
Real-time capable OPC-UA Programs over TSN for
distributed industrial control

Christian Eymüller∗, Julian Hanke∗, Alwin Hoffmann∗, Markus Kugelmann†, and Wolfgang Reif∗
Institut for Software and Systems Engineering

University of Augsburg
Augsburg, Germany

∗{eymueller, hanke, hoffmann, reif}@isse.de, †markus.kugelmann1@student.uni-augsburg.de

Abstract—A key aspect of Industry 4.0 is the continuous
interconnectedness of components. The standardized industrial
communication protocol OPC UA offers a solution to this prob-
lem by enabling the exchange of data between the shop floor level
and the inter-enterprise level. Due to the integration of the Time
Sensitive Network (TSN) into OPC UA, it is now even possible
to exchange information in real-time. Especially on the shop
floor, there are numerous heterogeneous distributed devices from
sensors to robots which must communicate with each other in
real-time to achieve a distributed industrial control. Therefore, we
propose an approach to combine real-time communication over
TSN with OPC UA Programs to synchronize multiple distributed
OPC UA Programs and exchange process data between them
without losing real-time guarantees. This can be seen as the
enabler of Plug-and-Produce with real-time requirements.

Index Terms—OPC UA Programs, OPC UA PubSub over TSN,
Time-Sensitive Networking, Skills, Plug-and-Produce

I. INTRODUCTION

Industry 4.0 induces remarkable social and economic chal-
lenges [1], in particular: shorter development and innova-
tion cycles, individualization of products on demand, higher
flexibility in product development, decentralized decision-
making procedures, and resource efficiency. This results in
large research efforts in intelligent manufacturing [2] in order
to cope with these challenges. Cyber-physical production sys-
tems [3], digital twins [4] of the product and its manufacturing
process as well as multi-robot cooperation [5] for flexible and
adaptable assembly [6] are promising research directions.

A very promising concept for encapsulating procedural
knowledge in a reusable way for intelligent manufacturing is
that of skills [7]. In contrast to traditional PLC programs or
robot scripts, skills can be characterized as general procedural
descriptions which means that they can handle a variety of
different parts and, thus, contain pre- and postconditions which
must be met by the current situation [8]. The set of necessary
skills for a given production process can be extracted by
analyzing its industrial standard operating procedures [9].
Hence, skills offer the possibility to model a manufacturing
process which can be adapted in a flexible way by changing
the parameterization or the orchestration of its skills. Skills can

This work partly presents results of the project WiR Augsburg which is
funded by the German Federal Ministry of Education and Research (BMBF)
and the Bavarian Government.

be considered as an enabler for industrial Plug-and-Produce
systems [10], [11].

For machine-to-machine communication in Industry 4.0, the
OPC Unified Architecture (OPC UA, [12]) can be considered
as the current de-facto standard [13]. It is based on an
open, cross-platform service-oriented architecture (SOA) for
accessing industrial equipment and systems. For modeling
complex data, OPC UA has an integral information model
which allows accessing the data with a client/server as well
as a publish/subscribe communication pattern. Moreover, OPC
UA offers so-called programs to model long-running control
applications. Control applications in robotics and automation,
however, need to meet real-time requirements in order to be
executed in a deterministic and safe way [14]. That applies
both to the software components and to the communication
among them. OPC UA meets these requirements by using
Time-Sensitive Networking (TSN) for its publish/subscribe
communication pattern. TSN offers mechanisms for the time-
sensitive transmission of data over shared ethernet networks.
Hence, this allows OPC UA nodes to exchange data while
meeting defined timing requirements.

When we consider control applications based on the or-
chestration of skills, we have a distributed real-time compo-
nent system [15]. Skills can be implemented as long-running
methods which must be started and stopped in a synchronized
and time-sensitive manner while the control application is
running. From the authors’ point of view, there are currently
no means to support the implementation of such real-time
control applications in OPC UA. Hence, we propose the
concept of real-time capable and long-running tasks in OPC
UA as main contribution of this paper. Our approach uses OPC
UA Programs [16] and combines it with publish/subscribe
communication over TSN in order to realize distributed and
synchronized OPC UA Programs over TSN. Based on our
approach, skills and Plug-and-Produce systems with real-time
requirements can be developed in the future.

This paper is structured as follows: Section II describes
the state of the art in modeling industrial control applica-
tions, in particular with OPC UA. Our main contribution,
i. e., distributed and synchronized OPC UA Programs over
TSN, is explained in detail in Section III. Remarks on our
implementation which is based on open62451 [17] can be
found in Section IV. In order to show the appropriateness of

our approach for industrial control, an evaluation is given in
Section V. Finally, Section VI concludes the paper.

