
Real-Time Preference Analytics on Data Streams

Referees:
Prof. Dr. Markus Endres
Prof. Dr. Werner Kieÿling

Day of Defense:
December 14, 2020

Real-Time Preference Analytics
on Data Streams

Lena Rudenko
University of Augsburg

CONTENTS

Contents

1 Introduction 1

2 Background 7
2.1 Preferences - Theory . 8

2.1.1 Preferences - Basics . 8
2.1.2 Preference SQL . 23

2.2 Data Streams . 26
2.3 Apache Flink - Framework for Stream Processing 30
2.4 Twitter - Micro-blogging and Social Networking Service 34

3 A Framework for Preference-Based Stream Processing 39
3.1 Twitter as Stream Source . 40
3.2 ETL Process . 41

3.2.1 Tweet Representation in a Preference SQL Processable Format 42
3.2.2 Building of Chunks . 46

3.3 Preference SQL Evaluation on Data Streams 46
3.4 Aggregation and Summarization of Tweets 48

4 Tweet Text Processing 51
4.1 CONTAINS Preference . 52
4.2 Natural Language Processing of Tweets 54

4.2.1 Preprocessing of Tweets . 55
4.2.2 Edit Distance . 57

4.3 Experiments . 59
4.3.1 Quality Tests . 60
4.3.2 Runtime Tests . 62

5 Preference Algorithms on Data Streams 65
5.1 Pareto Queries on Data Streams . 67
5.2 Stream Lattice Skyline Algorithm (SLS) 69

v

CONTENTS

5.2.1 Concept of SLS . 69
5.2.2 The SLS Algorithm . 71

5.3 Experiments . 74
5.3.1 Benchmark Framework . 74
5.3.2 In�uence of the Chunk Size . 74
5.3.3 In�uence of Di�erent Domains 84
5.3.4 In�uence of the Data Distribution 89
5.3.5 Runtime Comparison of SLS, Hexagon and BNL 90
5.3.6 Real-World Data . 95

6 Summarization and Aggregation of Tweets 99
6.1 General Concept . 100

6.1.1 Data Preprocessing . 101
6.1.2 Data Clustering . 102
6.1.3 Data Aggregation . 103

6.2 Implementation . 105
6.2.1 Preprocessing . 105
6.2.2 Clustering . 110
6.2.3 Aggregation . 114

6.3 Experiments . 120
6.3.1 Performance Test . 120
6.3.2 Evaluation of the Aggregation 122

7 Related Work 127

8 Conclusion 131

Bibliography 133

A 142
A.1 Tweet Object . 142
A.2 Default List of Stopwords . 147
A.3 Short Description of Selected Tweet Attributes 148
A.4 Survey . 149

B 172
B.1 Code . 172
B.2 Publications . 173

List of Figures 174

vi

CONTENTS

List of Tables 176

List of Algorithms 177

Index 177

vii

Abstract

In today's world, data and the information contained therein is one of the most im-
portant resources and, at the same time, one of the driving forces behind human
development. Not all information and data are equally relevant or important. A
huge array of numbers are data too, but without context they are completely mean-
ingless. However, even if these numbers are assigned a certain meaning, it does not
automatically make this information useful or interesting for every individual. Thus,
personalized information, carefully selected according to the interests and preferences
of the individual, is of particular value.

The ways in which data and information are transmitted and stored have changed
with the development of humanity, from man-to-man legends to social networks where
absolutely everyone can create content. Hundreds of millions of Twitter users produce
data every second in a continuous stream: they write their own posts, comment, "like"
or retweet the posts of the other users, etc. We have an ever-increasing amount of
data, which is extremely di�cult to navigate.

New forms of data require new approaches of their processing and analysis. Stream
data processing has received considerable attention in the last decade. The modern
applications require the analysis and study of continuous, unstructured and time-
varying data instead of static records. One of the most important topics in the �eld
of data processing and analysis is searching for interesting and relevant information
for a particular user. The goal of my doctoral thesis is a preference-based analysis of
stream data using an e�cient algorithm and �nal aggregation of the resulting tweets.

In this work I present a framework that allows the user to reduce the stream of
data to only highly relevant information using preferences applied to a wide range of
various tweets' attributes. The resulting set of text messages is additionally revised
before output, so that the user receives a compact summary and does not have to
read a large number of individual tweets.

Chapter 1

Introduction

Information is a very important resource in modern society. The information a user
receives is limited by the media to which he has access. Information is not objective,
either. Radio, TV and newspapers decide about what, in what context and with what
connotation they inform their audience. Let us imagine a photo, that depicts a glass.
This glass is half �lled with a liquid. Looking at this picture, everyone can decide
for themselves, whether they think the glass is half full or it is half empty. One
can also take note of the picture without drawing conclusions because any further
information is missing. Information as it is presented by media often veils the facts
with connotation, which makes it hard to interpret and value a fact individually.
The other problem with the presentation of information in the newspapers or on TV
is the limited space and broadcasting time they have. This means that not everything
that happens is reported. The audience only receives what is known to journalists
and what they or their editors considered important. If World Cup event and a local
youth competition will take place at the same time, it is more likely that the World
Cup makes it into headline.
The classical media want to attract more readers/spectators because that also means
more money for them. If more customers are interested in football than in boxing,
the media will report more about football. If �gure skating is a marginal sport with
a small audience, no one will create a separate TV-channel to exclusively broadcast
�gure skating. Skaters will receive attention at best if they win a medal of a world
championship or Olympic Games. Such a media policy makes perfect sense, but it
also means that a group of people with less common interests or someone who wants
to get an un�ltered information are neglected.
With the beginning and development of the Internet, the problem of limited space

1 Introduction

in printed media has become irrelevant. And with the spread of social media and
internet-enabled mobile devices the problem of coverage of highly specialized topics
in the media was also solved. Anyone can maintain a fan page on Facebook or cre-
ate a Twitter or an Instagram account to post news about their favourites. Even
live broadcasts are now possible for individuals with a smartphone and Internet ac-
cess. Other people interested in the current topic users can read the posts, add their
own comments or express their opinions - something that was nearly impossible in
traditional media.
However, along with the opportunities come new challenges. Nowadays, incredibly
large amounts of data are produced, both by technology (e.g., sensor measurements)
and by users (e.g., messages in Twitter). In 2019 there were 3.2 billion1 smartphone
users worldwide. Even if we take into account that not everyone who has a smart-
phone is actively using social networks, the amount of content produced every day is
enormous. In Twitter alone, 9.1 thousand messages are sent every second2 and users
have often accounts in two or three social networks. It is very di�cult to navigate
through the information �ow, which, moreover, is constantly increasing.
Processing big data and searching for interesting and relevant information in large
data sets is a highly important topic in both academia and business. The challenges
faced by researchers have changed with changes in every day life.
Most data nowadays are not in the form of persistent datasets anymore, but rather
come in continuous, rapid and often unstructured and time-varying data streams.
Thus, modern applications require the study and analysis of time evolving data instead
of static records. Examples for stream-based applications include sensor networks,
infrastructure and tra�c monitoring, electronic trading on stock markets and of course
social media. It is not easy to �nd relevant content in a large amount of evolving and
unbounded data. Furthermore, users want to get only information they are interested
in. That means, they want to get personalized results, which are �ltered out from the
ever-growing amount of data according to the user's preferences.
The aim of my research work is to process and analyze a stream of text messages
(tweets) to deliver information according to personal interests (preferences). If exact
matches are not available, best alternatives are proposed. In that context, preferences
allow to reduce the huge amount of data to highly relevant information and never
produce an empty result. However, due to the nature of streams, even the reduced
information could be too large on the one hand and have a lot of duplicates and
incomplete information snippets on the other hand. Thus, it is not enough to provide
personalized information to the user, but it is also important to present the result in a
way that it can be easily consumed. Therefore the result needs some post-processing

1
Smartphone users per year: https://bit.ly/350I0fW

2
Tweets per second: www.internetlivestats.com/twitter-statistics/

2

https://de.statista.com/statistik/daten/studie/309656/umfrage/prognose-zur-anzahl-der-smartphone-nutzer-weltweit/
https://www.internetlivestats.com/twitter-statistics/

to make the information easily understandable.
The nature of data streams requires a rethinking of preferences in static contexts.
Due to the continuous and potentially unlimited character of stream data, it needs
to be processed sequentially and incrementally. However, queries on streams run
continuously over a period of time and return updated results as new data arrive.
There exist many approaches for e�ective processing of data streams but learning
from evolving and unbounded data w.r.t. user's preferences requires new algorithms
and methods to accomplish this task e�ectively.
The data produced by users in social media is di�erent than the data coming from
sensor measurements or tra�c monitoring. It is extremely diverse in its form and
maintenance: likes, posts (as text, photos or video), comments - all this data of
diverse type and even more diverse content is distributed more or less unstructured
all over the internet. At the same time, all of this data is mostly persistent - but
with its dynamical (unstructured) and growing context, its meaning and/or relevance
changes over time. For example, information about the �rst COVID-19 infection is
still available, but its meaning to the public has changed from a short notice "new
corona virus type found", which was interesting for virologists only, to a date that
marks the outbreak of a pandemic by which everyone is a�ected. At the same time, the
vast amount of COVID-19 related information that was added since then now makes
it nearly impossible to search for and eventually retrieve this �rst news posting.
Another feature of social media that needs to be taken into account is the fact that
you only see the posts of the people you are following, the people you are friends with,
or, if you know the exact user account's name, whose posts you want to see. But you
do not have a chance to get some highly relevant information if it comes from an
account you do not know about.
Let us think about the following example: you are a great fan of �gure skating. As
in any other sports, the skaters have large number of competitions at various levels
for athletes of all ages - from children to professionals. It is exciting for the true fans
of this sport to observe the growth and development of the athletes over the years.
However, since �gure skating is a niche sport (one that is not popular enough to be
of interest for TV channels due to advertising revenues), until recently there was no
possibility to watch performances of athletes outside the World Championships or
Olympic Games.
In the times before the Internet, people have not even got the text summary about
the results of smaller competitions. Nowadays, mostly thanks to social networks such
as Facebook, Instagram or Twitter, one gets the posts of fans eyewitness all sorts of
competitions from the most distant regions. These contributions are available to all
almost live or near real-time and can contain not only the results and emotions but
can also be enriched with photos or short videos.

3

1 Introduction

According to their functionality, Facebook and Instagram are better suited for writing
long and detailed posts. Twitter, on the other hand, can be used as a medium for live
text broadcasting. The short text messages that are published promptly are a very
good information source for those who cannot be in person on-site, but have a great
interest in a live event.
In Oberstdorf (Germany) every year a �gure skating competition Nebelhorn Trophy
takes place. There is no television broadcasting and in the year before the Olympic
Games, the last licenses for the athletes are issued there. This is something the fans
want to know about as soon as possible. The easiest way to get this information is
to �nd tweets from eyewitnesses. But it can be very challenging. In Twitter, just like
on Facebook or Instagram, one can follow other users. It makes sense if the person
one is following constantly tweets about the topic one is interested in. But in our
example with marginal sports some relevant information can be posted by accounts,
which had not been in one's area of interest before. It can be casual spectators (their
posts are less informative, but they can still be interesting) or the true fans, which
understand technical details and have rich background knowledge.
In my thesis I developed a preference-based framework for the analysis of stream
data, which allows users to successfully avoid the described di�culties and get the
interesting content even if it is posted by the Twitter accounts they are not follow-
ing. The user should specify his search parameter using preferences, which allow to
�lter the incoming stream of text messages from Twitter and to deliver personal-
ized results for each user. In the result set are tweets from all accounts that match
his search criteria as good as possible. Both the content-related attributes, such as
hashtags and the user- or account-related ones, as, e.g., the account's creation date,
the number of friends or followers, the language of tweets can be used in the query.
However, to allow the user to specify queries directly on the tweet itself, I developed
and implemented a new CONTAINS preference, which allows the preferred search in
text messages. The user can use this CONTAINS preference to list the terms that
these texts (tweets) should contain. Once the user has formulated his query, he wants
result as soon as possible. Therefore, as part of this work, in order to process user
requests e�ciently, I developed the Stream Lattice Skyline algorithm, which delivers
results in real time. Finally, the calculated result has to be presented to the user as
conveniently as possible. Hardly anyone enjoys skimming through several tweets in
a result set in order to get the most information. And since the number of tweets in
result set can be quite large, I aggregate them. The aggregated message, which on
the one hand does not contain duplicates and on the other hand keeps all relevant
information together, is a good way to present calculated result to the user.
In summary, my approach allows the user to search e�ciently for relevant topics in a
stream of short text messages, and to receive the results in a convenient format.

4

The contribution of this work is a preference-based stream processing framework. Af-
ter the introduction, I provide the background information in Chapter 2: I introduce
the theory behind the preferences in Section 2.1 and give an overview about data
streams and their features, especially with regard to the evaluation of the stream
data using preferences in Section 2.2. The short description of Apache Flink as a
platform for computations over unbounded and bounded data streams follows in Sec-
tion 2.3. To conclude Chapter 2 I discuss the micro-blogging service Twitter and
tweets from the programmer's point of view and as the source of stream data for my
framework in Section 2.4. Chapter 3 deals with the general idea and conception of
my framework. In Section 3.1 I �rst describe how to get tweets as a data stream.
The following Section 3.2 describes the ETL process and explains how the incoming
stream data have to be transformed for processing with Preference SQL. Section 3.3
addresses the challenges that arise during this processing and evaluation. Finally, in
Section 3.4 I describe the concept for presenting the results �ltered with Preference
SQL in a convenient form. The following Chapter 4 is dedicated to a newly developed
and implemented CONTAINS preference. In contrast to the already available pref-
erences, CONTAINS, which is described in Sections 4.1 and 4.2, is able to evaluate
tweets (plain texts) taking into account possible misspelled words. The experiments
performed with this preference can be found in Section 4.3. Chapter 5 describes one of
the most important parts of my work: an algorithm for e�cient pareto computation
on the streams called Stream Lattice Skyline. I start with the Block-Nested-Loop
algorithm version adapted for stream evaluation in Section 5.1, which is doing its job,
but shows rather bad runtime. Section 5.2 describes the new developed SLS algorithm
with much better runtime that is presented in Section 5.3 with a lot of di�erent ex-
periments. Chapter 6 deals with aggregation and summarization of �ltered tweets. A
general concept idea from Section 6.1 is discussed in detail in Section 6.2, taking into
account all insights gained during implementation. Three basic steps of this approach
are described thorough and illustrated with examples. The last Section 6.3 of this
chapter summarises the �ndings of the experiments. Results of the performance tests
as well as quality analysis based on user surveys are presented. Chapter 8 concludes
this doctoral thesis including a list of issues that deserve further research in future.

5

Chapter 2

Background

This chapter covers the most important basics from the areas that are
relevant to the topic of the current doctoral thesis.

I start with the concept of user preferences presented in Section 2.1. It
explains the idea of soft constraints and their advantages in personal-
ized information search over hard constraints. The following Section 2.2
deals with the data streams. Their most important characteristics and
di�erences to the persistent data sets are explained in this section. The
challenges of processing and analyzing of data streams are also part of
this section. Section 2.3 focuses on an Apache Flink stream-processing
framework, which is used in the current work primarily as a stream data
provider. Finally, Section 2.4 focuses on Twitter as a micro-blogging and
social networking platform. Tweets - the short text messages that users
send via Twitter - are the focus of my work. Besides the text message
content, there is a lot of additional information that you can get from
a tweet. What kind of information this is, where to �nd it and how
to make it useful when doing a preference-based search in a stream of
tweets is also discussed in this chapter.

2 Background

2.1 Preferences - Theory

Preferences are ubiquitous in our daily live. We deal with preferences when we book
a holiday, go to the cinema, choose the school for our children or buy a new car, go
shopping and so on. We use the expression "I prefer this over that" without being
aware that it is a preference-based wish. In rare cases we want something very speci�c
and are not willing to consider the alternatives. In most cases the second or third
choice is also �ne, if the �rst choice is not available.
It was only a question of time that the preferences would be used in the �eld of
information search. The search based on hard conditions returns an empty result if
the perfect matches do not exist among the data. But the suitable alternatives to the
exact user preference are better than no result at all.
The following subchapter deals with preference theory, explains the most important
concepts and terms I use in this work and illustrats them with appropriate examples.

2.1.1 Preferences - Basics

For some time now, scientists have been developing various models designed to re�ect
the complex and often contradictory wishes of users. Some of these models can be
found, e.g., in [Arr59, KR93, GL94, AW00, HKP01] or [Cho02]. These works have in
common the treatment of the di�erentiated user desires, which prefer some results to
the others.
I use an approach of [Kie02, Kie05], which is easy to handle and models preferences
as strict partial order with intuitive interpretation "I like A more than B". This
approach is semantically rich, �exible and allows to model user preferences fairly
accurately.
The project "It's a Preference World" was one of the most important research topics
of the Chair for Databases and Information Systems under direction of Professor
Werner Kieÿling at the University of Augsburg (Germany).
Preferences in the real world are expressed with the term "better than", which is
intuitively understood by everyone and allows to map them onto strict partial orders.

De�nition 1 (Preference)
A preference is de�ned as P � �A,$P �, where A � rA1, A2, ..., Anx is a set of n Ai

attributes with domains dom�Ai�, 1 $� i $� n and $PN dom�A��dom�A� is a strict
partial order (irre�exive and transitive).

The term "x $P y" can be interpreted as "y is preferred over x", thus some values
are considered to be better than the other ones. If two values cannot be ordered by

8

2.1 Preferences - Theory

the strict partial order $P , they are called indi�erent

De�nition 2 (Indi�erence)
If non of two values x, y " dom�A� with x j y is better than the other, they are
indi�erent: x �P y� �x $P y� 0 �y $P x�

De�nition 3 (Substitutable Values)
Given P � �A,$P �, then 	P is called substitutable values relation i� ¾x, y, z "

dom�A� �

a) x 	P y� x �P y

b) x 	P y 0 ¿z � z $P x� z $P y

c) x 	P y 0 ¿x � z $P y� y $P z

d) 	 is re�exive, symmetric and transitive

In this thesis I consider indi�erent domain values (x �P y) as substitutable (regular
SV-semantics, see [Kie05]).

Preferences should be considered as soft constraints: Not only a perfect match will
be speci�ed, but also the possible alternatives in case the perfect one does not exist.
In this way, the probability of getting an empty result in response to the query is
excluded. And this is a fundamental di�erence between the preference-based and the
hard condition approach, where only the perfect hits are accepted as answer, what
often leads to an empty result set.
Preferences refer to categorical as well as numerical data: If the user prefers some
language or a certain tweet author it is about categorical preferences. But if he is
looking for the user with the most followers or wants to restrict the number of posted
tweets, there is an another kind of preferences - the numerical one. A wide range
of various preference constructors was de�ned by [Kie02, Kie05, KEW11, WEMK12].
They are divided into base preferences for data on single attributes and complex
preferences, which combine the other preferences (base or complex) to express more
complex queries.
Figure 2.1 shows the "ISA-hierarchy" for most frequently base preferences.

9

2 Background

SCOREd

LAYEREDm

POS/POS POS/NEG

NEGPOS

SPATIALdEXPLIСIT

BETWEENd

HIGHESTd

AROUNDdMORE THANd LESS THANd

LOWESTd

WITHINd

BUFFERdONROUTEd

NEARBYd

Figure 2.1: Taxonomy of base preference constructors.

De�nition 4 (Weak Order Preference (WOP))
A preference P � �A,$P � is a weak order preference (WOP), if negative transitivity
holds, i.e., ¾x, y, z " dom�A�:

 �x $P y� 0 �y $P z�� �x $P z�

All preferences in Figure 2.1 are WOPs, cp. [Kie05]. For this kind of preferences
domination and indi�erence between domain values can be determined by the level
value computed by a levelP function, which depends on the preference P [PK07,
Pre09].

De�nition 5 (Level Function)
For a preference P , every domain value can be mapped to a level value by a level
function called levelP .

levelP � dom�A�� N0

Better domain values have lower level values. The maximum level value for P is
max�P �, the minimum level value is 0. For WOPs with regular SV-semantics two
domain values x and y having the same level value are equivalent. And all domain
values mapping to the same level are substitutable, cp. [Kie05].

Each constructor in the taxonomy in Figure 2.1 is a sub-constructor of SCOREd. Let
us discuss the base preference constructors in detail.

10

2.1 Preferences - Theory

De�nition 6 (SCOREd Preference)
The SCOREd preference is the "super-preference". It produces a numerical ranking and
therefore allows to describe the other base preference constructors. Better objects are
mapped to smaller numerical values and vice versa (cp. [Pre09]).
There is a numerical utility function fd � dom�A� � R, d % 0. P is a SCOREd
preference, i� for x, y " dom�A� � x $P y� fd�x� % fd�y� where fd�v�, v " dom�A�,
is de�ned as fd�v� � *f�v�©d0.
The d-value is called the d� parameter and allows the partitioning of the range of f ,
when dealing with numerical values. Di�erent function values can be mapped to the
same number and therefore become substitutable with values in the same equivalence
class. The d-parameter discretizes the preference domain it is de�ned on.

Numerical Base Preferences

BETWEENd, AROUNDd, LOWESTd, HIGHESTd, LESS THANd and MORE THANd base prefer-
ences are used on attributes with numerical domains and all of them can be described
by SCOREd (cp. Figure 2.1). Only a score function f suitable to preference constructor
is needed.

De�nition 7 (BETWEENd Preference)
BETWEENd is a direct child of SCOREd and describes the wish for a value between a
lower and an upper bound inclusive.
Given the low and up bounds " dom�A�, BETWEENd�A, �low, up�� for low & up and
d % 0 is de�ned as the following scoring function:

f�v� ��

~����������

low � v, if v $ low

0, if low & v & up

v � up, if up $ v

(2.1)

Let us consider a small example, which shows the usage of BETWEENd preference and
its bene�t comparing to the standard hard constraint BETWEEN-function in SQL.

Example 1 Each tweet contains a lot of attributes that can be used to �lter tweets
w.r.t. user preferences and wishes (detailed description of the tweet attributes will be
provided later in this work). One of them is called statuses_count and is responsible
for the number of tweets (statuses) the user had already posted in his account. Let
us assume, the user is looking for some news about local �gure skating competition
on Twitter. He restricts the statuses_count values to the interval between 50 and
1000 tweets. He believes that only someone who is already familiar with Twitter will

11

2 Background

post something about this small competition. In that case the user has posted some
tweets in the past and the value of lower bound is set to 50. On the other hand, it is
not to be expected that some average user posts a lot, so the upper bound is not set
to high. The user set also the value of the d-parameter, because the deviation of 10
tweets does not matter. This preference can be expressed by:

P := BETWEENd�10(statuses_count, [50, 1000])

The visualization of this preference P in Figure 2.2 shows us that each tweet, depend-
ing on the total number of messages its author posted, belongs to some level. The
best tweets regarding to the preference P are the lowest level tweets, they belong also
to the result set. Ideally, these are the tweets from level 0, but theoretically they can
be from any level.

[]
50 1000403020 1010 1020 1030

[le
ve

l =
 0

]

[le
ve

l =
 1

]

[le
ve

l =
 2

]

[le
ve

l =
 3

]

…

[le
ve

l =
 1

]

[le
ve

l =
 2

]

[le
ve

l =
 3

]

…

Figure 2.2: BETWEENd preference and level values.

With a small change in BETWEENd(A, [low, up]) we get the AROUNDd(A, z) preference
constructor.

De�nition 8 (AROUNDd Preference)
AROUNDd preference allows to look for the desired value z. So if we set low = up in
BETWEENd constructor, we get the AROUNDd(A, z) one:

AROUNDd(A, z) := BETWEENd(A, [z, z])

AROUNDd can also be expressed using the SCOREd preference with the following scoring
function:

f�v� �� ¶z � v¶ (2.2)

If the preferred value z is not available, values within a shortest distance of d are
acceptable.

12

2.1 Preferences - Theory

Example 2 Another very useful tweet attribute is followers_count - the number
of users that follow the current account. The more followers an account has, the more
prominent it is. E.g., the user is interested in some local news so he is looking for
some local politicians and journalists accounts. He believes that the followers number
is a good �lter criterion. About 300000 followers is too many for a "normal" account
but too few for someone on the state level. The following AROUND preference describes
the user wish highly accurate:

P := AROUNDd�1000(followers_count, 300000)

Visualization of the AROUND preference with a d-parameter is shown in Figure 2.3. If
the tweets with the exact desired followers number are not found, the best alternatives
will be provided.

|
300000 301000 302000

[le
ve

l =
 0

]

[le
ve

l =
 1

]

[le
ve

l =
 2

]

…

[le
ve

l =
 1

]

[le
ve

l =
 2

]

…

299000298000

Figure 2.3: AROUNDd preference and level values.

De�nition 9 (Extremal Preferences: HIGHESTd and LOWESTd)
With the help of these preferences the user searches for the values as high or as
small as possible. HIGHESTd(A) and LOWESTd(A) can be derived from AROUNDd(A, z)
in return. In this way we need to set z = infA or z = supA (infA and supA are
in�mum/supremum of dom(A)) to describe HIGHESTd(A) and LOWESTd(A) preference
constructors:

a) HIGHESTd := AROUNDd(A, supA)

b) LOWESTd := AROUNDd(A, infA)

To express the extremal preferences with the SCOREd one, the following scoring
functions are de�ned:

a) for HIGHESTd
f�v� �� ¶sup � v¶ (2.3)

13

2 Background

b) for LOWESTd
f�v� �� ¶v � inf¶ (2.4)

Example 3 Let us take again the attribute followers_count used in Example 2. If
the user is looking for tweets on a current topic, it could be that he is only interested in
the opinion of prominent people. Their accounts have the most followers, so with the
HIGHESTd preference the "prominent" accounts can be separated from the "normal"
ones:

P := HIGHESTd�100000(followers_count)

De�nition 10 MORE THANd and LESS THANd
With the help of these preferences the user searches for the values that are smaller or
larger (inclusive) than a certain threshold value. MORE THANd(z, A) and LESS THANd(z,
A) can be derived from BETWEENd(A, [low, up]) by setting the upper (lower) bound to
the supremum (in�mum) of the real world. In this way we need to set up = sup or low
= inf to describe MORE THANd(A, z) and LESS THANd(A, z) preference constructors:

a) MORE THANd := BETWEENd(A, [z, supA])

b) LESS THANd := BETWEENd(A, [infA, z])

The SCOREd function for MORE THANd and LESS THANd are technically equivalent
to the SCOREd functions of the extremal preferences HIGHESTd and LOWESTd (cp.
Functions 2.3 and 2.4 in De�nition 9).

Example 4 Using the same attribute followers_count as in Example 2, one can
imagine that the user is looking for tweets, which were posted by account with a lot of
followers. He thinks that it should be at least 50000 followers, so with the MORE THAN

preference such accounts can be found:

P := MORE THAN(50000, followers_count)

Categorical Base Preferences

Numerical base preferences cannot be applied for many domains. E.g., the preferred
language for selected tweets or used hashtags in text messages do not have numeri-
cal, but only categorical values. It is possible to map these non-numerical values to
numerical ones, but this way is not very intuitive.

14

2.1 Preferences - Theory

There are specially developed preference constructors for easy handling of non-numeri-
cal (or categorical) domains. The most general one is LAYEREDm. This preference
allows to order elements and set them to di�erent sets. LAYEREDm is a sub-constructor
of SCOREd (cp. Figure 2.1) and other categorical preference constructors can be derived
from it.

De�nition 11 (LAYEREDm Preference)
Let L � �L1, ..., Lm�1) with m ' 0 be an ordered list of m�1 sets building a partition
of dom�A� for an attribute A. P is a LAYEREDm preference if exists a SCORE preference
with the following scoring function:

f�x� �� i � 1� x " Li (2.5)

To be sure that all domain values are covered by the preference constructor, one of
the Li may be named "others". This special set is disjunct with other sets of dom�A�.

Example 5 One of the best known terms related to Twitter is hashtags. This
metadata tag used in text message by the author helps other users easily �nd messages
with a speci�c theme or content. hashtags are one of the most interesting categorical
attributes to specify preferences. Looking for information about the parliamentary
elections in United Kingdom, the user, e.g., prefers to �nd tweets containing hashtags
selectionUK or Johnson. These terms are preferred to United Kingdom and Great
Britain ones. Furthermore the last two are better than England. Such preference can
be expressed as follows and visualized as shown in in Figure 2.4.

P := LAYEREDm�3(hashtags, {'selectionUK', 'Johnson'},
{'United Kingdom', 'Great Britain'},
{'England'},
others)

{selectionUK, Johnson} [level = 0]

{United Kingdom, Great Britain} [level = 1]

[level = 2]{England}

others [level = 3]

Figure 2.4: LAYEREDm preference and level values.

15

2 Background

Kieÿling in [Kie02] introduced some more simple categorical preference constructors
that cover the most common cases of LAYEREDm preference.

De�nition 12 (Sub-Constructors of LAYEREDm)
In POS(A, POS-set) preference the POS-set is preferred over all other values. On the
contrary the NEG(A, NEG-set) preference speci�es the NEG-set with the values we like
at least. POS and NEG preferences can be combined to POS/POS(A, POS1-set, POS2-
set) and POS/NEG(A, POS-set, NEG-set) ones and all four of them can be derived
from LAYEREDm:

a) POS := LAYERED1(A, POS-set, others)

b) NEG := LAYERED1(A, others, NEG-set)

c) POS/POS := LAYERED2(A, POS1-set, POS2-set, others)

d) POS/NEG := LAYERED2(A, POS-set, others, NEG-set)

Example 6 Every tweet obviously has an author. This is the user who posted it.
Each Twitter user can be uniquely identi�ed with the attribute screen_name. So,
if someone, for example, is interested in the presidential election in the USA, he or
she could de�ne the preferred and/or unwanted authors with a preference. Maybe
you want to have all tweets from Barack Obama or Joe Biden, but none from Donald
Trump. This preference can be de�ned as follows:

P := POS/NEG(screen_name, {'BarackObama', 'JoeBiden'}, {realDonaldTrump})3

BarackObama and JoeBiden are both equally good and better then any other Twitter
author, realDonaldTrump is the most disliked one.

In Figure 2.1 one can see a group of geo preferences: SPATIALd, NEARBYd, ONROUTEd,
BUFFERd and WITHINd (all are dark grey marked), which are not discussed in this work
since I do not use them in my stream evaluation framework. For more details about
geo preferences I refer to [WKK13]. Also the EXPLICIT preference (highlighted in
dark grey in Figure 2.1) is not supported by my framework and is not discussed here,
but the datail can be found in [Kie02].

3
BarackObama, JoeBiden and realDonaldTrump are the Twitter user names of Barack Obama,

Joe Biden and Donald Trump.

16

2.1 Preferences - Theory

Complex Preferences

Complex preferences allow to combine several other preferences into a bigger one. For
a complex preference one has to decide the relative importance of the parts. The com-
bined preferences can be equally important or one preference can be more important
than the other one. These two situations are covered with two complex preferences
constructors: Pareto preference for equal importance and Prioritized preference for
ordered one.

De�nition 13 (Pareto Preference)
Assume preferences P1 � �A1,$P1

�, P2 � �A2,$P2
�, and x � �x1, x2�, y � �y1, y2� "

dom�A�, then the Pareto constructor P �� P1 i P2 is de�ned as:

�x1, x2� $P �y1, y2�� �x1 $P1
y1 0 �x2 $P2

y2 1 x2 	P2
y2��1

�x2 $P2
y2 0 �x1 $P1

y1 1 x1 	P1
y1��.

The object pi dominates another object pj if pi is better than pj in at least one
dimension and not worse than pj in all other dimensions. The object pi belongs to
the Pareto set or Skyline.

De�nition 14 (Prioritization Preference)
Assume preferences P1 � �A1,$P1

�, P2 � �A2,$P2
�, and x � �x1, x2�, y � �y1, y2� "

dom�A�, then the Prioritization preference constructor P �� P1 & P2 (introduced in
[Kie02]) is de�ned as:

�x1, x2� $P �y1, y2�� �x1 $P1
y1 	 �x1 �P2

y1 0 x2 $P2
y2�.

Prioritization preference de�nes a lexicographic order on a domain, cp. [Cho03].
Preferences found earlier are more important than preferences expressed later in the
order. In the complex preference P �� P1 & P2, P1 is more important than P2, which
is only considered if P1 does not mind.

There are more complex constructors available that I do not discuss in this work
because they are not interesting for my framework.

The Better-Than Graph

Preferences, which are strict partial orders, can be visualized using Hasse diagrams
- directed and acyclic graphs in which edges between nodes indicate domination of
elements w.r.t. preference (see, e.g., [DP02]).

17

2 Background

De�nition 15 (Better-Than Graph (BTG))
Given a preference P � �A,$P � on an attribute set A with domain dom�A�. The
better-than graph for P (BTGP) is then the Hasse diagram of $P with some additional
characteristics:

� one node in the BTG represents one equivalence class in dom�A�

� an edge (a1, a2) exists in the BTG directed from a1 to a2 for each pair of nodes
a1, a2 for which holds: a2 $P a1 0 � ¿a3 " dom�A� � a2 $P a3 $P a1�.

The level of a node in a BTG is the length of the longest path leading to it from an
undominated node.

Each level value in base preferences, which are weak order preferences, represents one
equivalence class. Therefore, the BTG of a base preference is a graph with minimum
level level � 0 and the maximum level level � max�P � - the maximum level value
for the preference P (see De�nition 5). There exists exactly one BTG node for each
value in the value set. Best values have a level value of 0 and belong to the top node;
worst values have a level value of max�P � and belong to the bottom node, cp. Figure
2.5.

(0) [level = 0]

(1) [level = 1]

……

(max(P)) [level = max(P)]

Figure 2.5: Structure of BTGs for WOPs.

Better-than graph for WOPs (see De�nition 4) have the following properties (for the
proofs see [Pre09]):

Theorem 1 (Properties of BTG for WOPs)
Let P � �A,$P � be a weak order preference, then:

a) The value of the level function levelP �v� for all v " dom�A� is equal to the level
of v's corresponding node in the BTG.

18

2.1 Preferences - Theory

b) The height of the BTG for P is:

height�BTGP � �� max�P � � 1

c) The number of di�erent nodes in the BTG for P is:

nodes�BTGP � �� height�BTGP �

Let us look at these properties in the following example:

Example 7 The user is looking for tweets with certain hashtags using the following
LAYERED preference:

P := LAYERED3(hashtags, {'covid19', 'corona'}, {'pandemic'},
{'lockdown', 'stayhome'}, others)

Figure 2.6 shows the BTG for this preference and the domain values the nodes are
representing.

(0) [level = 0]

(1) [level = 1]

(2) [level = 2]

(3)

{‘covid19’, ‘corona’}

{‘pandemic’}

{‘lockdown’, ‘stayhome’}

[level = 3] others

Figure 2.6: BTG for a LAYERED3 preference.

Tweets with hashtags covid19 and corona are preferred tweets, which are in the same
equivalence class described by level 0. The next level 1 is represented be the tweets
with the hashtag pandemic followed by messages including lockdown and stayhome
on level 2. The maximum level 3 is reserved for tweets with other hashtags. The
height of the BTG due to the LAYERED3 preference is 4, which is also the number of
nodes.

A BTG for a complex Pareto preference, which has only weak order preferences as its
components, has also more complex structure (see e.g., [DP02, Pre09]). A complete
distributed lattice is an ordered set S, so that for all subsets of S an in�mum and
supremum for any two of its elements is de�ned.

19

2 Background

Some properties of BTG for Pareto preference are listed below:

Theorem 2 (Properties of BTG for Pareto Preferences)
Let P � i�P1, ..., Pm� be a Pareto preference and Pi, i � 1, ...,m be WOPs. Then:

a) The number of nodes in the BTG for P is:

nodes�BTGP � ��4
m
i�1�max�Pi� � 1�

b) The number of edges in the BTG for P is:

edges�BTGP � ��4
m
i�1�max�Pi� � 1� �<m

i�1
max�Pi�

max�Pi��1

c) The overall level value of a node a � �a1, ..., am� in the BTG of P is given by the
level function

levelP �a � 1, ..., am� �� <m
i�1 levelPi

�ai�

d) The height of the BTG for P is:

height�BTGP � �� 1 �<m
i�1max�Pi�

There is more than one single node in each level except the minimum and maximum
levels (see Figure 2.7). The BTG for Pareto preference P always has a hexagon shape
and is symmetric with respect to its middle axis. The top node has the combination
of best values and bottom node the combination of worst values of the base preferences
that form the current Pareto preference P.
Each node in an BTG of a Pareto preference can be provided with a unique integer
number, the node ID (cp. [Pre09]). For this, the edge weights have to be de�ned �rst.

