this difference was significant on mRNA
level only (A, B, D). Mann-Whitney U Tests (B, C) and the REST2009 algorithm for determining relative gene
expression (D, E) have been applied. Significant changes are indicated by stars (*) and representative
images are shown.

doi:10.1371/journal.pone.0127072.g005
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are regulated by ubiquitinilation as well, it is not known whether this effect is reliant on func-
tional BRCA1. Though BRCA1 competent MCF7 cells significantly lost TRα1 positivity (medi-
an reduction: 0.20-fold, p = 0.021) in response to T3 stimulation, no such phenomenon was
obvious in HCC3153 (Fig 7A). When stimulated with T3, subcellular localisation of TRα1

Fig 6. TRs are active in the absence of functionalBRCA1. The TR target gene CTNNB1 encoding β-Catenin was quantified in HCC3153 (BRCA1mut)
upon T3 stimulation. While T3 inducedCTNNB1 in HCC3153 expressing THRA as well as THRB, CTNNB1 expression was significantly down-regulated
upon T3 stimulation in HCC3153 silenced for THRA (A). Blocking TRs significantly reduced proliferation (B) and viability (C) of HCC3153 as quantified by
BrdU (B) andWST-1 (C) assay, respectively. Reduced viability was also observed in HCC3153 silenced for THRA (D). Efficiency of THRA knockdown was
validated on mRNA (E) and protein (F) level. THRBmRNAwas not significantly altered in cells silenced for THRA (E). Mann-Whitney U Tests (B-D, F) and
the REST2009 algorithm for determining relative gene expression (A, E) have been applied. Significant changes are indicated by stars (*) representative
images are shown. scr—scrambled siRNA control, HiP—HighPerFect transfection reagent only control.

doi:10.1371/journal.pone.0127072.g006
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changed from a former predominant nuclear signal to a diffuse nuclear-cytoplasmic staining
pattern. No such change in TRα1 localisation was visible in HCC3153 (Fig 7B).

Upon T3 treatment some co-localisation of TRα1 and ubiquitin was observed in BRCA1
competent MCF7 (Fig 8A–8F, magnification in D’-F’), potentially suggesting an ubiquitinila-
tion mediated degradation process.

Discussion
This work showed TRβ to be more frequently expressed in BRCA1 associated breast cancers as
compared to sporadic breast cancer. TRα and TRβ were observed to be of opposing prognostic
significance regarding five year survival in BRCA1mutation carriers. In addition, TRβ positivi-
ty remained to be significantly associated with overall survival. Using cell lines we were able to
show that TRs are active in a BRCA1mutant genetic background.

While a direct link is still missing, thyroid hormones and breast cancer have been associated
for quite a while; e. g. an elevated incidence of thyroid dysfunction has been observed in breast
cancer patients [26–28]. While several studies frequently found relative hyperthyreosis in
breast cancer patients [26,29–31], others report aggravating hypothyroidism during breast can-
cer therapy or demonstrated an increased prevalence of autoimmune thyroid disorders in
breast cancer [27,32]. In line with this, a former prospective clinical trial of our group revealed
higher levels of auto-immune antibodies targeting thyroid hormone receptors (TRAKs) and of
thyroidal effector hormones (triiodothyronine (T3), Thyroxine (T4)) in breast cancer patients
as compared to controls [26]. Thyroid hormones did not correlate with TR expression in the
current analysis. However, to the best of our knowledge no data exist upon thyroid function in
BRCA1 associated breast cancers so far. At least in the case of estrogen and ERs, nuclear hor-
mone receptor expression does not seem to be related to circulating hormone levels [33]. More
important, though anti-estrogen endocrine treatments are widely applied to ER positive pa-
tients, circulating estrogens are not accessed during clinical routine indicating that even if cir-
culating estrogens alter ER expression this does not seem to be of clinical relevance.

Fig 7. TRα1 positivity is reduced in MCF7 upon T3 stimulation.While BRCA1 competent MCF7 cells significantly lost TRα1 positivity in response to T3
stimulation, no such phenomenon was obvious in HCC3153 (A). Double immunofluorescence was performed (TRα1: green signal, DNA: blue signal). When
stimulated with T3 subcellular localisation of TRα1 changed from a former predominant nuclear signal to a diffuse nuclear-cytoplasmic staining pattern (B).
No such change in TRα1 localisation was visible in HCC3153 (B). Scale bar represents 25 μm. Significant changes as determined by relevant Mann-Whitney
U Tests are indicated by stars (*) and representative images are shown.