II. STATE OF THE ART

For establishing a holistic communication infrastructure be-
tween devices on the shop floor and the cloud, the importance
of OPC UA is increasing rapidly. OPC UA is an open and
service-oriented machine-to-machine communication protocol.
It is based on a client-server infrastructure which enables
flexible and vendor-neutral communication in industrial ap-
plications. With its integral information model, every server
is able to organize complex data or methods in a standard-
ized way. In order to enable access to data or methods, a
client must set up a dedicated TCP/IP communication channel
to the server. With this one-to-many approach, the number
of simultaneous connections is often limited by computing
resources [12]. To overcome this limitation, Part 14 of the
OPC UA specification [18] adds the possibility of many-to-
many communication based on the publish/subscribe (PubSub)
mechanism. With this mechanism, there is no need for a ded-
icated and direct communication channel between publisher
and subscriber. This is similar to traditional field-buses in that
many subscribers could receive the same message, but offers
the advantage of being able to be reconfigured during runtime.

The publisher defines the published information with flex-
ible and configurable PublishedDataSets which contain data
variables or event sources from the information model.
The subscriber can then consume a selected Published-
DataSet [18]. The routing of messages between a publisher
and a subscriber is carried out by a message-oriented mid-
dleware. OPC UA PubSub supports two largely different
variants: broker-based or broker-less middlewares. The broker-
based variant integrates currently existing publish/subscriber
protocols like AMQP [19] or MQTT [20]. In this case, the
message-oriented middleware serves as a broker and is defined
by one of the previously mentioned protocols. The broker-less
option implements a custom UDP-based distribution protocol
in the form of UDP multicasts by using the network infras-
tructure. Publisher can send packets to a UDP multicast group.
Subscribers can register to this address and all messages get
forwarded to them.

However, many sensors and actuators on the shop floor
require real-time communication, because they have to react
within a certain cycle time [14]. We can expect that plain UDP-
based communication cannot achieve that due to the protocol
specifications. To support time-deterministic applications such
as real-time critical control systems, the OPC UA PubSub
over TSN approach was introduced [21], which combines
the OPC UA PubSub mechanism with real-time guarantees
enabled by Time-Sensitive Networking (TSN). TSN is an
extension to the Ethernet protocol developed within the IEEE
802.1 Working Group [22] to introduce a uniform and uni-
versal network convergence with timing guarantees for time-
sensitive applications. The main concept of OPC UA PubSub
over TSN is to utilize the TSN extension of the Ethernet
protocol to ensure deterministic transport of OPC UA PubSub

Figure 1: Standard OPC UA Program finite state machine with
four default states and nine default transitions [16].

messages with real-time guarantees. Sending of messages for a
publisher is handled by a hardware-triggered interrupt which
ensures short delays and small jitter. This allows OPC UA
subscribers to access a shared information model without the
loss of real-time. Thus, it is now possible to synchronize sev-
eral components and enable real-time communication between
them [17]. With open62451 [17], there is an open source
implementation in C available for OPC UA PubSub over TSN.

In addition to the previously addressed communication
problem, real-time critical control systems need some kind
of stateful and long-running service. OPC UA Programs [16]
can be seen as a way to achieve this in a standardized way.
Programs are stateful and model a long-running service by
means of a predefined sequence of states they execute. Each
program is represented by a finite state machine running on
an OPC UA server. It allows clients to trigger or monitor
the execution as well as to get the results back from a
process in a generic manner. The default state machine is
shown in Figure 1. It defines the four states halted, ready,
running and suspended which must be implemented by every
instance. But it is possible to extend the four states with sub-
states to provide more resolution. The transitions between the
four mandatory states are defined by nine basic transitions.
These transitions can either be triggered by a client or by the
program itself. So it may not require a client action to cause
a transition but there are five optional methods (i. e., start,
suspend, resume, halt, reset) to control the program execution.
Each transition triggers an event, e. g., a value which can
represent a final output or the actual state. The transitions
and their implementation will be discussed in more detail
in Section III. Overall, OPC UA Programs allow exposing,
discovering and calling stateful and long-running services in
a generic manner.

However, no current approach takes advantage of the com-
bined benefits of the previously described technologies. Doro-
feev et al. [23], for example, show how a manufacturing skill
(service offered by an automation system) can be modeled

by using an OPC UA Program. They implemented a generic
interface to allow a higher control level to easily orchestrate
their available skills. Furthermore, Profanter et al. [24] use
OPC UA Programs to model skills of industrial robots. Kaspar
et al. [25] model PLC function blocks similar to OPC UA
Programs. Another approach can be found within the Robot
Operating System (ROS). The ROS Action Protocol, which
is provided by the ROS ActionLib [26], allows the execution
of long-running services using topics and publish/subscribe
communication. For this purpose, the ROS Actionlib offers
a simple API for requesting goals on the client side and
executing these goals on the server side via function calls and
callbacks. But with regard to a holistic industrial communi-
cation, the aforementioned approaches lack the possibility of
real-time communication and execution.