De�nition 16 (Edge Weight)
Let P � i�P1, ..., Pm� be a Pareto preference and Pi, i � 1, ...,m be WOPs. The
weight of an edge in the BTG, which expresses domination with respect to any Pi " P
is de�ned as

weight�Pi� ��4
m
j�i�1�max�Pj� � 1�

With the edge weights the unique node identi�ers for the BTG nodes can be calcu-
lated. Note that in the BTGs of WOPs all edges have a weight of 1.

20

2.1 Preferences - Theory

Theorem 3 (Unique Node ID)
Let a � �a1, ..., am� be a node in BTGP and ID be mapping such that

ID�a� �� <m
i�1�weight�Pi� � ai�

Then the following properties hold:

� The ID is unique for every node in the BTG.

� Every value in the set r0, 1, 2, ..., ¶BTG¶ � 1x is an ID of a node in the BTG.

Example 8 The BTG in the Figure 2.7 is build for some Pareto preference P, which
consists of two base preferences P1 with maximum level of 2 and P2 with maximum
level of 3. This BTG has 5 levels in total. The top node has base preference level values
of �0, 0�, while the bottom node has the value combination of the base preferences'
maximum levels �2, 3�.

0(0,0)

4(1,0)

5(1,1)2(0,2)

1(0,1)

9(2,1)

7(1,3)

3(0,3)

8(2,0)

6(1,2)

10(2,2)

11(2,3)

[level = 0]

[level = 1]

[level = 2]

[level = 3]

[level = 4]

[level = 5]

Figure 2.7: BTG for the Pareto preference.

Using Theorems 2 and 3 the following measures can be computed:

� The number of nodes:
nodes�BTGP � � �max�P1� � 1� � �max�P2� � 1� � �2 � 1� � �3 � 1� � 12

� The number of edges:
edges�BTGP � � �max�P1� � 1� � �max�P2� � 1� � �max�P1�©�max�P1� � 1�
�max�P2�©�max�P2� � 1�� � 12 � �2©3 � 3©4� � 17

� The height of the BTG:
height�BTGP � � 1 �max�P1� �max�P2� � 1 � 2 � 3 � 6

21

2 Background

� The edge weights:
weight�P1� � �max�P2� � 1� � �3 � 1� � 4
weight�P2� � 1

� The node ID:
ID�1, 3� � �weight�P1� � 1� � �weight�P2� � 3� � 4 � 1 � 1 � 3 � 7

The BMO Query Model

Preference query returns best matches only (BMO), so the result is called BMO-set. It
contains objects that match user's wishes best possible: exact matches if such objects
exist and best alternatives else. The BMO query result adapts to the quality of the
data and is not necessarily perfect. This semantic of BMO query model was proposed
by [Kie02] and used by [Cho03].

De�nition 17 (Preference Selection, BMO-set)
For a preference P � �A,$P � on a dataset D, which contains attributes D�A1, ..., Am�
with A N attr�D�, the BMO set is given by the preference selection de�ned as:

σ�P ��D� �� rt " D¶ ¿t¬ " D � t�A� $P t
¬�A�x.

Preference selection retrieves all perfect values t from the dataset D. If such values
do not exist, it deliveres best matching alternatives w.r.t. given preference P . All
objects in the BMO-set are undominated by others [KEW11, End11].

Example 9 In this example two preferences will be combined, namely

� Phashtags := POS/POS(hashtags, {#yog, #�gureskating}, {#isu})

� Pstatuses_count := AROUNDd�500(statuses_count, 4000)

to a Pareto preference P:= Phashtagsi Pstatuses_count.
Consider Table 2.1, which represents the sample Twitter data about the 2020 Youth
Olympic Games (YOG). It shows only a few of the many tweet's attributes. Id is
used to identify tweets, hashtags and statuses_count (the number of posted tweets)
are used in Pareto preference P, and the text of the tweet is the information the user
is looking for. Evaluation the preference P on the given data sample, the BMO set is
represented by the bold ids. The tweets with ids 752371 and 377652 are discarded, be-
cause the are dominated by another ones. E.g., tweet with id � 170513 dominates the
one with id � 752371, because it is better concerning the status_count and indi�erent
concerning the hashtags.

22

2.1 Preferences - Theory

id hashtags statuses_count text
170513 #yog

#competitions
#scores

1.723 Did Yuma deserve to win #YOG? Yes and
by far. Are the scores horribly in�ated? Hell
yes. Are #competitions with in�ated and
unrealistic #scores enjoyable and a positive
thing for the sport? No, not at all.

861395 #�gureskating
#teamjapan
#iloveyog

1.917 @so_ta0110 impresses in the Mens SP, leads
�eld with 73.07 points. #�gureskating
#teamjapan #ILoveYOG

752371 #yog 1.329 Watching training of �gure skating(men) at
#yog http://yfrog.com/esimeyrj.

377652 #lausanne2020 1.678 Good day for China in �gure skating #lau-
sanne2020: Han Yan leads the men, Yu/Jin
leads pairs http://exm.nr/yfnylq.

591142 #isu 3.278 After @FSU_Figure started their campaign
against ISU's unfair judging, @olympicchan-
nel removed TES scoreboard from the �gure
skating live broadcast at the Youth Olympics.
#ISU haven't got anything to hide, have you?

115214 #�gureskating
#yog
#lausanne2020

6.418 �I did my twizzles better� - Russia's Irina
Khavronina gets to the heart of her improved
performance in the #�gureskating free dance
#lausanne2020 #YOG.

Table 2.1: Example of Twitter data about the YOG.

2.1.2 Preference SQL

To evaluate data with preferences, existing SQL database systems had to be extended
towards Preference SQL. The University version of Preference SQL adopts a middle-
ware approach as depicted in Figure 2.8.

Data
Preference SQL

JDBC

Preference SQL

Parser
Query Optimization

Algorithms

SQL Client

Figure 2.8: System architecture of Preference SQL.

For a seamless application integration standard JDBC technology was extended to-
wards a Preference SQL / JDBC package. This enables the client application to
submit Preference SQL queries through familiar SQL clients. The Preference SQL
middleware parses the query and performs preference query optimization. The pref-
erence selection operator implemented by several evaluation algorithms computes the
�nal result. This approach has proven its �exibility and performance in various pro-

23

http://yfrog.com/esimeyrj
http://exm.nr/yfnylq

2 Background

totype applications conducted so far, see [KEW11] for example.
To express arbitrary preferences, the syntax of SQL - Standard Query Language (see
[Mel93, AB15, Bea20]) - was augmented by an additional PREFERRING clause in [HK05,
WK02], which supports soft constraints. The new Preference SQL query language
supports SQL92 standard as well as base and complex preferences. A Preference SQL
query block has the following schematic design:

SELECT . . . <selection>

FROM . . . <table_reference>

WHERE . . . <hard_conditions>

PREFERRING . . . <soft_conditions>

GROUPING . . . <attribute_list>

BUT ONLY . . . <but_only_condition>

GROUP BY . . . <attribute_list>

HAVING . . . <hard_conditions>

ORDER BY . . . <attribute_list>

Figure 2.9: Preference SQL query block.

A preference is evaluated in the PREFERRING clause on the date that remained after
hard constraint evaluation in the WHERE clause. As a consequence of this, empty result
set can only occur, if all tuples have been �ltered out by hard conditions.
With knowledge of the preference constructors from Section 2.1.1 the syntax of the
preference extensions can be found in Table 2.2.

Preference constructor Preference SQL expression

BETWEENd(A, low, up) A BETWEEN low AND up, d
AROUNDd(A, z) A AROUND z, d
HIGHESTd(A) A HIGHEST sup, d
LOWESTd(A) A LOWEST inf , d
MORE THANd(A, z) A MORE THAN z, sup, d
LESS THANd(A, z) A LESS THAN z, inf , d
LAYEREDm(A, L1,..., Lm�1) A LAYERED (A, L1,..., Lm�1)
POS/POS(A, S1, S2) A IN S1 ELSE S2

POS(A, S) A IN S
POS/NEG(A, S1, S2) A IN S1 NOT IN S2

NEG(A, S) A NOT IN S
i(P1,...,Pm) P1 AND ... AND Pm

&(P1,...,Pm) P1 PRIOR TO ... PRIOR TO Pm

Table 2.2: Preference SQL Syntax.

24

2.1 Preferences - Theory

Example 10 Assume there are two relations: tweets (Table 2.3) and authors (Table
2.4) with tweets and authors of these tweets accordingly. Each tweet has an author
and the tables are connected by a foreign key (author). For example, the tweet with id
� 114432 was posted by the author @fs_gossip with 2938 followers (followers_count)
and 2779 posted tweets (statuses_count).
The user is searching for tweets (text) of any author, only the messages from an
author @fs_gossip he does not want to have. He also prefers the tweets that have
been "liked" by at least 100 (d � 10) other users (likes), which is equally important
to the author preference. Just as important as author and number of likes is the
veri�cation status of the author (veri�ed), it should be true if possible. Preference
SQL expression for this preference looks like this:

SELECT t.text FROM tweets t, authors a

WHERE t.author = a.author

PREFERRING a.author NOT IN ('@fs_gossip')

AND t.likes AROUND 100, 10 AND a.verified IN ('true')

The query returns the BMO result consisting of the tweet with id � 731556 posted
by the veri�ed author @ISU_Figure, which has 79 likes.

id text likes retweets author

114432 "I need to �ght the cause, not the e�ect." Evgenia
Medvedeva about withdrawal from the Russian
Cup #�gureskating #EvgeniaMedvedeva

13 2 @fs_gossip

133761 Maxim Trankov: "The champion position is very
precarious. Today they love us, tomorrow they
will crucify us." #�gureskating

18 3 @fs_gossip

541129 Check out these cool photo captures! These
shots are from the Junior Pairs Free Skating of
#WorldJFigure 2019! You can watch or re-watch
the stream of this event anytime at your leisure:
https://youtu.be/Xyu8kDpKHOs #UpAgain #Fig-
ureSkating

57 8 @ISU_Figure

388644 In case you haven't heard: Italy will be hosting a
grand prix series of �gure skating - consisting of
four events, starting this month. List of events
& participants: shorturl.at/bjyQY #�gureskat-
ing #italian #danielgrassl

4 0 @theskatingtimes

961127 Rika Kihira's updated ISU pro�le lists Lambiel
and Hamada as her coaches. #�gureskating
#rikakihira #stephanelambiel

4 0 @theskatingtimes

731556 Streaming Now! On the "Skating ISU" YouTube
channel you can watch the Junior Ice Dance
Rhythm Dance from the World Junior Figure
Skating Championships of 2019! https://youtu.
be/pZpmISmtF4I #UpAgain #WorldJFigure #Fig-
ureSkating

79 25 @ISU_Figure

Table 2.3: Sample data set containing tweets.

25

https://youtu.be/Xyu8kDpKHOs
shorturl.at/bjyQY
https://youtu.be/pZpmISmtF4I
https://youtu.be/pZpmISmtF4I

2 Background

author veri�ed statuses_count followers_count
@fs_gossip no 2 779 2 938
@ISU_Figure yes 9 549 91 700
@theskatingtimes no 105 30

Table 2.4: Sample data set containing authors of tweets.

2.2 Data Streams

As of today, much of the data that we deal with, come as di�erent streams. User
interactions on websites and in mobile apps, placements of orders, server logs, sensor
measurements - all of these are streams of some kind of events. In fact, it is di�cult
to �nd examples of �nite, complete datasets that are generated all at once. Naturally,
to process and analyze such kind of data you need applications that take into account
streams' peculiarities: potential in�nity and fast element changeability. Algorithms
and approaches used to process static data cannot be used for stream processing
without adaptation.
The data stream (Figure 2.10) is de�ned in computer science as a continuous stream
of records or objects, the end of which cannot be predicted in advance, in some cases
there are no discrete beginning or end at all. The stream records may or may not be
related or correlated with each other. They are generally timestamped, in some cases
geo-tagged and have a set of attributes speci�c for the certain stream. For example,
data from a car tra�c monitoring or messages send on Twitter are continuous and
have no �nish, they are geo-referenced and timestamped.

stream of records

past future

Figure 2.10: Stream of records.

Records in stream are immutable, they make a sort of history : the records are pro-
cessed, the new ones are added to the stream and processed as well. It's impossible
to go back to older records unless they have been purposefully stored. This new form
of data existence is somewhat opposed to the familiar and well known tables in tra-
ditional database systems, which can be considered in such context as a current state
of the system. The table is a snapshot of a stream in a certain sense and represents
a collection of mutable records.
Traditional database systems but also batch data processing e�ciently handle large

26

2.2 Data Streams

and seldom changing data that have been pre-loaded into the database or other store
and process them only after user had queried explicitly. The results provided to the
user re�ect the current state of the data, which remain in the database after the query
has been processed. If the data have not been changed or deleted from the database
explicitly, the result of the repeated query will remain unchanged.
The new class of applications working with data streams, is able to process the in-
coming stream on the �y and update a query result, which allows to provide the
most current answer that takes into account the latest data. As time passes and
new records are added to the stream, the query result also changes. Some stream
applications do not even wait for request from the end user, to give some response.
They check the incoming data continuously and send noti�cation when something
remarkable happens. Examples of stream-based applications can be found in such
areas as sensor networks, astronomy, infrastructure and tra�c monitoring, security,
electronic trading and of course social networks [GO03, DP18, CM12].
The individual elements in the data stream can be relational events, sensor readings,
web pages visits, etc. They can be very variable, but all the records within a stream
have a same type. Stream data are not available for reading from any storage source.
To some extent it is possible to store the records gathered from di�erent stream
sources. However, the amount of data collected over a few months can be so huge
that it will be a very work- and time-expensive task to extract information from them.
And while the user waits for the answer to his query, the data change again, because
new records are added constantly.
The stream items arrive live, there is no system control over the order of these ele-
ments. The data are potentially unlimited and are discarded after processing. Thus,
the reanalysis of stream data is usually impossible. The queries used in traditional
DBMS and batch processing are called one-time queries. They evaluate a snapshot of
data once at a certain time point and return the response to the user. On the other
hand, continuous queries should remain in the system longer and evaluate the stream
data continuously as they arrive. The response to a continuous query is updated over
time, taking into account all the data received so far [Krä07, BBD�02].
Today, there are two directions in working with data streams: the stream processing
model [BBD�02] and the complex event processing model [Luc01]. The stream pro-
cessing model considers the information �ow processing problem as an evolution of
traditional data processing: data from di�erent stream sources are processed through
a sequence of analytical operations, such as selection, aggregation, �ltering, joining,
etc. to get new data streams as a result. The complex event processing model on the
other hand considers information �ows as noti�cations of real world's events. The
main focus of this model is to identify relationships and patterns among incoming low
level events to derivate existing or potential high level events. Whenever something

27

2 Background

special happens and will be detected, application raises a �ag or sends some kind of
noti�cation. [GO03, DP18, CM12].
The operations for data stream transformation and analysis can be both provided by
stream processing engine and implemented by the application programmer. There
are stateless and stateful operations. During stateless operations processing of each
particular stream record is independent of any other records (previous or following)
and the is no need to keep some records (or intermediate result) in the memory.
The arriving order of stream records does not a�ect the processing result as well, so
such operations can be easy parallelized. Example of stateless operation can be, e.g.,
�ltering (stream records are selected according to speci�c condition, see Figure 2.11)
or simple transformation (extracting some attribute values from the record for future
operation).

stream of records stream of filtered records

filter(x => x ==)

Figure 2.11: Stream of �ltered records.

Stateful operations on the other hand, need the information about the records pro-
cessed in the past or about previous result (state), because it can be changed by the
new data. This kind of operation is more challenging and often requires some form
of working memory to keep intermediate computation results. E.g., to calculate the
total sum of all processed records, the already calculated value should be hold in the
memory and will be updated, when next record arrives (see Figure 2.12). However,
more often real life applications perform operations that include not all of the stream
records seen so far, but only a part of them, e.g. when we want to compute a median
temperature for a certain month. For such task it is not enough to hold one calcu-
lated value in the memory, we need all stream records, relate to the time period we
are interested in, at once. This can be handled by using of window approach [KH19].
A window is a certain amount of data, to which we want apply some operations. The
records in the window are kept in the working memory and are available for further
processing. Window operations create �nite sets of stream records called buckets or
chunks and let the application perform computations on these �nite sets. Records are
usually assigned to the chunks based on their properties: depending on arrival time
or number of objects, one wants to have in one chunk [KH19].
There are di�erent kinds of windows, but I discuss here two most common ones,
implemented in Flink4 and described in [KH19] as well.

4
Flink: �ink.apache.org

28

https://flink.apache.org/

2.2 Data Streams

stream of total sumsstream of records

2
12322313 2

33 2
2322313…

2322313…… 35

3

5

cu
rr

en
t s

um
 s

to
re

d
in

 m
em

or
y

2

pr
oc

es
se

d
re

co
rd

1

2

Figure 2.12: Total sum calculation across the stream records.

Tumbling window (also known as �xed window) assign stream records into non-
overlapping chunks. They can be build size or time based (see Figure 2.13). When
specifying a time, the chunks will be build based on the data retrieved within the given
time slot. By specifying a size in the window function, it will determine, how many
stream records belong to one chunk. The full chunk is then sent to an evaluation
function for processing.

stream of records divided into chunks

past futuret = 10 sect = 10 sec

n = 3 recordsn = 3 records
size based chunks

time based chunks

Figure 2.13: Size and time based tumbling windows on the stream.

Sliding Window (or hopping window) - window operation assigns events into over-
lapping buckets of �xed size (see Figure 2.14). That means, that some records can
belong to two "neighbour" chunks. Sliding window has two characteristics: (i) how

29

2 Background

many records are within one chunk (length) and after how many records new chunk
will be created (slide) [KH19]. This kind of window allows to analyze the development
of data over time.

past futuren = 3 records (size)

s = 2 records (slide)stream of records divided into chunks

Figure 2.14: Sliding windows on the stream.

Streaming data processing system should be able to manage data on the �y, with
ultra low latency, but the main goal - querying and analysis of stream data in real
time - can not always be reached easily. Stream processing provides a lot of challenges
and limits: a very large (sometimes endless) volume of data and only limited mem-
ory, impossibility to see the data twice and as result the need to use only one-pass
algorithms. Besides, some common data operations make no sence or are impossible
on the endless data (e.g. sorting or grouping all over the stream).
All these factors make a task to process and analyze stream data in real-time quite
challenging but also very exciting.

2.3 Apache Flink - Framework for Stream Processing

Apache Flink is a top level Apache project and an open-source stream-processing
platform for distributed stream and batch processing5. Flink was born at Berlin's
Technical University, and it used to be called Stratosphere before it joined Apache's
program pool in April 2014 and became top-level project in January 2015.
Flink can handle any kind of stream: unbounded, bounded (with �xed-sized data sets),
real time streams, but also recorded data. Flink's core is a distributed streaming data-
�ow engine written in Java and Scala that provides data distribution, communication,
and fault tolerance for low delay computations over data streams. A Flink setup
has four di�erent components that work together executing streaming applications:
JobManager, ResourceManager, TaskManager, and Dispatcher. These components
have the following responsibilities [KH19]:

5
Apache Flink: �ink.apache.org

30

https://flink.apache.org/

2.3 Apache Flink - Framework for Stream Processing

� The JobManager is the master process and controls the execution of a single
application. Each application has its own JobManager. The application consists
of a logical data-�ow graph (JobGraph), which will be converted by the Job-
Manager into a physical data�ow graph (ExecutionGraph). The latter consists
of tasks that can partially be performed in parallel.

� Flink has multiple ResourceManagers for di�erent environments and resource
providers. The ResourceManager manages TaskManager's slots - units of pro-
cessing resources. The ResourceManager also �nds and terminates idle TaskMan-
agers to free compute resources.

� TaskManagers are the worker processes of Flink. Flink setup provides multiple
TaskManagers, each has a certain number of slots. TaskManager has to register
its slots to the ResourceManager, after it has been started. TaskManagers that
run tasks of the same application can exchange data with each other during the
execution.

� The Dispatcher provides a REST interface to submit applications for execution
and starts a Jobmanager once the application is submitted. The Dispatcher
also runs a web dashboard to provide information about job executions.

The building blocks of each Flink program are streams and transformations. Trans-
formation takes one or more streams as input, and produces one or more streams
as output. Flink programs are mapped to streaming data-�ows. Each data-�ow
starts with one or more sources and ends in one or more sinks. The data-�ows can
be imagined as arbitrary directed acyclic graphs (DAGs), consisting of streams and
transformation operators (see Figure 2.15).

stream

Source Transformation
Operator 1

Transformation
Operator n

… Sink

Streaming Dataflow

stream stream stream

Figure 2.15: Schematic representation of the streaming data-�ow.

Let's take a closer look at the data�ow components [Fli]:

� Data source is where the input for the program comes from. There are several
prede�ned stream sources, which can be divided into �le-based (data stream is
obtained from a �le), socket-based (program gets data stream from a socket),

31

2 Background

collection-based (data stream will be created from some collection) and custom
(data stream will be attached with a new source function).

Custom data sources are especially relevant for applications dealing with live
data streams (such as Preference Based Stream Analyzer, which is topic of this
work). Custom data source can be completely de�ned and implemented by
the programmer and existing connectors can be used to connect to the third-
party system. Flink provides connectors, which allow to use following systems:
Apache Kafka, Amazon Kinesis Streams, RabbitMQ, Google PubSub and Twitter
Streaming API that I use in my system.

� Transformation operators transform one or more data streams into a new
data stream. Multiple transformations can be combined into complex data-�ow
topologies. There are many stream transformations, I will only mention a few
of them:

� Map: takes one element as input and produces one transformed element
as output, e.g. number value can be doubled.

� FlatMap: takes one element as input, generates zero, one or more ele-
ments as output, e.g., text line (input) can be split to the single words
(output).

� Filter: if an input element matches a �lter criterion, it is a part of output,
otherwise it is �ltered out. For example all even numbers can be output,
if a �lter criterion returns the remainder equal to 0 when divided by two.

� Reduce: the current input element will be combined with the last reduced
value (previous input elements). So the output is always a "rolling" re-
duced value of the input elements that were seen so far, e.g., an output
stream of partial sums can be produced for the input stream of number
values.

� Window operators: group the input data according to some characteris-
tic. Windows can be time driven (e.g., all data that arrived within the last
10 seconds belongs to the same window) or data driven (e.g., 100 elements
per window). One typically distinguishes di�erent types of windows, such
as tumbling windows (no overlap), sliding windows (with overlap), and
session windows (restricted by session activity). General window concepts
on the stream data are described in detail in Subsection 2.2.

32

2.3 Apache Flink - Framework for Stream Processing

� Aggregation operators: (e.g., counts, sums) work on streams di�erently
than in batch processing. It is impossible to count all elements in a stream,
because streams are in general in�nite. That's why the aggregation oper-
ators are applied to the elements inside windows, which are �nite.

Obviously, the named (as well as unmentioned here) transformation operators
can perform much more complex actions on the stream data. As an example
the framework I have developed and implemented for my doctoral work can
be considered. It receives a stream of tweets as the input and must �lter them
taking user preferences into account (not to confuse with simple �lter operator).
Details of this system's conception and implementation will be discussed later
in this work.

� Data sink consumes data streams and prints or passes them to �les, sockets or
external systems. Similar to DataSource, user-speci�c data sinks can be imple-
mented. This allows to output the stream data within program or application
in the best possible way. For example, in my framework the selected tweets are
sent to the display of user's device after the input Twitter stream was evaluated
w.r.t. user preferences.

The stream applications are mostly stateful. Only in rare cases, when the transfor-
mation operations are applied to a single stream records (without caring about the
earlier or later ones), no state is required. So if the application has to calculate and
return 60% of each input number, this is realized stateless. In some other cases an
intermediate result (state) must be stored to make it accessible at a later point in
time, for example when the next record is received or after a speci�c time period.
So if you want to calculate the moving sum over all numeric stream records, the last
calculated sum must always be accessible, because with every new stream record this
value must be updated.
I chose Apache Flink as a stream delivery and stream processing tool for my framework
because it allows real object-by-object stream processing. The alternatives (e.g.,
Spark), can now do that as well, but at the time when I decided to use Flink, Spark
was only able to o�er batch processing, which was disadvantageous. Apache Flink
allows also to implement stateful stream processing applications. For my framework
this is a necessary condition, because the preference evaluation is data dependent.
This means that when the new data arrives with the stream, an intermediate result
has to be evaluated again. But for this it must be accessible for the new calculation.
I will provide the detailed description of preference evaluation on stream data with
the appropriate algorithms in the later chapters of this doctoral thesis.

33

2 Background

2.4 Twitter - Micro-blogging and Social Networking
Service

"Twitter6 is a micro-blogging and social networking service where users post and
interact with messages known as tweets" - this de�nition can be found on Wikipedia7.
"Twitter is what is happening in the world and what people are talking about right
now" - that is what Twitter says about itself8. Both statements describe the same
social service, but the second one is what distinguishes Twitter from other social
platforms and made it special.
Twitter started in 2006 with an idea by Jack Dorsey (one of the inventors and co-
founders) to inform small groups of people via SMS about what they are doing. The
�rst tweet was posted on March 21th and read "just setting up my twttr"

9 (see Figure
2.16). The well known 140 character length restriction is associated with the original
character of Twitter as an SMS-based platform. Even when Twitter was already grown
into a web platform, the 140 character limit remained for branding and marketing
reasons, until �nally in November 2017 the maximum length of a tweet has been
increased to 280 Unicode characters10,11.

Figure 2.16: A very �rst tweet posted by Jack Dorsey

Twitter is a communication platform, social network and even a publicly accessible
online diary. Individuals, organizations, companies and mass media use Twitter as
a platform for distributing their content on the Internet. Unlike Facebook, Twitter
does not focus on contacts with friends. The registered users can post short massages

6
Twitter: twitter.com

7
Twitter: en.wikipedia.org/wiki/Twitter

8
About Twitter: about.twitter.com

9
First tweet: twitter.com/jack/status/20

10
How Twitter Was Born: 140characters.com/2009/01/30/how-twitter-was-born

11
Th Real History of Twitter, in Brief: lifewire.com/history-of-twitter-3288854

34

https://twitter.com
https://en.wikipedia.org/wiki/Twitter
https://about.twitter.com/en_gb.html
https://twitter.com/jack/status/20
http://www.140characters.com/2009/01/30/how-twitter-was-born/
https://www.lifewire.com/history-of-twitter-3288854

2.4 Twitter - Micro-blogging and Social Networking Service

called tweets. Tweets are publicly visible by default, but the author can restrict access,
so that only his followers will see his tweets.
Following is a central concept of Twitter as a social platform. To follow someone on
Twitter means to be this account's subscriber and to see that user's tweets in own
Twitter feed in reverse chronological order (see Figure 2.17). The subscribers are
known as followers. The number of followers determines how in�uential a particular
Twitter account is. Celebrities (actors, singers) or politicians typically have the most
followers. E.g., president of the United States Donald Trump is a very active Twitter
user with 57.1 thousand tweets and 87.2 million followers (status on 13th October,
2020 and the numbers are growing12).

Figure 2.17: A very small excerpt from Twitter account of Donald Trump

Users, especially the younger ones, use Twitter as a news source because of its real-
time nature: there is a very low delay between an event in the real world and messages
about it on Twitter. Twitter has completely changed the way the news spread, more
than any other medium in recent history. This micro-blogging service allows people to
keep up with developments live, e.g. when an air-plane crash-landed on the Hudson
River in New York on January 15th, 2009 (see Figure 2.18), the �rst messages were

12
Donald Trump's Twitter: twitter.com/realDonaldTrump

35

https://twitter.com/realDonaldTrump

2 Background

published through Twitter and Tumblr13. The generally more popular Facebook and
Instagram are much less suitable for posting short text messages about the current
situation or for sharing own thoughts than Twitter. Numerous tweets related to events
recreate a picture of what happened through the eyes of one particular user. The more
di�erent users post about the same event, the more complete picture you get. It could
be social events such as parties or Metallica show, political cases, disastrous events
such as storms, �res, tra�c jams or earthquakes and so on [Wal, SOM13].

Figure 2.18: The �rst tweet about "Miracle on the Hudson"

Twitter reports about 330 million monthly active users14, who send 500 million tweets
daily15. It is impossible to follow everyone, who tweets something. This is also
completely pointless, considering that most tweets are interesting only for a (very)
limited group of users. To follow particular user's account makes sense if you have
a constant interest in the content posted there and want to know on the daily basis
What else will Donald Trump announce via Twitter? or Which bag did Katy Perry
buy this time? or even What's new in Oracle 19c? But there exist millions of other
tweets and not all of them are valuable. It is very typical that an account has very
few or no tweets and one day it posts multiple messages about an event that is very
important for a certain user group. And the question is, how to �nd this content if
you don't follow the account?
Twitter allows to browse posted tweets using keywords or hashtags (topics on Twitter
written with a # symbol, e.g. #Brexit). The user can also enter a search term,
term combination or more complex query and gets tweets containing the words he
is looking for. The input query can be very simple (only one word or hashtag) or
quite complex. On the Twitter developer website16 one can �nd a lot of examples for

13
Tumblr: www.tumblr.com

14
Monthly active Twitter users: bit.ly/2FJLMyB

15
Number of tweets daily: bit.ly/2NmLhPo

16
Search Tweets: bit.ly/2FReVrv

36

https://www.tumblr.com/
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
https://business.twitter.com/de.html
https://developer.twitter.com/en/docs/tweets/search/guides/standard-operators

2.4 Twitter - Micro-blogging and Social Networking Service

search queries. Here are some examples, how to use keywords and hashtags in Twitter
search:

� "happy hour" provides tweets with exactly the entered word combination

� puppy -�lter:retweets is looking for tweets (but no retweets) with the term puppy

� tra�c ? will return the tweets that includes question and term tra�c

The formulated search queries can be very diverse. One searches for matches in the
attributes tweet text and username. Further criteria can be speci�ed with restrictions:
Twitter allows to choose whether to search among all existing accounts or only those
whom the user follows. It is also possible to choose between everywhere (arbitrary
location) and close to you (there is no information about what Twitter de�nes as
"close").
In addition, Twitter o�ers the possibility to extend the search with some more at-
tributes (see Figure 2.19). The user can additionally specify the language and accounts
that have posted tweets to which tweets are directed or which are mentioned in the
tweets. The interactions can also be taken into account: number of responses, likes or
retweets for desired tweets can be pointed out. The last attribute used by extended
search speci�es a date or time interval when searched tweets were posted. The date
attribute allows the searching only in the past. If it is not speci�ed, the result will be
updated after some time has been passed and the tweets posted after query was sent
will be also shown to the user.

Figure 2.19: Some �elds in extended search form

As one can see, the number of attributes for advanced search is relatively small. In
return, a tweet object provided by Twitter API is much more, than only its content

37

2 Background

(text, picture, video), author, language and posting date. Twitter provides the public
interface for developers, which allows to get access to the tweets as JSON objects17.
One tweet includes between 27 and 32 diverse attributes (depending on whether tweet
is a retweet or not), which can be either simple or complex. The latter contain multiple
attributes themselves (which can be simple and complex too). For example, user
attribute in tweet object has 39 attributes itself, including such informative ones as
location, veri�ed (if set, the account of public interest is authentic), followers_count,
statuses_count, lang (language) and much more.
Part of these attributes can be found on the user's pro�le page: e.g., veri�ed or
followers_count. The other part is only partially available: e.g., created_at attribute
(speci�es when the user created his account) stores time up to seconds in JSON object
and shows only the month and the year on the pro�le page. There are attributes
that are visible not on every platform: e.g., Twitter App for Android does not show
the statuses_count - number of posted tweets. However, in the web version, this
information is available. And �nally, some attributes are hidden from the "normal"
user, but exist freely accessible in JSON tweet object. An interesting example for
such kind of attributes is source, which stores, which software was used to tweet this
speci�c message ("Twitter for Android", "Twitter for iPhone" and so on).
Most of the tweet attributes are well suited to be included in search query to �lter
the data, assuming the user can specify the desired values. Twitter allows this only
to limited extent. One of the goals of this work is, among other things, to provide
end users with the ability to use all the attributes provided by the JSON object in
order to look for interesting tweets. In addition, a search should be conducted on
preference basis (see Section 2.1) to achieve the best possible result.

In this chapter I summarized the most important background information: I discussed
the preference theory, which I use in my doctoral thesis, including all important prefer-
ence constructors that will be applied in my stream preference evaluation framework.
Much attention has been paid to the subject of data streams and their properties.
The di�erences to persistent data sets were explained. The third discussed topic was
Apache Flink. I gave a short insight into framework that is used as provider of Twitter
stream data in my system. And �nally I discussed Twitter, because tweets received
as a stream are the data that I analyze and evaluate with my framework.

17
JSON: www.json.org

38

http://www.json.org/

Chapter 3

A Framework for

Preference-Based Stream

Processing

This chapter describes the general design of my system.

I start with the idea of the developed framework and motivate the nec-
essary steps. The individual parts of this framework are content of the
following sections. I start with short description in Section 3.1, how
to get tweets as a data stream. Then, the ETL process is described
in Section 3.2, which explains how the incoming stream data have to
be transformed for processing with Preference SQL. Much attention is
paid to individual tweet attributes, especially those that may be useful
for further data �ltering. Section 3.3 addresses the challenges that arise
during evaluation of stream data with Preference SQL. Since the stream
data are continuous and, in principle, in�nite over time, there is no �nal
result at any given �x point in time. It must always be reevaluated with
new data in mind. Finally, Section 3.4 deals with data �ltered with Pref-
erence SQL. In order to make it easier for users to consume the delivered
results, I want to post-process them and show to the users automatically
summarized text messages without duplicates and irrelevant posts.

3 A Framework for Preference-Based Stream Processing

I want to analyze data streams exploiting the user's de�ned preferences. My ap-
proach is based on the Preference SQL prototype system [KEW11]. The system was
developed to run queries against bounded data sets that are stored persistently in a
relational database. However, to analyze streams (continuous, unbounded collections
with new elements or events arriving over time) it is necessary to extend the Prefer-
ence SQL system in order to process such kind of data. Hence, I need a framework
that transforms the data from a stream into a Preference SQL usable format (cp.
[RE17]).
I use Apache Flink (see Section 2.3), an open source platform for scalable stream
and batch data processing, to transform continuous data into a Preference SQL com-
patible and processable format. Figure 3.1 depicts my stream processing framework
for preference evaluation. The incoming data stream is processed by Apache Flink
in an ETL (Extract, Transform, Load) process. Since streams are often encoded in
various formats, data must be transformed into a Preference SQL readable form. For
this, one has to implement the mapping of a stream object to a relational structure
inside the StreamProcessor, which provides a corresponding interface implementation.
The DataAccumulator builds (�nite) chunks of objects, which then can be processed
by Preference SQL to �nd the best-matches-only (BMO) set w.r.t. the preference
speci�ed by a user (cp. [RERK16, EKR18]).

Data Stream

Stream of
objects

Stream of
data chunks

ETL Process in Apache Flink

StreamProcessor DataAccumulator
Stream of

processed data

BMO-set

PreferenceSQL Aggregated and
summarized result

Figure 3.1: Streaming architecture for preference analytics.

In order to improve my framework and make it easier for users to deal with the results
delivered by Preference SQL, I want to post-process them and show to the users
automatically summarized text messages without duplicates and valueless posts.