doi:10.1371/journal.pone.0127072.g007
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Our current analysis on TRs indicated opposing roles of TRα and TRβ on survival of
women carrying a BRCA1 germline mutation and on target gene activation in BRCA1mutant
cancer cells. Interestingly, a couple of other in vitro cell culture studies also report a tumor-
promoting effect of TRα activation [34–37], while TRβ stimulation resulted in just the opposite
[38–40]. For instance, quite recently TRα was found to enhance cancer cell migration and me-
tastasis via inhibition of miR-17 [34] as well as to maintain pro-neoplastic potency by interact-
ing with the cyclin D1/CDK/Rb/E2F cascade [35], the wnt pathway [3] or by inducing
CTNNB1 gene expression [23]. Since our data demonstrate that selective THRA knockdown
inhibited cell growth, a tumor promoting action of TRα is further affirmed. In contrast, TRβ
exerted anti-tumor activity by inhibiting beta catenin action [39] or by interfering with AKT-
mTOR-p70S6K signaling in xenografted mice [38]. In line with our data on differential regula-
tion of CTNNB1 in BRCA1 deficient HCC3153 either expressing both TRα and TRβ or just ex-
pressing TRβ (i.e. silenced for THRA) further supports an opposing role of TRs in breast
cancer [22]. Simultaneous blockade of TRα and TRβ by the non-selective TR antagonist 1–850
reduced cell growth potentially indicating that inhibition of pro-proliferative TRαmay out-
weigh TRβmediated effects. Interestingly, regarding both CTNNB1 expression and cell growth
TRα effects seem to dominate the influence of TRβ.

Surprisingly, TRs demonstrated prognostic significance only in those patients diagnosed for
a BRCA1 germline mutation but not in sporadic breast cancer cases. This is in agreement with

Fig 8. TRα1 co-localizes with ubiquitin upon T3 stimulation. BRCA1 competent MCF7 were co-stained
for TRα1 (green signal) and ubiquitin (Ubq, red signal). TRα1 was located in the nucleus (DNA: blue signal) of
untreated MCF7 (A, C). The red channel was slightly enhanced in B, C thus to show the faint Ubq signal of
un-stimulated MCF7 (B, C). In BRCA1 competent MCF7 co-localization of TRα1 and Ubq was observed in
samples stimulated with T3 (D-F, magnified in D’-F’). Scale bar in A equals 25 μm applies to A-F, scale bar in
D’ equals 12.5 μm applies to D’-F’. Representative images are shown.

doi:10.1371/journal.pone.0127072.g008
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reports where neither TRα nor TRβ were significantly associated with patient prognosis in a
different, independent sample of 82 sporadic breast cancers [6]. Although experimental evi-
dence explaining the impact of TRs in BRCA1 associated cancers is still lacking, the current
study showed TRβ to be more frequently expressed in BRCA1mutation carriers. This was con-
firmed by comparing TRβ expression on both mRNA and protein level in BRCA1mutant
HCC3153 vs. BRCA1 competent MCF7. Immuno-positivity of TRα was not significantly dif-
ferent when BRCA1mutant and sporadic breast cancers were compared though THRAmRNA
expression was induced in HCC3153. This may be explained by the fact that correlation of pro-
tein and mRNA expression of certain genes has been reported to be rather poor [41–45]. The
latter phenomenon may be due to complex post-transcriptional regulatory processes, many of
which have not been sufficiently understood so far. In addition the probability of a direct corre-
lation between mRNA and protein seems to be dependent on e.g. ribosomal occupancy, protein
stability, codon usage or on whether mRNA concentrations of a certain ORFs [42,43]. Since
the wildtype BRCA1 protein contributes to protein degradation via its ubiquitinilation and
sumoylation activity of nuclear hormone receptors [25], loss of functional BRCA1may explain
TRβ overexpression and prognostic relevance of both TRs. This hypothesis is supported by in-
creasing evidence of ubiquitinylation and sumoylation mediated regulation of TRs upon hor-
mone binding [46,47]. Our results on degradation of TRα1 may indicate that BRCA1 is
involved in posttranscriptional regulation of TRs. However co-immunoprecipitation assays
will be needed to confirm a physical interaction of TRα1 and Ubiquitin. BRCA1mutants may
be used to confirm whether reduced TRα1 degradation observed in HCC3153 may indeed be
reliant on BRCA1. Since, from a clinical point of view, activation of a tumor suppressor gene is
less attractive than blocking an oncogene, only posttranscriptional regulation of TRα1
was studied.

Survival analysis, cell growth and target gene activation assays performed within this study
indicate that TRs not only hold prognostic significance but also are active in a BRCA1 deficient
genetic background. Therefore we hypothesize that BRCA1mutant cells may undergo a TR
mediated phenomenon termed ‘oncogenic addiction’ [48]. Within this scenario, cancer cells
acquire abnormalities in several onco (e.g. TRα)—and tumor suppressor (e.g. TRβ) genes.
Gene products being crucial for cancer cell survival provide an Achilles heel for tumors and
display interesting targets to be exploited in cancer treatment [48]. In case of BRCA1 associated
breast cancers, TRs might display excellent targets for novel drugs, especially in triple-negative
cases. In line with this, the current study demonstrated TRs to be expressed in 9 out of 12 triple
negative cancers and to be highly sensitive to TR modulation in triple negative, BRCA1mutant
HCC3153.

Within the last decade a couple of selective as well as non-selective TR modifiers have been
investigated. Dronedarone was found to inhibit TRα in vitro as well as in vivo [49] and a study
in Xenopus laevis reported the TRα stimulating compound CO23 to support brain cell prolifer-
ation, while such induction of proliferation was not seen in animals treated with the TRβ selec-
tive agonists GC1 or GC24 [24].

In conclusion, our work revealed at least that TRs are active in BRCA1 associated breast can-
cer, that TRβ expression in BRCA1mutant tumor samples is associated with a prolonged over-
all survival, and that both TRs may arise as interesting alternative targets for endocrine
treatment of BRCA1 associated triple negative breast cancer.
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