III. CONCEPT

In the context of distributed real-time critical control sys-
tems, four main requirements must be fulfilled:

1) synchronize clocks between several distributed compo-
nents

2) enable real-time communication between these compo-
nents

3) synchronize distributed control processes across multiple
components without losing real-time capability

4) exchange information between the control processes in
real-time

This paper proposes a novel approach to combine the concept
of OPC UA Programs and the communication with OPC UA
PubSub over TSN to accomplish these requirements. With
OPC UA PubSub over TSN on the one hand, the possibility is
given to synchronize clocks between several components and
enable real-time communication between these nodes. On the
other hand, OPC UA Programs add the ability to have continu-
ously running processes. The problem, which must be solved,
is how to get distributed continuously running processes (see
Section III-B) that can be synchronized and exchange status
as well as process information in real-time (see Section III-A).
With this at hand, we are able to implement distributed, but
synchronized industrial control software. The details of our
concept are presented in the following two subsections.

A. Real-time communication

To meet the assumption that state changes can be commu-
nicated in real-time, we use OPC UA PubSub over TSN. The
use of this technology enables sending and receiving messages
between multiple devices with certain time limits. This ensures
that changes in status on one device also lead to a state switch
on other devices within a fixed timespan. The current state of
the OPC UA Program state machine is provided by a topic
that is published by an OPC UA Publisher over TSN. Other
OPC UA Programs subscribe to this topic and thus have the
current status of all other participating OPC UA Programs. The
states of the other OPC UA Programs are monitored. All that
remains to be done is to determine a protocol to synchronize

the states of the distributed OPC UA Program state machines.
The concept of this protocol is shown in Section III-B.

Of course, not only communication is needed to inform
other OPC UA Programs about changes in status. Furthermore,
real-time communication is needed to exchange process data
across multiple running OPC UA Programs. This process data
can be for example position data that has to be exchanged
between multiple programs. It is therefore possible in our
approach to add process data to the distributed OPC UA
Programs that can be subscribed to and used in other OPC
UA Programs. Adding OPC UA PubSub over TSN results in a
deterministic real-time communication channel for exchanging
process data across multiple running OPC UA Programs and
the opportunity to transfer the current states of the state
machines to other OPC UA Programs.

B. Distributed State Machines

We have revised the standard state machine of the OPC
UA Program Specification (shown in Figure 1) by adding
a handshake mechanism to synchronize multiple distributed
OPC UA Programs with each other. Here, synchronisation
means that the states of all distributed OPC UA Programs that
form an overall behaviour must be exchanged and matched
to a singular state. In our approach, we differentiate between
two types of distributed OPC UA Programs. A distributed OPC
UA Program always needs a single Master OPC UA Program
that can be paired with multiple Slave OPC UA Programs.
The main task of the Master OPC UA Program is to check
whether all Slave OPC UA Programs are synchronized and
ready to start the continuously running process. Therefore,
the distributed OPC UA Programs must have the possibility
to exchange their status with each other. The task of the Slave
OPC UA Programs is to receive instructions from the master
and react with state changes, which in turn are communicated
back to the master.

Figure 2 shows a simple application example for distributed
OPC UA Programs with one master and one slave. In the
example, a trajectory generator is executed on one device.
The task of the trajectory generator is to generate a trajectory
and provide target axis positions at regular time intervals for
the robot control. On the other device, a robot controller is

Figure 2: Application example for distributed OPC UA Pro-
grams with one master and one slave: Distributed execution
of a trajectory on a robot arm

running. The robot control expects target positions for each
axis in a predetermined time interval and translates these target
axis positions into control commands for the robot. These
control commands are then passed on to the robot. For this
to work in a distributed manner, the two participants need to
know when the other part is ready and start their execution of
the program simultaneously. For this reason, it is necessary to
have state machines synchronized across multiple devices.

Additional states have to be added to synchronize the
distributed state machines. Due to the strict specification of
OPC UA Programs, we did not add any additional states to the
OPC UA Program to meet the mentioned challenges, but rather
appended sub-states to the state machine. We added the sub-
state INIT to the HALTED state of the OPC UA Program state
machine. The INIT sub-state ensures that all involved OPC UA
Programs are properly initialised and ready for upcoming state
changes before they change into the state READY.