3.1 Twitter as Stream Source

Twitter accounts and tweets are usually public and available to all internet users. For
example, you can go to the Elon Musk account and read what he posted so far. But
my framework for preference tweet analysis requires the data as incoming continuous
stream of records. So I need a stream of tweets, which I will evaluate with preferences
to give the user the best possible result.
As a stream processing framework, Flink comes with a few basic pre-implemented data

40

3.2 ETL Process

sources and sinks (cp. Section 2.3), but everyone can write his own one if required.
Sources are where the application reads its input from. A source should be attached to
the program by using StreamExecutionEnvironment.addSource(sourceFunction).
There are several prede�ned stream sources accessible from the StreamExecutionEn-
vironment: �le-based, socket-based, collection-based and custom. The last one is of
most interesting one: Flink Streaming has a build-in TwitterSource class, which allows
to connect it using the Twitter Streaming API. To use this connector, the following
Maven dependency has to be added to the project (x and y stand for the corresponding
version number):

<dependency>
<groupId>org . apache . f l i n k </groupId>
<a r t i f a c t I d >f l i n k �connector �twitter_y</a r t i f a c t I d >
<vers ion>x</vers ion>

</dependency>

Also one needs to attach a new (Twitter) source function:
DataStream<String> strSource = env.addSource(new TwitterSource(props));

For user authentication TwitterSource class requires as input properties by Twitter:
consumerKey, consumerSecret, token, secret. To get access to these authentication
properties the developer has to have Twitter account and register his application. The
properties values look like this:

consumerKey=NQEk0KbczVbaAcjCWLksbodkN
consumerSecret=HDKxyp2REOHvuq19oKrZZsdAovItwG6upOGJuSNwbtr6npp2c3
token=2402192752�DQSeCtehr68SerQVyjHLzpHhMvtcwJQlbvwxnLi
s e c r e t=BAk0krCYq7X84p45UfyuAuNnpR3nrv9WofO9PNL46XFch

After successful connection, the TwitterSource provides a stream of strings containing
a JSON-objects, representing tweets.

3.2 ETL Process

When processing data streams with Preference SQL, two fundamental tasks must be
carried out:

1. The data must have a Preference SQL processable format, because Preference SQL
works on attribute based data, but streams are encoded in various formats.

2. The result computation must be adapted to stream properties, since the data�ow
is continuous. There is no ��nal� result after some data of the stream is processed.
Hence, the result must be calculated and adjusted as soon as new data arrive.

41

3 A Framework for Preference-Based Stream Processing

3.2.1 Tweet Representation in a Preference SQL Processable

Format

The objects delivered by a data stream are encoded and not compatible with Pref-
erence SQL. That means the data must be structured and needs an attribute based
format like attributeName = attributeValue. The stream objects are transformed
into a list of single attribute values by the StreamProcessor, cp. Figure 3.1. For this
one has to implement the mapping of the object in the stream to a table structured
format. The data types of the attributes can be extracted from the stream objects.
In my framework I use Twitter as a stream data source, therefore the delivered ob-
jects are tweets encoded in JSON format. JSON (JavaScript Object Notation) is
an open-standard, lightweight, text-based, language-independent syntax for de�ning
data interchange formats. JSON was �rst presented to the world at the JSON.org
website in 2001. A de�nition of the JSON syntax was published as IETF RFC 4627
in July 2006 [ECM17].
A JSON text is a sequence of Unicode tokens that strictly conforms to the JSON
grammar de�ned by the speci�cation. The set of tokens includes six structural tokens
(� - left square bracket, � - right square bracket, r - left curly bracket, x - right curly
bracket, � - colon, , - comma), strings, numbers and three literal name tokens (true,
false, null). JSON data format transmits objects, whose structure is represented as
a pair of curly bracket tokens surrounding zero or more attribute�value pairs. A JSON
value can be an object, array, number, string, true, false, null. An attribute is
a string. A single colon token follows each attribute, separating it from the value. A
single comma token separates a value from a following attribute [ECM17, ECM19].
A simple example of an JSON-object representing a person's data looks like this:

{
"persNr" :22111786 ,
"name" : "Lena Rudenko"
"married " : f a l s e
" emai l " : " lenar@mail . ua"
"phoneNumbers" : [{ " type" : "home" , "number" :123 } ,

{" type" : "mobile " , "number" :12345 }]
}

Figure 3.2: A very simple JSON object example.

The object from the example above has 5 attribute-value pairs: the values are strings
(Lena Rudenko, lenar@mail.ua), number (22111786), false-token and an array - an
ordered list of values, each of which may be of any other JSON type. The values in
our example are in turn JSON-objects too.

42

JSON.org

3.2 ETL Process

Tweets are the basic building blocks of Twitter. The tweets provided by Apache
Flink as JSON objects are complex structures of attribute-value pairs: The simplest
tweet (no retweet, no quote) has 27 such pairs. Some values may be complex objects
themselves again, e.g., user. This JSON-object contains attributes describing the user
who sent the current tweet.
Figure 3.4 shows the JSON representation behind the rendered display of the tweet in
Figure 3.3. This example is a very simpli�ed version of the original object to preserve
readability. The complete JSON representation of a tweet can be found in Appendix
A.1.

Figure 3.3: Tweet screenshot by user @endocrinez

{" created_at " : "Thu Oct 31 15 : 2 8 : 1 6 +0000 2019" , " id " :1189927073093181440 ,
" text " : "a per sona l reminder that I ' ve done i t to myse l f again and no man i s
worthy o f my time" , " source " : "Twitter f o r Android" , . . . , " user " :
{" id " :1158758906295922688 , "name" : " a l l u s i o n o f form" ,
"screen_name" : " endocr inez " , " l o c a t i o n " : nu l l , " u r l " : nu l l , " d e s c r i p t i o n " : "a dream
diary only i t ' s my waking l i f e " , " t rans la tor_type " : "none" , " protec ted " : f a l s e ,
" v e r i f i e d " : f a l s e , " fo l lowers_count " :27 , " f r i ends_count " :39 , " l i s t ed_count " :0 ,
" favour i te s_count " :229 , " statuses_count " :119 ,
" created_at " : "Tue Aug 06 15 : 1 7 : 0 6 +0000 2019" ,
" u t c_o f f s e t " : nu l l , " time_zone" : nu l l , " geo_enabled" : f a l s e , . . . } , . . . ,
" f a v o r i t e d " : f a l s e , " retweeted " : f a l s e , " f i l t e r _ l e v e l " : " low" , " lang " : "en" ,
"timestamp_ms" : "1572535696658"}

Figure 3.4: Simpli�ed JSON object of a tweet.

As one seen even in the simpli�ed example from Figure 3.4, the tweet attributes are
very di�erent. For example, this tweet was posted on Tuesday, October 31, 2019 at
15:28:16 UTC (created_at:�Thu Oct 31 15:28:16 +0000 2019�) and has a speci�c
identi�er (id:1189927073093181440). There are several di�erent �elds which describe
a tweet in detail, e.g., name, description, followers_count, statuses_count, lang and
many more. The StreamProcessor converts such objects into more structured data,

43

3 A Framework for Preference-Based Stream Processing

e.g., into created_at = "Thu Oct 31 15:28:16 +0000 2019" and de�nes the data
type �VARCHAR�.
Not all of tweet attributes have the same meaning for my framework: e.g., created_at
tweet attribute will always have a "now"-value - the current date and time in relation
to the moment the user uses the framework. That is because my framework should
analyze the live stream data and receives them at the moment they appear. Also the
attribute retweeted has always the value false. The current tweet was captured by
my system at the time it was created. It is technically impossible that the message
was already retweeted at that time. However, it is clear that for another system and
another use cases that does not require live analysis, these attributes can be of great
importance.
I focus on the attributes18 that are of interest for my Preference Stream Analyzing
Framework:

� text - actual text of the current tweet object, in UTF-8 encoding. This attribute
contains the information, the user is looking for in the most use case scenarios.
Can also be used for �ltering the result set, if, for example, the occurrence
of a certain word in the text is desired. A separate preference CONTAINS was
developed and implemented for this purpose (cp. Chapter 4).

� source - application used to post the tweet. Messages from the website have
a source value of web. Can be used as �lter, if the user wants to have or not
to have tweets from certain utilities. For example, one can assume that if the
tweet was sent by web, the author was in front of the personal computer, maybe
at home or in a cafe, but not somewhere in a big crowd.

� user - author of the tweet. A JSON-object with a large set of own attributes.

� user.name, user.screen_name - user.name is the identi�er of the user, as he
had de�ned it himself, so not always a real name. The user.name is not unique
and can occur in di�erent accounts. user.screen_name is unique and identi�es
a speci�c account, typically has a length of 15 characters.

� user.location - user-de�ned location for his account, not always a real lo-
cation. It should be used carefully: The values lie in a range between e.g.,
"London, UK" and "In Your Heart", can also often be null.

� user.description - description of own account entered by the user. The value
can be null. Most users give a short summary with keywords about the topics
they are interested in.

18
Full Description of all Tweet Objects:

developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object

44

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object

3.2 ETL Process

� user.verified - Indicates for accounts of public interest that the respective
account is authentic, if the value is true. Can be very useful, when looking
for reliable information that veri�ably has been posted by a certain ("trusted")
account.

� user.followers_count - number of this user's account followers. This attribute
can be very helpful, if we want to �lter accounts with exclusive information:
The accounts with the most followers are those of politicians, actors, musicians,
media, etc. Because most users seek for information from these sources, a high
value of user.followers_count can indicate an increased relevance.

� user.friends_count - number of accounts this user is following. The more
in�uential the user, the greater the di�erence between followers_count and
friends_count. Twitter Account von Donald Trump (@realDonaldTrump) has
more than 67 millions followers and follows only 50 other users.

� user.favourites_count - number of tweets the user liked.

� user.statuses_count - number of tweets (including retweets) posted by the
user. The utility of this value depends on the actual user's interest: tweets
about the current political situation from the accounts with small number of
statuses are hardly worthy of attention. But some interesting details to certain
local sport competition or music event can be posted by accounts with a high
or low number of tweets.

� user.created_at - date and time in UTC19 format the account was created.
This attribute can be used to �lter messages according to the "age" of the
sender. Sometimes, news from rather "mature" sources are more desirable;
"fresh" accounts might correlate to a "hotness" score of their tweets.

� coordinates - precise geographical position of the user at the moment when
posting the tweet. If the value is set, coordinates is a very good �lter attribute.

� place - this attribute indicates a place the tweet is associated to.

� entities.hashtags - a word or phrase preceded by a hash sign (#) to identify
messages on a speci�c topic. hashtags are very useful (if not null) to �lter the
tweets with the certain subject.

� lang - indicates machine-detected language of the tweet text. Is useful to select
the tweets, which the user can read an understand.

19
Coordinate Universal Time (UTC)

45

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

3 A Framework for Preference-Based Stream Processing

The attributes hashtags, place, coordinates, location and descriptionmay (and
often are) unde�ned (null).
The summary of the listed attributes with short description can be found in Appendix
A.3, Table A.1.

3.2.2 Building of Chunks

Preference SQL was developed to evaluate �nite data. So some preparations would
have to be done to make the queries on the endless stream data possible.
After the tweet encoding and preparation the Twitter stream must be splitted into
parts to be processed in Preference SQL. These parts are �nite and therefore can
be evaluated with Preference SQL. The splitting is done by grouping objects into
chunks. This corresponds to the tumbling window concept described in Section 2.2:
Stream of individual tweets is converted into a stream of the groups of tweets. Each
group contains a certain (�nite) amount of members. The grouping occurs in the
DataAccumulator, see Figure 3.1. It takes a stream of processed objects as input and
provides a stream of chunks as output. The grouping is based on size (how many
objects are in one chunk) or time (the number of objects per chunk is determined by
the time). Each chunk can then be evaluated with Preference SQL.

3.3 Preference SQL Evaluation on Data Streams

After the ETL has been completed by StreamProcessor and DataAccumulator (see
Figure 3.1), the stream data can be evaluated with Preference SQL.
The �rst tweet evaluation tests have shown that the existing preference constructors
are not su�cient for the analysis of the tweets' texts. The existing categorical prefer-
ences (cp. Section 2.1.1) work quite well if the domains values are �nite. For example,
book titles, country names, animal species or car colors can be searched and evaluated
with existing categorical base preferences. But they obviously will not work with free
text attributes, such as comment, note or tweet. So I was also faced with a task to
design a preference that is able to handle the tweets' plain text.
Still, the evaluation of stream data is not a trivial task even after all preparations:
the result of the individual �nite chunks can be simple determined, but the overall
result is not equivalent to simple combining the results of the individual chunks. To
illustrate this, let us look at the following example:

Example 11 Assume, the tweets from Table 2.1 are the input data that shall be
evaluated within my framework. We consider the following simple preference query:

46

3.3 Preference SQL Evaluation on Data Streams

Find all tweets with hashtag #isu. If such tweets do not exist, the messages with
hashtags #yog or #�gureskating are good alternatives. It is a POS/POS categorical
base preference:

Phashtags := POS/POSm�3(hashtags, {#isu}, {#yog, #�gureskating})

If we consider the entire input stream at once, the BMO-set includes one tweet (it
is also a perfect match): "After FSU_Figure started their campaign against ISU's
unfair judging, olympicchannel removed TES scoreboard from the �gure skating live
broadcast at the Youth Olympics. #ISU haven't got anything to hide, have you?".
This tweet includes the hashtag #ISU while the other candidates do not.
But if the input data was split into chunks and the BMO-sets of each chunk was
combined, the result is di�erent.
Let us look at the input data again:

id hashtags statuses_count text
chunk 1

170513 #yog
#competitions
#scores

1.723 Did Yuma deserve to win #YOG? Yes and
by far. Are the scores horribly in�ated? Hell
yes. Are #competitions with in�ated and
unrealistic #scores enjoyable and a positive
thing for the sport? No, not at all.

861395 #�gureskating
#teamjapan
#iloveyog

1.917 @so_ta0110 impresses in the Mens SP, leads
�eld with 73.07 points. #�gureskating
#teamjapan #ILoveYOG

752371 #yog 1.329 Watching training of �gure skating(men) at
#yog http://yfrog.com/esimeyrj.

chunk 2
377652 #lausanne2020 1.678 Good day for China in �gure skating #lau-

sanne2020: Han Yan leads the men, Yu/Jin
leads pairs http://exm.nr/yfnylq.

591142 #isu 3.278 After @FSU_Figure started their campaign
against ISU's unfair judging, @olympicchan-
nel removed TES scoreboard from the �gure
skating live broadcast at the Youth Olympics.
#ISU haven't got anything to hide, have you?

115214 #�gureskating
#yog
#lausanne2020

6.418 �I did my twizzles better� - Russia's Irina
Khavronina gets to the heart of her improved
performance in the #�gureskating free dance
#lausanne2020 #YOG.

Table 3.1: YOG data from Table 2.1 splitted in two chunks.

In Table 3.1 one can see tweets split into two chunks. It is the output (stream of
chunks) after DataAccumulator has done his job (cp. Figure 3.1) and the input for
Preference SQL, which evaluate the incoming chunks one after another. The tweets
in the �rst chunk do not include hashtag #isu, but all three of them have #yog
or #�gureskating. Therefore the BMO-set of chunk 1 consists of all three tweets

47

http://yfrog.com/esimeyrj
http://exm.nr/yfnylq

3 A Framework for Preference-Based Stream Processing

belonging to this chunk. After that, chunk 2 is evaluated. This chunk includes one
tweet with hashtag #isu, which is also the best match. Obviously the end result is
not correct in terms of Preference SQL if the BMO-set of chunk 1 and the BMO-set of
chunk 2 will simple be combined. For the correct evaluation an other strategy should
applied.

Dividing a data stream into chunks allows to compute chunk-wise correct results for
the entire stream. With a continuous data �ow, its sequencing continues producing
more recent chunks that then may contain better objects w.r.t. the user preference
that can clearly be seen in the Example 11. However, my goal is to provide the
user with a �nal correct result at any given moment of time, regardless of how many
chunks have been processed. Hence, each temporary BMO-set must be compared to
the objects in the subsequent chunks provided by the ETL process.
In detail, let c1, c2, ... be the chunks provided by the ETL processor. The Preference
SQL system evaluates the user preference P on the �rst chunk, i.e., σ�P ��c1�. Since
c2 could contain better objects the new objects from c2 have to be compared with the
current BMO-set, i.e., it will be computed σ�P ��σ�P ��c1� < c2�, and so on. However,
this leads to a computational overhead if c2 is large. Therefore I apply a pre-�lter to
c2, i.e., I �rst compute σ�P ��c2� and afterwards apply the preference selection to the
union of σ�P ��c1� and σ�P ��c2�, since the following holds [HK05, CCM13]:

σ�P ��c1 < c2� � σ�P ��σ�P ��c1� < σ�P ��c2�� (3.1)

This leads to a correct result. However, this method does not guarantee e�cient
behaviour. In particular, the rapid update of incoming tweets results in a fre-
quent change of most recent chunks and, as a consequence, requires a constant re-
computation of the most recent BMO-sets. Development and implementation of an
algorithm that can solve the task of evaluating stream data quickly and e�ciently was
one of the core tasks of my doctoral thesis. For this I will present the Stream Lattice
Skyline algorithm in Chapter 5.

3.4 Aggregation and Summarization of Tweets

After evaluating incoming tweet streams w.r.t. user's de�ned preference, the result
set has to be presented to him. Due to the nature of Twitter, even the reduced set of
information could be too large on the one hand or contain duplicates and incomplete
snippets on the other hand. Thus, it is not enough to only provide personalized
information to the user. It is equally important to present the result in a way that
it can easily be consumed. Also, the number of best matching objects delivered to

48

3.4 Aggregation and Summarization of Tweets

a user after evaluating a stream with Preference SQL can be quite large, especially
if these objects are not the perfect matches. In order to improve my framework and
make it easier for users to consume the results delivered by Preference SQL, I want to
post-process them and show the users automatically summarized text messages with
duplicates and irrelevant posts removed.
Let us imagine a user wants to �nd some facts about the soccer team Germany at the
World Cup 2018 in Russia. He knows that Germany just had their last group game
and wants to �nd out everything about this topic. Our user formulates his preference
query using the hashtags #Germany and #WorldCup2018 and receives the following
set of tweets as result:

1. It's a sad day for all of Germany and the World Cup.

2. After a loss against South Korea, team Germany leaves the World Cup.

3. 0:2 defeat in the last group match and team Germany leaves the World Cup
in Russia.

4. RT @UserXyz It's a sad day for all of Germany and the World Cup.

Each of these tweets reports about the same event - soccer team Germany leaves
the World Cup after group stage. The �rst message describes some user's emotions
and is less important for someone looking for factual information. The following two
tweets provide facts (however, incomplete). The last one is a retweet of the �rst
message with no additional information at all. We will get a full picture of what
happened reading the both messages and summarizing the information from them:
�Team Germany loses its last group match against South Korea 0:2 and leaves the
World Cup in Russia.� The �rst and last tweets can be ignored because it does not
contain any relevant information.
Automatic summarization of documents has been a topic of research work for a long
time. In most cases, however, this term refers to a summarization of longer text doc-
uments. The result of such a summarization is a short summary of one or more longer
documents to give users a brief overview of the combined content. The summary is
always shorter than the original document and for the most part uses phrases and
expressions from the original documents. Summarization of micro-blog posts, such as
tweets, has di�erent goals and tasks.
I want to collect and summarize the incomplete information from di�erent tweets
removing duplicates and messages, which don't contain any valuable facts for better
perception by the user. The resulting message can be longer than individual source
tweets and should contain more facts about the event. Details about Tweet aggrega-
tion can be found in Chapter 6.

49

3 A Framework for Preference-Based Stream Processing

In this chapter I have given a short overview of the architecture of my framework:
I described the necessary transformations that should be done with the incoming
data to make them evaluatable with Preference SQL. Furthermore I discussed the
evaluation and identi�ed a few open building issues. They include a) development
and implementation of a new preference that is compatible with a short plain text, b)
development and implementation of an e�cient algorithm for preference evaluation
on the data streams and c) automatic summarization of the �ltered short messages
for better user perception. This will be discussed in the next chapters of this work.

50

Chapter 4

Tweet Text Processing

This chapter describes the new CONTAINS preference.

In my doctoral thesis I deal with the preference based analysis of a
very special kind of data streams - namely tweets. A person who is
familiar with Twitter as a simple user usually does not realize how much
information (apart from the actual text message) a tweet contains. Many
attributes, such as followers_count or location, can be �ltered well with
preferences to �nd the Twitter posts that are interesting and relevant
to the user. Despite the variety of available preferences, there is no
one, which can evaluate text messages. In this chapter I describe a
new preference for evaluation of short plain texts. The idea and formal
de�nition of this preference are the content of Section 4.1. The following
Section 4.2 deals with Natural Language Processing on tweets: due to
the informal natur of the tweets, some preprocessing steps have to be
applied to these short messages before they can be evaluated with the
new CONTAINS preference. In the last Section 4.3 of this chapter I
describe results of some experiments done with the new preference.

4 Tweet Text Processing

Section 2.4 gives a brief overview of the micro-blogging service Twitter and shows
that the core substance of this social network - tweets - are much more than simple
text messages. Detailed description of the tweet's attributes, which are relevant for
my framework, can be found in Section 3.2). The most of these attributes can be
evaluated with the existing preference constructors (see Section 2.1). But despite
the variety of available preferences I realized that there is no suitable preference
constructor for evaluation of tweets (in the meaning of short free text messages). The
existing categorical preferences (cp. Section 2.1.1) work quite well if the domains
values are �nite, which tweets are clearly not. Literally anything can appear in the
text. A tweet is limited only by the number of characters and can include typing
errors, abbreviations, various spelling forms and other special language constructs.
Thus, my task was to come up with a new preference constructor to search on full-
text data and to handle natural language mistakes and other tweets' special language
features if possible.

4.1 CONTAINS Preference

The existing categorical preference constructors are well suited to evaluate the at-
tributes with the �nite domains, such as book titles, country names, animal species
or car colors. A preference query LAYEREDm�1(color, {'white'}, others) will return
all objects that have a value white in the attribute color. If no such objects exist,
objects of any color are returned. This approach will obviously not work with free
text attributes, such as comment, note or tweet.
CONTAINS base preference has been developed in order to apply the preference queries
to the texts, cp. [RH20, RHE20]. It has a similar structure as LAYERED (cp. De�nition
11). The user de�nes some levels with a set of words or terms he would like to see in
the result set. The general idea is as follows: If the text message contains some term
from one of the levels, it gets a number value corresponding to the level number, the
term belongs to. The smaller the value, the more preferred the text is. The texts
with the smallest values belong to the evaluation result set after all.
Hence, the preference query text CONTAINS��¬figureskating¬�, �¬isu¬�� means that the
user is looking for all tweets from the current stream including the term �gure skating.
If no such texts exist, the messages including isu should be returned.

De�nition 18 (CONTAINS Preference)
Let L � �L1, ..., Lm�1� with m % 0 be an ordered list of m� 1 sets with terms ti. For
m sets a user de�nes the terms as those he wants to see in the result set. Additionally
there is also another level with the set called others. All terms that will be found in
tweets but are not listed in the sets of levels 1, ...,m belong to the others-set. All

52

4.1 CONTAINS Preference

sets are disjunct, each term ti belongs to one set only. The terms within a set are
indi�erent. Then I de�ne the CONTAINS preference as CONTAINSm�A,L1, ..., Lm�1�.
Assume x and y are two terms from a set of all terms that occur in tweets. Thus the
following applies:

xi $P yj i� xi " Li, yj " Lj , j $ i for i, j " r1, ...m � 1x (4.1)

xi � L1, ..., Lm � xi " others (4.2)

x 0 y " Li� �x 	P y� (4.3)

For each considered text message a score value is calculated. The lower the score
value for a message, the more preferred it is. A text can contain terms belonging to
di�erent levels.

Theorem 4 (CONTAINS Preference Score Function)
Let t1, ..., tn, (n % 0) be terms in some text message t that belong to some di�erent
levels L1,...,m�1. The score function is de�ned as:

f�t� � min�ri � 1¶i � 1, ...,m � 1x�

It is necessary to prove that CONTAINSm�A,L1, ..., Lm�1� with the scoring function
from Theorem 4 is a preference w.r.t. De�nition 1:
Proof.

� irre�exive: �x $P x�
Let x " dom�A�. Let also assume k is the smallest level of x such that:
f�x� � min�i � 1¶i � 1, ...,m � 1�
f�x� � �k � 1�� �x $P x�� f�x� % f�x�
�x $P x�� �k � 1� % �k � 1�� false

� transitive: �x $P y� 0 �y $P z�� �x $P z�
Let x, y, z " dom�A�, then: x $P y 0 y $P z � f�x� % f�y� 0 f�y� % f�z��
f�x� % f�z�� x $P z, since f�x� is a monotone function.

u

Note that the other score function, e.g., average or weighted average over level values
would also be conceivable.

Example 12 The score value for the following tweet text t �� "After @FSU�gure
started their campaign against ISU's unfair judging, @olympicchannel removed TES

53

4 Tweet Text Processing

scoreboard from the �gure skating live broadcast at the Youth Olympics" should be
calculated. Regarding the preference P := CONTAINSm�2(t, r'�gure skating'x, r'isu'x,
others), t has the score value f�t� � 0, even though the text includes terms from
levels L1, L2 and from others (here L3).

4.2 Natural Language Processing of Tweets

Tweets are rather short messages with the maximum length of 280 characters, which
can contain not only words but also links, special characters (e.g., emojis), references
to other user accounts and hashtags. Tweets also have a high percentage of typing
errors, abbreviations and other language features, which is not surprising when you
consider that 83%20 of all users are those who use the mobile Twitter application and
post fast without distracting from other activities.
Not only the content diversity of the tweets, but also various forms of their terms (its,
it is or it's as variants of the same expression) refer to the challenges one faces when
evaluating tweets with CONTAINS preference. To map di�erent spelled or misstyped
terms to the terms de�ned by this preference, some techniques from the �eld of Natural
Language Processing have been incorporated into a preprocessing step.
Natural Language Processing (NLP) is a sub�eld of linguistics, computer science,
information engineering, and arti�cial intelligence that involves a wide collection of
techniques for language analysis and language development with the aim to achieve
the most natural result as possible [Lid01].
The collection of NLP techniques can be divided into syntactic and semantic methods,
depending from information level they handle (cp. [CWB�11]). Semantic methods
refer to the meaning of input (cp. [LM11]): Answering user questions automatically,
summarizing the topic of a document, Named Entity Recognition (�nding personal
names and locations in texts) are some examples [Lid01, CWB�11]. Syntactic meth-
ods, on the other hand, deal with the structure of a word, sentence or even complex
text [LM11]. They include, for example, lemmatization, stemming, parsing, part-
of-speech (POS) tagging and the segmentation of a text into sentences or words
[CWB�11, MS98]. Parsing describes the segmentation of words in a sentence into
subject, predicate and object. POS tagging assigns each word to its part of speech,
while lemmatization and stemming reduce a word to a basic form.
The new CONTAINS preference should be able to �nd the tweets where the searched
terms are written incorrectly or di�erent. For this I use some of the previously men-
tioned syntactic methods from NLP. To keep the e�ort of the work within reasonable

20
Statista: de.statista.com/statistik/daten/studie/541918/umfrage/anteil-der-mobilen-monatlich-

aktive-nutzer-von-twitter-weltweit/

54

4.2 Natural Language Processing of Tweets

limits, I have concentrated on the tweets in English.
I have concentrated on nouns, which are naming words and identify persons, places,
things, animals, feeling, ideas, things, events, substances, or qualities. The proposed
approach can be extended with little e�ort to a few more parts of speech, such as
verbs, adjectives, adverbs etc. Note that the nouns are also expected as input terms
for CONTAINS preference.

4.2.1 Preprocessing of Tweets

The following steps are applied to a text before a score value can be calculated with
regard to the preference: the tweet text is normalized, segmented into sentences, which
are further divided into single words. For these words, a part of speech is determined
and the nouns are sorted out of the whole set. The nouns will be stemmed in the
last step. A graphic sequence of this process as a pipeline can be seen in Figure
4.1. For some preprocessing steps the existing tools and libraries were used (e.g.,
determination of POS tags is done with the help of Penn Treebank Tagset [MSM93]
and for stemming Porter Stemmer [Por80] is used). The other steps were implemented
speci�cally for this work to better cover the special character of tweets. This is the
case especially with normalization, which has to handle, e.g., @username references
in the tweets, which do not appear in other texts.

stemmed nouns

Normalization Segmentation
into sentences

English tweets single sentences

Determination of
POS tags

normalized tweets

si
ng

le
 w

or
ds

Filtering
of nouns

tagged wordsnouns
Stemming

Segmentation
into words

Figure 4.1: Pipeline of tweets preprocessing steps.

Let us take a closer look at the individual steps:

1. Normalization. In this step, emojis and links are removed from the tweet text, as
they are an obstacle to part-of-speech de�nition and obviously cannot be speci�ed
as terms in the preference. If the tweet is a retweet, the retweet-shortcut (RT at
the beginning of the message) and the @username references are deleted. The
@username mentions at the beginning of the tweet (if the tweet is a reply to one
or more users) are also removed. In addition, each hashtag term is cleared of the
hash character #. Figure 4.2 shows a tweet before and after normalization.

2. Segmentation into sentences. After normalization, the text is divided into
individual sentences. Although tweets usually contain very few sentences, this

55

4 Tweet Text Processing

Figure 4.2: Tweet before and after normalization.

segmentation is still important because the POS Tagger determines the word types
of the individual words based on the sentence structure.

3. Segmentation into words. In this step the sentences are segmented into indi-
vidual words and passed on to part-of-speech tagger.

4. Determination of POS tags. Each input word is assigned to its part of speech
with a part-of-speech tagger. Most such POS taggers use statistical methods to
determine a part of speech. They are trained on the data where each word has
already been tagged. The trained tagger then assigns a new input word the tag that
has the highest probability in the context (cp. [LM11]). In Table 4.1, a sentence
"Gustav likes sunny days to go swimming" is tagged with a Penn Treebank Tagset.
This tagger for English language is also used in our implementation.

Gustav likes sunny days to go swimming
NNP VBZ JJ NNS TO VB VBG

Table 4.1: A tagged example sentence.

The tags determined by the tagger can be understood as follows: NNP is a proper
noun in singular, VBZ is a verb in the present tense and in the third person
singular, JJ stands for an adjective, NNS for a noun in the plural, TO is a word
"to", VB corresponds to a verb in in�nitive and VBG to a verb in the gerund.

5. Filtering of nouns. Penn Treebank Tagger distinguishes general nouns and
proper nouns in singular and plural. We need all four groups, because, for example,
both "Trump" and "president" can be used in the CONTAINS preference. In this step
the �ltered nouns are additionally cleared of unnecessary characters. Points and
apostrophes remaining in words are removed, as they make stemming problematic
and complicate comparision with the terms from the preference during evaluation.

6. Stemming. After cleaning the words from special characters, at �rst it is ensured
that the word is in lower case and then a stemming is performed. Stemming short-
ens a word back to a word stem common to all morphed forms [SL18]. Stemming

56

4.2 Natural Language Processing of Tweets

should not be confused with lemmatization. These two processes reduce words to
a certain basic form, but while lemmatization returns the word to its dictionary
form, stemming often creates an unnatural common form. Lemmatizers are often
used when the produced lemma has to be used in the area of word meaning or
generally a natural real basic form is needed. I use stemming precisely because it
takes no account of the meaning of the word. Since stemming create the unnatural
common form anyway, it is possible to stem the misspelled words too.

The most common stemmer for the English language, which I also use in my
work, was developed by M. Porter and published in [Por80] in 1980. A schematic
representation of the form �C��V C�m�V �, m ' 0, where C is a consonant, V - a
vowel, is calculated for each word. Then the word stem is calculated by changing or
eliminating the current word ending in several steps according to the appropriate
rules.

4.2.2 Edit Distance

The stemmed nouns from the tweets should now be compared with the nouns speci�ed
by the user in the CONTAINS preference. Note that the preference nouns are also
stemmed by the same procedure to enable a fair comparison. Ideally, the word (stem)
from a tweet is exactly the same as the word (stem) from a preference. But we
know that tweets are rich with spelling mistakes. In order to allow comparison of
the misspelled nouns, I calculate the distance between a stemmed input noun and a
stemmed noun from the tweet. The terms with the distance below a certain value are
regarded as equal.
For the comparison of words that include spelling mistakes there is a wide range of
techniques, which are based on syntactic and statistical methods (cp. [Kuk92]). In
this work I use the Damerau-Levenshtein algorithm that works over an edit distance.
Edit distance between two words is de�ned as number of changes in one word that
have to be made to get from that word to another one. Changes include inserting
and deleting of a character, replacing of a character with another one, and swapping
the positions of two characters that cover the most common spelling mistakes.
Damerau [Dam64] and Peterson [Pet86] independently found out that about 80% of
all spelling mistakes belong to one of the four groups shown in Table 4.2.
The extended variant of Damerau-Levenshtein algorithm has a threshold value. The
calculation is aborted if the distance between two words is too big and the threshold
value is exceeded. Aborting the distance calculation is possible because I am not
interested in the distance between two words, but in very similar words. This results
in runtime advantages.

57

4 Tweet Text Processing

error incorrectly correctly
swap of two adjacent characters huose house
one letter false dok dog
one letter missing aple apple
one letter to many informaition information

Table 4.2: The four most common spelling mistakes [Dam64].

Example 13 Let us calculate the edit distance between two seemingly very di�erent
words "housing" and "mouse". First, both words should be stemmed: housing �
hous and mouse � mous. It is now possible to calculate how many changes it takes
to turn stem "hous" into stem "mous". In this case, only one change is needed,
namely the replacement of the character h by m. As one can see, very di�erent words
can have a close edit distance between their stems.

I therefore need to de�ne the term similar words. I need to determine if, for example,
"poll" and "pole" - two di�erent correctly spelled words - are similar. I have also
to regulate if "skater" and "skating" - two di�erent nouns with the same stem - are
similar words in this approach. Finally, I need to determine whether misspelled words
are similar with the correctly spelled ones, e.g., "schedule" and "shedule". In addition,
one should consider whether the degree of similarity is related to the length of the
word. After all, a long word o�ers more room for possible errors.
I have decided to consider three possible scenarios:

1. The input word t from the CONTAINS preference is short: ¶t¶ & 4. This length
was taken for several reasons: In [Kuk92] the author de�nes short words as word
with a maximum length of 4 characters. Moreover, the distance is determined not
for the original words, but for their stemmed variants, which in many cases are
shorter. The allowed distance d between the short input word and the word from
tweets to consider them as equal has to be d � 0, so they must be identical. If
the distance is greater, one will identify the pairs "cat" and "cap" or "poll" and
"pole" as identical, which is obviously a mistake.

2. For words of medium length the distance of d � 1 is allowed. Medium-length
words include words with more than 4 but less than 8 characters: 4 $ ¶t¶ $ 8. This
decision is supported by the work of Norvig [Nor13]. He analyzed the number and
length of the words that appear in books scanned by Google Books. He found that
80% of written words are between 2 and 7 characters long and the average length
is about 4.7 characters per word.

Distance 1means that one change is enough to make the input word and tweet word
exactly equal. The possible changes correspond to the 4 most common spelling

58

4.3 Experiments

mistakes listed in Table 4.2. In the words of medium length (note that the length
is always determined for a stemmed word) the probability of making a mistake is
much higher than in the short words. At the same time, it is rather improbable
to form an existing correct word by making only one change: inserting, deleting,
replacing of a character or swapping the two characters positions.

The described approach will de�ne equality for a pair of words "schedule" and
"shedule". The correctly spelled word schedule will be reduced by he stemmer to
the form schedul with the length of 7 characters. The incorrectly spelled word
shedule will be stemmed to shedul. The edit distance between these stems is d � 1
(inserting of c into shedul), hence the words are "equal" and the tweets containing
"shedule" will also belong to the result set, if the preferred term in CONTAINS is
"schedule".

3. The last scenario applies to long words with at least 8 (¶t¶ ' 8) characters after
stemming. This group is relatively small: According to Norvig (cp. [Nor13]),
only 20% of all words reach the length of 8 characters or more. But he examined
the words in the form they appeared in the books. Stemming usually shortens
the words, so the percentage for this group is clearly below 20%. This is also
supported by the fact that tweets are limited in length to 280 characters and users
try to express their thoughts brie�y and clearly. The short and precise words are
a part of it.