Figure 3 shows the sequence for synchronising and starting
a distributed OPC UA Program. In the illustrations state
transitions are represented by solid arrows () and no-
tifications by dashed arrows (). Initially, it must be
determined how many OPC UA Slaves are participating. For
the synchronisation of multiple OPC UA Programs, the Master
OPC UA Program waits in the sub-state INIT till all Slave OPC
UA Programs are initialised and switched into the READY
state (1©). The master gets a notification (2©) from its slaves
if the state READY is reached. As soon as the master has
received all notifications of its slaves, it also switches into
the state READY (3©) and notifies (4©) all slaves that the
master is now ready for the execution of the program. After
receiving the notification 4© the slaves switch into the state
RUNNING (5©), notify the master that the program has started

Figure 3: Handshake for starting distributed OPC UA Pro-
grams. Changes of state () are communicated via the
OPC UA PubSub communication channel () between
master and slaves. 1© to 7© specify the order of the transitions
and notifications. 8© represents the exchange of process data
betwenn the master and slaves.

(6©) and start their continuously running process. Due to the
received notifications (6©) of all slaves, the master sets its
state to RUNNING (7©) and starts its program. Consequently,
the handshake for starting a distributed OPC UA Program is
completed and all participating OPC UA Programs are in the
state RUNNING and executing the actual program. When all
OPC UA Programs are running, the continuous exchange of
process data starts (8©).

Now that the processes are running on all parts of the
system, there must also be a possibility to halt all distributed
OPC UA Programs simultaneously.

The state HALTED can be reached from all other states.
In each of these cases the distributed OPC UA Programs
behave identically. Figure 4 exemplifies the state transitions
after an OPC UA Program stops and switches from any state
into HALTED (1a© or 1b©). In case an OPC UA Program
reaches the state HALTED, it notifies all other participating
OPC UA Programs (2a© or 2b©). This ensures that every OPC
UA Program is stopped and switched to state HALTED. Thus,
all running OPC UA Programs are now halted (HALTED).
In order to restart a program, the initialisation phase must
repeated, i.e. the sub-state INIT must has to be called again.
After words the sequence of starting distributed OPC UA
Programs is used.

Finally, there is the option to suspend and resume OPC
UA Programs. The procedure for switching from the state
RUNNING to the state SUSPENDED is similar to the state
switch from RUNNING to HALTED. In the event that an OPC
UA Program suspends its running process, it switches into
the state SUSPENDED and informs the running OPC UA
Programs to change to this state as well and also suspend
their work. For resuming the process, the transition changes
shown in Figure 5 have to be executed. By the time an OPC
UA Program goes back into the RUNNING state (1a© or 1b©),
a notification is sent to all suspended OPC UA Programs
(2a© or 2b©). This message prompts them to switch to the
RUNNING state (3a© or 3b©) and resume their processes. Thus,
it is possible to suspend and resume distributed OPC UA
Programs simultaneously.

Figure 4: Halting distributed OPC UA Programs. ...a© represents
the sequence of halting initiated by the master and ...b© by the
slave.

Figure 5: Restarting suspended distributed OPC UA Programs

Figure 6: Reinitializing suspended distributed OPC UA Pro-
grams

Assuming a suspended OPC UA Program switches into
state HALTED, the described routine shown in Figure 4 is
applied. At last there is the possibility that transition 8©
in Figure 1 is used. This transition represents the switch
from state SUSPENDED to READY. Figure 6 shows the state
sequence from state SUSPENDED to state READY. In case an
OPC UA Program uses this transition (1a© or 1b©), it notifies all
other suspended OPC UA Programs that it switched to state
READY (2a© or 2b©). Subsequently the suspended OPC UA
Program also switch into the READY state (3a© or 3b©).

Through the extensions of the OPC UA Program state
machine, we are now able to fulfill the requirement of starting
distributed processes across multiple components. What still
has to be shown is the preservation of the real-time capability.
The reaction time (time() + time()) for a change in
status can be calculated by adding up the transmission time
(time()) to the OPC UA Program and the time for the state
transition in the OPC UA Program state machine (time()).
Since the communication channel is deterministic and the
status changes take place within fixed time barriers, the entire
response time is deterministic. Hence the goal of starting dis-
tributed control processes across multiple components without
losing real-time capability is fulfilled. This means that all
initially defined goals for our approach have been achieved.