For the small part of the long words I allow the distance of d � 2. It is not di�cult
to make a mistake in a long (and often complicated) word. Especially because
tweets are usually written casually, parallel to another activity. Because of the
generally low number of long words, the danger of �nding two of them within the
distance of d � 2 is also low.

4.3 Experiments

In this section I describe my test results. These tests should give an impression of
how e�cient the developed approach is (runtime) and what quality the delivered
results have (do the results correspond to the query and whether something remains
undiscovered).
For comparison another method (further called simpleC) of score calculation for
CONTAINS preference was implemented. For this, there is no complex natural language
tweet preprocessing. I only remove the initial signature of retweets "RT @name", the
rest of the text remains unchanged. I use a pre-implemented case insensitive func-

59

4 Tweet Text Processing

tion contains from the Apache Commons Lang 3.921 library that checks if one term
is contained in another one. For each term in each of preference sets it is checked
whether it occurs in the tweet and if this is the case, the number of the term's level
is assigned to the tweet. The total tweet's score is then a minimum of all assigned
level numbers (cp. De�nition 4).
Although I do not preprocess tweets using simpleC, stemming for the preference terms
is done anyway. Thus prefC (my approach with complex preprocessing and spelling
correction) compares stemmed preference terms with the stemmed tweet's nouns cho-
sen while preprocessing of the text. simpleC, which is used as a reference point,
compares the stemmed preference terms to all original written words (nouns or no)
from the tweet's text. The reason for this decision is due to the way the plural of
some nouns are formed in English. The word ending -y in singular changes into -ies in
plural, e.g., study and studies. As a consequence, when searching for the word study
in the tweet text, studies will not be considered as a hit and vice versa. Spelling
mistakes are not taken into account in this method and only the correctly spelled
words are regarded as hits.

4.3.1 Quality Tests

To test the quality of the returned results, 10.000 completely random tweet objects
were saved to a text �le. As input terms, I used both words that changed their form
after stemming and those that remained unchanged. In addition, I selected words of
di�erent lengths to be able to test whether wrong spelled words will be found (cp.
Section 4.2.2).
The two methods are applied to the tweets that I have stored. Table 4.3 shows
the number of hits (tweets containing the corresponding term). In Table 4.4, I see
the same results expressed in terms of Precision (P) - the percentage of retrieved
documents that are relevant to the query - and Recall (R) - the percentage of the
relevant documents that are successfully retrieved.
One can see that the number of hits in Table 4.3 for the simpleC is for most terms
higher than that of the prefC. There is only one exception for the term skating, which I
explain later. simpleC returns on average more tweets. Moreover, recall of simpleC is
almost everywhere 100%, i.e. all relevant tweets have been found. The only exception
I observe for the term connection. One of the relevant tweets includes this misspelled
term (konnection) and will not be found by simpleC, but will be present in the results
of prefC. prefC shows slightly worse recall results, but the di�erence doesn't exceed
15%, except for one term - sandwich. simpleC returns twice as many relevant tweets.

21
Apache Commons Lang 3.9 API:

commons.apache.org/proper/commons-lang/javadocs/api-3.9/overview-summary.html

60

https://commons.apache.org/proper/commons-lang/javadocs/api-3.9/overview-summary.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.9/overview-summary.html

4.3 Experiments

term stemmed term prefC simpleC
sandwich sandwich 1 2
housing hous 35 93
skating skate 25 1
decision decis 7 7
connection connect 8 20
replacement replac 10 15
development develop 13 19
independence independ 6 8
forest forest 6 7
bear bear 6 20

Table 4.3: Number of hits using two di�erent methods.

term P prefC P simpleC R prefC R simpleC
sandwich 100% 100% 50% 100%
housing 100% 39% 97% 100%
skating 4% 50% 100% 100%
decision 100% 100% 100% 100%
connection 87.5% 40% 78% 89%
replacement 40% 27% 100% 100%
development 100% 74% 93% 100%
independence 50% 37.5% 100% 100%
forest 100% 100% 85.7% 100%
bear 100% 30% 100% 100%

Table 4.4: Precision (P) and Recall (R) for two di�erent methods.

But if you look at Table 4.3 with the number of hits, you can see that twice as many
means 2 tweets, instead of 1, which simpleC �nds.
The reason for this is that my approach takes into account only a very small num-
ber of hashtags. They can be almost any - complex, non-existent, invented: #Be-
ginner'sMind, #BuildingConnections, #ManagersDay2016 are only some examples.
Obviously, that stem sandwich is found in the hashtag #tunasandwich by simpleC
but not by prefC, which can not split this complex term into its components. This is
also the case for stem forest (cp. Table 4.3): the seventh hit of simpleC is a tweet
with the hashtag #UgandasForests, which remains undetected by prefC.
Besides the "good" results, simpleC also detects the "bad" ones in this way: The
tweets with hashtags #clubhousegh and #DaquansPlayHouse are e.g. returned when
the user is looking for housing. Let's take a closer look at this term. Since the length
of the stemmed term is ¶hous¶ � 4, no di�erent spelling or mistakes are allowed. The
tweets delivered by prefC (my approach) contain the words: house, housing, House,
house's, which all make sense. In the tweets delivered with simpleC, one �nds other
terms besides those already mentioned, e.g. houswife, penthouse, thousand. Also
the proper names (Whitney Houston, Amy Winehouse), hashtags (#ukhousing,
#clubhousegh, #DaquansPlayHouse) and account names (@RachaelLHous, @Alert-
Houston, @6Vishouse etc.) are included. The result is understandable, because all
listed words contain stem hous. But it is not what I wanted.

61

4 Tweet Text Processing

Another reason for the larger result of simpleC are verbs, adjectives or even other
nouns with the corresponding stem (e.g. to connect and connected while searching
for connection; beary, to bear or beard - for bear).
One should not forget words whose meaning changes to the opposite just by adding
a pre�x too: dependence and independence, spelling and misspelling. While looking
for the �rst term of each pair, simpleC will �nd also the second one. And since their
meanings are completely opposite, the presence of the latter terms (with pre�x) in
the result set is undesirable if the user wants the former ones.
The returned non-relevant results have a great e�ect on the precision values, which
one can see in Table 4.4 for the simpleC very well. Precision values of simpleC are
almost always worse, sometimes very clearly than those of prefC. The only exception
is the term skating. This is the only term for which the number of hits of prefC is
higher and precision is lower than for simpleC (see Tables 4.3 and 4.4). If I look
more closely at the resulted tweets, I do not see in the texts skating, skate, skater,
etc. that were expected. Instead one �nds state and/or Kate. The reason is the
allowed deviation of the correct spelling / error correction. The original term skating
is stemmed to skate. It has a length of 5, so there is a distance of 1 between skate
and the stemmed nouns from the tweet allowed (cp. Section 4.2.2). Skate and state
have one di�erent letter, skate has one letter more than Kate (the approach is case
insensitive), so the result is quite logical.
My approach has also found a tweet with a misspelled term konnection (instead of
connection). Unfortunately, the number of incorrectly returned tweets is too high with
this correction. So I clearly need to revise this step of my approach. One can increase
the length of the words that are allowed to be corrected. The implementation would
be very simple, but one cannot guarantee that even with the longer words, a very
similar but completely di�erent term will not appear at the distance of one change.
Another option is to create some kind of lexicon where the most common (spelling)
variations of the words are collected. A big advantage of this approach is that I do not
have to limit ourself to 4 most common spelling mistakes (see Table 4.2), but can also
include the very popular abbreviations (e.g. prof for professor). A big disadvantage
in return is the e�ort required to create this lexicon.
In general, one can say that the quality of results delivered with prefC is higher
compared to simpleC. But spelling mistake correction / di�erent spelling part must
be enhance.

4.3.2 Runtime Tests

I also did some runtime tests: I compared the time prefC and simpleC take to evaluate
one tweet. The tests were performed on Intel® Xeon® Scalable Processor �Skylake�

62

4.3 Experiments

Silver 4110 with 2.10 GHz, 192GB DDR4 and 2x 4TB SATA3-HDD running Ubuntu
Linux 18.04 LTS 64 bit.
For the tests I collected real tweets. Each �le contains a di�erent number of tweets
(cp. Table 4.5). The tweets were collected live and are di�erent in each �le. All
tweets in each �le were evaluated with respect to two preferences:

� P1:=CONTAINSm�2(t, r'bear'x,r'forest'x, others)

� P2:=CONTAINSm�3(t, r'housing'x,r'decision', 'statement'x,r'connection'x, others)

using prefC and simpleC. The results can be found in Table 4.5 for P1 and Table
4.6 for P2. The measured time includes both the tweets preprocessing and the actual
score calculation.

�le tweets number time prefC time simpleC
f1 120 277 374.09 108.07
f2 133 278 446.79 116.8
f3 268 231 438.76 115.39
f4 317 816 443.53 116.13
f5 399 929 369.35 106.42
f6 599 275 365.1 105.3
f7 931 027 431.88 113.99
f8 1 160 599 435.99 114.41
f9 1 307 764 362.31 104.46
f10 3 592 899 348.25 104.3

Table 4.5: Runtime in microseconds (µs) of two di�erent methods per tweet for P1.

�le time prefC time simpleC
f1 374.4 110.65
f2 449.62 119.62
f3 441.18 118.32
f4 447.05 118.79
f5 370.8 109.17
f6 365.71 107.85
f7 434.53 116.06
f8 438.24 117.31
f9 362.58 106.48
f10 349.26 105.66

Table 4.6: Runtime in microseconds (µs) of two di�erent methods per tweet for P2.

As one can see, the runtime of simpleC is always signi�cantly better compared to
prefC. But let us not forget that my approach (prefC) requires much more complex
preprocessing and score calculation. The other thing that stands out in the results
is that regardless of a preference, the runtime for both methods remains very stable
and do not depend on the �le size (number of tweets).
It seemed interesting to us that the results can be clearly divided into two groups:
the �les f1, f5, f6, f9 and f10 belong to Group 1 with a lower runtime per tweet,

63

4 Tweet Text Processing

the �les f2, f3, f4, f7 and f8 belong to Group 2 with the higher runtime. And this
for both preferences and both methods. The only reasonable explanation is that the
tweets in the �rst group are on average shorter. This means that fewer comparisons
are required (no matter which method is used), which shortens the runtime.
In Table 4.7 I have summarized the runtime for complete tweet evaluation (prepro-
cessing and score calculation) for both preferences P1 and P2 and the runtime for
separate score calculation. Score calculation is about 60-65% of the total runtime.

�le full P1 getScore P1 full P2 getScore P2

f1 374.09 235.3 374.4 235.3
f2 446.79 292.59 449.62 295.19
f3 438.76 288.5 441.18 292.2
f4 443.53 295.57 447.05 295.26
f5 369.35 233.22 370.8 235.59
f6 365.1 231.51 365.71 233.83
f7 431.88 284.79 434.53 286.8
f8 435.99 288.1 438.24 289.83
f9 362.31 229.64 362.58 230.72
f10 348.25 220.82 349.26 222.97

Table 4.7: Full and getScore runtime in in microseconds (µs) for P1 and P2.

In this chapter I have described tweet text processing for preference-based search on
tweets. A new CONTAINS preference was developed and implemented. It allows the
user to list the terms that he would like to see in the tweets. A certain deviation
in spelling or form, as well as possible errors should be taken into account as much
as possible, because spelling mistakes are very typical for tweets. The texts from
the tweets are preprocessed using some methods from Natural Language Processing.
Then, both the input terms and the terms from the tweet are stemmed. Finally, the
build stems are compared, and if they are equal (which is de�ned di�erently for terms
of di�erent lengths), the tweet belongs to the result set.
The �rst experiments have shown that this approach gives very good precision results
in most cases. The misrecognized tweets are the result of the misspelling correction.
This aspect clearly needs to be revised. Recall numbers are �ne, but a few steps can
be taken to improve them. For example, the hashtags, require special treatment, since
in most cases they are not real words existing in the language and therefore cannot be
treated like normal nouns. Although I already had some thoughts on improving the
runtime while implementing this approach, the experiments have shown that there is
still a lot of work to be done in this direction.

64

Chapter 5

Preference Algorithms on Data

Streams

This chapter deals with a new algorithm for evaluating Pareto queries
on data streams.

Stream query processing and especially preference query processing re-
quire modi�ed algorithms, since there is no end result, the new data
arrive again and again. I start with the description of the general prob-
lematic of preference query computation on data streams in Section 5.1.
Also I describe here how a Block-Nested Loop algorithm can be changed
and adapted to calculate the correct result on the stream data and what
its weaknesses are. The next Section 5.2 is dedicated to the new Stream
Lattice Skyline Algorithm (SLS) for e�cient Pareto computation on un-
bounded data. I describe the general idea and then go into the details
using pseudo code description of my SLS algorithm. In the last Section
5.3 I describe very detailed experiments, which were made with the new
algorithm.

5 Preference Algorithms on Data Streams

Today, data processed by humans as well as computers is very large, rapidly increas-
ing and often in form of data streams. Many modern applications such as network
monitoring, �nancial analysis, infrastructure manufacturing, sensor networks, meteo-
rological observations, or social networks require query processing over data streams,
e.g., [CDTW00, BGS01, ABB�03, SST�09].
Users want to analyze this data to extract personalized and customized information
in order to learn from this ever-growing amount of data, e.g., [SKE11, GR09, KEW11,
DPE08]. Due to the continuous and potentially unlimited character of stream data,
it needs to be processed sequentially and incrementally. However, queries on streams
run continuously over a period of time and return di�erent results as new data arrive.
Although many approaches exist for e�ective processing of data streams, learning
from streams requires new algorithms and methods to be able to learn under the
evolving and unbounded data.
On the other hand, preference queries [EP17, MKEK15, Kie02, Cho03, KEW11,
REMK12, REH�12] have received considerable attention in the past, due to their
use in selecting the most preferred items, especially when the �ltering criteria are
contradictory. In particular, Pareto preference queries, also known as Skyline queries
[BKS01, CGGL03, CCM13], a subset of preference queries, have been thoroughly stud-
ied by the database community to �lter high relevant information from a dataset. A
Pareto preference query selects those objects from a dataset D that are not dom-
inated by any others. An object p having d attributes (dimensions) dominates an
object q, if p is better than q in at least one dimension and not worse than q in all
other dimensions, for a de�ned comparison function. This dominance criterion de�nes
a partial order and therefore transitivity holds. The Pareto-optimal set is the set of
best matches only (BMO) objects, which are not dominated by any other objects of
D (cp. De�nition 17).
Algorithms proposed for traditional database Pareto computation, e.g., [ER18, BKS01,
GSG05, CCM13], are not appropriate for continuous data and therefore new tech-
niques should be developed to ful�l the requirements posed by the data stream model.
The most important property of data streams is that new objects are continuously
appended, and therefore, e�cient storage and processing techniques are required to
cope with high update rates. Hence, a stream-oriented algorithm should satisfy the
following requirements (cp. [KPM10]): 1) fast response time, 2) incremental evalua-
tion, 3) limited number of data access, and 4) in memory storage to avoid expensive
disk accesses.
In this chapter, I present a novel algorithm called SLS for evaluating Pareto queries
over continuous settings, and empirically demonstrate the advantage of this algorithm
on arti�cial and real data. My algorithm continuously monitors the incoming data
and therefore is able to maintain the BMO-set incrementally. It is based on the lattice

66

5.1 Pareto Queries on Data Streams

structure representing the better-than relationships that must be built only once for
e�cient Pareto computation on continuous data. The proposed algorithm satis�es all
four requirements on stream-oriented algorithms as mentioned before.

5.1 Pareto Queries on Data Streams

Preference query processing on data streams require modi�ed algorithms, since a
stream is a continuous data�ow and there is no ��nal� result after some data of the
stream is processed. The result must be calculated and adjusted as soon as new data
arrive, since new stream objects received later can build a new BMO-set compared
with objects already recognized in previously computed (temporary) BMO-set (cp.
Section 3.3.
Pareto queries are a special case of preference queries (cp. De�nition 13). These
queries are very popular by users because they allow them to specify desired values
for several attributes at once. To the best of my knowledge, only Block-Nested-Loop
(BNL) style algorithms (cp. [BKS01, XYWH05, JZMG15, MPG07] or [TP06]) can be
adapted to Pareto evaluation on continuous data. These algorithms follow an object-
to-object comparison approach, an expensive operation with a worst-case runtime of
O�n2�, where n is the number of objects.
For analysis of a continuous, unbounded data stream, it is necessary to divide it
into a series of (non-overlapping) chunks c1, c2, . . . , as explained in Section 3.2.2. A
BNL-style algorithm would evaluate the BMO-set on the �rst chunk. Since c2 could
contain better objects w.r.t., one also has to compare the new objects from c2 to the
current BMO-set, i.e., compute and so on (cp. Equation 3.1). However, this leads to
a computational overhead if c2 is large.
Let us consider the following example:

Example 14 A user wants to �nd the tweets with hashtag #isu or alternatively
with hashtags #yog or #�gureskating. He is also more interested in tweets that were
posted by authors with the total number of posts (statuses_count) between 3000 and
6000, the deviation of 500 tweets does not matter. Both attributes - hashtag and
statuses_count - are equally important for the user.
The evaluation of this preference with BNL on the data from Table 3.1 is schematically
represented in Figure 5.1.

In the �rst step tweet1 from chunk 1 is added to the current BMO-set. In the second
step tweet2 is compared to tweet1. They are indi�erent and both are in the temporary
BMO-set. Note that indi�erence is given because d-parameter is set to 500. This
means that the values of the attribute statuses_count for tweet1 (1723) and tweet2

67

5 Preference Algorithms on Data Streams

BMO-set

tweet1
tweet2

tweet1
comparision

tweet2
indifferent with
tweet 1
tweet3
worse than
tweet 1
tweet3
worse than
tweet2

tweet4

evaluated object

tweet2

tweet1

tweet3

tweet4

 hashtag : '#yog',
statuses_count : 1723

 hashtag : '#figureskating',
statuses_count : 1917

 hashtag : '#yog',
 statuses_count : 1329

tweet1:

tweet3:

tweet2:

chunk 1

chunk 2

tweet4:

tweet6:

tweet5:

 hashtag : others,
statuses_count : 1678

 hashtag : '#isu',
statuses_count : 3278

 hashtag : '#figureskating',
 '#yog',
 statuses_count : 6418

tweet1
tweet2

tweet5
tweet5
better than
tweet 4

tweet5

tweet6
tweet6
worse than
tweet 5

tweet5

BM
O

-s
et

 1
BM

O
-s

et
 2

tweet1
tweet2

tweet1
tweet2
indifferent with
tweet 1
tweet5
better than
tweet 1

tweet2

tweet1

tweet5

 hashtag : '#yog',
statuses_count : 1723

 hashtag : '#figureskating',
statuses_count : 1917

tweet1:

tweet5:

tweet2:

BMO-set 1 BMO-set 2

statuses_count : 3278
 hashtag : '#isu',

tweet5
better than
tweet 2

tweet5

(e
nd

) B
M

O
-s

et

Figure 5.1: Example of stream data evaluation with BNL.

(1917) end up in the same level (cp. De�nition 7). The next candidate from chunk 1
is tweet3, it has be compared to the objects from the current BMO-set. It is worse
than tweet1, the comparison to tweet2 is not necessary in this case, tweet3 it will be
discarded. To the current temporary BMO-set belong still tweet1 and tweet2. Tweet3
was the last one in the chunk 1. The algorithm continues with the next chunk 2 and
calculates the BMO-set for this new chunk.
First tweet4 is added to the current BMO-set. Afterwards tweet5 is compared to
tweet4. It belongs to the new current temporary BMO-set for the chunk 2 because it
is better than tweet4. The last tweet in this chunk tweet6 is worse than tweet5 and
is discarded after comparison to it. Tweet5 is the only tweet in the BMO-set of the
chunk 2.
Now I have two partially BMO-sets for two chunks. In the next step the total BMO-
set can be calculated according to Equation 3.1. Tweet1 belongs to the BMO-set in
the �rst step, following by tweet2 in the second step, which is indi�erent compared to
tweet1. An �nally tweet5 has to be compared to the tweets in the current BMO-set.
It is better than tweet1, but it is not enough to add tweet5 to the BMO-set. It will

68

5.2 Stream Lattice Skyline Algorithm (SLS)

be compared also to other objects in the temporary result set. Since tweet5 is also
better that tweet2, it is the only one object in the end BMO-set of two chunks.
The result is correct, however, it is very ine�cient. A large number of comparison leads
to a quadratic worst-case run time. To make the response time better, I developed
and implemented an algorithm that can evaluate queries in linear time. I was inspired
by the idea described in [MPJ07, PK07, EK14] and wanted to adapt this algorithm
to stream data. That is how Stream Lattice Skyline algorithm came about.

5.2 Stream Lattice Skyline Algorithm (SLS)

I have developed Stream Lattice Skyline (SLS) algorithm for e�cient real-time Pareto
(Skyline) computation on unbounded streams [RE18]. It does not depend on object
comparisons as BNL algorithms do (cp. Section 5.1), but on the lattice structure
constructed by a Pareto query over low-cardinality domains (either inherently small,
such as language of a user on Twitter � or mapped to low-cardinality domains, such
as number of followers in Twitter).

5.2.1 Concept of SLS

Before I describe my SLS algorithm for real-time stream processing, I revisit the basics
of Hexagon [PK07] and Lattice Skyline [MPJ07] this algorithm is based on.
A Pareto (Skyline) query over discrete domains constructs a lattice, a structure where
two objects o1 and o2 of a dataset have a least upper bound and a greatest lower
bound. Visualization of such lattices is often done using Better-Than-Graphs (BTG)
(see Section 2.1.1). An example of a BTG is shown in Figure 5.2.
The nodes in the BTG represent equivalence classes. The bold numbers next to the
nodes are the unique IDs (see Theorem 3), which play an important role in the
implementation of the algorithm. The idea is to map objects from the stream to
these equivalence classes using some kind of feature function. All values in the same
class are considered substitutable.
I write [2,4] to describe a two-dimensional domain as well as the maximal possible
values of the feature vector representing objects. For example, the BTG in Figure
5.2 could present a Pareto on the tweets language of a user ({english, german, un-
known}) (values 0, 1, and 2) and the hashtag which might be an element of {#yog,
#lausanne2020, #�gurescating, #isu, #others} (values 0, . . . , 4). The arrows in the
BTG show dominance relationships between nodes. The node �0, 0� presents the best
node, whereas �2, 4� is the worst node. The bold numbers next to each node are
unique identi�ers (ID) for each node in the BTG. Nodes having the same level are

69

5 Preference Algorithms on Data Streams

0(0,0)

5(1,0)

6(1,1)2(0,2)

1(0,1)

11(2,1)

8(1,3)

3(0,3)

10(2,0)

7(1,2)

4(0,4) 12(2,2)

9(1,4) 13(2,3)

14(2,4)

St
re

am
 o

f t
w

ee
ts

. .
 .

chunk 1
tweet 1
tweet 2

. .
 .

chunk 2

. .
 .

Figure 5.2: Stream data processing with SLS.

indi�erent. That means for example, that neither the objects in the node �0, 4� are
better than the objects in �2, 2� nor vice versa. They have the same overall level 4.
A dataset does not necessarily contain representatives for each BTG node. All gray
nodes are occupied with an element of the data and therefore non-empty, white nodes
are empty.
The elements of the data that compose the BMO-set are those in the BTG that have
no path leading to them from another non-empty node. In Figure 5.2 these are the
nodes (0,1) and (2,0). All other nodes have direct or transitive edges from these both
nodes, and therefore are dominated.
My approach in general works as follows: after constructing the BTG, which only
must be done once, all tweets of a chunk are mapped to the corresponding nodes in a
consecutive way, e.g., tweet1 is mapped to �2, 0�, tweet2 to �2, 2�, and so on. Assume
all gray nodes in Figure 5.2 are occupied with data from the �rst chunk. Afterwards,
a breadth-�rst traversal (BFT) runs to �nd the non-empty nodes (blue dashed line in
Figure 5.2). For the �rst non-empty node (here �0, 1�) I start a depth-�rst traversal
(DFT) (red arrows) to mark all transitive dominated nodes as dominated. If the DFT
reaches the bottom node �2, 4� (or an already dominated node) it will recursively
follow all other edges. Thereafter, the BFT continues with node �1, 0�, which is empty.
The next non-empty node is �1, 1�, but dominated. Continue with �2, 0�. Since all
other nodes are marked as dominated, the remaining nodes, �0, 1� and �2, 0�, present
the BMO-set.

70

5.2 Stream Lattice Skyline Algorithm (SLS)

Now consider the next chunk (chunk 2). Read all objects form chunk 2, add them to
the lattice and perform a BFT and DFT. Note, that no new objects will be added
to the nodes marked as "dominated" during processing of previous chunks, because
they can not be part of the BMO-set. After BFT and DFT, the remaining nodes
(maybe including the objects from the previous computation) contain the temporary
best tweets. Continue with chunk 3, etc.
Note that lattice-based algorithms are developed for Pareto computation over low-
cardinality domains only. An attribute domain dom�S� is said to be low-cardinality
if its value is drawn from a set S � s1, ..., sm, such that the set cardinality m is
small. For a low-cardinality domain and si " R, a one-to-one mapping function
f � dom�R� � N0, f�si� � i � 1, can be de�ned to get discrete values as required in
our algorithm.
However, since there are many attributes with high-cardinality domains (e.g., Twitter
account of Katy Parry has about 100 millions followers), they can be mapped to a
small range of numbers. This can be done by a function like: f � dom�R� � N0,
f�si� � �i©d$, d % 0, where d represents a discretization of f�si� and can be speci�ed
by the user (cp. d-parameter in De�nition 6).

5.2.2 The SLS Algorithm

SLS is based on a series of �nite chunks as described in Section 3.3. The algorithm
itself is divided into three phases:

1. The Construction Phase (see pseudo code Phase 1) initializes the BTG which
depends on the Pareto query (see [PK07, MPJ07] for details). This has to be done
only once for the �rst chunk (line 1). For evaluation of the following chunks, the
existing BTG will be reused.

The BTG is represented by an array (line 2) of Nodes in main memory. The
mapping from a BTG to an array is possible through the node IDs (see Theorem 3),
which are unique and allow linear storage. The size of the array equals the number
of nodes in the BTG (see Theorem 2). A Node is a data structure representing an
equivalence class in the BTG, which may contain objects from the stream in main
memory having the size of the lattice, i.e., the number of nodes. Each position in
the array stands for one node in the lattice. Nodes are identi�ed by their IDs,
which correspond to their position in the BTG array. A Node also contains its
status empty (initial status), non-empty, or dominated.

71

5 Preference Algorithms on Data Streams

Phase 1 Construction Phase
1: if algorithmFirstRun then
2: BTG �� array of empty Nodes (equivalence classes)
3: end if

2. In the Adding Phase (see pseudo code Phase 2) I process the input data:

a. Read the next chunk ci from the data stream S.

b. Iterate through the objects oj of chunk ci (line 3). Each object will be mapped
to one node in the BTG. For this I compute the ID of the current object oj
(line 4) and store it in the BTG array, if the Node is not dominated (line 5
and 6).

Phase 2 Adding Phase

1: Input: Next chunk ci from data stream S
2: V Add objects oj from chunk ci to the BTG
3: for oj in ci do
4: ID �� compute ID for oj
5: if BTG�ID�.isDominated�� then //Node is not dominated
6: BTG�ID�.add�oj�
7: BTG�ID�.setStatus � non-empty
8: end if
9: end for

3. Removal Phase (see pseudo code Phase 3): After all objects in the chunk have
been processed, the nodes of the BTG that are marked as non-empty and are not
reachable by the transitive dominance relationship from any other non-empty node
of the BTG represent the (temporary) pareto-optimal result set. From an algorith-
mic point of view this is done by a combination of breadth-�rst traversal (BFT)
and depth-�rst traversal (DFT).

I start a BFT at the top of BTG (line 1) and search for the �rst non-empty node,
which is not dominated. From this node on, I start a DFT to mark dominated
nodes (line 4 and procedure DFT in line 9) recursively. When processing objects
from the next chunk, this ensures that there is no need to add objects to already
dominated nodes in the BTG. This reduces memory requirements and enhances
performance. After processing all nodes in the DFT, I continue with the BFT until
all nodes are visited. The remaining nodes contain the temporary Pareto-optimal
set and can be presented to the user.

72

5.2 Stream Lattice Skyline Algorithm (SLS)

Phase 3 Removal Phase
1: Start a BFT beginning at the top of the BTG
2: for each ID in BFT do
3: if BTG�ID�.isDominated�� 0 BTG�ID�.isEmpty�� then
4: DFT(ID) //Start depth-�rst traversal to mark dominated nodes
5: end if
6: end for
7:

8: V Start DFT
9: DFT(ID) =
10: for each successor sID of ID do
11: if BTG�sID�.isDominated�� then return //Node is already dominated
12: end if
13: V Otherwise remove dominated nodes and continue DFT
14: BTG�sID�.setStatus � dominated
15: BTG�sID�.clear�� //Set objects to null
16: DFT�sID� //Recursion, continue with successor of sID
17: end for

4. Since there is a continuous data stream, Phase 2 and Phase 3 have to be repeated
for the next chunks.

The Pareto-optimal set computation in Phase 3 can be done after an arbitrary number
of processed chunks or after a pre-de�ned time. Therefore, my algorithm can be used
for real-time Pareto evaluation. It is also possible to parallelize this approach in the
sense of [EK14, EK16]: parallelize the adding of the objects in the chunk, and, after
adding an object, directly start a DFT to mark nodes as dominated.
Since SLS follows the idea of Hexagon and Lattice Skyline, the linear runtime com-
plexity of O�dn� dV � remains for this algorithm. Thereby, n is the number of input
objects, d number of dimensions, and V the size of the lattice, i.e., the product of the
cardinalities of the d low-cardinality domains from which the attributes are drawn.
Note that although a data stream has potentially in�nite number of input objects,
SLS algorithm gets the data chunk by chunk. And the chunks are �nite, so the
complexity of the algorithm can still be estimated.

73

5 Preference Algorithms on Data Streams

5.3 Experiments

In this section I present comprehensive experiments on my SLS algorithm.

5.3.1 Benchmark Framework

In these benchmarks I wanted to explore the behavior of SLS on synthetic and real-
world data, depending on the data size, chunk size, and di�erent domain size. For
runtime evaluation I compared SLS to the stream variant of BNL, cp. Section 5.1,
because to the best of my knowledge, this is the only other stream-based Skyline
algorithm.
For the experiments on arti�cial data I generated correlated (corr), anti-correlated
(anti), and independent (ind) data streams as described in [BKS01] and varied three
parameters: (1) the data cardinality (n), (2) the data dimensionality (d), and (3) the
number of distinct values for each attribute domain.
For real data, I used Twitter records collected over a speci�c period of time. These
objects (tweets) include various attributes such as name, description, created_at,
followers_count, status_count, lang, and many more. I mapped all attribute values
of theses short messages to a numerical domain according to a mapping function
described in Section 5.2.1.
For analysis of a data stream, it is necessary to divide it into a series of chunks ci as
described in Section 3.2. For this I used Apache Flink, an open source platform for
scalable stream and batch data processing, which is also able to process real-world
data like Twitter (cp. Section 2.3).
My algorithms have been implemented using Java 8. All experiments are performed
on a single node running Debian Linux 7.1. The machine is equipped with two Intel
Xeon 2.53 GHz quad-core processors.

5.3.2 In�uence of the Chunk Size

In the �rst experiment I varied the chunk size to �nd out the optimal number of objects
per chunk. I also compared BNL to SLS w.r.t. their runtime depending on the chunk
size. I used datasets with 100K and 500K objects and considered the algorithms
behaviour for anti-correlated, independent and correlated data distribution.
For a more reliable result I considered di�erent domains: �1, 2, 2, 3�, �1, 5, 10�, �1, 2,
2, 2, 2, 2, 2, 2, 3�, �2, 3, 7, 8, 4, 10�, �1, 5, 2560� and �13, 35, 70�. Remember, each num-
ber corresponds to the maximal possible values of the single domains.
Figure 5.3 (pages 75 � 77) shows the results for anti-correlated data. In all experi-

74

5.3 Experiments

ments SLS performs signi�cant better than BNL independent of the chunk size. For
small chunks (up to 500 objects) and for very large chunks (more than 50K objects),
BNL is substantial worse than SLS. For small chunk sizes this can be explained by a
higher number of unions which has to be carried out after each chunk evaluation, cp.
Equation 3.1. For larger chunks the object comparison process takes more time.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(a) n=100K, dom=[1,2,2,3]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(b) n=500K, dom=[1,2,2,3]

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(c) n=100K, dom=[1,5,10]

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(d) n=500K, dom=[1,5,10]

Figure 5.3: In�uence of the chunk size. SLS vs BNL, anti-correlated data distribution.

75

5 Preference Algorithms on Data Streams

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(e) n=100K, dom=[1,2,2,2,2,2,2,2,3]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(f) n=500K, dom=[1,2,2,2,2,2,2,2,3]

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(g) n=100K, dom=[2,3,7,8,4,10]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(h) n=500K, dom=[2,3,7,8,4,10]

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(i) n=100K, dom=[1,5,2560]

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(j) n=500K, dom=[1,5,2560]

Figure 5.3: In�uence of the chunk size. SLS vs BNL, anti-correlated data distribution.

76

5.3 Experiments

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(k) n=100K, dom=[13,35,70]

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(l) n=500K, dom=[13,35,70]

Figure 5.3: In�uence of the chunk size. SLS vs BNL, anti-correlated data distribution.

SLS seems to be nearly constant w.r.t. the runtime. However, a closer look to the
runtimes of SLS spawns that SLS is slower for small chunks (up to 200 objects) than
for chunks with more than 200 objects, cp. Figures 5.6a to 5.6d on pages 82 �
83. This can be explained by the frequent repeating of the BFT and DFT in SLS,
which have to be carried out for each chunk. For the chunk size over 20K objects
the runtime of SLS increases again, because the adding of new objects to the BTG
(Phase 2) in SLS is more expensive. In summary, one claim that the optimal chunk
size for the best runtime with anti-correlated data distribution is between 200 and
20K objects.
Figure 5.4 (pages 78 � 79) presents the comparison result of SLS and BNL for
independent data distribution. One can see, that SLS has better runtime for small
and medium chunks (up to 10K�20K depending on the domains), but for large chunks
both algorithms have very similar runtime. For some domains, e.g. [1,5,2560] and
[13,35,70] (cp. Figures 5.4i to 5.4l) BNL outperforms SLS. In the case of these two
domains we are dealing with the high cardinality domains, which produce deep BTGs
in the sense of the height. The required time for the depth search (DFT) in the deep
BTG (cp. Removing Phase 3 in Section 5.2.2) for such domains is signi�cant longer
than for low cardinality domains. This enables better runtime of BNL compared to
SLS for chunk sizes from 1K objects for domains with high cardinality.

77

5 Preference Algorithms on Data Streams

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(a) n=100K, dom=[1,2,2,3]

 7

 7.5

 8

 8.5

 9

 9.5

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(b) n=500K, dom=[1,2,2,3]

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(c) n=100K, dom=[1,5,10]

 5.5
 6

 6.5
 7

 7.5
 8

 8.5
 9

 9.5
 10

 10.5
 11

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(d) n=500K, dom=[1,5,10]

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(e) n=100K, dom=[1,2,2,2,2,2,2,2,3]

 7

 7.5

 8

 8.5

 9

 9.5

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(f) n=500K, dom=[1,2,2,2,2,2,2,2,3]

Figure 5.4: In�uence of the chunk size. SLS vs BNL, independent data distribution.

78

5.3 Experiments

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(g) n=100K, dom=[2,3,7,8,4,10]

 7

 7.5

 8

 8.5

 9

 9.5

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(h) n=500K, dom=[2,3,7,8,4,10]

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(i) n=100K, dom=[1,5,2560]

 5

 6

 7

 8

 9

 10

 11

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(j) n=500K, dom=[1,5,2560]

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(k) n=100K, dom=[13,35,70]

 5

 6

 7

 8

 9

 10

 11

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(l) n=500K, dom=[13,35,70]

Figure 5.4: In�uence of the chunk size. SLS vs BNL, independent data distribution.