IV. IMPLEMENTATION

After the concept of distributed OPC UA Programs has
been presented, we will introduce how this approach was
implemented. As basis OPC UA implementation, we used the

open source OPC UA stack open625411. However, there are
are no implementations of OPC UA Programs included in the
stack yet. Moreover, at the time we started our implementation,
there was no full real-time integration for OPC UA PubSub.
Therefore, we used the open62541 fork of Kalycito2 with an
implementation of OPC UA PubSub over TSN [17], which
meanwhile has been integrated into the master branch of
open62541. As programming language we used C++.

Figure 7 shows a component diagram of the distributed
Master OPC UA Program. The structure of the Slave OPC
UA Program is identical. Each distributed OPC UA Pro-
gram artifact consists of two main components: the State
Machine component and the Communication component.
The State Machine component represents the state ma-
chine of the OPC UA Program with the extensions described
in Section III-B. For the current state of the state machine
and process data to be exchanged, the State Machine
component provides the interfaces CurrentState and
ProcessData. The state and the process data of the
other participating OPC UA Programs is accessed through
the interfaces ProcessData and ReceivedState of
the Communication component. The Communication
component is responsible for the communication with other
devices and is intended to provide an easy way to add
data that have to be sent to other OPC UA Programs.
To ensure the interchangeability of the OPC UA stack
the interfaces PublishData and SubscribedData were
added to the Communication component. In our case, the
PublishData is composed of the CurrentState and the
ProcessData and the SubscribedData is divided into
the ReceivedState and the ReceivedData.

A. Encapsulation of the OPC UA PubSub configuration

At first, we encapsulated the communication of the
open62541 stack to simplify the management of publishers and
subscribers. The Communication component is responsible
for updating the OPC UA information model with the values
that have to be published and manages access to the data over
the OPC UA PubSub mechanisms. Same applies to data that
has to be subscribed.

Therefore, the Communication component provides the
class Publisher, the class Subscriber and the templated
class <typedef DATA_TYPE> DataSet. When objects
of the type Publisher (or Subscriber) are created,
a PubSub Connection and a default WritingGroup (or
ReadingGroup) are generated automatically (cf. Figure 7).
Created DataSet objects can then be added to Publisher
and Subscriber objects by calling the method:

bool addDataSet(std::String* name,
VariantDataSet dataset);

Unless it is defined otherwise, the added DataSet objects
are appended to the default WritingGroup (or ReadingGroup).

1www.open62541.org
2https://github.com/Kalycito-opcua-tsn-LoI1/OPCUA-TSN-LoI1

Master

«artifact»
Open62541 PublisherSubscriber

«artifact»
Distributed OPC UA Program

State Machine
CurrentState

ProcessData

ReceivedState

ReceivedData

Communication

PublishDataSubscribedData

DataSet
DataType

Publisher

+addDataSet(name:
String, dataset:
DataSet): bool

Subscriber

+addDataSet(name:
String, dataset:
DataSet): bool

WritingGroup

1

*

1..*

1

ReadingGroup

1

1..*

1

*

Figure 7: Component diagram of a distributed Master OPC UA
Program. However, the structure of the slave is identical. Clear
interfaces between the state machine component and the com-
munication component were defined. In addition, interfaces
were defined to make the OPC UA stack interchangeable.

Additionally, the Communication component provides the
methods

bool addPublisher(std::String* name,
Publisher publisher)

and

bool addSubscriber(std::String* name,
Subscriber subscriber)

in order to add the created Publisher and Subscriber
objects to the distributed OPC UA Program. Thus, data of
different types that is supposed to be published simply has to
be generated as a DataSet object and can then be easily
assigned to any publisher. The same applies to data that
programs subscribe to. It is therefore not necessary to create
PubSubConnections or DataSetGroups manually.

For example, if you would like to exchange a floating
point value between a master and a slave, the following steps
must be executed. On both sides a <double>DataSet
object with a floating point datatype must be created. On
the master this created object is added to the Publisher
object by calling the addDataSet method. In order to
subscribe to the floating point value on the slave, the created
<double>DataSet object is added to the Subscriber
object. Last but not least the Publisher object has to be
added to the Communication component of the master and

the Subscriber object to the Communication compo-
nent of the slave. The floating point value in the DataSet
can then be accessed via callback methods.

B. Exchange of states and process information in real-time

The encapsulation of communication also enables us to
easily add publishers and subscribers to the distributed state
machine. For the exchange of the current state between mul-
tiple distributed OPC UA Programs, each State Machine
component appends one publisher which represents the current
state as an integer value. Besides the publisher, a subscriber is
also necessary to receive the state changes of connected OPC
UA Programs. This is the minimum setup for synchronizing
the state changes of several distributed OPC UA Programs with
each other. In addition to this synchronization, it is possible to
add process data in form of further publishers and subscribers
to the OPC UA Program. Due to the determinism of the OPC
UA PubSub communication over TSN, exchange of state and
process information is also deterministic. In case process data
is added to the OPC UA Program, the added DataSets are
published with a defined cycle time after the OPC UA Program
switches into the state RUNNING.

V. EVALUATION

To evaluate the distributed OPC UA Programs we wanted to
determine whether our approach fulfills the requirements of a
distributed industrial control system. As an example of such a
system, we chose the control of an industrial robot as a realistic
use case for applying distributed OPC UA Programs. To this
end we revisit and improve the example shown in Figure 2.
For the control of an industrial six-axis robot, at least six
floating-point values are required, indicating the target position
of each axis. In a minimal setup, the robot subsequently returns
the current axis position. Currently used robot controllers
exchange the new axis values with a frequency between 0.1
and 1 kHz. In summary, the minimal goal is to send and
receive at least six floating-point values with a frequency of
1 kHz (cycle time = 1 ms).

The performance measurements of the distributed OPC
UA Programs are performed on two identical industrial PCs
(IPCs) with an Intel Core i7-3615QE quad-core CPU running
at 2.30 GHz. Both IPCs are equipped with an Intel i210
network card and are connected via a 1 Gbps link directly with
each other. The computers operate with a real-time capable
Preempt-RT Linux Kernel 5.0.14. For clock synchronisation
between the devices, the standard IEEE 802.1AS-Rev is used.
In order to enable TSN communication, an Intel patch for
IEEE 802.1Qbv functionality was added.

For the measurement of performance, we instantiated one
Master OPC UA Program on one of our IPCs and one Slave
OPC UA Program on the other IPC. Both sides send and
receive their current state and process data with a cycle time of
0.2 ms (frequency = 5 kHz). Each experiment has a recording
period of one hour, which corresponds to approximately 180
million data messages. To check whether the process data size
has an impact on the robustness of the system, measurements

Floating-point
values (byte)

Average round
trip time [ms]

Max. round
trip time [ms]

Standard
deviation [ms]

1 (8) 0.268 0.310 0.01030
5 (40) 0.285 0.344 0.01057

10 (80) 0.304 0.386 0.01011
15 (120) 0.338 0.559 0.00981
20 (160) 0.369 0.639 0.01190

Table I: Average and maximum round trip time for different
payload sizes between 8 and 160 byte (cycle time = 200 µs,
measurement period = 1 h, ≈180 million data messages)

with 1, 5, 10, 15 and 20 floating-point values are performed.
This leads to a data size of 8, 40, 80, 120 and 160 byte per
transmission, respectively.

Figure 8 shows the results of the experiments with different
payload sizes. In this experimental setup, the Master OPC UA
Program publishes floating-point values that are subscribed to
by the Slave OPC UA Program. After reception of an incom-
ing message, the slave processes the data and immediately
publishes the same amount of floating-point values. These
values are subscribed to by the Master and processed. As a
comparative value, the round trip time is measured from the
point of publishing the floating-point values to the point of
receiving the returned values from the slave. This includes
sending the message on the Master, receiving and processing
the data on the slave as well as the retransmission back to the
Master.

The measured round trip times are plotted in a histogram,
with the horizontal axis indicating the measured time in
milliseconds and the vertical axis the number of occurrences
of that specific time. Figure 8a to 8e show the histogram for
measurements with a payload size of 1 (8 bytes), 5 (40 bytes),
10 (80 bytes), 15 (120 bytes) and 20 (160 bytes) floating-
point values. It appears that the round trip times are uniformly
distributed with a low payload size. With increasing size,
the minimal round trip times remain. However, the maximum
duration of the message transmissions increases. This is mainly
due to longer processing times on the slave. The measured
transmission times have not changed significantly.

In addition to the histograms, the average and maximum
round trip time was recorded during the measurements and the
standard deviation was calculated. Table I shows these records
for the different payloads in milliseconds. The experiments
show that, as expected, the round trip time increases with
growing payload size. But still, there are no major outliers
for the round trip time. This is also evident from the almost
constant low standard deviations (<0.01190 ms). This indi-
cates that only a few measurements have slightly increased
round trip times. In this regard, the logarithmic scale of the
histograms in Figure 8a to 8e can be misleading.