79

5 Preference Algorithms on Data Streams

For a better estimation of the optimal chunk size for independent data, I take a closer
look to the runtime of SLS. Figures 5.6e to 5.6h on page 83 demonstrate the best
results for the chunk size between 1K and 10K objects.
In Figure 5.5 (pages 80 � 82) one can observe the runtime comparison of BNL and
SLS for correlated data. For a chunk size up to 2K objects SLS is much better than
BNL. For larger chunks both algorithms show very similar runtime.

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(a) n=100K, dom=[1,2,2,3]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(b) n=500K, dom=[1,2,2,3]

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(c) n=100K, dom=[1,5,10]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(d) n=500K, dom=[1,5,10]

Figure 5.5: In�uence of the chunk size. SLS vs BNL, correlated data distribution.

80

5.3 Experiments

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(e) n=100K, dom=[1,2,2,2,2,2,2,2,3]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(f) n=500K, dom=[1,2,2,2,2,2,2,2,3]

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(g) n=100K, dom=[2,3,7,8,4,10]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(h) n=500K, dom=[2,3,7,8,4,10]

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(i) n=100K, dom=[1,5,2560]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(j) n=500K, dom=[1,5,2560]

Figure 5.5: In�uence of the chunk size. SLS vs BNL, correlated data distribution.

81

5 Preference Algorithms on Data Streams

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(k) n=100K, dom=[13,35,70]

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(l) n=500K, dom=[13,35,70]

Figure 5.5: In�uence of the chunk size. SLS vs BNL, correlated data distribution.

As one can see in Figures 5.6i to 5.6l on page 84, the SLS achieves its best runtime
results for correlated data where the chunk size is between 200 and 20K objects.

 2.9
 2.95

 3
 3.05
 3.1

 3.15
 3.2

 3.25
 3.3

 3.35
 3.4

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[2,3,7,8,4,10]

(a) n=100K, anti

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[2,3,7,8,4,10]

(b) n=500K, anti

Figure 5.6: In�uence of the chunk size on SLS.

82

5.3 Experiments

 2.5
 2.6
 2.7
 2.8
 2.9

 3
 3.1
 3.2
 3.3
 3.4

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,2,2,2,2,2,2,2,3]

(c) n=100K, anti

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,2,2,2,2,2,2,2,3]

(d) n=500K, anti

 2.85

 2.9

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 3.25

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[2,3,7,8,4,10]

(e) n=100K, ind

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[2,3,7,8,4,10]

(f) n=500K, ind

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,2,2,2,2,2,2,2,3]

(g) n=100K, ind

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,2,2,2,2,2,2,2,3]

(h) n=500K, ind

Figure 5.6: In�uence of the chunk size on SLS.

83

5 Preference Algorithms on Data Streams

 2.9
 2.95

 3
 3.05
 3.1

 3.15
 3.2

 3.25
 3.3

 3.35
 3.4

 3.45

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[2,3,7,8,4,10]

(i) n=100K, corr

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[2,3,7,8,4,10]

(j) n=500K, corr

 2.5
 2.6
 2.7
 2.8
 2.9

 3
 3.1
 3.2
 3.3
 3.4
 3.5

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,2,2,2,2,2,2,2,3]

(k) n=100K, corr

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,2,2,2,2,2,2,2,3]

(l) n=500K, corr

Figure 5.6: In�uence of the chunk size on SLS.

5.3.3 In�uence of Di�erent Domains

In this experiment, I explored the in�uence of di�erent domains on SLS. I used data
with 10K and 500K objects.
The results on anti-correlated data are shown in Figure 5.6 (page 85). In Figures
5.6a and 5.6b I varied the number of attributes from 4 to 9, while the domain values
remain within the low-cardinality range r0, ..., 10x. The runtime behavior is similar
for all domains, because low-cardinality domains produce �at BTGs and therefore the
runtime for the DFT search in the BTG is nearly constant. Note that the [2,3,7,8,4,10]
domain has some 47.5K nodes, [1,2,2,2,2,2,2,2,3] produces a BTG with 17.5K nodes
and [1,2,2,3] has only 72 nodes.

84

5.3 Experiments

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[1,2,2,2,2,3]

[1,2,2,2,2,2,2,3]
[1,2,2,2,2,2,2,2,3]

(a)

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[1,2,2,2,2,2,2,2,3]

[2,3,7,8,4,10]

(b)

 5.7
 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,5,160]

[1,5,2560]

(c)

 5.7
 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[5,15,30]
[9,25,50]

[13,35,70]

(d)

 5.8

 5.9

 6

 6.1

 6.2

 6.3

 6.4

 6.5

 6.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,5,2560]
[13,35,70]

(e)

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[13,35,70]
[1,5,2560]

[2,1,2,3,2,1,10,2,2]

(f)

Figure 5.6: In�uence of di�erent domains, n=500K, anti-correlated data distribution.

85

5 Preference Algorithms on Data Streams

In Figures 5.6c, 5.6d and 5.6e I compared domains with the same number of
attributes, but varied strongly the number of distinct values for each attribute and
generated the high-cardinality domains. These domains produce deeper BTGs in the
sense of the height, but observe a similar behavior as in Figure 5.6a and 5.6b. There
are some 36K nodes in the largest BTG and only 132 nodes in the smallest.
In Figure 5.6f I compared two domains ([1,2,2,3] and [2,1,2,3,2,1,10,2,2]) producing
�at BTGs and two domains building deep BTGs ([13, 35, 70] and [1,5,2560]). As one
can see in this �gure, SLS needs more time for deep BTGs, because the required time
for depth search (DFT) (cp. Removing Phase 3 in Section 5.2.2) for high-cardinality
domains is signi�cant longer than for low cardinality domains.
In summary, the runtimes of SLS are nearly independent from the number of attributes
and the size of the domain, as long as we have low-cardinality domains. The best
chunk size for anti-correlated data distribution is between 200 and 20K objects for
all tested domains.
The in�uence of di�erent domains on SLS for independent data is shown in Figure 5.7
(pages 86 � 87). Similar to the experiments on anti-correlated data, I compared low-
cardinality domains producing �at BTGs in Figures 5.7a and 5.7b, high-cardinality
domains creating deep BTGs in Figures 5.7c, 5.7d and 5.7e and mixed these do-
mains in Figure 5.7f.
The SLS behaviour is very similar for di�erent low-cardinality domains and for various
high-cardinality domains. Furthermore, the runtime of SLS is higher for deep BTGs,
due to the higher runtime of the DFT.

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[1,2,2,2,2,3]

[1,2,2,2,2,2,2,3]
[1,2,2,2,2,2,2,2,2,3]

(a)

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[1,2,2,2,2,2,2,2,3]

[2,3,7,8,4,10]

(b)

Figure 5.7: In�uence of di�erent domains, n=500K, independent data distribution.

86

5.3 Experiments

 5.7
 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,5,160]

[1,5,2560]

(c)

 5.7
 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[5,15,30]
[9,25,50]

[13,35,70]

(d)

 5.7
 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,5,2560]
[13,35,70]

(e)

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[13,35,70]
[1,5,2560]

[2,1,2,3,2,1,10,2,2]

(f)

Figure 5.7: In�uence of di�erent domains, n=500K, independent data distribution.

The best runtime results SLS shows for the chunk sizes up to 10K objects. Compared
to anti-correlated data, the results for independent data have no troubles with small
chunks. The very large chunks (more than 10K objects) require more runtime because
the adding of new objects to the BTG (Phase 2 Section 5.2.2) in SLS is more expensive.
Figure 5.8 (on page 88) shows the experimental results for correlated data. I used
the same domains as for anti-correlated and independent data and compared �at and
deep BTGs. These results also con�rm my assumption: runtimes of SLS are nearly
independent from the number of attributes and the size of the domain, as long as we
have low-cardinality domains. Deep BTGs produced by high-cardinality domains are
processed by SLS more slowly. The best runtimes were shown for chunk sizes between
200 and 20K objects.

87

5 Preference Algorithms on Data Streams

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[1,2,2,2,2,3]

[1,2,2,2,2,2,2,3]
[1,2,2,2,2,2,2,2,3]

(a)

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[1,2,2,2,2,2,2,2,3]

[2,3,7,8,4,10]

(b)

 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7
 6.8
 6.9

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,5,160]

[1,5,2560]

(c)

 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7
 6.8
 6.9

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[5,15,30]
[9,25,50]

[13,35,70]

(d)

 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7
 6.8
 6.9

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,5,10]
[1,5,2560]
[13,35,70]

(e)

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

[1,2,2,3]
[13,35,70]
[1,5,2560]

[2,1,2,3,2,1,10,2,2]

(f)

Figure 5.8: In�uence of di�erent domains, n=500K, correlated data distribution.

88

5.3 Experiments

5.3.4 In�uence of the Data Distribution

In this experiment I wanted to investigate the impact of di�erent data distributions
on SLS. I used independent (ind), correlated (cor), and anti-correlated (anti) data.
I varied the size of the dataset (100K and 500K objects), and the domains. In
Figure 5.10 (page 89) I compared low-cardinality domains producing �at BTGs
and in Figure 5.10 on page 90 I demonstrated the SLS behaviour for di�erent data
distributions with high-cardinality domains generating deep BTGs.

 2.9
 2.95

 3
 3.05
 3.1

 3.15
 3.2

 3.25
 3.3

 3.35
 3.4

 3.45

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

ind
corr
anti

(a) n=100K, domain=[1,2,2,3]

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size *1000

ind
corr
anti

(b) n=500K, domain=[1,2,2,3]

 2.56

 2.58

 2.6

 2.62

 2.64

 2.66

 2.68

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

ind
corr
anti

(c) n=100K, domain=[1,5,10]

 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7
 6.8
 6.9

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size *1000

ind
corr
anti

(d) n=500K, domain=[1,5,10]

Figure 5.10: In�uence of the data distribution on SLS.

SLS relies on the lattice structure a Skyline query constructs and does not depend on
any object-to-object comparisons. Therefore, I expected that the runtime of SLS is
nearly the same for any kind of data distribution. This expectation was completely
ful�lled for low-cardinality domains as con�rmed by Figure 5.10. For high-cardinality
domains, SLS takes more time to process very small (up to 200 objects) and very large

89

5 Preference Algorithms on Data Streams

(over 20K objects) chunks. I observed the best runtime for the chunks with �200; 20K�
objects, as already shown in Section 5.3.2.

 2.9
 2.95

 3
 3.05
 3.1

 3.15
 3.2

 3.25
 3.3

 3.35
 3.4

 3.45

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

ind
corr
anti

(e) n=100K,
domain=[2,1,2,3,2,1,10,2,2]

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

ind
corr
anti

(f) n=500K,
domain=[2,1,2,3,2,1,10,2,2]

Figure 5.10: In�uence of the data distribution on SLS.

5.3.5 Runtime Comparison of SLS, Hexagon and BNL

In this section I describe experiments in which I compared SLS with BNL and
Hexagon. Since Hexagon is not able to process streams, I analysed the runtimes
of Hexagon and compared them to the runtimes of SLS and the stream-based version
of BNL with only one big chunk which is equal to the dataset size. I varied the data
cardinality, data distribution and domains.
Figure 5.12 (page 92) presents the result for anti-correlated data. In this case SLS
clearly outperforms BNL: The larger the dataset, the greater the di�erence.
The results for independent data are presented in Figure 5.13 (page 93). SLS shows
often shows the best runtime, but sometimes BNL is better (for example with 50K
objects for [1,1,2,2,2,2,2,2,2,3] domain or with 500K objects for [2856,1,5] domain).
For correlated data SLS demonstrates better results for all chunk sizes except 1000K
objects. For this size BNL is clearly faster (see Figure 5.14 on page 94).
I tested also Hexagon in order to �nd out if our SLS implementation (based on
Hexagon) shows very similar runtime results. And indeed, the two algorithms show
very similar runtimes how one can see in Figures 5.12, 5.13 and 5.14.

90

5.3 Experiments

 2.7

 2.72

 2.74

 2.76

 2.78

 2.8

 2.82

 2.84

 2.86

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

ind
corr
anti

(a) n=100K, domain=[13,35,70]

 5.7
 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7

 0.1 1 10 100
R
un

tim
e

(s
ec

)

Chunk size *1000

ind
corr
anti

(b) n=500K, domain=[13,35,70]

 2.72

 2.74

 2.76

 2.78

 2.8

 2.82

 2.84

 2.86

 2.88

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

ind
corr
anti

(c) n=100K, domain=[1,5,2560]

 5.8
 5.9

 6
 6.1
 6.2
 6.3
 6.4
 6.5
 6.6
 6.7

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size *1000

ind
corr
anti

(d) n=500K, domain=[1,5,2560]

Figure 5.11: In�uence of the data distribution on SLS.

91

5 Preference Algorithms on Data Streams

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(a) anti, domain=[1,1,2,2,2,2,2,2,2,3]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(b) anti, domain=[1,2,2,2,2,3]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(c) anti, domain=[2,2,100]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)
SLS

Hexagon
BNL

(d) anti, domain=[2,3,5,10,100]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(e) anti, domain=[2856,1,5]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(f) anti, domain=[4,126,77]

Figure 5.12: SLS vs Hexagon vs BNL, anti-correlated data distribution.

92

5.3 Experiments

 0

 5

 10

 15

 20

 25

 30

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(m) ind, domain=[1,1,2,2,2,2,2,2,2,3]

 0

 5

 10

 15

 20

 25

 30

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(n) ind, domain=[1,2,2,2,2,3]

 0

 5

 10

 15

 20

 25

 30

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(o) ind, domain=[2,2,100]

 0

 5

 10

 15

 20

 25

 30

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)
SLS

Hexagon
BNL

(p) ind, domain=[2,3,5,10,100]

 0

 5

 10

 15

 20

 25

 30

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(q) ind, domain=[2856,1,5]

 0

 5

 10

 15

 20

 25

 30

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(r) ind, domain=[4,126,77]

Figure 5.13: SLS vs Hexagon vs BNL, independent data distribution.

93

5 Preference Algorithms on Data Streams

 0

 5

 10

 15

 20

 25

 30

 35

 40

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(a) corr, domain=[1,1,2,2,2,2,2,2,2,3]

 0

 5

 10

 15

 20

 25

 30

 35

 40

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(b) corr, domain=[1,2,2,2,2,3]

 0

 5

 10

 15

 20

 25

 30

 35

 40

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(c) corr, domain=[2,2,100]

 0

 5

 10

 15

 20

 25

 30

 35

 40

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)
SLS

Hexagon
BNL

(d) corr, domain=[2,3,5,10,100]

 0

 5

 10

 15

 20

 25

 30

 35

 40

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(e) corr, domain=[2856,1,5]

 0

 5

 10

 15

 20

 25

 30

 35

 40

50000

100000

200000

500000

750000

1000000

R
un

tim
e

(s
ec

)

SLS
Hexagon

BNL

(f) corr, domain=[4,126,77]

Figure 5.14: SLS vs Hexagon vs BNL, correlated data distribution.

94

5.3 Experiments

5.3.6 Real-World Data

For real data experiments I used tweets collected from Twitter over a speci�c period
of time (for repeatable experiments). I used (disjunct) datasets of 100K and 500K
objects. I mapped all attributes to a numerical domain according to a mapping
function as described in Section 5.2.1. For example, I mapped status_count (number
of posted tweets), followers_number and hashtag to the numerical domain [2856,5,1].
In my �rst experiment I compared the runtime of SLS and BNL on di�erent data
sizes, but the same domain, cp. Figure 5.15.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(a) n=100K, domain=[4,126,77]

 0

 5

 10

 15

 20

 25

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(b) n=500K, domain=[4,126,77]

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

 10 100 1000 10000 100000

R
un

tim
e

(s
ec

)

Chunk size

BNL
SLS

(c) n=100K, domain=[4,77,2,10]

 3.5

 4

 4.5

 5

 5.5

 6

 100 1000 10000 100000

R
un

tim
e

(s
ec

)

Chunk size

BNL
SLS

(d) n=500K, domain=[4,77,2,10]

Figure 5.15: Performance of SLS vs BNL on real Twitter data.

95

5 Preference Algorithms on Data Streams

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(e) n=100K, domain=[2856,5,1]

 4
 4.2
 4.4
 4.6
 4.8

 5
 5.2
 5.4
 5.6
 5.8

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

BNL
SLS

(f) n=500K, domain=[2856,5,1]

Figure 5.15: Performance of SLS vs BNL on real Twitter data.

Again, for BNL the worst runtime is for small chunks due to the frequent repetition
of tuple-comparisons in each single chunk. However, for larger chunks, BNL becomes
better. I assume that there are some killer objects (objects better than most of the
other objects in the dataset), which can be accessed earlier by BNL through the
larger chunk sizes and therefore speed-ups performance. Nevertheless, SLS is still
better than BNL, in particular for the larger dataset.
In my second experiment I explored the runtime of SLS for real Twitter data in
comparison to generated independent data having the same domains ([4,126,77],
[4,77,2,10] and [2856,5,1]). I found it interesting to compare real data to indepen-
dent generated data, since real data is often assumed to be independent distributed.
Figure 5.16 presents the results.

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

 100 1000 10000 100000

R
un

tim
e

(s
ec

)

Chunk size

Real Data
Independent Data

(a) SLS, n=100K, domain=[4,126,77]

 3

 4

 5

 6

 7

 8

 9

 100 1000 10000 100000

R
un

tim
e

(s
ec

)

Chunk size

Real Data
Independent Data

(b) n=500K, domain=[4,126,77]

Figure 5.16: Performance of SLS on real and generated independent data.

96

5.3 Experiments

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

Real Data
Independent Data

(c) SLS, n=100K, domain=[4,77,2,10]

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

 8.5
 9

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

Real Data
Independent Data

(d) n=500K, domain=[4,77,2,10]

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

Real Data
Independent Data

(e) SLS, n=100K, domain=[2856,5,1]

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9

 0.1 1 10 100

R
un

tim
e

(s
ec

)

Chunk size * 1000

Real Data
Independent Data

(f) SLS, n=500K, domain=[2856,5,1]

Figure 5.16: Performance of SLS on real and generated independent data.

Since real data is not always perfectly independent distributed and their are some
killer objects the results show the expected behavior: SLS performs signi�cant better
on real data than on arti�cial data. In addition, one can see that also for real data
chunk sizes between 200 and 20K objects are a good choice.
In summary, I conclude that SLS has an optimal runtime for a chunk size between
200 and 20K objects. For this range, SLS outperforms BNL for di�erent domains,
dataset sizes, and data distributions for real and synthetic data.

This chapter describes a new developed and implemented Stream Lattice Skyline
algorithm for e�cient Pareto computation on data streams. The preference evaluation
on the data streams is not a trivial task, since one has to deal with in�nite data that
arrive continuously. The new algorithms are required. The �rst steps in this direction
were made with the stream variant of the Block-Nested Loop algorithm. Of the

97

5 Preference Algorithms on Data Streams

existing algorithms, to my knowledge, this is the only one that could be adapted to
the data streams features. But its runtime was not good, so Stream Lattice Skyline
was developed. In this chapter I described the general idea of the algorithm and
explained why it should have much better runtime compared to Stream BNL. This
hypothesis was then con�rmed by various detailed experiments.

98

Chapter 6

Summarization and Aggregation

of Tweets

This chapter describes the summarization and aggregation of tweets,
which were �ltered from the stream with regard to user's preferences.

The �ltered result set can often reach a number of text messages that
is annoying to read. For example, it is no fun to read several (almost)
identical tweets about COVID-19 disease from British Prime Minister
Boris Johnson. The procedure described in this chapter is designed to
avoid this situation and presents the �ltered set of tweets as a compact
summary to the user. The aggregated message should not contain any
duplicates and should provide as complete information as possible. The
developed procedure is divided into three major steps: (1) data prepro-
cessing, (2) data clustering and (3) data aggregation. In the �rst two
sections these steps are described �rst as an idea (Section 6.1) and then
as an implemented product (Section 6.2). Some di�erences between idea
and realisation are also discussed here. Section 6.3 is dedicated to some
experiments. Some performance tests have been done to estimate the
e�ciency of this approach, but also the users' opinion regarding the
created summaries was evaluated.

6 Summarization and Aggregation of Tweets

6.1 General Concept

After evaluating incoming stream of tweets w.r.t. user's preference, the result set can
be presented to him. It is important to remember that there is no �nal result while
analyzing streams. As new data arrives, the result also changes. The user can receive
the result of his query either as new data arrives (and, accordingly, as the result
changes) or at equal intervals. The �rst approach is preferable if the new data and
the new result do not appear too often. The second one makes more sense if there is
too much incoming data, it arrives very quickly and the result changes every minute.
In this case, a constant update of the output results may lead to the user not being
able to read and become aware of them. But besides the data output mode, I would
like to pay special attention to the form in which the user receives �ltered tweets.
Every second, about 9.1 thousand tweets are posted, which means that even the
amount of �ltered results can still be very large. Not every tweet in this set is as
informative as the other. Many users do not produce new and original content,
they just retweet. If these retweets appear in large numbers in the result set, the
user basically has many copies of the same information. Another group of tweets
may formally match the search criteria, but may not contain any information, but
only author's emotions. In order to reduce the disadvantages mentioned above, I
want to aggregate the amount of tweets that were generated after �ltering with user-
de�ned preferences and present them to the user as a relatively short message. This
message should not contain redundant information, but should include everything
that is important.

Example 15 Let us look again at a small amount of example tweets from Section
3.4. The user formulated his preference query with the hashtags #Germany and
#WorldCup2018 and has received these four tweets:

1. It's a sad day for all of Germany and the World Cup.

2. After a loss against South Korea, team Germany leaves the World Cup.

3. 0:2 defeat in the last group match and team Germany leaves the World Cup
in Russia.

4. RT @UserXyz It's a sad day for all of Germany and the World Cup.

One of these tweets is a retweet ("RT @UserXyz It's a sad day for all of Germany
and the World Cup"), the other one contains the emotions of the user ("It's a sad
day for all of Germany and the World Cup"). And the remaining two should be
aggregated to the message like follows using the approach described in this chapter:

100

6.1 General Concept

�Team Germany loses its last group match against South Korea 0:2 and leaves the
World Cup in Russia.�

To achieve this goal and to present well readable messages with all available facts
about the event to a user, the following steps have to be carried out:

1. data preprocessing

2. data clustering

3. data aggregation

6.1.1 Data Preprocessing

Tweets often include abbreviations, errors (intentional or accidental), internet slang,
emojis, URLs, etc. Therefore, the preprocessing of tweets is a very important step if I
want to have a good summarization of text messages, which were �ltered out from the
stream. It will include standard text processing procedures (tokenizing, stop words
removal), but also Twitter speci�c steps, like handling of retweets, URLs, etc.
A lot of tweets are retweets - messages which do not contain any new information and
only quote the other author's post. If the original message was posted by an author
with a large number of followers, the number of retweets can also be large and they
occur frequently in the result set obtained by evaluating of user's preference query.
All retweets have to be deleted if the original message is in the result set, too. If
this is not the case, one of the retweets remains in the query output, the other ones
have to be removed. For the tweets in Example 15 that means that the last tweet of
the collection, which is retweet, ("RT @UserXyz It's a sad day for all of Germany
and the World Cup") will be deleted and the original message (the �rst one in the
collection) remains in the set.
The next step in tweets preprocessing is text tokenizing. The authors use in their
messages often very speci�c language, so it is not enough to remove punctuation and to
divide the text into character sequences separated by blank spaces. Twitter tokenizing
has to include handling of emojis, URLs and in a limited way - abbreviations. Slang
and abbreviations are di�cult to handle because of their diversity even within a single
language. Subsequently the stop words have to be removed. In addition, all letters
in the words are converted to lower case in order to facilitate further clustering and
aggregation. In this way, after tokenizing and stop words removing the tweet "After
a loss against South Korea, team Germany leaves the World Cup" from Example 15
looks like this: "after loss against south korea team germany leaves world cup".
At this point I want to inspect the content of tweets for the �rst time. A simple and
informative way is to look for the most common N-grams in the set of text messages.

101

6 Summarization and Aggregation of Tweets

An N -gram is a contiguous collection of n items, which can be phonemes, letters,
words, etc. depending on the application. In this approach, text tokenizing delivers
sequences of words such that N -grams are build from n words each. My idea is to
use the calculated N�grams as centroids for clustering. This step can also be a part
of the clustering. But the N�grams can also be used in other ways, e.g., if one looks
at the most common N�grams, one could get an impression of the content of the
tweets. Because of the limited length of tweets it seems to make sense to build 2�,
3� or 4�grams and to use the most common k of them. The 3�grams for the already
partly preprocessed tweet "after loss against south korea team germany leaves world
cup" are "after loss against", "loss against south", "against south korea", "south korea
team", "korea team germany", "team germany leaves", "germany leaves world" and
"leaves world cup".

6.1.2 Data Clustering

I want to summarize the tweets, which were �ltered out from Twitter stream with
Preference SQL. That means that these data include either perfect matches w.r.t.
the user preferences or (much more often) contain best possible alternatives. The
provided results can describe a single event as well as discuss several topics. My goal
is to summarize the messages that do �t together in terms of content. Therefore, I
want to perform clustering and collect the tweets describing the same topic or event
in the same group. After that the messages in each group can be summarized.
If the data set includes perfect matches, the number of tweets in the set is not very
large in most cases and they can be mapped well to a single topic. However, the
clustering is very important step for the case involving result set of tweets with best
alternatives. Looking for tweets with hashtags #Ukraine and #WorldCup2018, for
example, the user gets a result set, which can be well separated in at least two groups:
one with hashtag #Ukraine and the other with #WorldCup2018, because the soccer
team of Ukraine did not qualify for the World Cup 2018.
There exist many di�erent cluster approaches, e.g., well known and popular k-means
clustering. But I wanted to avoid the costs of calculating the similarity between the
individual tweets and came up with the idea to use the most common k N�grams
(calculated during preprocessing) as cluster centroids. The tweets that have the cor-
responding N�grams are then simply assigned to "their" clusters. That means of
course that after the �rst round I will have a large amount of clusters, some of them
are exactly the same (but with di�erent N�grams as centroids), the others overlap to
a certain degree. This will be resolved by merging the clusters that are "too similar"
or overlap by a certain percentage. This value can be a �xed, but a better option is to
make the value variable and leave this decision to the user, because it can depend on

102

6.1 General Concept

many factors and varies from application to application. I will also have the tweets
that do not belong to any of the k most common clusters. One can either ignore them
completely or calculate a similarity to the existing clusters for these few unassigned
tweets in order to classify them.

6.1.3 Data Aggregation

After data preprocessing and clustering I aggregate the data within each cluster.
Automatic summarization of documents is a topic of research work for a long time. In
most cases, however, this term refers to a summarization of longer documents. The
result in this case is a short summary of one or more longer documents to give users
a brief overview of the content. The summary is always shorter than the original
document and for the most part uses phrases and expressions from the original doc-
uments. Summarization of micro-blog posts, such as tweets, has di�erent goals and
tasks. There exist multiple possibilities to summarize the text messages. They can
be roughly divided into three groups:

(1) In the �rst approach the summary is a kind of label or keyword sequence for the
cluster, which titles the topic of every message in the group. This approach is
used, e.g., by O'connor, Krieger and Ahn in [OKA10]. Such kind of summary is
very short and does not go into details. For the set of tweets from Example 15
the summary could be Germany in the World Cup. Reading such a summary, the
user �gures out that the tweets are about team Germany in the World Cup, but
for more information he has to read the original messages.

(2) The second possibility is to choose only one text message as representative of
the cluster. This representative should include the most important information
for this cluster. Takamura and Okumura in [TO09] call the searching for such
message �budgeted median problem� and consider the summary as good if every
message in the document cluster is assigned to a selected one and can be inferred
from the latter. For Example 15 such a representative tweet should be the second:
�After a loss against South Korea, team Germany leaves the World Cup� or the
third one: �0:2 defeat in the last group match and team Germany leaves the World
Cup in Russia�. This approach gives the user more details, but some information
(score or opponent) is lost.

(3) To overcome the disadvantages of the previous approaches, I want to automati-
cally generate the not yet existing text message using as much accessible informa-
tion from objects in the cluster as possible. Shari�, Inouye and Kalita in [SIK14]
developed the Phrase Reinforcement algorithm that largely solves this problem.

103

6 Summarization and Aggregation of Tweets

The main idea is to display the words from text messages as nodes in a graph.
These nodes have certain weights, depending on how often they appear in the
text collection. Walking through the paths of this graph, it is possible to restore
every text message. The path with the largest total weight is the result message,
which will be presented to the user.

Let us take a closer look at this last approach using set of tweets from Example
15. To build the graph we need a root node. The most common word or word
sequence in the text collection can be used for this purpose. The root node is
already identi�ed during preprocessing by searching for most common N -grams.
Starting from the root, the graph is constructed. Figure 6.1 shows the resulting
graph for our example set of tweets.

 Germany3
 South Korea

 all

 team2

 match

 against1 1 loss1 after1

 group1 last1 1 defeat

 0:21

1

 day sad1 1 World Cup1

 leaves2 World Cup2

1

 Russia1

Figure 6.1: Text graph.

In this example, the nodes are weighted according to how often they occur in the
text collection. For more details and extensions cp. [SIK14]. One can see that the
most common word in this collection is Germany, which occurs 3 times. World
Cup also can be found 3 times, but it follows after the word leaves twice and
comes right after Germany once. Together with the word team that is located
directly before Germany, the most important key information from our collection
is: team Germany leaves World Cup.

Looking at the sum of the node weights for every path in the graph from the
beginning of the sentence to the end, one can see that some of them have very
close values, e.g., the path that corresponds to the after loss against South Korea
team Germany leaves World Cup Russia message has the total weight of 14, 0:2
defeat last group match team Germany leaves World Cup Russia comes up to 15,
and so on. In the original Phrase Reinforcement algorithm the authors take only
the path with the highest total weight as a result. I want to expand this approach

104

6.2 Implementation

and consider as the result all paths with the total weight above a certain threshold
value or those that deviate from the maximum only by a certain value. If I set
the threshold value, e.g., to 14, we have to consider three paths with the common
snippet team Germany leaves World Cup. In two paths I �nd the word Russia
right after this snippet, which will then be included into the result message. Full
path with total weight over 13 can start either with the after loss against South
Korea fragment or with 0:2 defeat last group match one. Both alternatives can
be included into the �nal result, e.g., by combining them with a comma or the
conjunction �and�. The resulting message then looks as follows: after loss against
South Korea and 0:2 defeat in last group match team Germany leaves World Cup
in Russia. Since I still have the original messages with all stop words, I will
use them to build the result message, which is as close as possible to human
language. This text has all important information from the tweet collection and
can be presented to the user.

6.2 Implementation

During the implementation of the concept described in Chapter 6.1 the individual
steps were extended and adapted to the challenges presented by the real Twitter data.
Nevertheless, the three global steps have remained unchanged: (1) preprocessing, (2)
clustering and (3) aggregation. The details of the implementation are described in
the following subchapters.

6.2.1 Preprocessing

The main goal of preprocessing is to transform the tweets into a normalized, gener-
alized form. Note that the complete preprocessing was developed for very speci�c
short texts. This takes into account a special character of tweets (e.g., a lot of links
and emojis, user references and hashtags) and cannot be used for other texts without
adaptation. The included actions are therefore mainly aimed to eliminate "unwanted"
characters and components. The implementation was made for the tweets in English
language. Accordingly, such tweets should be selected beforehand. At �rst, each tweet
that was identi�ed as a retweet, is substituted by its original message. If duplicates
occur, they will be sorted out during clustering. Example 16 illustrates the complete
tweet preprocessing step by step:

105

6 Summarization and Aggregation of Tweets

Example 16 Extended preprocessing including building of N-grams (with n � 3).
Transformed places are marked blue:

Input: a set of tweets (retweets are already replaced by original messages):

a) Winner of �ve GRAMMY Awards including 'Best New Artist' & 'Song of
the Year', � @billieeilish � attended the 62nd in custom #Gucci by #Alessan-
droMichele. #GucciJewelry #GRAMMYs @RecordingAcad #GucciEyewear

b) #AvengersEndgame hit $2.6 billion in ticket sales worldwide, inching toward
#Avatar and its $2.78 billion global box o�ce record!! http://bit.ly/2HPFbn5
Señor Feige is a genius @Disney #Avengers #Marvel

Step 1: transformation of the upper case letters to the lower case letters:

a) winner of �ve grammy awards including 'best new artist' & 'song of the
year', � @billieeilish � attended the 62nd in custom #gucci by #alessandromi-
chele. #guccijewelry #grammys @recordingacad #guccieyewear

b) #avengersendgame hit $2.6 billion in ticket sales worldwide, inching toward #avatar
and its $2.78 billion global box o�ce record!! http://bit.ly/2HPFbn5 señor feige
is a genius @disney #avengers #marvel

First, all uppercase letters in tweets are converted to lowercase. Since capitalization
in English is only used in rare cases (e.g., at the beginning of a sentence, proper
names, brands, etc.), thus the loss of information is negligible. However, the distinc-
tion between the same words written in lower or in upper case is saved for further
processing.

Step 2: translation of any existing HTML entities (here: &)

a) winner of �ve grammy awards including `best new artist' & 'song of the year',
� @billieeilish � attended the 62nd in custom #gucci by #alessandromichele.
#guccijewelry #grammys @recordingacad #guccieyewear

b) #avengersendgame hit $2.6 billion in ticket sales worldwide, inching toward #avatar
and its $2.78 billion global box o�ce record!! http://bit.ly/2HPFbn5 señor feige
is a genius @disney #avengers #marvel

Next, any existing HTML entities22 are translated into their correct special character
representation.

22
HTML entities: www.key-shortcut.com/html-entities

106

https://www.key-shortcut.com/html-entities/alle-entitaeten

6.2 Implementation

Step 3: normalization with compatible decomposition:

a) winner of �ve grammy awards including 'best new artist' & 'song of the year',
� @billieeilish � attended the 62nd in custom #gucci by #alessandromichele.
#guccijewelry #grammys @recordingacad #guccieyewear

b) #avengersendgame hit $2.6 billion in ticket sales worldwide, inching toward #avatar
and its $2.78 billion global box o�ce record!! http://bit.ly/2HPFbn5 sen�or feige
is a genius @disney #avengers #marvel

Special characters are separated into their components23. This step has to prevent
misunderstanding of the unformatted HTML remnants as words and treatment of
special characters di�erent from their normal counterparts.

Step 4: removal of URLs and e-mail addresses:

a) winner of �ve grammy awards including `best new artist' & `song of the year',
� @billieeilish � attended the 62nd in custom #gucci by #alessandromichele.
#guccijewelry #grammys @recordingacad #guccieyewear

b) #avengersendgame hit $2.6 billion in ticket sales worldwide, inching toward #avatar
and its $2.78 billion global box o�ce record!! sen�or feige is a genius @disney
#avengers #marvel

The URLs, which appear frequently, and the e-mail addresses that are less common
in the tweets, are removed. These components usually do not have any special
meaning for a human user, but will appear as disturbing elements during clustering.

Step 5: removal of "unwanted" characters (here: � ` ' , . ! � ` '):

a) winner of �ve grammy awards including best new artist & song of the year @bil-
lieeilish attended the 62nd in custom #gucci by #alessandromichele #guccijewelry
#grammys @recordingacad #guccieyewear

b) #avengersendgame hit $2.6 billion in ticket sales worldwide inching toward #avatar
and its $2.78 billion global box o�ce record senor feige is a genius @disney
#avengers #marvel

All special characters that may negatively a�ect later clustering and are not impor-
tant for the content of a tweet are deleted. Characters that have an added value with
regard to the information content remain in the text. This includes lower case letters
and arabic numerals, spaces and apostrophes commonly used in English, as well as
accidentals (�, �), points, colons and commas, if they appear in connection with

23
Unicode Normalization: de.wikipedia.org/wiki/Normalisierung_(Unicode)

107

https://de.wikipedia.org/wiki/Normalisierung_(Unicode)

6 Summarization and Aggregation of Tweets

numbers (e.g., in �2.100, 55). The glyphs for ampersand (&), paragraph (�), percent
(%) and for the most common currencies (dollar, euro, pound, yen/renminbi) are
also preserved. While paragraph, percent and currency symbols are essential for the
meaning of an associated number, the ampersand is often used as an abbreviation
instead of the conjunction "and" and should be retained. The hash (#) and the
at sign (@) also play a special role. They are used from Twitter as a marker for
hashtags (#...) and references to user accounts (@...) and will be retained at �rst.

Step 6: removal of additional hashtags and user references:

a) winner of �ve grammy awards including best new artist & song of the year @bil-
lieeilish attended the 62nd in custom #gucci by #alessandromichele

b) #avengersendgame hit $2.6 billion in ticket sales worldwide inching toward #avatar
and its $2.78 billion global box o�ce record senor feige is a genius @disney

If hashtags or user references are embedded in the middle of a tweet, they will
not be removed, as they most likely ful�l the role of normal words. If groups of
said components are located directly at the beginning or at the end of a tweet,
they are removed with the exception of the innermost element. It is very hard to
de�ne a method that reliably picks the most informative hashtags or user references
from a sequence because there is no grammar or otherwise "semantic" structure
in such sequences. In many cases it appears that a tag or reference taken from
somewhere near the middle of a sequence is not to bad a choice, but it remains
a rather simple ad-hoc-solution. Therefore a possibility to change the settings was
provided in the implementation: you can additionally delete the remaining hashtags,
the user references, both (hashtags and user references) or neither of them. In the
current example the latter option is used.

Step 7: lemmatization of the remaining text elements:

a) winner of �ve grammy award include best new artist & song of the year @
billieeilish attend the 62nd in custom # gucci by # alessandromichele

b) # avengersendgame hit $ 2.6 billion in ticket sale worldwide inch toward # avatar
and its $ 2.78 billion global box o�ce record senor feige be a genius @ disney

In this step the words are reduced to their stems. One should distinguish between
stemming and lemmatization. Stemming shortens the morphological forms of a word
to its stem by truncating the su�x. The variants of a word are reduced to a common
stem, sometimes resulting in forms that do not exist in the language. In the context
of lemmatization, it is also the goal to reduce the variations of a word to its basic form
(stem). Hence, in contrast to stemming, lemmatization provides linguistically correct
expressions. This is done by using linguistic analyses and a large vocabulary, which

108

6.2 Implementation

often produces better results but only comes by the price of higher computational
e�ort [DPH09]. Since the �nal goal of this approach is primarily intended to deliver
an information-rich and comprehensible �nal message to the user, it is necessary to
maintain linguistic comprehensibility to the best of the ability. Therefore, the stem
form reduction is carried out as lemmatization.

Hashtags and user references that still are in the tweet are treated in a special way
here: they remain unchanged, since hashtags are often complete units like proper
names or because they form the non-existing complex "words" and lemmatization
cannot reduce them to their stems. However, their identi�ers (# or @) are separated.
This way it is ensured that the "simple" hashtags (e.g., #trump, #usa, #oscar) are
matched with the same words that are not marked as hashtags during the cluster-
ing. For long compound and often invented hashtags (e.g., #BlackLivesMatter) no
partners will be found despite separation of #.

Step 8: tokenisation of lemmatized messages:

a) (winner, of, �ve, grammy, award, include, best, new, artist, &, song, of, the, year,
@, billieeilish, attend, the, 62nd, in, custom, #, gucci, by, #, alessandromichele)

b) (#, avengersendgame, hit, $, 2.6, billion, in, ticket, sale, worldwide, inch, toward,
#, avatar, and, its, $, 2.78, billion, global, box, o�ce, record, senor, feige, be, a,
genius, @, disney)

In this step, the lemmatized tweets are tokenized: it is ensured that each word or
free-standing character forms a separate token.

Step 9: removal of the stop words (here: of, the, in, by, and, its, be, a, &, #, @):

a) (winner, five, grammy, award, include, best, new, artist, song, year, billieeilish,
attend, 62nd, custom, gucci, alessandromichele)

b) (avengersendgame, hit, $, 2.6, billion, ticket, sale, worldwide, inch, toward,
avatar, $, 2.78, billion, global, box, o�ce, record, senor, feige, genius, disney)

Now the stop words must be removed from the token sequences, since they are
basically not relevant with regard to content and thus clustering. On the other
hand, they are important for the comprehensibility of a text, which is why they are
essential for the building of the �nal message. To avoid sorting out the stop words
�rst and then inserting them again afterwards, the token lists are saved before.
In addition, the amount of stop words varies depending on the application area
and institution. In social networks, for example, frequently discussed topics use
often slang or common shortcuts, while scienti�c or political tweets are usually more
formally written. A single unchangeable list of stop words is therefore suboptimal.

109

6 Summarization and Aggregation of Tweets

Thus, here again the user is o�ered the possibility to select his preferred stop words.
The default list of stop words, which is used if the user does not de�ne his own
ones, can be found in Appendix A.2. This also includes implementation speci�c stop
words, such as the identi�cation symbols of hashtags (#) and user references (@).
They are separated during lemmatization in order to allow higher matches during
clustering. However, since the user should recognize hashtags and user references in
the �nal message, the characters (# and @) are not completely deleted, but recorded
as stop words.

Step 10: building of the (in itself alphabetically sorted) N�grams (n � 3):

a) {(�ve grammy winner), (award �ve grammy), (award grammy include), (award
best include), (best include new), (artist best new), (artist new song), (artist song
year), (billieeilish song year), (attend billieeilish year), (62nd attend billieeilish),
(62nd attend custom), (62nd custom gucci), (alessandromichele custom gucci)}

b) {($ avengersendgame hit), ($ 2.6 hit), ($ 2.6 billion), (2.6 billion ticket), (bil-
lion sale ticket), (sale ticket worldwide), (inch sale worldwide), (inch, toward
worldwide), (avatar inch toward), ($ avatar toward), ($ 2.78 avatar), ($ 2.78
billion), (2.78 billion global), (billion box global), (box global o�ce), (box o�ce
record), (o�ce record senor), (feige record senor), (feige genius senor), (disney
feige genius)}

The �nal step of the preprocessing is the generation of N�grams. These consist of
n successive tokens each and are used to compare the tweets. An appropriate length
depends on the expected similarity of the texts, so the choice is up to the user. As
default value n � 3 is recommended, but for tweets with very similar content n � 4
can also be useful. Otherwise, the comparison of N�grams with n ' 4 is too strict,
resulting in vast numbers of very small clusters. On the other hand N�grams with
n $ 3 are usually not meaningful enough. In addition, lexicographic sorting of the
tokens within an N�gram is performed. N�grams, which are similar in content, but
di�er due to the sequence of tokens, should be considered identical (in clustering).
So, e.g., the following 3�grams, which are literally di�erent, but of the same meaning
$ cost 300 $ % and $ cost $ 300 % can be rearranged to $ $ 300 cost % whereby they
match.

6.2.2 Clustering

After the complex preprocessing, clustering takes place. I use my own cluster ap-
proach, which uses the N�grams calculated during preprocessing as centroids. Only
one iteration through the incoming data set is necessary. No similarity between the

110

6.2 Implementation

tweets is calculated, because the a�liation to a cluster is determined with the help of
the N�gram centroids. This makes this cluster approach quite e�cient. I explain it
in detail in the following Example 17.

Example 17 Clustering process to determine the k largest clusters (with k � 5).
Tweets are shown as sequences of their tokens and tokens are simpli�ed as letters.
Centroids are marked blue:

Input: a quantity of tweets including generated N�grams (here: n � 3):

ID text (tokens) set of N�gramms
11 (a b c d e f g e) (a b c), (b c d), (c d e), (d e f), (e f g), (e f g)
12 (a b c d e f h g) (a b c), (b c d), (c d e), (d e f), (e f h), (f g h)
13 (a b c d e f g h) (a b c), (b c d), (c d e), (d e f), (e f g), (f g h)
14 (b c d e f g h) (b c d), (c d e), (d e f), (e f g), (f g h)
15 (l m n o p q r s) (l m n), (m n o), (n o p), (o p q), (p q r), (q r s)
16 (u v w x y z a b) (u v w), (v w x), (w x y), (x y z), (a y z), (a b z)
17 (u v w x y z a) (u v w), (v w x), (w x y), (x y z), (a y z)
18 (w x y z a x y z) (w x y), (x y z), (a y z), (a x z), (a x y), (x y z)

Table 6.1: Input tweets with the corresponding 3�grams.

Step 1: building a cluster for each N�gram (n � 3), sorting the tweets and elimi-
nation duplicates (see Table 6.2):

The N -grams generated during the preprocessing are used as cluster centers or cen-
troids. The original idea of using the k most frequently occurring N -grams as cen-
troids (cp. Section 6.1.2) was abandoned in order to avoid unnecessary iterations
through the entire data set. Instead, a separate cluster is de�ned for each of the N -
grams of each tweet, which initially contains the same tweet from which it originated.
If an N -gram, for which a cluster already exists (with this cluster as centroid), is
processed, the tweet belonging to the N -gram is immediately included in the respec-
tive cluster. With this approach, only one iteration over all text messages is required
for the clustering process. Each created cluster is considered as a set and therefore
may not contain multiple tweets with the same ID24 at any time. After this step,
there is exactly one cluster for all di�erent N -grams. Each of these clusters contain
only tweets with corresponding centroid (or one of the unsorted permutations of the
N�gram).
24
Tweet ID: every tweet is assigned a unique identi�cation number by Twitter at the moment it is

posted.

111

6 Summarization and Aggregation of Tweets

centroid tweets
(size) ID text (tokens)

a b c (3)
11 (a b c d e f g e)
12 (a b c d e f g h)
13 (a b c d e f g h)

b c d (4)

11 (a b c d e f g e)
12 (a b c d e f h g)
13 (a b c d e f g h)
14 (b c d e f g ha

c d e (4)

11 (a b c d e f g e)
12 (a b c d e f h g)
13 (a b c d e f g h)
14 (b c d e f g ha

d e f (4)

11 (a b c d e f g e)
12 (a b c d e f h g)
13 (a b c d e f g h)
14 (b c d e f g ha

e f g (3)

11 (a b c d e f g e)
13 (a b c d e f g h)
14 (b c d e f g h) a
11 (a b c d e f g e)

e f h (1) 12 (a b c d e f h g)

f g h (3)
12 (a b c d e f h g)
13 (a b c d e f g h)
14 (b c d e f g ha

centroid tweets
(size) ID text (tokens)

l m n (1) 15 (l m n o p q r s)
m n o (1) 15 (l m n o p q r s)
n o p (1) 15 (l m n o p q r s)
o p q (1) 15 (l m n o p q r s)
p q r (1) 15 (l m n o p q r s)
q r s (1) 15 (l m n o p q r s)

u v w (2)
16 (u v w x y z a b)
17 (u v w x y z a2

v w x (2)
16 (u v w x y z a b)
17 (u v w x y z a2

w x y (3)
16 (u v w x y z a b)
17 (u v w x y z a) 2
18 (w x y z 1 x y z)

x y z (3)

16 (u v w x y z a b)
17 (u v w x y z a) 2
18 (w x y z a x y z)
18 (w x y z a x y z)

a y z (3)
16 (u v w x y z a b)
17 (u v w x y z a) 2
18 (w x a y z x y z)

a b z (1) 16 (u v w x y z a b)
a x z (1) 18 (w x y a x z y z)
a x y (1) 18 (w x y z a x y z)

Table 6.2: Clusters with the corresponding tweets, 3�grams used as centroids.

Step 2: combining of the overlapping clusters (here: p � 1.00) (Table 6.3 left),

Step 3: discarding of the clusters that are to small (here: s � 3) and

Step 4: returning of two remaining largest cluster (despite k � 5) (Table 6.3 right):

Next, all clusters that overlap to a certain percentage p are merged (step 2). This
step is necessary because the clusters build in step 1 overlap and one tweet belongs
to all clusters with the N�grams from this tweet as centroid. Considering clusters
from Table 6.2 one can see that the clusters presented in it are partially identical
(e.g., the clusters with centroids bcd, cde and def) or very similar (e.g., the clusters
with centroids bcd, abc, efg, fgh and efh).

112

6.2 Implementation

centroid tweets
(size) ID text (tokens)

b c d (4)

11 (a b c d e f g e)
12 (a b c d e f h g)
13 (a b c d e f g h)
14 (b c d e f g ha

w x y (3)
16 (u v w x y z a b)
17 (u v w x y z a) 2
18 (w x y z a x y z)

l m n (1) 15 (l m n o p q r s)

centroid tweets
(size) ID text (tokens)

b c d (4)

11 (a b c d e f g e)
12 (a b c d e f h g)
13 (a b c d e f g h)
14 (b c d e f g h) a

w x y (3)
16 (u v w x y z a b)
17 (u v w x y z a) 2
18 (w x y z a x y z)

l m n (1) 15 (l m n o p q r s)

Table 6.3: Merging of the overlapping clusters, discarding of the small cluster.

Two clusters C1 and C2 are merged if the following condition applies:

¶C1 = C2¶

min�¶C1¶, ¶C2¶�
' p (6.1)

Merging means that all messages of the smaller cluster (based on the number of
tweets) are included in the larger cluster and the former is deleted afterwards. Note
that since the clusters are sets, the tweets with the same IDs are not added multiple
times. For the parameter p a guideline value between 0.6 and 0.7 (or 60% � 70%)
is recommended based on experience. But the decision is left to the user, as this
value is highly dependent on the content of the tweets. For the clusters describing,
for example, a political or social event, the p value could also be lower, while for
the clusters with the users' emotional content about certain event even 70% could
be too low. Knowing the contents of the clusters allows to estimate the value of p
parameter, without this knowledge the guideline of 60%� 70% should be respected.
After merging, 3 clusters are left in the current example (see Table 6.3 left).

The resulting clusters are now either larger clusters, which were created by merging,
or smaller clusters, which could not be merged. The latter are to be classi�ed as
insigni�cant outliers and cannot be used for the further procedure due to their small
size. Furthermore, all clusters are discarded that fall below a certain minimum size
s (step 3). A threshold value s depends on the total number of tweets as well as on
their similarity in content and therefore varies from case to case. The de�nition of
s is therefore again left to the user. However, the value should at least be chosen
so that clusters with a one-digit number of tweets are eliminated (cluster with the
centroid lmn in the current example, see Table 6.3 right). At the end of clustering,
the remaining clusters are sorted in descending size order and, if available, the �rst
k representatives are returned for further aggregation (step 4).

113

6 Summarization and Aggregation of Tweets

6.2.3 Aggregation

After cluster building is completed, the aggregation of the tweets contained in each set
is carried out. The last of three approaches, which was brie�y described in Chapter
6.1.3 and which is based on the Phrase Reinforcement algorithm, is implemented with
some extensions (I use several paths for the �nal message and not only the path with
the highest weight) and adaptations (the weights of the paths are calculated without
stop words and weakly weighted nodes) and applied to the k largest clusters. Many
text aggregation methods use neuronal networks, which require a huge amount of
training data. The approach I use does not achieve the quality of the produced text,
which is possible with neuronal networks, but it works on any amount of data without
any kind of training and is easy to understand and to implement. Example 18 shows
a simpli�ed illustration of this approach with explanations:

Example 18 Aggregation of the tweets of a cluster and creation of the �nal message.
Tweets are shown as sequences of their tokens, tokens are simpli�ed as letters:

Input: one of the k largest clusters (see Table 6.4). Centroids are marked blue,
tweets, which do not contain the centroid are highlighted red):

centroid tweets
(size) ID text (tokens) ID text (tokens)

d e f (20)

21 (b c d e f g h i), 22 (c d e f gd e f),
73 (a b c d e f), 23 (r u x d e f g h),
54 (a b c d e f h g), 46 (c d e f h),
92 (a b c d e f g h), 48 (v b c d e f g h),
31 (l m n c d e f s t), 50 (m n c d e f s t u),
51 (n c d e f s u t), 86 (m n c e d f h g),
37 (c f d e g d), 76 (r u x d e f y z),
95 (v b c d f e s t), 26 (d e f s t u v),
34 (m n c d e f g h i), 91 (w x d e f s t u),
97 (m n c d f e g h), 60 (a k l d k f g h)

Table 6.4: Cluster with the tweets.

114

6.2 Implementation

Step 1: building of the tweet graphs (see Figure 6.2):

Figure 6.2: Single tweet graphs.

First, each tweet is represented as a separate graph (tweet graph), with its tokens
forming the nodes and being connected by directed edges according to the reading
direction (see Figure 6.2). The stop words are not included in the graph and the
tokens representing the cluster centre are combined to one node. If a cluster contains
tweets that do not contain the centroid (or its unsorted permutation), which can
happen sometimes by combining the clusters, they will not be considered (e.g., tweet
with ID 60 in Table 6.4). Furthermore, each node receives a standard weight of 1.

Step 2: merging the tweet graphs into a common cluster graph (see Figure 6.3):

Figure 6.3: Complete cluster graph.

115

6 Summarization and Aggregation of Tweets

In this step, the tweet graphs of a cluster are connected via the centroid as a common
intersection. This is done by "superimposing" the graphs at the central node. The
combined centroid is assigned a new weight according to the number of combined
tweets. Likewise, all identical sub-paths that begin or end at the centroid are super-
imposed. The adjustment of the node weights is done analogously. If the special case
occurs that a tweet contains centroid of its cluster n times, where n % 1, this tweet
is also included n times in the combined cluster graph. If this results in an overlap
with other nodes, their weight will be increased regularly, if it was not already incre-
mented before while one of the other n�1 centroid's occurrence of the current tweet
was processed. This is to ensure that all centroid occurrences in a tweet are treated
equally, but the weight of the node in tweet graph is not incremented repeatedly by
a single tweet.

Step 3: reducing the cluster graph (here: removing all nodes with an initial weight
of 1. A stricter reduction does not occur in this example, see Figure 6.4):

Figure 6.4: Reduced cluster graph (remote nodes are marked light grey).

Since the content of a cluster should be presented to the user in only a few sentences,
some less important information is omitted in this step. Strong weighted nodes
are considered important and weakly weighted nodes are considered insigni�cant.
The centroid, which always has the maximum weight, therefore represents the core
content of the cluster while nodes that still have their initial weight of 1 are regarded
as marginal information and deleted from the cluster graph. In addition, the user has
the option to make an even more stringent reduction by removing all nodes below a
certain minimum weight.

116

6.2 Implementation

Step 4: selection of the paths for the m parts of the �nal message (here: m � 4, see
Tables 6.5�6.8). The most appropriate path in each phase is marked green:

i) Determination of the main path (the path with the highest total weight):

unused paths (U)
path (weight) ovl. to M

(m n c d e f g h i) - (61) 0
(m n c d e f s t u) - (59) 0
(a b c d e f g h i) - (59) 0

... ...

selected paths (M)
nr. path (weight)

Table 6.5: Determination of the main path.

ii) Determination of the second path (the path with the smallest overlap (ovl.) to
the main path):

unused paths (U)
path (weight) ovl. to M
(a b c d e f h g) - (48) 2©6 � 0.33
(r u x d e f h g) - (31) 1©6 � 0.17

(a b c d e f s t u) - (57) 2©7 � 0.29
(r u x d e f s t u) - (40) 1©7 � 0.14

... ...

selected paths (M)
nr. path (weight)
1 (m n c d e f g h i) - (61)

Table 6.6: Determination of the second path.

iii) Determination of the third path (the path with the smallest overlap (ovl.) to
all paths in M):

unused paths (U)
path (weight) ovl. to M
(a b c d e f h g) - (48) 2©6 � 0.33
(v b c d e f h g) - (47) 2©6 � 0.33
(a b c d e f g d) - (53) 3©6 � 0.5
(v b c d e f g d) - (52) 3©6 � 0.5

... ...

selected paths (M)
nr. path (weight)
1 (m n c d e f g h i) - (61)
2 (r u x d e f s t u) - (40)

Table 6.7: Determination of the third path.

117

6 Summarization and Aggregation of Tweets

iv) Determination of the forth path (the paths with the smallest overlap (ovl.) to
all paths in M):

unused paths (U)
path (weight) ovl. to M
(v b c d e f h g) - (47) 5©6 � 0.83
(v b c d e f g d) - (52) 4©6 � 0.67

(v b c d e f g h i) - (58) 6©7 � 0.86
... ...

selected paths (M)
nr. path (weight)
1 (m n c d e f g h i) - (61)
2 (r u x d e f s t u) - (40)
3 (a b c d e f h g) - (48)

Table 6.8: Determination of the forth path.

In this step the individual paths of the graph are selected, which will be converted
later into the sentences of the �nal message. A path starts with a node without
incoming edges (start node) and ends with the one without outgoing edges (end
node). A path is considered as a complete sentence.

According to the concept, several sentences per cluster should be presented to the
user. Thus, several suitable paths must be determined. Let us take a closer look
at this approach: one always starts with the path with the highest total weight
(main path, see Table 6.5. Instead of using the paths with the next highest total
weights afterwards, as it was the idea at the start, the paths that di�er the most
from those used so far must be selected. The reason for this is that the paths whose
weights di�er the least from each other have very similar contents. But the goal is
to provide as much additional information from the cluster to the user as possible
(compared to the main path only). Thus for each path that has not been used yet, it
will be checked how much it overlaps with the already selected paths (which at the
beginning, is only the main path). The path that has the least overlap or, in case
of a tie, the higher weight, is selected as the next sentence of the �nal message, see
Table 6.6. In this way, the greatest possible diversity among the selected information
can be achieved. If there are still unused paths afterwards, the procedure is repeated
for each further sentence until maximum m is reached (see Tables 6.7 and 6.8). The
maximum number m of how many sentences the �nal message of a cluster should
contain, is speci�ed by the user.

118

6.2 Implementation

Step 5: building of the sentences of the �nal message (inserting the light grey token
sequences from Figure 6.4 (marked here orange), points and capital letters, see Table
6.9):

selected paths (M)
nr. path (weight)
1 (m n c d e f g h i) - (61)
2 (r u x d e f s t u) - (40)
3 (a b c d e f h g) - (48)
4 (v b c d e f g d) - (52)

selected paths (M)
nr. path (weight)
� L m n c d e f g h i.
� R u x d e f s t u v.
� A b c d e f h g.
� V b c d e f g d e f.

Table 6.9: Building the �nal message.

After a corresponding number (maximum m) of paths has been selected from each
cluster graph, they are transformed into a human readable format.

Each path is a concatenation of a starting path (from start node to centroid) and an
ending path (from centroid to end node). These sub-paths form a section of several
tweets and are each replaced by one of the tweets whose sections they represent (e.g.,
by the last one that led to an increase of the node weights). The substitution is done
using the lemmatized token sequences, which were saved during preprocessing and
still contain stop words.

First, the position of the centroid in the respective token sequence is determined.
Only tokens and intermediate stop words, which also belong to the partial path
can be used. A better way is using an extended sequence - like, for a start path,
the complete token sequence before the centroid and for an end path the complete
sequence after the centroid. This variant produces clearly better results concerning
readability and comprehensibility of the message and is therefore used as default
setting.

At the end, the sentences of a �nal message are each ended by a dot, concatenated
and the �rst letter of the token is converted into an uppercase letter, see Table 6.9.

119

6 Summarization and Aggregation of Tweets

6.3 Experiments

In this section I present some tests and experiments done for this approach.

6.3.1 Performance Test

The tests were performed with the following settings: one starts with a warm-up,
in which about 900 simpli�ed tweets from a stored �le is read, processed, clustered
and aggregated. Afterwards the actual time measuring starts with several tweet �les.
More precisely, the time needed from reading a �le to the creation of the �nal messages
is measured. This process is repeated 12 times in a row for each �le, whereby the
best and the worst result is discarded and the average from the remaining ten values
is calculated.
The tests were performed on Intel® Xeon® Scalable Processor �Skylake� Silver 4110
with 2.10 GHz, 192GB DDR4 and 2x 4TB SATA3-HDD running Ubuntu Linux 18.04
LTS 64 bit.
The performance is measured for the previously mentioned standard parameters. N -
grams of length 3 generated at the end of the preprocessing are used as centroids.
All clusters that comprise less than 0.05% of the total number of all clustered tweets,
as well as those clusters that overlap by at least 60% are discarded. Then the 10 (in
terms of the number of contained tweets) largest clusters are aggregated. During the
reduction of the aggregated cluster graphs, all nodes that have 1.5% or less of centroid
weight are eliminated. Finally, a text with a maximum of 4 sentences each is formed
for each cluster.
16 di�erent disjoint �les were tested, which contain between 27 000 and 4 300 000
English tweets. The exact numbers are shown in Table 6.10.
Besides the �le numbers and the �le size (in Mebibyte25) the number of tweets can
be found in this table. This column shows on the left side (total) the amount of all
records in the respective �le and on the right side (clustering) the number of tweets
that are clustered. The di�erence between the data in these two columns is due to the
fact that only one of possibly multiple (re-)tweets is taken into account for clustering.
On the other hand, this di�erence also results from the fact that not all processed
tweets survive preprocessing. Especially for very short text messages or those with a
high percentage of stop words, there may not be enough tokens left to form N�grams.
If, e.g., 3�grams are used as centroids, a tweet at the end of the preprocessing must
still contain at least three tokens. Otherwise no 3�grams can be build and the tweet
is discarded before clustering. The table contains also information about the absolute

25
1 MiB � 2

20
bytes

120

6.3 Experiments

�le size tweets number average runtime
�le MiB total clustering sec min ms/tweet
f1 158 27 268 27 041 5.89160 0.09819 0.21606
f2 410 74 033 63 113 11.52620 0.19210 0.15569
f3 926 165 822 143 175 25.42840 0.42381 0.15335
f4 1 061 166 382 160 776 28.62940 0.47716 0.17207
f5 919 172 507 170 575 36.98610 0.61644 0.21440
f6 981 173 358 147 577 26.47640 0.44127 0.15273
f7 986 179 608 177 294 37.28290 0.62138 0.20758
f8 1 127 182 426 174 611 32.24990 0.53750 0.17678
f9 1 554 277 741 241 272 41.54850 0.69248 0.14959
f10 2 348 408 521 352 172 61.15850 1.01931 0.14971
f11 4 348 799 004 682 682 109.06230 1.81771 0.13650
f12 5 422 962 521 821 616 135.03500 2.25058 0.14029
f13 6 634 1 160 599 1 000 558 169.80960 2.83016 0.14631
f14 18 567 3 281 852 2 788 772 461.83120 7.69719 0.14072
f15 21 338 3 721 695 3 174 048 538.39320 8.97322 0.14466
f16 24 691 4 253 183 3 628 391 609.02560 10.15043 0.14319

Table 6.10: Performance with standard parameters.

and relative execution time (in seconds and minutes and in milliseconds per tweet).
Some abnormalities in the results need to be explained. The amount of required
memory is not always proportional to the total amount of the tweets included in the
�le. There are some possible explanations for this. For one thing, tweet texts that
approximately exhaust the 280-character limit trivially require more space. On the
other hand, a JSON tweet object contains more information than just the ID, text
and language of a tweet (see Figure A.2 in Appendix A.1). For example, a retweet
always includes its original message, so it has the size of two tweets. An additional
information (e.g., location and time) also needs memory, if available. An example
for such a disproportion is given in Table 6.10 by the test �les f1, f3 and f5, among
others. The latter holds 172 507 tweets at a size of 919 MiB and the preceding �le
includes 166 382 tweets at 1 061 MiB.
Noticeable are the results for the thematically pre-�ltered �les (light grey lines in Table
6.10). The text messages stored in these rows were selected by a �lter according to
certain keywords. The aforementioned �ltering was already carried out in advance, the
current procedure is not involved. There is no other known di�erence between the pre-
�ltered and "normal" �les than �ltering for the measured anomalously high execution
times. With sometimes more than 0.2 milliseconds per tweet, they are clearly higher
than the values of their un�ltered counterparts. In order to exclude �uctuations, the
tests with the pre-�ltered �les were repeated, which resulted in almost unchanged
results. In this context it is also remarkable that the pre-�ltered �les each have the
highest percentage (over 95%) of tweets that survive preprocessing (and are then
clustered). The average value for other �les is below 87% (see Table 6.11).

121

6 Summarization and Aggregation of Tweets

The pre-�ltered text messages are selected with regard to current and meaningful
topics, which are often tweeted more extensively (e.g., covid-19 or black lives matter).
It could explain why the texts of these tweets contain on average more characters than
their un�ltered counterparts (178.15 vs. 119.65 characters per tweet). The longer the
text, the higher the probability that it will go through the preprocessing and be
clustered afterwards. Signi�cantly larger texts would also result in a longer duration
of the preprocessing. Table 6.11 contains also a column clustering with the percentage
of tweets that participate in clustering, a column retweets, indicating the percentage
of retweets in the �le and a column extend with the percentage of text messages longer
than 140 characters.

�le size number of duration tweet percentages text length
�le MiB tweets ms/tweet clustering retweets extended char/tweet
f1 158 27 268 0.21606 99.17% 68.56% 58.71% 188.50
f2 410 74 033 0.15569 85.25% 58.31% 32.91% 120.23
f3 926 165 822 0.15335 86.34% 60.59% 33.22% 121.93
f4 1 061 166 382 0.17207 96.63% 85.18% 58.40% 175.79
f5 919 172 507 0.21440 98.88% 68.93% 66.31% 187.45
f6 981 173 358 0.15273 85.13% 60.03% 32.54% 120.86
f7 986 179 608 0.20758 98.71% 68.51% 62.69% 182.37
f8 1 127 182 426 0.17678 95.72% 79.43% 47.76% 156.62
f9 1 554 277 741 0.14959 86.87% 59.09% 34.18% 123.39
f10 2 348 408 521 0.14971 86.21% 62.09% 32.58% 123.12
f11 4 348 799 004 0.13650 85.44% 57.09% 30.69% 116.55
f12 5 422 962 521 0.14029 85.36% 59.50% 30.63% 118.53
f13 6 634 1 160 599 0.14631 86.21% 60.10% 32.86% 122.25
f14 18 567 3 281 852 0.14072 84.98% 60.65% 28.71% 114.86
f15 21 338 3 721 695 0.14466 85.29% 60.00% 30.05% 116.96
f16 24 691 4 253 183 0.14319 85.31% 61.20% 29.98% 117.42

average of the un�ltered �les: 85.67% 59.88% 31.67% 119.65
average of teh �ltered �les: 97.82% 74.12% 58.77% 178.15

Table 6.11: Analysis of the used tweet �les.

The very last column (text length) contains the information how many characters the
tweets in the individual �les contain on average. The data shows that the themat-
ically pre-�ltered �les (light grey lines) have above-average values in all the criteria
mentioned. So this seems to be the reason for the increased time needed to process
the pre-�ltered �les.

6.3.2 Evaluation of the Aggregation

In this section I describe the results of the assessment of tweets' aggregation. These
results were obtained with a survey, which was carried out in the context of Dominik
Gröninger's master thesis at the University of Augsburg. The survey (in German)
can be found in Appendix A.4. Since only a small number of people (10) took part

122

6.3 Experiments

in the survey, the results serve more as an orientation on how this approach should
be developed and improved further.
Five clusters generated by the current approach were presented to the participants.
Each of them contains between 45 and 80 tweets of the same topic in English. These
are the real text messages, which have only been cleaned of URLs and emojies and
occasionally shortened. The task calls on the participants to read all the tweets and
to write a short text as a summary for each cluster by hand. This �rst task aims
to make each participant aware of the relevant content and to provide a basis for
comparison for the second part of the survey.
The clusters were selected to simulate the query result, but at the same time not to
overwhelm the participants. From a thematic point of view, the focus is primarily
on current events. The �rst cluster with the topic Corona Boris Johnson includes
45 tweets. They deal with the COVID-19 disease of British Prime Minister Boris
Johnson. The second cluster of 80 tweets deals with the death and the memory of the
Swedish actor Max von Sydow, who died in March 2020. The 70 text messages of the
third cluster, entitled First day of summer, deal with the beginning of summer. The
fourth cluster, Warren drops out, deals with the departure of Senator Elizabeth War-
ren from the Democratic primaries for the US presidential election 2020 (75 tweets).
The last cluster of the survey is entitled Separating children and contains 65 tweets
dealing with the separation of children and their parents who are illegally in the US.
The second part of this survey presents the participants with an aggregated text
generated by the current approach (�nal message). With the help of �ve questions
each, these are to be evaluated in terms of their comprehensibility and content. In
addition, a general assessment and evaluation will also be made in comparison to the
summaries generated by hand.
Furthermore, the participants are asked to answer the questions that are intended
to assess whether reading and aggregating a large number of tweets "by hand" is
actually perceived by them as annoying.
The question whether they found reading at least 45 tweets per cluster unpleasant/an-
noying, 70% of participants answered positively (Figure 6.5a). 20% had no relevant
opinion on this and 10% of interviewed people said that it was not a problem for
them to read so many tweets as the query result. The participants could choose an
answer between 1 (not at all) and 5 (de�nitely) on an integer scale. They were even
more united about whether they would voluntarily read at least 45 search results
(e.g., tweets) without having been asked to do so (Figure 6.5b). 90% disagreed on
this point, with two-thirds of this number choosing the answer 1 - not at all. These
results therefore support the assumption that users are not interested in dealing with
a multitude of search results/tweets.

123

6 Summarization and Aggregation of Tweets

(a) "Did you �nd it uncomfortable
to read at least 45 per cluster?"

(b) "Would you also read at least
45 tweets if you were not asked to?"

Figure 6.5: Survey results on the quality of aggregation (part 1).

In the second and third sections of the questionnaire, the participants received a sum-
mary for each cluster generated by the developed software. When asked whether these
contained the most important information of their clusters, the participants answered
rather positively for all �ve items (Figure 6.6a). There were again �ve possible an-
swers to each question, ranging 1 (not at all) to 5 (de�nitely). The aggregations of
clusters 1 (Corona Boris Johnson), 2 (Max of Sydow) and 4 (Warren drops out) get
the average value in the range between 4.3 and 4.6 and thus a clear agreement from
the participants. Less favourable was the aggregation of the 3rd cluster (First day of
summer), which received an average score of 3.8. The lowest support with the average
value of 3.1 received the aggregation of the �fth cluster (Separating children). How-
ever, the score received for this cluster also shows that the most important contents
were (at least partially) recorded and aggregation can be tolerated as acceptable.
An important goal of the developed approach is, besides the collecting of the core
contents, also the inclusion of further, supplementary information. Therefore, the
survey participants were asked whether this had been successful or whether there was
still missing content that should necessarily be included. The results, shown in Figure
6.6b), largely coincide with those of the previous question. For the aggregations of
clusters 2 and 4, the participants agreed that these cover the most important con-
tents. Accordingly, for these two aggregations with average scores of 1.7 and 1.8, they
signalled that no mandatory information is missing. The participants were less pos-
itive about the automated summaries of cluster 1 and cluster 3, which with average
scores of 2.4 and 2.7 respectively, are still below the average response of 3 indicating
that some important information is missing. This is particularly interesting for the
aggregation of the �rst cluster (Corona Boris Johnson), as in the previous question
the participants answered that this cluster contains the most important information.
The opinion on the �fth cluster is again in line with the evaluation regarding the ques-
tion about the most important contents. For this cluster the participants were most

124

6.3 Experiments

(a) "Do the individual aggregations
contain the most important
information of their clusters?"

(b) "Is there any content missing in
the individual aggregations that
should necessarily be present?"

(c) "How do you rate the individual
aggregations' comprehensibility?"

(d) "How do you rate the individual
aggregations compared to your own?"

Figure 6.6: Survey results on the quality of aggregation (part 2).

likely to identify shortcomings beforehand, so the tendency at this point is that more
information has to be included. Overall, the question of missing essential content was
answered negative in four out of �ve cases. Nevertheless, some information extension
could be bene�cial.
Apart from the content aspects, automated summaries are required to be easy to read
and understand by people. For this reason, respondents were asked speci�cally how
they assess comprehensibility. There were �ve possible answers from 1 (very poor)
to 5 (very good). Contrary to expectations, the results were sobering (see Figure
6.6c): four out of the �ve aggregations were rated with average value of 3.0 or higher,
which can be interpreted as acceptable or rather good. However, in the opinion of
the participants, none of the aggregations was understandable enough to receive an
average rating higher than 4.0. Furthermore, the aggregations to cluster 3 (First day
of summer) and cluster 5 (Separating children) only just reached the 3.0 mark. This
rather moderate assessment of comprehensibility can partly be explained by the fact
that most words are reduced to their basic form, which means that there is still a
need for recti�cation of defects.