With a maximum round trip time of 0.639 milliseconds and
a payload size of 20 floating-point values (160 bytes), we
are still far below the initially defined real-time barrier goals
specified with 1 millisecond at a payload of six floating-point
values (48 bytes). Especially since robot control systems only
expect the values every millisecond (1 kHz) and we measure

0.0 0.2 0.4 0.6 0.8 1.0

101

10100

1010000

101e+06

F
re

qu
en

cy

Round trip time in ms

(a) Histogram of round trip times for exchanging one floating-point
value (8 bytes)

0.0 0.2 0.4 0.6 0.8 1.0

101

10100

1010000

101e+06

F
re

qu
en

cy

Round trip time in ms

(b) Histogram of round trip times for exchanging 5 floating-point
values (40 bytes)

0.0 0.2 0.4 0.6 0.8 1.0

101

10100

1010000

101e+06

F
re

qu
en

cy

Round trip time in ms

(c) Histogram of round trip times for exchanging 10 floating-point
values (80 bytes)

0.0 0.2 0.4 0.6 0.8 1.0

101

10100

1010000

101e+06

F
re

qu
en

cy

Round trip time in ms

(d) Histogram of round trip times for exchanging 15 floating-point
values (120 bytes)

0.0 0.2 0.4 0.6 0.8 1.0

101

10100

1010000

101e+06

F
re

qu
en

cy

Round trip time in ms

(e) Histogram of round trip times for exchanging 20 floating-point
values (160 bytes)

Figure 8: Histograms of round trip times (log scale) with
different payload sizes between 8 and 160 byte (cycle time
= 200 µs, measurement period = 1 h, ≈180 million data
messages)

the time including the transmission of the response. Thus, you
could halve the measured round trip times.

VI. CONCLUSION

In the context of real-time critical control systems, we
modeled the problem of running continuous and distributed
processes across multiple components which need the pos-
sibility of exchanging information in real-time. In order to
solve this problem, we proposed an approach to combine
the concept of OPC UA Programs and OPC UA PubSub
communication over TSN. With OPC UA PubSub over TSN,
we can time-synchronize several components and transmit
state changes as well as process data in real-time. OPC UA
Programs expand these concepts by adding the ability to
have continuously running processes. Since the combination
of these two techniques is not sufficient to meet all the
requirements, we introduced a handshake protocol to start
and end the synchronization between various distributed state
machines of OPC UA Programs.

We used the open source OPC UA open62541 stack as basic
API and extended it with an additional interface to encapsulate
communication between multiple state machines. The results
of our evaluation shows that it is possible to employ the
combination of OPC UA Programs and OPC UA PubSub
over TSN for distributed industrial control. The maximum
round trip time of 0.639 milliseconds with a symmetrical
transmission of 160 bytes payload length shows that a delay
of approximately 0.4 milliseconds can be expected for an
asynchronous transmission. Thus, a cycle time of 1 to 10
millisecond (0.1 kHz - 1 kHz) with small amounts of data
(< 1 kilobyte) is possible without difficulty.

In future experiments, we plan to evaluate and optimize
our handshake mechanism to handle the synchronization of
multiple Slave OPC UA Programs. In particular, it must be
evaluated whether our approach also works with more complex
network topologies other than direct connections. Moreover,
we are working on the opportunity to coordinate nested OPC
UA Programs which requires dealing with data transmitted at
different cycle times. In the future, we plan to investigate how
our approach can serve as a basis to enable an industrial Plug-
and-Produce architecture. Hence, we investigate how real-
time capable and reusable skills can be implemented with our
approach.

REFERENCES

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & information systems engineering, vol. 6, no. 4, pp.
239–242, 2014.

[2] R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, “Intelligent manu-
facturing in the context of industry 4.0: a review,” Engineering, vol. 3,
no. 5, pp. 616–630, 2017.

[3] L. Monostori, “Cyber-physical production systems: Roots, expectations
and R&D challenges,” Procedia Cirp, vol. 17, pp. 9–13, 2014.

[4] T. H.-J. Uhlemann, C. Lehmann, and R. Steinhilper, “The digital
twin: Realizing the cyber-physical production system for industry 4.0,”
Procedia Cirp, vol. 61, pp. 335–340, 2017.

[5] A. Angerer, M. Vistein, A. Hoffmann, W. Reif, F. Krebs, and
M. Schönheits, “Towards multi-functional robot-based automation sys-
tems,” in Proc. 12th Intl. Conf. on Informatics in Control, Autom. and
Robotics, Rome, Italy, 2015.

[6] L. Nägele, A. Schierl, A. Hoffmann, and W. Reif, “Multi-robot coopera-
tion for assembly: Automated planning and optimization,” in Informatics
in Control, Automation and Robotics, 16th International Conference,
ICINCO 2019, Prague, Czech Republic, July 29-31, 2019 Revised
Selected Papers, ser. LNEE. Springer, 2020, to be published.