125

6 Summarization and Aggregation of Tweets

In the �nal question, the survey participants were asked to assess the automatically
created aggregations in direct comparison to their self-written counterparts. With
answer options ranging from 1 (much worse) to 5 (much better), all generated aggre-
gations were rated (rather) worse on average. The aggregation of the second cluster
(Max von Sydow) was the most likely to reach the level of a hand-written summary
with an average score of 2.9. The aggregation to cluster 5 (Separating children) re-
ceived the worst average general assessment.
In general, it can be said that the automatically aggregated summaries received a
predominantly acceptable or good grade from the respondents.

In this chapter I have given an overview of the approach that should summarize and
aggregate preference based �ltered set of tweets and procude a compact message with-
out duplicates. After evaluation of the aggregated summaries with the real user, his
approach can clearly be called promising, although it requires improvement primarily
in terms of good readability of the generated message.

126

Chapter 7

Related Work

In this chapter I give a short overview of the papers that inspired me for the topic of
my dissertation. These are the papers that deal with both stream data and Twitter
analysis. Other papers I came across in my thesis were dedicated to preferences. And
at the very end I added another topic, namely aggregation of text messages to my
literature research.
Today, data streams are part of every area of life. The stream data processed by
humans as well as computers is very large and rapidly increasing. Therefore also
stream data processing is a highly relevant topic today. It is not amazing that many
scientists all over the world try to process and to analyze these streams to extract
important information from such continuous data �ows. Many modern applications
such as network monitoring, �nancial analysis, infrastructure manufacturing, sensor
networks, meteorological observations, or social networks require query processing
over data streams, cp. for example [CDTW00, BGS01, SST�09].
Research in this area has been going on for several decades. In [BBD�02] the au-
thors motivate the need for and research issues arising from stream data processing.
The paper gives an overview on past work and projects in the area of data streams,
and explores topics in query languages, requirements and challenges in stream query
processing. Babu and Widom [BW01], e.g., focus primarily on the problem how to
de�ne and evaluate continuous queries over data streams. Cherniack et. al [CBB�03]
describe a large-scale distributed stream processing system and discusses approaches
for addressing load management, high availability, and federated operation issues in
such an environment. In [ABB�03] the authors investigate queries over continuous
unbounded streams for applications like network monitoring, �nancial analysis, and
sensor networks. For this they present the Stanford Data Stream Management System

7 Related Work

(STREAM) for rapid streams and long-running queries, where the system resources
may be limited.
Faria et. al [FGdCG16] describe various applications of novelty detection in data
streams, and Krempl et. al [KvB�14] discuss challenges for data stream mining such
as protecting data privacy, handling incomplete and delayed information, or analysis
of complex data.
In addition to stream analysis, the preference queries [Kie02, Cho03, KEW11] also
have received considerable attention in the past, due to their use in selecting the most
preferred items, especially when the �ltering criteria are contradictory. In particular,
Skyline queries [BKS01, CGGL03, CCM13], a subset of preference queries, have been
thoroughly studied by the database community to �lter high relevant information
from a dataset.
When dealing with Pareto-optimal objects and preferences in general, several models
play an important role. For example, Kasabov and Song [KS02] and Dov�zan et. al
[DL�S15] handle preferences with fuzzy values, whereas Boutilier et. al [BBD�04] use
Ceteris-Paribus nets (CP-nets) do describe user wishes. Other models like Chomicki
[Cho03] and Kieÿling [Kie02, KEW11] use strict partial orders to represent preferences
in information systems and are often more �exible than other approaches.
But algorithms proposed for traditional database Skyline computation, e.g., [BKS01,
GSG05, CCM13], are not appropriate for continuous data and therefore new tech-
niques should be developed to ful�l the requirements posed by the data stream model.
In [KPM10] the authors examine the characteristics of important preference queries
(Skyline, top-k and top-k dominating) and review algorithms proposed for the eval-
uation of continuous preference queries under the sliding window streaming model.
However, they do not present any framework for preference-based stream evaluation.
Ribeiro et. al [RBdA�17] describe an approach for processing data streams according
to temporal conditional preferences. In [LLK13], Lee et. al propose a new method for
processing multiple continuous Skyline queries over a data stream.
One of the fastest growing research areas is the analysis of stream data provided
by social networks. Therefore, it is not surprising that tweet analysis is a popular
topic among scientists. One of the research directions, for example, is the analysis of
user sentiment and public's feelings towards certain brand, business, event, etc., cp.
[SHA12, SLA�17, PRPM16]. A content analysis of tweets on various topics is also
often in the focus, cp. [ALA�17, CRKC�16, SVO�17]. In [SG�12] investigate the au-
thors whether sentiment analysis of public mood, derived from large-scale collections
of daily posts from Twitter can predict movements of stock prices.
In [SST�09] the authors try to build a news processing system from the tweets. The
content of tweets are analyzed to determine if the tweet is news or not. All the
messages that do not belong to the news domain must be removed. The remaining

128

data will be clustered and introduced to the system into topics. Then authors try to
locate and extract geographic content from each cluster.
In [OM09] the authors describe an event noti�cation system that monitors and delivers
semantically relevant tweets if these meet the user's information needs. As an example
they construct an earthquake prediction system targeting Japanese tweets. For their
system they use keywords, the number of words, and the context of an event.
The problem addressing in [RM13] is to determine the popularity of social events
(concerts, festivals, sport events, conferences, etc.) based on their presence in Twitter.
Knowing the popularity of an event can help in improving the organization of the
infrastructure in the area of the event's location (more public transport by the high
popularity), or in alerting the event's organizers for the need of better promotion (low
popularity).
In [PK13] the authors describe a system to detect events from tweets. They research
their textual and temporal characteristics. The most important components are:
an extraction scheme for event representative keywords, a mechanism to store their
appearance patterns, and a hierarchical clustering technique.
For solving the last task of this work (summarizing the text messages), there exist
multiple possibilities: from very simple that use label or keywords as some kind of
summary (cp. [OKA10]) to more complex that choose one representative of the cluster
with the most important information (see, e.g., [TO09]). Since I wanted to provide
the user with result in form of a full text with lots of details rather than a general
headline, but at the same time I did not want to get involved with neuronal networks
because they require a huge amount of training data and are not well suited for real-
time analysis, the approach described by Shari�, Inouye and Kalita in [SIK14] seemed
to me to be the best solution. The main idea of the Phrase Reinforcement algorithm
is to display the words from text messages as nodes in a graph. These nodes have
certain weights, depending on how often they appear in the text collection. Walking
through the paths of this graph, it is possible to restore every text message. Some of
these paths are selected, converted back into the texts and delivered to the user.
The literature sources listed in this chapter are only a small part of the work that sci-
entists around the world have produced on the mentioned topics. There are certainly
other interesting approaches and ideas. But at this particular moment in time, these
works are those that have inspired my own research and led to this work.

129

Chapter 8

Conclusion

In this chapter I summarize the work I have done and outline the tasks that are still
open issues.
Today, data processed by humans as well as computers is very large, rapidly increasing
and often in form of data streams. Users want to analyze this data to extract person-
alized and customized information in order to learn from this ever-growing amount
of data. Therefore stream data processing is a highly relevant topic today.
In this work I have described a framework that analyses stream data w.r.t. user
preferences. As data source I used tweets. Twitter allows free access to these objects,
but tweets also have a lot of attributes that are well suited for preference analysis. It
is also a very popular social network with hundreds of millions of users that produce
a lot of data every second, which has made it a good candidate for my purposes.
The choice of Twitter as a data source had a great impact on my work. The core
problem and its solution are applicable to stream data in general, but many deci-
sions and details were in�uenced by the character of Twitter and its objects. This
includes, for example, the design and development of a new categorical basic pref-
erence CONTAINS, which can be applied to the freely written texts. The existing
categorical preferences were well suited for the attributes with the �nite domains, but
could hardly be helpful for the text messages, such as tweets. The tweets have many
attributes to which the preferences can be applied. This helps to reduce the data
stream and adapt the results to the user's interests. But the possibility to select the
tweets directly was what I really missed. This led to the development and implemen-
tation of a new preference that works with the text messages and can evaluate them
in terms of their content.
Twitter produces the data every second and its volume is growing. So it was clear

8 Conclusion

to me right from the start of my work that I not only need a new concept that
would allow me to evaluate the stream data with the preferences, but that this should
happen e�ciently and in real time. This is why the Stream Lattice Skyline algorithm
was developed, which does not depend on object-to-object comparison and uses the
lattice structure constructed by a Pareto query. This algorithm was developed for
e�cient evaluation of Pareto preferences on streams and can be used for any type of
data with lowe cardinality domains, provided that the data can be mapped to natural
numbers. The extensive tests with di�erent data have con�rmed that Stream Lattice
Skyline can handle the Pareto requests e�ciently.
The �nal step in the framework was also inspired by the character of the Twitter data.
The tweets are short texts that often contain only partial information. In addition,
Twitter allows the so-called reposts, when the original message is posted by other users
without any changes. This results in many duplicates, which are also present in the
amount �ltered by preferences. As far as the result set is concerned, it often consists
of a relatively large number of text messages that are not very comfortable to read.
This led to the idea of aggregating the tweets resulting after the preference evaluation
and presenting them to the user in the form of a compact text. It should be noted
that both the new CONTAINS preference and the aggregation of text messages are
suitable as concepts for any type of short text. But implementation is realised tweets
speci�cally and takes into account such special units as hashtags or user references
that are missing in the other texts.
I would like to explore some open questions further in the future. These include, for
example, the approach for �nding the misspelled words in tweets implemented in the
CONTAINS preference. The experiments have shown that the current implementa-
tion delivers more false positive results than true positive ones. I also want to continue
working on the aggregation of tweets, especially to improve the readability of the �nal
message. But there is still some work to be done on the selection of the information
that will �nd its place in the �nal message. The developed Stream Lattice Skyline
algorithm can also be extended. For example, the parallelisation of some tasks would
be conceivable.
In general, it can be said that every scienti�c problem that seems to have been solved
poses a whole series of new challenges that can always be worked on. And that is
what makes this �eld so exciting.

132

Bibliography

[AB15] Elmasri R. A. and Navathe S. B., Fundamentals of Database Systems
(7th Edition), Pearson, 2015.

[ABB�03] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosen-
stein, and J. Widom, STREAM: The Stanford Stream Data Manager,
SIGMOD '03 (New York, USA), ACM, 2003, pp. 665�665.

[ALA�17] J. W. Ayers, E. C. Leas, J. Allem, A. Benton, M. Dredze, B. M. Althouse,
T. B. Cruz, and J. B. Unger, Why do People Use Electronic Nicotine De-
livery Systems (Electronic Cigarettes)? A Content Analysis of Twitter,
2012-2015, PLOS ONE 12 (2017), no. 3, 1�8.

[Arr59] K. J. Arrow, Rational Choice Functions and Orderings, Economica 26
(1959), no. 102, 121�127.

[AW00] R. Agrawal and E. L. Wimmers, A Framework for Expressing and Com-
bining Preferences, SIGMOD Rec. 29 (2000), no. 2, 297�306.

[BBD�02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, Models and
Issues in Data Stream Systems, Proceedings of the Twenty-�rst ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (New York, NY, USA), PODS '02, ACM, 2002, pp. 1�16.

[BBD�04] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole, CP-
nets: A Tool for Representing and Reasoning with Conditional Ceteris
Paribus Preference Statements, J. Artif. Intell. Res. 21 (2004), 135�191.

[Bea20] A. Beaulieu, Learning SQL: Generate, Manipulate, and Retrieve Data
Taschenbuch, O'Reilly UK Ltd., 2020.

[BGS01] P. Bonnet, J. Gehrke, and P. Seshadri, Towards Sensor Database Sys-
tems, MDM '01 (London, UK), Springer-Verlag, 2001, pp. 3�14.

BIBLIOGRAPHY

[BKS01] S. Börzsönyi, D. Kossmann, and K. Stocker, The Skyline Operator, Pro-
ceedings of ICDE '01 (Washington, USA), IEEE Computer Society, 2001,
pp. 421�430.

[BW01] S. Babu and J. Widom, Continuous Queries over Data Streams, SIG-
MOD Rec. 30 (2001), no. 3, 109�120.

[CBB�03] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
Y. Cetintemel, U.and Xing, and S. Zdonik, Scalable Distributed
Stream Processing, CIDR 2003 - First Biennial Conference on Innovative
Data Systems Research (Asilomar, CA), January 2003.

[CCM13] J. Chomicki, P. Ciaccia, and N. Meneghetti, Skyline Queries, Front and
Back, SIGMOD 42 (2013), no. 3, 6�18.

[CDTW00] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, NiagaraCQ: A Scalable
Continuous Query System for Internet Databases, SIGMOD '00 (New
York, USA), ACM, 2000, pp. 379�390.

[CGGL03] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, Skyline with Presorting,
Proceedings of ICDE '03, 2003, pp. 717�816.

[Cho02] J. Chomicki, Querying with Intrinsic Preferences, Proceedings of the 8th
International Conference on Extending Database Technology: Advances
in Database Technology (Berlin, Heidelberg), EDBT '02, Springer-
Verlag, 2002, pp. 34�51.

[Cho03] , Preference Formulas in Relational Queries, ACM Trans.
Database Syst. 28 (2003), no. 4, 427�466.

[CM12] G. Cugola and A. Margara, Processing Flows of Information: From Data
Stream to Complex Event Processing, ACM Comput. Surv. 44 (2012),
no. 3, 15:1�15:62.

[CRKC�16] P. Cavazos-Rehg, M. Krauss, S. Costello, S. Connolly, C. Rosas,
M. Bharadwaj, and L. Bierut, A Content Analysis of Depression-related
Tweets, Computers in Human Behavior 54 (2016), 351�357.

[CWB�11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, Natural Language Processing (Almost) from Scratch, The Jour-
nal of Machine Learning Research 12 (2011), 2493�2537.

[Dam64] F. J. Damerau, A Technique for Computer Detection and Correction of
Spelling Errors, ACM 7 (1964), no. 3, 171�176.

134

BIBLIOGRAPHY

[DL�S15] D. Dov�zan, Vito Logar, and Igor �Skrjanc, Implementation of an Evolving
Fuzzy Model (eFuMo) in a Monitoring System for a Waste-Water Treat-
ment Process, IEEE Trans. Fuzzy Systems 23 (2015), no. 5, 1761�1776.

[DP02] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order [2nd
ed.], Cambridge University Press, Cambridge, 2002.

[DP18] M. Dayarathna and S. Perera, Recent Advancements in Event Processing,
ACM Comput. Surv. 51 (2018), no. 2, 33:1�33:36.

[DPE08] S. Döring, T. Preisinger, and M. Endres, Advanced Preference Query
Processing for E-Commerce, SAC '08: Proceedings of the 2008 ACM
symposium on Applied computing (New York, NY, USA), ACM, 2008,
pp. 1457�1462.

[DPH09] Manning C. D., Raghavan P., and Schütze H., Introduction to Infor-
mation Retrieval, online edition ed., Cambridge University Press, Cam-
bridge, England, apr 2009.

[ECM17] ECMA-404, ECMA-404 International Standard: The JSON Data Inter-
change Syntax, Tech. report, ECMA Internation, 2017.

[ECM19] ECMA-262, ECMAScript 2019 Language Speci�cation, Tech. report,
ECMA International, 2019.

[EK14] M. Endres and W. Kieÿling, High Parallel Skyline Computation over
Low-Cardinality Domains, Proceedings of ADBIS '14, Springer, 2014,
pp. 97�111.

[EK16] M. Endres and W. Kieÿling, Parallel Skyline Computation Exploiting the
Lattice Structure, Journal of Database Management (JDM) 26 (2016),
no. 4, 18�43.

[EKR18] M. Endres, J. Kastner, and L. Rudenko, Analyzing and clustering Pareto-
optimal objects in data streams, Learning from Data Streams in Evolving
Environments: Methods and Applications (M. Sayed-Mouchaweh, ed.),
Springer-Verlag, 2018.

[End11] M. Endres, Semi-Skylines and Skiline Snippets, Ph.D. thesis, University
of Augsburg, 2011.

[EP17] M. Endres and T. Preisinger, Beyond Skylines: Explicit Preferences, Pro-
ceeding of DASFAA '17 (Cham), Springer International Publishing, 2017,
pp. 327�342.

135

BIBLIOGRAPHY

[ER18] M. Endres and L. Rudenko, A Tour of Lattice-Based Skyline Algorithms,
In M. K. Habib (Eds.): Emerging Investigation in Arti�cial Life Research
and Development, IGI Global, 2018.

[FGdCG16] E. R. Faria, I. J. C. R. Gonçalves, A. C. P. L. F. de Carvalho, and
J. Gama, Novelty detection in data streams, Arti�cial Intelligence Review
45 (2016), no. 2, 235�269.

[Fli] Flink, Flink DataStream API Programming Guide.

[GL94] T. Gaasterland and J. Lobo, Quali�ed Answers That Re�ect User Needs
and Preferences, VLDB (Santiago de Chile, Chile), 1994.

[GO03] L. Golab and M. T. Özsu, Issues in Data Stream Management, SIGMOD
Rec. 32 (2003), no. 2, 5�14.

[GR09] M. Golfarelli and S. Rizzi, Expressing OLAP Preferences, SSDBM '09
(Berlin, Heidelberg), SSDBM 2009, Springer-Verlag, 2009, pp. 83�91.

[GSG05] P. Godfrey, R. Shipley, and J. Gryz, Maximal Vector Computation in
Large Data Sets, Proceedings of VLDB '05, VLDB Endowment, 2005,
pp. 229�240.

[HK05] B. Hafenrichter and W. Kieÿling, Optimization of Relational Prefer-
ence Queries, Proceedings of ADC '05 (Darlinghurst, Australia), 2005,
pp. 175�184.

[HKP01] V. Hristidis, N. Koudas, and Y. Papakonstantinou, PREFER: A System
for the E�cient Execution of Multi-parametric Ranked Queries, SIG-
MOD Rec. 30 (2001), no. 2, 259�270.

[JZMG15] X. Junchang, W. Zhiqiong, B. Mei, and W. Guoren, Reverse Skyline
Computation over Sliding Windows, Mathematical Problems in Engi-
neering 2015 (2015), 1�19.

[KEW11] W. Kieÿling, M. Endres, and F. Wenzel, The Preference SQL System -
An Overview, Bulletin of the Technical Commitee on Data Engineering,
IEEE Computer Society 34 (2011), no. 2, 11�18.

[KH19] V. Kalavri and F. Hueske, Stream Processing with Apache Flink, O'Reilly
Media, Inc., Sebastopol, California, USA, 2019.

[Kie02] W. Kieÿling, Foundations of Preferences in Database Systems, Proceed-
ings of the 28th International Conference on Very Large Data Bases,
VLDB '02, VLDB Endowment, 2002, pp. 311�322.

136

BIBLIOGRAPHY

[Kie05] , Preference Queries with SV-Semantics, COMAD '05 (Goa, In-
dia), Computer Society of India, 2005, pp. 15�26.

[KPM10] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, Continuous Pro-
cessing of Preference Queries in Data Streams, Proceedings of SOFSEM
'10 (Spindleruv Mlýn, Czech Republic), Springer Berlin Heidelberg, 2010,
pp. 47�60.

[KR93] R. L. Keeney and H. Rai�a, Decisions with Multiple Objectives: Prefer-
ences and Value Trade-O�s, Cambridge University Press, 1993.

[Krä07] J. Krämer, Countinuous Queries over Data Streams - Semantics and
Implementation, Ph.D. thesis, Philipps Universität Marburg, 2007.

[KS02] N. K. Kasabov and Q. Song, DENFIS: Dynamic Evolving Neural-Fuzzy
Inference System and its Application for Time-Series Prediction, IEEE
Trans. Fuzzy Systems 10 (2002), no. 2, 144�154.

[Kuk92] K. Kukich, Techniques for Automatically Correcting Words in Text, ACM
Comput. Surv. 24 (1992), no. 4, 377�439.

[KvB�14] G. Krempl, I. �liobaite, D. Brzezi«ski, E. Hüllermeier, M. Last,
V. Lemaire, T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, and J. Ste-
fanowski, Open Challenges for Data Stream Mining Research, SIGKDD
Explor. Newsl. 16 (2014), no. 1, 1�10.

[Lid01] E. D. Liddy, Natural Language Processing.

[LLK13] Y. W. Lee, K. Y Lee, and M. H. Kim, E�cient Processing of Multiple
Continuous Skyline Queries over a Data Stream, Information Science
221 (2013), 316�337.

[LM11] S. Linckels and C. Meinel, Natural Language Processing, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[Luc01] D. C. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[Mel93] J. Melton, Understanding the New SQL: A Complete Guide, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[MKEK15] S. Mandl, O. Kozachuk, M. Endres, and W. Kieÿling, Preference Ana-
lytics in EXASolution , Proceedings of BTW, BTW'15, 2015.

137

BIBLIOGRAPHY

[MPG07] M. Morse, J. M. Patel, and W. I. Grosky, E�cient Continuous Skyline
Computation, Inf. Sci. 177 (2007), no. 17, 3411�3437.

[MPJ07] M. Morse, J. M. Patel, and H. V. Jagadish, E�cient Skyline Computation
over Low-cardinality Domains, Proceedings of VLDB '07, 2007, pp. 267�
278.

[MS98] J. McMahon and F. J. Smith, A Review of Statistical Language Process-
ing Techniques, Arti�cial Intelligence Review 12 (1998), no. 5, 347�391.

[MSM93] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, Building a Large
Annotated Corpus of English: The Penn Treebank, Computational Lin-
guistics 19 (1993), no. 2, 313�330.

[Nor13] P. Norvig, English Letter Frequency Counts: Mayzner Revisited or
ETAOIN SRHLDCU, 2013.

[OKA10] B. O'Connor, M. Krieger, and D. Ahn, TweetMotif: Exploratory Search
and Topic Summarization for Twitter, Proceedings of the International
AAAI Conference on Weblogs and Social Media (Washington, DC, USA),
2010.

[OM09] M. Okazaki and Y. Matsuo, Semantic Twitter: Analyzing Tweets for
Real-Time Event Noti�cation, BlogTalk, Lecture Notes in Computer Sci-
ence, vol. 6045, Springer, 2009, pp. 63�74.

[Pet86] J. L. Peterson, A Note on Undetected Typing Errors, ACM 29 (1986),
no. 7, 633�637.

[PK07] T. Preisinger and W. Kieÿling, The Hexagon Algorithm for Pareto Pref-
erence Queries, Proceedings of the 3rd Multidisciplinary Workshop on
Advances in Preference Handling in conjunction with VLDB '07 (Vienna,
Austria), 2007.

[PK13] R. Parikh and K. Karlapalem, ET: Events from Tweets, WWW (Com-
panion Volume), International World Wide Web Conferences Steering
Committee / ACM, 2013, pp. 613�620.

[Por80] M. F. Porter, An Algorithm for Su�x Stripping, Program 40 (1980),
211�218.

[Pre09] T. Preisinger, Graph-based Algorithms for Pareto Preference Query,
Books on Demand, 2009.

138

BIBLIOGRAPHY

[PRPM16] V. S. Pagolu, K. N. Reddy, G. Panda, and B. Majhi, Sentiment analy-
sis of Twitter data for predicting stock market movements, International
Conference on Signal Processing, Communication, Power and Embedded
System (SCOPES), oct 2016, pp. 1345�1350.

[RBdA�17] M. R. Ribeiro, M. C. N. Barioni, S. de Amo, C. Roncancio, and C. Labbé,
Reasoning with Temporal Preferences over Data Streams, Florida Arti-
�cial Intelligence Research Society Conference (FLAIRS '17) (Marco Is-
land, USA), 2017.

[RE17] L. Rudenko and M. Endres, Personalized Stream Analysis with Prefer-
enceSQL, Datenbanksysteme für Business, Technologie und Web - BTW
2017, Workshopband (Stuttgart, Germany) (B. Mitschang, N. Ritter,
H. Schwarz, M. Klettke, A. Thor, O. Kopp, and M. Wieland, eds.), LNI,
vol. P-266, GI, 2017, pp. 181�184.

[RE18] , Real-Time Skyline Computation on Data Streams, New Trends
in Databases and Information Systems - ADBIS 2018 (Budapest, Hun-
gary) (A. Benczúr, B. Thalheim, T. Horváth, S. Chiusano, T. Cerquitelli,
C. István Sidló, and P. Z. Revesz, eds.), Communications in Computer
and Information Science, vol. 909, Springer, 2018, pp. 20�28.

[REH�12] P. Roocks, M. Endres, A. Huhn, W. Kieÿling, and S. Mandl, Design and
Implementation of a Framework for Context-Aware Preference Queries,
Journal of Computing Science and Engineering (JCSE) 6 (2012), no. 4,
243�256.

[REMK12] P. Roocks, M. Endres, S. Mandl, and W. Kieÿling, Composition and
E�cient Evaluation of Context-Aware Preference Queries, DASFAA '12:
Proceedings of the 17th international conference on Database systems for
advanced applications, 2012.

[RERK16] L. Rudenko, M. Endres, P. Roocks, and W. Kieÿling, A Preference-based
Stream Analyzer, Proceedings of the Workshop on Large-scale Learning
from Data Streams in Evolving Environments - STREAMEVOLV 2016
(Riva del Garda, Italy) (M. Sayed Mouchaweh, H. Bouchachia, J. Gama,
and R. Paula Ribeiro, eds.), CEUR Workshop Proceedings, vol. 2069,
CEUR-WS.org, 2016.

[RH20] L. Rudenko and C. Haas, Preference-based Twitter Analytics, Digital
ECAI 2020, M-PREF'20 Workshop (Santiago de Compostela, Spain),
2020.

139

BIBLIOGRAPHY

[RHE20] L. Rudenko, C. Haas, and M. Endres, Analyzing Twitter Data with Pref-
erences, ADBIS 2020 (Lyon, France), 2020.

[RM13] C. Railean and A. Moraru, Discovering Popular Events From Tweets,
Conference on Data Mining and Data Warehouses (SiKDD) (2013).

[SG�12] J. Smailovi¢, M. Gr£ar, and M. �nidar²i£, Sentiment Analysis on Tweets
in a Financial Domain, 4th Jozef Stefan International Postgraduate
School Students Conference (2012), 169�175.

[SHA12] H. Saif, Y. He, and H. Alani, Semantic Sentiment Analysis of Twit-
ter, The Semantic Web - ISWC 2012 (Berlin, Heidelberg) (P. Cudré-
Mauroux, J. He�in, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth,
J. X. Parreira, J. Hendler, G. Schreiber, A. Bernstein, and E. Blomqvist,
eds.), Springer Berlin Heidelberg, 2012, pp. 508�524.

[SIK14] B. P. Shari�, D. I. Inouye, and J. K. Kalita, Summarization of Twitter
Microblogs, The Computer Journal 57 (2014), no. 3, 378�402.

[SKE11] K. Stefanidis, G. Koutrika, and E. Pitoura E., A Survey on Representa-
tion, Composition and Application of Preferences in Database Systems,
ACM TODS 36 (2011), no. 3, 19:1�19:45.

[SL18] A. Samir and Z. Lahbib, Stemming and Lemmatization for Information
Retrieval Systems in Amazigh Language, Big Data, Cloud and Applica-
tions - Third International Conference (BDCA), Kenitra, Morocco, apr
2018, pp. 222�233.

[SLA�17] V. Subramaniyaswamy, R. Logesh, M. Abejith, S. Umasankar, and
A. Umamakeswari, Sentiment Analysis of Tweets for Estimating Crit-
icality and Security of Events, Journal of Organizational and End User
Computing 29 (2017), 51�71.

[SOM13] T. Sakaki, M. Okazaki, and Y. Matsuo, Tweet Analysis for Real-Time
Event Detection and Earthquake Reporting System Development, IEEE
Trans. on Knowl. and Data Eng. 25 (2013), no. 4, 919�931.

[SST�09] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and
J. Sperling, Twitterstand: News in Tweets, ACM '09, 2009, pp. 42�51.

[SVO�17] J. Sutton, S. Vos, M. Olson, C. Woods, E. Cohen, C. Gibson, N. Phillips,
J. Studts, J. Eberth, and C. Butts, Lung Cancer Messages on Twitter:
Content Analysis and Evaluation, Journal of the American College of
Radiology 15 (2017).

140

BIBLIOGRAPHY

[TO09] H. Takamura and M. Okumura, Text Summarization Model Based on the
Budgeted Median Problem, Proceedings of the 18th ACM Conference on
Information and Knowledge Management (Hong Kong, China), CIKM
'09, ACM, 2009, pp. 1589�1592.

[TP06] Y. Tao and D. Papadias, Maintaining Sliding Window Skylines on Data
Streams, IEEE Trans. on Knowl. and Data Eng. 18 (2006), no. 3, 377�
391.

[Wal] J. Walton, Twitter vs. Facebook vs. Instagram: What's the Di�erence?

[WEMK12] F. Wenzel, M. Endres, S. Mandl, and W. Kieÿling, Complex Prefer-
ence Queries Supporting Spatial Applications for User Groups, PVLDB
5 (2012), no. 12, 1946�1949.

[WK02] Kieÿling W. and G. Köstler, Preference SQL � Design, Implementation,
Experiences, VLDB '02: Proceedings of the 28th International Confer-
ence on Very Large Databases (San Francisco), Morgan Kaufmann, 12
2002, pp. 990�1001.

[WKK13] F. Wenzel, D. Köppl, and W. Kieÿling, Interactive Toolbox for Spatial-
Textual Preference Queries, Advances in Spatial and Temporal Databases
(Berlin, Heidelberg) (M. A. Nascimento, T. Sellis, R. Cheng, J. Sander,
Y. Zheng, H. Kriegel, M. Renz, and C. Sengstock, eds.), Springer Berlin
Heidelberg, 2013, pp. 462�466.

[XYWH05] L. Xuemin, Y. Yidong, W. Wei, and L. Hongjun, Stabbing the Sky: E�-
cient Skyline Computation over Sliding Windows, Proceedings of ICDE
'05 (Washington, DC, USA), IEEE Computer Society, 2005, pp. 502�513.

141

Appendix A

A.1 Tweet Object

a) Tweet (which is actually a retweet) on the web site in the user's feed:

Figure A.1: (Re)tweet screenshot by the user Dill Peekle.

A.1 Tweet Object

b) Tweet from the Figure A.1 in JSON format:

{
" created_at " : "Tue Jun 02 16 : 5 5 : 1 9 +0000 2020" ,
" id " :1267862371076321281 ,
" id_str " : " 1267862371076321281" ,
" text " : "RT @StephenKing: Dear fundamenta l i s t Chr i s t i an Trump suppo r t e r s :

I f Obama had held the Bib le backwards and ups ide down ,
you would immediate . . . " ,

" source " : "<a hr e f=\" ht tp : // tw i t t e r . com/download/ iphone \"
r e l=\" no fo l l ow \">Twitter f o r iPhone<\/a>" ,

" truncated " : f a l s e ,
" in_reply_to_status_id" : nu l l ,
" in_reply_to_status_id_str " : nu l l ,
" in_reply_to_user_id" : nu l l ,
" in_reply_to_user_id_str " : nu l l ,
" in_reply_to_screen_name" : nu l l ,

" user " :
{
" id " :3041644622 ,
" id_str " : " 3041644622" ,
"name" : " D i l l Peekle " ,
"screen_name" : "dont_do_krugs" ,
" l o c a t i o n " : nu l l ,
" u r l " : nu l l ,
" d e s c r i p t i o n " : "Parker Kruger ; TXST '22 ; she /her ;
i t ' s a l l because o f my no�good�di r ty �rotten �pig� s t e a l i n g �
great �great �grandfather " ,
" t rans la tor_type " : "none" ,
" protec ted " : f a l s e ,
" v e r i f i e d " : f a l s e ,
" fo l lowers_count " :273 ,
" f r iends_count " :321 ,
" l i s t ed_count " :1 ,
" favour i te s_count " :27608 ,
" statuses_count " :12794 ,
" created_at " : "Wed Feb 25 17 : 3 2 : 4 8 +0000 2015" ,
" u t c_o f f s e t " : nu l l ,
" time_zone" : nu l l ,
" geo_enabled" : f a l s e ,
" lang " : nu l l ,
" contr ibutors_enabled " : f a l s e ,
" i s_ t r an s l a t o r " : f a l s e ,
" prof i l e_background_color " : "000000" ,
"profi le_background_image_url " :
" h t tp : // abs . twimg . com/ images /themes/theme1/bg . png" ,
"profi le_background_image_url_https " :
" h t t p s : // abs . twimg . com/ images /themes/theme1/bg . png" ,
" pro f i l e_background_t i l e " : f a l s e ,
" p r o f i l e_ l i nk_co l o r " : "E81C4F" ,
" pro f i l e_s idebar_border_co lor " : "000000" ,
" p r o f i l e_ s i d e b a r_ f i l l_ c o l o r " : "000000" ,
" p ro f i l e_tex t_co l o r " : "000000" ,
"profile_use_background_image" : f a l s e ,
" prof i l e_image_ur l " :
" h t tp : //pbs . twimg . com/ pro f i l e_images /1121891532146126848/FY2XlnTa_normal . jpg " ,
" prof i le_image_url_https " :
" h t t p s : //pbs . twimg . com/ pro f i l e_images /1121891532146126848/FY2XlnTa_normal . jpg " ,

143

A

" pro f i l e_banner_ur l " :
" h t t p s : //pbs . twimg . com/ pro f i l e_banner s /3041644622/1585288414" ,
" d e f a u l t_p r o f i l e " : f a l s e ,
" de fau l t_pro f i l e_image " : f a l s e ,
" f o l l ow i ng " : nu l l ,
" fo l low_request_sent " : nu l l ,
" n o t i f i c a t i o n s " : n u l l
} ,

"geo" : nu l l ,
" coo rd ina t e s " : nu l l ,
" p lace " : nu l l ,
" c on t r i bu to r s " : nu l l ,

" retweeted_status " :
{
" created_at " : "Tue Jun 02 10 : 4 5 : 0 1 +0000 2020" ,
" id " :1267769182843789312 ,
" id_str " : " 1267769182843789312" ,
" text " : "Dear fundamenta l i s t Chr i s t i an Trump suppo r t e r s :

I f Obama had held the Bib le backwards and ups ide down ,
you would im . . . h t t p s : // t . co /0L9s99P5SH" ,

" source " : "<a hr e f=\" h t tp s : //mobile . tw i t t e r . com\"
r e l=\" no fo l l ow \">Twitter Web App<\/a>" ,

" truncated " : t rue ,
" in_reply_to_status_id" : nu l l ,
" in_reply_to_status_id_str " : nu l l ,
" in_reply_to_user_id" : nu l l ,
" in_reply_to_user_id_str " : nu l l ,
" in_reply_to_screen_name" : nu l l ,

" user " :
{
" id " :2233154425 ,
" id_str " : " 2233154425" ,
"name" : "Stephen King" ,
"screen_name" : "StephenKing" ,
" l o c a t i o n " : nu l l ,
" u r l " : " h t tp : // stephenking . com" ,
" d e s c r i p t i o n " : "Author" ,
" t rans la tor_type " : "none" ,
" protec ted " : f a l s e ,
" v e r i f i e d " : t rue ,
" fo l lowers_count " :5901407 ,
" f r iends_count " :118 ,
" l i s t ed_count " :14281 ,
" favour i te s_count " :25 ,
" statuses_count " :4706 ,
" created_at " : " Fr i Dec 06 15 : 2 6 : 3 5 +0000 2013" ,
" u t c_o f f s e t " : nu l l ,
" time_zone" : nu l l ,
" geo_enabled" : f a l s e ,
" lang " : nu l l ,
" contr ibutors_enabled " : f a l s e ,
" i s_ t r an s l a t o r " : f a l s e ,
" prof i l e_background_color " : "C0DEED" ,
"profi le_background_image_url " :
" h t tp : // abs . twimg . com/ images /themes/theme1/bg . png" ,
"profi le_background_image_url_https " :
" h t t p s : // abs . twimg . com/ images /themes/theme1/bg . png" ,