[7] A. Björkelund, J. Malec, K. Nilsson, and P. Nugues, “Knowledge
and skill representations for robotized production,” IFAC Proceedings
Volumes, vol. 44, no. 1, pp. 8999 – 9004, 2011, 18th IFAC World
Congress. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1474667016450561

[8] A. Hoffmann, A. Angerer, A. Schierl, M. Vistein, and W. Reif, “Service-
oriented robotics manufacturing by reasoning about the scene graph of a
robotics cell,” in Proc. 41st Intl. Symp. on Robotics, Munich, Germany.
VDE, June 2014, pp. 1–8.

[9] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh,
V. Krüger, and O. Madsen, “Robot skills for manufacturing: From
concept to industrial deployment,” Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282–291, 2016.

[10] M. Onori, N. Lohse, J. Barata, and C. Hanisch, “The IDEAS project:
plug & produce at shop-floor level,” Assembly automation, 2012.

[11] J. Pfrommer, D. Stogl, K. Aleksandrov, S. E. Navarro, B. Hein,
and J. Beyerer, “Plug & produce by modelling skills and service-
oriented orchestration of reconfigurable manufacturing systems,” at-
Automatisierungstechnik, vol. 63, no. 10, pp. 790–800, 2015.

[12] OPC Foundation, OPC Unified Architecture Part 1: Overview and
Concepts, 2017.

[13] M. Schleipen, S.-S. Gilani, T. Bischoff, and J. Pfrommer, “OPC UA &
Industrie 4.0 – Enabling technology with high diversity and variability,”
Procedia Cirp, vol. 57, pp. 315–320, 2016.

[14] A. Hoffmann, A. Angerer, F. Ortmeier, M. Vistein, and W. Reif, “Hiding
real-time: A new approach for the software development of industrial
robots,” in Proc. 2009 IEEE/RSJ Intl. Conf. on Intell. Robots and
Systems, St. Louis, Missouri, USA. IEEE, Oct. 2009, pp. 2108–2113.

[15] M. Vistein, A. Hoffmann, A. Angerer, A. Schierl, and W. Reif, “Towards
re-orchestration of real-time component systems in robotics,” in IEEE
Intl. Conf. on Robotic Computing (IRC). IEEE, 2017, pp. 60–68.

[16] OPC Foundation, OPC Unified Architecture Part 10: Programs, 2017.
[17] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open

source OPC UA PubSub over TSN for realtime industrial commu-
nication,” in 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), Sep. 2018, pp. 1087–
1090.

[18] OPC Foundation, OPC Unified Architecture Part 14: PubSub, 2018.
[19] J. O’Hara, “Toward a commodity enterprise middleware,” Queue,

vol. 5, no. 4, pp. 48–55, May 2007. [Online]. Available: https:
//doi.org/10.1145/1255421.1255424

[20] International Organization for Standardization, Information technology
- Message Queuing Telemetry Transport (MQTT) v3.1.1 (ISO/IEC
20922:2016), 2016.

[21] D. Bruckner, M. Stanica, R. Blair, S. Schriegel, S. Kehrer, M. See-
wald, and T. Sauter, “An introduction to OPC UA TSN for industrial
communication systems,” Proceedings of the IEEE, vol. 107, no. 6, pp.
121–1131, 2019.

[22] IEEE. (1999) IEEE 802.1 Working Group. [Online]. Available:
https://1.ieee802.org/

[23] K. Dorofeev and A. Zoitl, “Skill-based engineering approach using opc
ua programs,” in 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN), July 2018, pp. 1098–1103.

[24] S. Profanter, A. Breitkreuz, M. Rickert, and A. Knoll, “A hardware-
agnostic OPC UA skill model for robot manipulators and tools,” in
2019 24th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2019, pp. 1061–1068.

[25] M. Kaspar, J. Bock, Y. Kogan, P. Venet, M. Weser, and U. E. Zimmer-
mann, “Tool and technology independent function interfaces by using
a generic OPC UA representation,” in 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2018, pp. 1183–1186.

[26] A. Koubaa, Robot Operating System (ROS): The Complete Reference
(Volume 2), 1st ed. Springer Publishing Company, Incorporated, 2017.

http://www.sciencedirect.com/science/article/pii/S1474667016450561
http://www.sciencedirect.com/science/article/pii/S1474667016450561
https://doi.org/10.1145/1255421.1255424
https://doi.org/10.1145/1255421.1255424
https://1.ieee802.org/

	Introduction
	State of the Art
	Concept
	Real-time communication
	Distributed State Machines

	Implementation
	Encapsulation of the OPC UA PubSub configuration
	Exchange of states and process information in real-time

	Evaluation
	Conclusion
	References