144

A.1 Tweet Object

" pro f i l e_background_t i l e " : f a l s e ,
" p r o f i l e_ l i nk_co l o r " : "1DA1F2" ,
" pro f i l e_s idebar_border_co lor " : "C0DEED" ,
" p r o f i l e_ s i d e b a r_ f i l l_ c o l o r " : "DDEEF6" ,
" p ro f i l e_tex t_co l o r " : "333333" ,
"profile_use_background_image" : t rue ,
" prof i l e_image_ur l " :
" h t tp : //pbs . twimg . com/ pro f i l e_images /378800000836981162/
b683f7509ec792c3e481ead332940cdc_normal . jpeg " ,

" prof i le_image_url_https " :
" h t t p s : //pbs . twimg . com/ pro f i l e_images /378800000836981162/
b683f7509ec792c3e481ead332940cdc_normal . jpeg " ,
" d e f a u l t_p r o f i l e " : t rue ,
" de fau l t_pro f i l e_image " : f a l s e ,
" f o l l ow i ng " : nu l l ,
" fo l low_request_sent " : nu l l ,
" n o t i f i c a t i o n s " : n u l l
} ,

"geo" : nu l l ,
" coo rd ina t e s " : nu l l ,
" p lace " : nu l l ,
" c on t r i bu to r s " : nu l l ,
" is_quote_status " : f a l s e ,

" extended_tweet" :
{
" f u l l_ t ex t " : "Dear fundamenta l i s t Chr i s t i an Trump suppo r t e r s :

I f Obama had held the Bib le backwards and ups ide down ,
you would immediately have c a l l e d him the Ant i ch r i s t . " ,

" display_text_range " : [0 , 1 5 6] ,

" e n t i t i e s " :
{
" hashtags " : [] ,
" u r l s " : [] ,
"user_mentions " : [] ,
" symbols " : []
}

} ,

"quote_count" :706 ,
" reply_count " :1820 ,
" retweet_count " :20656 ,
" favor i te_count " :92073 ,

" e n t i t i e s " :
{
" hashtags " : [] ,
" u r l s " : [{ " u r l " : " h t t p s : // t . co /0L9s99P5SH" ,

"expanded_url" :
" h t t p s : // tw i t t e r . com/ i /web/ s t a tu s /1267769182843789312" ,
" d i sp lay_ur l " : " tw i t t e r . com/ i /web/ s ta tu s /1\u2026" ,
" i n d i c e s " : [1 1 7 , 1 4 0] }] ,

"user_mentions " : [] ,
" symbols " : []
} ,

145

A

" f a v o r i t e d " : f a l s e ,
" retweeted " : f a l s e ,
" f i l t e r _ l e v e l " : " low" ,
" lang " : "en"
} ,

" is_quote_status " : f a l s e ,
"quote_count" :0 ,
" reply_count " :0 ,
" retweet_count " :0 ,
" favor i te_count " :0 ,

" e n t i t i e s " :
{
" hashtags " : [] ,

" u r l s " : [] ,
"user_mentions " : [{ "screen_name" : "StephenKing" ,

"name" : "Stephen King" ,
" id " :2233154425 ,

" id_str " : " 2233154425" ,
" i n d i c e s " : [3 , 1 5] }] ,

" symbols " : []
} ,

" f a v o r i t e d " : f a l s e ,
" retweeted " : f a l s e ,
" f i l t e r _ l e v e l " : " low" ,
" lang " : "en" ,
"timestamp_ms" : "1591116919665"
}

Figure A.2: JSON representation of the (re)tweet from Figure A.1

146

1 &
2 a
3 about
4 above
5 actually
6 after
7 again
8 against
9 all

10 already
11 also
12 am
13 an
14 and
15 another
16 any
17 anyway
18 are
19 as
20 at
21 back
22 be
23 because
24 been
25 before
26 being
27 below
28 between
29 both
30 but
31 by
32 c
33 can
34 cause
35 cha
36 could
37 did
38 do
39 does
40 doing
41 done
42 down
43 duh
44 during
45 each
46 even
47 ever
48 every
49 few
50 for

51 from
52 further
53 get
54 go
55 goes
56 gonna
57 gunna
58 had
59 haha
60 has
61 have
62 having
63 he
64 hello
65 her
66 here
67 hers
68 herself
69 hey
70 hi
71 him
72 himself
73 his
74 how
75 however
76 huh
77 i
78 if
79 in
80 into
81 is
82 it
83 its
84 itself
85 just
86 least
87 less
88 like
89 made
90 make
91 many
92 may
93 me
94 might
95 more
96 most
97 must
98 my
99 myself

100 never

101 no
102 nor
103 not
104 now
105 of
106 off
107 oh
108 on
109 once
110 one
111 only
112 or
113 other
114 ought
115 our
116 ours
117 ourselves
118 out
119 over
120 own
121 please
122 pls
123 put
124 r
125 said
126 same
127 say
128 says
129 see
130 seen
131 shall
132 she
133 should
134 since
135 so
136 some
137 still
138 such
139 take
140 than
141 that
142 the
143 their
144 theirs
145 them
146 themselves
147 then
148 there
149 these
150 they

151 this
152 those
153 through
154 to
155 too
156 til
157 u
158 under
159 until
160 up
161 ur
162 us
163 v
164 very
165 was
166 way
167 we
168 well
169 were
170 what
171 when
172 where
173 whether
174 which
175 while
176 who
177 whom
178 why
179 will
180 with
181 would
182 y
183 ya
184 yall
185 yeah
186 yet
187 you
188 your
189 yours
190 yourself
191 yourselves

A.2 Default List of Stopwords

A.2 Default List of Stopwords

147

A

A.3 Short Description of Selected Tweet Attributes

attribute description
coordinates Very precise geographical position of the user at the moment when he posted

the current tweet. Unfortunately this value is almost always null.
created_at Date and time in UTC format the account was created.
description Description of the own account entered by the user.
favourites_count Number of tweets, which the user liked.
followers_count Number of followers for the current account.
friends_count Number of users the current account is following.
hashtags Word or phrase preceded by a hash sign (#) to identify messages on a speci�c topic.
lang Machine-detected language of the tweet text.
location User-de�ned location of his account, not always a real location, is often null.
name Name of the user chosen by him, not unique.
place Place, which is associated with the current tweet, is often null.
screen_name Name that identi�es the current account, unique.
source Utility used to post the tweet.
statuses_count Number of tweets (including retweets) posted by the user.
text Text of the current tweet.
user Author of the tweet.
verified Set to true means that the account of public interest is authentic.

Table A.1: Alphabetically sorted selected attributes of tweet object with short description.

148

Umfrage zur Masterarbeit

Entwicklung und Implementierung von
Verfahren zur Aggregation thematisch

ähnlicher Twitter-Nachrichten

von Dominik Gröninger

Im Rahmen meiner Masterarbeit erarbeite ich Methoden, um Kurznachrichten mit ähnlicher
Thematik zu gruppieren und deren Inhalt zu aggregieren (zusammenzufassen). Ziel ist es dabei,
menschenlesbare Inhaltsangaben zu erzeugen, die sich auf wenige Sätze beschränken, aber dennoch
möglichst viele Informationen wiedergeben. Um die Qualität der automatisiert generierten
Aggregationen einstufen zu können, muss ein Vergleich mit von Hand verfassten Pendants
stattfinden. Hierbei bitte Ich Sie um Ihre Mithilfe! Vielen Dank im Voraus!

Worum es geht:

• In den unten stehenden Tabellen finden Sie eine Reihe von Textnachrichten (Tweets), die im
Sozialen Netzwerk Twitter veröffentlicht wurden. Diese Nachrichten sind auf Englisch
verfasst und stammen von Privatpersonen, Institutionen (z.B. Rundfunkanstalten), etc.
Entsprechend können einerseits sachliche Fakten, andererseits aber auch Meinungen,
Gedanken und Emotionen sowie Rechtschreibfehler enthalten sein. Zur Verbesserung der
Lesbarkeit wurden URLs und Emojies entfernt, Nutzerverlinkungen (@...) und Hashtags
(#...) sind aber nach wie vor vorhanden.

• Jede Tabelle steht für eine Gruppierung (Cluster) von Tweets, die mithilfe der entwickelten
Software entstanden ist. In der Folge behandeln die enthaltenen Tweets auch mutmaßlich
das gleiche Gesprächsthema, welches jeweils als Überschrift angegeben ist. Die Spalte Nr.
dient Ihnen zur Orientierung, die Spalte Tweet-ID können Sie ignorieren.

Aufgabenstellung:

• Fassen Sie die (wichtigsten) Inhalte jedes Clusters in 1 – 5 Sätzen (auf Englisch) zusammen,
• aber versuchen Sie auch, möglichst viele vorhandene Informationen mit einzubinden!

Salopp: Geben Sie in gekürzt wieder, was Sie einer Vielzahl an Tweets entnehmen mussten!

• Beantworten Sie abschließend die am Ende aufgeführten Fragen!

Beachten Sie dazu bitte folgende Hinweise/Kriterien:

• Berücksichtigen Sie nur die Inhalte derjenigen Tweets, die Ihrer Meinung nach auch mit
dem angegebenen Thema zu tun haben!

• Inkludieren Sie Informationen, die über die Kernaussagen hinaus gehen (z.B. Wer? Wie?
Wo? Wann?), falls es Ihnen sinnvoll und passend erscheint! Dies schließt auch die
verwendeten Nutzerverlinkungen und Hashtags mit ein!

• Ergänzen Sie keine Informationen, die nicht in mindestens einem Tweet des gleichen
Clusters zu finden sind! Beschränken Sie sich ausschließlich auf den Inhalt der angegebenen
Textnachrichten!

• Ihre Zusammenfassung darf einen Umfang von 5 Sätzen nicht überschreiten – Sie müssen
das gesetzte Limit allerdings auch nicht ausschöpfen!

• Welche Länge Ihre Sätze im Einzelnen haben, bleibt Ihnen überlassen. Achten Sie aber stets
darauf, die Lesbarkeit bzw. Verständlichkeit Ihrer Zusammenfassung aufrechtzuerhalten!

• Ansonsten gilt: Es gibt kein richtig oder falsch! Verfahren Sie nach Ihrem Ermessen!

1 / 23

19.04.2020

A.4 Survey

A.4 Survey

149

Cluster 1: „Corona Boris Johnson“ (45 Tweets)

Nr. Tweet-ID Text

1 1247240407781724163 Boris Johnson moved to intensive care after being admitted to hospital with persistent
coronavirus symptoms

2 1247241256612347906 Prime Minister Boris Johnson has been moved to intensive care after his coronavirus
symptoms worsened, Downing Street has confirmed.

3 1247241734058323968 Corona: Prime Minister Boris Johnson moved to intensive care after condition worsens

4 1247242052993200128 Downing Street says Prime Minister Boris Johnson has been moved to intensive care
after his coronavirus symptoms worsened...

5 1247242253199912960 PM was moved to intensive care at 7pm. Before he went he asked Dominic Raab to
deputise for him. As far as coronavirus is concerned, Raab is the effective acting Prime
Minister

6 1247242481068126209 APNEWSALERT: LONDON (AP) — British Prime Minister Boris Johnson moved to
intensive care unit of hospital after coronavirus symptoms worsen.

7 1247242494489878528 UK Prime Minister Boris Johnson has been moved to an intensive care unit after his
COVID-19 condition worsened over the course of this afternoon, Downing Street says

8 1247242770546376706 Boris Johnson moved to intensive care after coronavirus symptoms worsen

9 1247242790481866752 #BREAKING #UK Prime Minister Boris #Johnson moved to intensive care after
#coronavirus condition 'worsened'.

10 1247242851924221952 #Breaking Prime Minister Boris Johnson has been moved to intensive care after his
coronavirus symptoms worsened, Downing Street has confirmed

11 1247243216455434244 BREAKING: British Prime Minister Boris Johnson moved to intensive care unit of
hospital after coronavirus symptoms worsen.

12 1247243351893499909 British Prime Minister #BorisJohnson moved to intensive care unit after coronavirus
symptoms worsen #Coronavirus

13 1247243439927971840 This is an incredibly serious situation for the British prime Minister. Boris Johnson's
condition with #coronavirus at St Thomas's Hospital has dramatically worsened in the
last few hours & he was moved into intensive care at 7pm. Fight hard Boris - we're all
rooting for you.

14 1247243461914394632 #BREAKING: Boris Johnson moved to intensive care as coronavirus symptoms worsen

15 1247243592042717186 Coronavirus: Boris Johnson moved to intensive care

16 1247243747051651072 BREAKING: British PM Boris Johnson has been moved into intensive care at St.
Thomas’ Hospital, London, as his Coronavirus symptoms worsen

17 1247243757348704256 BREAKING: UK Prime Minister Boris Johnson has been moved to intensive care as he
continues to battle coronavirus #COVID19

18 1247243868870971397 U.K. is so badly organised, it cannot even prevent its own top political leader from
becoming pandemic victim. @BorisJohnson Johnson moved to intensive care after
#coronavirusuk symptoms worsen via The Irish Times

19 1247244105450651649 Boris Johnson moved to Intensive Care #COVID19 #BorisJohnson

20 1247244146303217665 Boris Johnson moved to intensive care after being admitted to hospital with coronavirus.
Downing Street statement says UK Foreign Secretary Dominic Raab has been assigned
to act as the PM's deputy in all necessary matters.

21 1247244229564391424 BBC News - Coronavirus: Boris Johnson moved to intensive care

22 1247244312993083392 #BREAKING :-Prime Minister #BorisJohnson has been moved to intensive care after
his #CoronaVirusUpdate symptoms....

23 1247244414109413376 UK PM Boris Johnson moved to INTENSIVE CARE suffering from Covid-19

24 1247244505063002117 BREAKING: Prime Minister Boris Johnson has been moved into Intensive Care after he
was admitted to hospital with coronavirus, according to reports. More to follow...

25 1247244971960344578 Coronavirus: Prime Minister Boris Johnson moved to intensive care after condition
worsens

2 / 23

A

150

26 1247244996874559493 Boris Johnson has been moved to ICU due to Coronavirus and the Left cheers. The
Conservative responds with “Really? That’s not nice. It could be you! I wouldn’t wish
that on anyone”. Wake up normie, your efforts are in vain. Your enemies want you dead.
Negotiations are over.

27 1247245020907913218 BREAKING - Boris Johnson moved to intensive care in hospital with coronavirus

28 1247245076855693313 British Prime Minister Boris Johnson, sick with covid-19, is moved to intensive care
after his condition worsens

29 1247245088754982913 Prime Minister Boris Johnson moved to intensive care after being admitted to hospital
with coronavirus - ITV News. Get well soon @BorisJohnson we’re all routing for you.
#PrayForBoris

30 1247245601114411011 #BREAKING: British Prime Minister Boris Johnson has been moved to the intensive
care unit of a London hospital after his #coronavirus symptoms worsened, per @AP.
Johnson’s office says Johnson is conscious and does not require ventilation at the
moment.

31 1247245701727150080 #BREAKING British Prime Minister Boris Johnson moved to intensive care after
coronavirus symptoms worsen

32 1247245789824299012 Coronavirus: Boris Johnson moved to intensive care

33 1247245970200551425 Anybody tweeting hatefulness about @BorisJohnson being moved to intensive care
should be named and shamed and ashamed for life. This is a human being with a partner
and baby who has been leading this country well through unprecedented times
#Covid_19 #BorisJohnson

34 1247246112823574530 Boris Johnson moved to intensive care after coronavirus symptoms worsen, Downing
Street confirms #Topbuzz

35 1247246300069769217 Boris Johnson moved to intensive care... Thoughts: Me, it makes me sad. This is real
people Covid19 don't give a damn how much money you have. Which God you worship
or what your political sway is. Dead is dead

36 1247246301537775622 Boris Johnson moved to ICU as COVID-19 symptoms worsen

37 1247246842599026689 Boris Johnson moved to intensive care with COVID-19

38 1247246985217925120 Coronavirus: Boris Johnson moved to intensive care – BBC News

39 1247247320783224833 BBC News - Coronavirus: Boris Johnson moved to intensive care

40 1247249748802879489 Pray for the Prime Minister of the the U.K., Boris Johnson he's been moved to the ICU
because of his worsening Covid-19 symptoms

41 1247250256770633729 #BREAKING UK Prime Minister Boris Johnson has been moved to intensive care via
Spectator Index #Covid_19 #BorisJohnson #CoronavirusInUK

42 1247250601492262912 BBC News - Coronavirus: Boris Johnson moved to intensive care as symptoms 'worsen'

43 1247251447940395008 Boris Johnson moved to ICU with 'worsening' symptoms of #COVID19

44 1247256665256312832 Sad development, hope he pulls through. Stay Home people! Coronavirus: Boris
Johnson moved to intensive care as symptoms 'worsen'

45 1247416083885285376 UK PM Boris Johnson moved to intensive care as coronavirus symptoms worsen; asks
Foreign Secretary Dominic Raab to deputise 'where necessary'

Ihre Zusammenfassung für Cluster 1 („Corona Boris Johnson“):

3 / 23

A.4 Survey

151

Cluster 2: „Max von Sydow“ (80 Tweets)

Nr. Tweet-ID Text

1 1236983214994001920 Very very sad to hear of the passing of Max Von Sydow. He brought gravitas and
grandeur no matter how silly the material. Flash Gordon would be a lesser film without
him playing Ming. His moments on screen in films like Judge Dredd and The Force
Awakens elevated them.

2 1236984802177421312 RIP Max von Sydow

3 1236985889269694464 The Exorcist and Star Wars actor Max von Sydow dies aged 90

4 1236986959962218497 Farewell then, Max von Sydow, owner of one of cinema's greatest faces

5 1236987704702898179 R.I.P. Max von Sydow, who has passed away at the age of 90.

6 1236988194475950080 #BREAKING Actor Max von Sydow dies at 90, wife tells French media

7 1236988198020173824 #Breaking Actor Max von Sydow has died at his home in France aged 90, his agent said

8 1236988309026545664 Actor Max von Sydow dies at 90, wife tells French media

9 1236988585380679680 R.I.P. Max von Sydow. Will always remember this iconic chess game.

10 1236988707502280704 R.I.P. Max von Sydow (1929-2020)

11 1236988896912777216 “It is with a broken heart and with infinite sadness that we have the extreme pain of
announcing the departure of Max von Sydow,” his widow Catherine said. The actor dies
on Sunday, March 8.

12 1236989196436475904 BREAKING Game Of Thrones star Max von Sydow dies aged 90

13 1236989619398496258 Max von Sydow, best known for his work with Ingmar Bergman (and once hailed as the
“greatest actor alive” (has died. He was 90.

14 1236989746670260224 Max von Sydow, star of The Exorcist and The Seventh Seal, dies aged 90

15 1236989814798462977 You have to admire the majesty Max von Sydow brought to everything. Just an
absolutely commanding screen presence. RIP.

16 1236990119774695426 Max von Sydow, known for his work in the films of Ingmar Bergman, has died at the
age of 90.

17 1236990255502409728 Max von Sydow has passed away at the age of 90. In his long career he worked with
such greats as Bergman, Friedkin, Pollack, Lynch, Wenders, Argento, Spielberg, and
Scorsese. A true legend if there ever was one.

18 1236990284539613189 Max von Sydow, star of The Exorcist and The Seventh Seal, dies aged 90

19 1236990461719580673 Somewhere between this and the other world, Max von Sydow has finally finished that
game of chess.

20 1236990705714769921 RIP Max Von Sydow - Chief Judge Fargo has taken the long walk @2000AD

21 1236990709561012224 Actor Max Von Sydow, who appeared in more than 100 films and TV series, has died at
the age of 90

22 1236990904877166592 RIP Max Von Sydow (1929-2020) A legend and an icon of cinema #FilmTwitter

23 1236990919540441089 Farewell to Max von Sydow (1929-2020), an actor of considerable gravitas but with a
gentle twinkle and the ability to move from intellectual drama to major genre cinema.
His legacy is assured by two brilliant but very different films: THE EXORCIST (1973)
and FLASH GORDON (1980).

24 1236991017787809793 Legendary actor Max Von Sydow has passed away at the age of 90. He recently starred
in Star Wars: The Force Awakens and Game of Thrones, and is known for his iconic
roles in The Exorcist and The Seventh Seal.

25 1236991102449782784 RIP Max von Sydow. And thanks for the amazing performances!

26 1236991166425554957 Game of Thrones and Star Wars actor Max von Sydow has died

27 1236991391508713472 Max Von Sydow, one of Sweden’s greatest actors has passed away. This silver screen
legend will be missed by many! R.I.P.

28 1236991503492435969 One of my favourite actors has died. RIP. Max von Sydow, star of The Exorcist and The
Seventh Seal, dies aged 90

4 / 23

A

152

29 1236991932926173185 May the force be with you, Max von Sydow. #RIP

30 1236992000244801538 Rest in peace Max von Sydow. You were a Swedish acting giant, and I'll never forget
you.

31 1236992008427896834 MAX VON SYDOW who appeared in films such as The Exorcist , The Minority Report
and The Seventh Seal has died aged 90 - RIP

32 1236992241593450496 BREAKING: Actor Max Von Sydow, known for his roles in The Seventh Seal, Flash
Gordon, Star Wars, and Game of Thrones, has died at 90

33 1236992620292947969 ‘Seventh Seal,’ ‘Star Wars’ Actor Max Von Sydow Dies at 90

34 1236992868201435136 The Exorcist's Max von Sydow has passed away at the age of 90. (10 April 1929 - 09
March 2020)

35 1236993303930900481 One of my favourite openings of a film ever. Max Von Sydow’s incredible voiceover.

36 1236993503886036993 RIP Max von Sydow.

37 1236993583611367424 JUST IN: ‘Game of Thrones’, Ingmar Bergman’s ‘The Seventh Seal’ star Max von
Sydow dies aged 90

38 1236993660979380229 Max von Sydow, star of The Exorcist and The Seventh Seal, dies aged 90 RIP

39 1236994667603869698 Max Von Sydow dead: Star Wars, Game of Thrones and Exorcist actor dies aged 90

40 1236995234082353153 RIP Max von Sydow, who has died aged 90. He was best known for his roles in The
Exorcist, The Seventh Seal, and Flash Gordon. More recently, he appeared in Game of
Thrones and Star Wars: The Force Awakens

41 1236995446956011525 Max von Sydow, star of The Exorcist and The Seventh Seal, dies aged 90

42 1236995464517558272 Ah, Max von Sydow. Everyone will go on about The Seventh Seal but he'll always be
the nice Nazi in Escape to Victory and...

43 1236995678439530497 I just watched you in Wild Strawberries (Ingmar Bergman, 1957) last week. Thank you
for your stunning contributions in the world of cinema, Max von Sydow. You will be
greatly missed! (10 April 1929 - 8 March 2020)

44 1236995690724761601 Max Von Sydow: A great actor and a lovely man. It was my great honour to meet him
briefly on the set of TFA. Like Guinness & Cushing before him he added artistic weight,
legitimacy and class to the #StarWars universe.

45 1236995699402629121 Max Von Sydow: Actor dies aged 90

46 1236995787227365377 Max von Sydow, the legend of Swedish cinema who dueled with Death in a game of
chess in Ingmar Bergman's The Seventh Seal and portrayed the resolute Father Merrin
in William Friedkin's The Exorcist (1973), has died. He was 90.

47 1236995816851673088 Rip Max Von Sydow

48 1236995854789206016 Max von Sydow. What a wonderful game of chess! So many exquisite moves. So many
unforgettable moments. And that face, that voice that mirrored the awes and horrors of
our existence. And by the way - you won the game. Immortal. #maxvonsydow

49 1236996150281945088 One of the greatest actors there has ever been. We've lost a true icon of cinema but he
leaves behind an indelible career that spanned over six decades. Rest in peace, Max von
Sydow.

50 1236996198172692480 "The more I had to act like a saint, the more I felt like being a sinner." - Max von
Sydow, who has passed away at the age of 90.

51 1236996318427521026 Raise a glass for one of the true all-time greats. Rest in peace, Max von Sydow.

52 1236996433393442821 R.I.P. Max Von Sydow

53 1236996835161583617 Max von Sydow, The Exorcist, Seventh Seal, and Game of Thrones star, dies at 90

54 1236996926593093633 RIP Max Von Sydow, who was great in *everything*, from THE SEVENTH SEAL to
THE FORCE AWAKENS. There’ll never be another career quite like his.

55 1236997749242912768 Max von Sydow, who played the role of Three-Eyed Raven in Game of Thrones is no
more. He was 90 years old. Valar Morghulis

56 1236998006265860098 R.I.P. Max von Sydow

57 1236998136301867016 Ah man. RIP Max von Sydow. You were an always welcome presence in any film.

5 / 23

A.4 Survey

153

58 1236998650116616194 rip max von sydow aka lor san tekka thank you for being kylo’s first on screen kill

59 1236998662238212099 BREAKING: Max von Sydow, an actor known to art house audiences through his work
with Swedish director Ingmar Bergman and later to moviegoers everywhere when he
played the priest in the horror classic “The Exorcist,” has died at age 90.

60 1236998746325618689 Rest in peace Max Von Sydow looks like death finally won that game of chess....

61 1236998981290463233 Actor Max von Sydow dies aged 90

62 1236999092594769920 RIP, Max von Sydow. And now, my favorite line you ever uttered.

63 1236999218436411396 I guess I should rewatch The Exorcist again soon. #RIP Max Von Sydow.

64 1236999591721140227 max von sydow in "the virgin spring"

65 1236999679801528328 Max Von Sydow is gone. Wow.

66 1236999948236984320 'Exorcist' actor Max von Sydow dies at age 90

67 1236999984928653312 RIP to one of cinema’s greatest artists; the legendary Actor Max von Sydow (1929-
2020)

68 1237000391587487744 Breaking News: Max von Sydow, the Swedish actor who starred in “The Seventh Seal”
and “Exorcist,” is dead at 90

69 1237000392812134400 Max von Sydow, Swedish Star of ‘The Seventh Seal’ and ‘Exorcist,’ Dies at 90

70 1237000564791291904 It's not fair to wake up and realize Max von Sydow has left us. We should all feel so
lucky that we got to live in the same lifetime as he did.

71 1237000664749834240 Actor Max von Sydow has died at age 90.

72 1237000751748190209 RIP Max von Sydow - Thank you for all your wonderful performances and the pleasure
and thrills you've given throughout your great career. #maxvonsydow

73 1237001131227832321 Max von Sydow, star of The Seventh Seal and The Exorcist, dies aged 90

74 1237001673559748609 Max von Sydow (1929-2020)

75 1237001751779094528 RIP Max von Sydow. One of the greatest actors of World Cinema, his every
performance touches your soul and mind. But his performance in Bergman's 'Shame' as
Jan Rosenberg hit me real hard.

76 1237002171524268032 Legendary actor Max von Sydow, whose career spanned from The Seventh Seal, to The
Exorcist, to Star Wars: The Force Awakens, has passed away at the age of 90:

77 1237002288658616321 Actor Max Von Sydow, who played the priest in "The Exorcist" and appeared in films
and TV series including "Flash Gordon," "Game of Thrones" and "Star Wars: The Force
Awakens," has died at the age of 90.

78 1237003158892752896 Max von Sydow, the Oscar-nominated actor best known for his roles in The Exorcist,
The Seventh Seal, Flash Gordon, and Game of Thrones, has died: #maxvonsydow

79 1237003282431827968 R.I.P. Max von Sydow (1929 - 2020)

80 1237003479513792512 Actor Max Von Sydow, who appeared in more than 100 films and TV series, has died at
the age of 90.

Ihre Zusammenfassung für Cluster 2 („Max von Sydow“):

6 / 23

A

154

Cluster 3: „First Day of Summer“ (70 Tweets)

Nr. Tweet-ID Text

1 1009623271292198912 The first day of summer will feel very much like an early spring day because, well, we
live in Nebraska. #LNK #LNKforecast

2 1009732658350485504 It's the first day of Summer! Summer officially arrives at 6:07 a.m.

3 1009735302129311744 First day of summer and the longest day of the year good thing it’s payday

4 1009760660836831233 Happy First Day of Summer! 15 hours & 17 minutes of daylight today! Longest day of
the year!

5 1009761931194982400 Happy first day of summer! I don’t think I’ve ever been so happy to begin a new season.
Spring was a rough one. Bring it on sunshine and summertime

6 1009766266377293824 IN HAPPIER NEWS it’s the first day of summer!!!!!!!!

7 1009768978200322048 Happy Friday eve from the Hill my friends!! Guess what!! It's the first day of summer!!
Woohoo! Have a great day!

8 1009769309541814273 oh right it's the summer solstice :'))) happy first day of summer, i guess :')))

9 1009770429421117440 It's a full-house in Canada's wetlands for the first day of summer! Ducklings, goslings,
tadpoles, minnows and many others make wetlands THE place to see wildlife this
season. #getoutdoors #nature #summer #firstdayofsummer #equinox #summerequinox
#wetlands #Canada #canvasback

10 1009771665650343936 It’s official. The first day of summer is surfing on in.

11 1009771704518938625 The first day of Summer is finally here! #SummerIsHere #Summer2018
#FacilityMaintenance

12 1009772761454178304 First day of summer longest day of the yr

13 1009773245170675712 Before summer playdates, the American Academy of Pediatrics wants you to ask if there
are unlocked guns in the house, and they've designated today -- the first day of summer

14 1009773608707805184 Happy first day of Summer. Remember to be the biggest hoe you can be.

15 1009773776500862976 Happy First Day of Summer. Spread the love and joy this season!

16 1009775928170438658 100% chance of rain till 5pm. Happy first day of summer

17 1009775991072415750 It's the first day of summer, which means it's also the longest day of the year! How are
you spending today? #summersolstice #firstdayofsummer

18 1009776439137325059 It's dreary. It's rainy. There's more rain on the way. But, it IS the first day of summer,
so here's a perfectly summery (shocked that that is actually a word) view of #Pittsburgh
from the Duquesne Incline.

19 1009778612508110848 Happy first day of summer! If you have any changes with your insurance needs or have
any questions, give us a call.

20 1009779237476339713 Happy first day of summer to everyone who isn’t living in south Texas or Arizona,
because we’ve already been in summer since February #Texas #Arizona
#SummerSolstice

21 1009779467978407936 It's June 21st, the First day of Summer and instead of being out playing where they
belong, 2000 children will be spending their day in prison, unable to hug their siblings
& having no clue if they will see their parents ever again. Welcome to America
#SummerSolstice

22 1009779971475365889 Did you know that today is the longest day of the year? VCNP wishes you a happy first
day of summer!

23 1009781062002724864 Retweeted Brian Krassenstein (@krassenstein): It's June 21st, the First day of Summer
and instead of being out playing where they belong, 2000 children will be spending their
day in prison

24 1009782792543178752 This is the first day of summer?

25 1009782999750041600 It's the official first day of summer! Sedlak's is your source for the best outdoor furniture
this season:

26 1009783096236036097 Happy Summer Solstice! First Day of Summer! Enjoy!

7 / 23

A.4 Survey

155

27 1009783224216801280 It's the first day of #Summer and it's beautiful outside. #thisisedinburgh
#sunnyedinburgh #beautifulcity

28 1009783280789606400 Today kicks off the first day of summer and the longest day of the year. Enjoy the extra
sunlight today and make the most of it! #SummerSolstice

29 1009783451493588994 It's the first day of summer! Make sure you pull out your summer sun hats to do it right!
#VintageFashion #FirstDayofSummer #SunHats

30 1009783670859878400 The #SummerSoltice marks the first day of Summer!

31 1009783935101034497 Happy first day of summer! Who's ready to paint some beachy colours in their home or
cottage?

32 1009784392275775489 Happy first day of summer! If you have any changes with your insurance needs or have
any questions, give us a call.

33 1009784711038865408 Hey Happy first day of summer! Happy longest day of the year! Happy Thursday!
Smile, there’s lots to be happy about

34 1009784937128456192 What do you have planned now that it is officially the first day of #summer?

35 1009785665318543361 Good morning Toronto. The sun is out. The humidity is low. It’s going to be a good day
in the city. Enjoy the first day of summer.

36 1009787835791151104 It's the first day of Summer and my Yankees won last night (again).
No one can ruin my vibe with their bitter vibes, move along!

37 1009788058114383872 Happy First Day of Summer.

38 1009788498512154624 Happy first day of summer!

39 1009788527368921089 Happy first day of summer, Terriers! The warmer weather brings plenty of opportunities
for fun in Boston that will make you fall more in love with this city. Try them all!

40 1009789312177602560 First day of summer forecast

41 1009789874214449152 It’s officially the first day of summer!! Take 30% off everything in the shop when you
use code SUMMERLOVIN at checkout!

42 1009790385919537154 Happy First Day of Summer! Spend time in the sun today #SummerSolstice #Summer

43 1009790651788070913 Happy first day of summer! @GeorgeHamilton is ready to catch some rays
#FirstDayOfSummer

44 1009791015094345735 its the first day of summer and in AZ its already going to be 92 degrees at 9 am wtf

45 1009791472256913409 Welcome to the first day of summer, otherwise known as the 85th day of summer in the
Sunshine State.

46 1009791983957749760 Happy first day of summer everybody

47 1009793628141649920 It’s the first day of summer! To help you keep things as stress-free as possible, I’m
sharing my best tips for keeping a clean house this summer (and beyond!).
#SummerSolstice #cleaning #schedule #cleanhouse

48 1009794148239642624 It’s the first day of summer.........

49 1009794339009105922 Today is the first day of summer. Stay safe when working outside with
#WaterRestShade

50 1009794676688343040 @Lilymorseee Good thing it’s only the first day of summer

51 1009796442519687168 It’s the first day of summer! My favorite season! #summerchild (yes, still a child at
heart!)

52 1009797860190277632 First day of summer and longest day of the year

53 1009797899922956288 First day of summer means popsicles...end of story #SummerSolstice

54 1009798100813320192 Today marks the first day of SUMMER Grab your Hawaiian shirt & join us for a beach
party today on TPIR

55 1009798137005989889 It's the first day of #summer! It's important to always to wear sunscreen and know what
to look for when it comes to skin cancer self-screening. Check out our tips!

56 1009798560639062016 Happy first day of summer! Who is ready to hit the beach? #BoucherandCo
#FirstDayofSummer #Summer #Beach #NYC #NewYork #NewYorkCity #Nature
#Relax

8 / 23

A

156

57 1009798619359268865 It’s the first day of summer and the first day of my DPT program @TempleUniv
#NotACoincidence

58 1009798753576988673 First day of summer, last day of school. They grow up so fast.

59 1009799470777856000 First Day of Summer

60 1009799600801243138 Happy First Day of Summer

61 1009799697308012544 Happy First Day of Summer! Before leaving on vacation, follow these housekeeping
tips to minimize any damage from severe weather.

62 1009799865059237888 Happy First Day of Summer! Before leaving on vacation, follow these housekeeping
tips to minimize any damage from severe weather.

63 1009799881853194240 Happy First Day of Summer! Before leaving on vacation, follow these housekeeping
tips to minimize any damage from severe weather.

64 1009799965705719813 Happy First Day of Summer! Before leaving on vacation, follow these housekeeping
tips to minimize any damage from severe weather.

65 1009799978292740097 Happy First Day of Summer! Before leaving on vacation, follow these housekeeping
tips to minimize any damage from severe weather.

66 1009800196413411329 Happy First Day of Summer! Before leaving on vacation, follow these housekeeping
tips to minimize any damage from severe weather.

67 1009800980739842049 Did you know that back-to-school shopping begins the first day of summer vacation?
Yes, I'm picking up thrifted pieces here and there to enhance My Teen's wardrobe. What
have you scored at the thrift store lately?

68 1009801635063848966 Happy first day of Summer, everyone! Stop by CCD to check out our selection of
Summer books! #FLPkids #SummerSolstice #kidlit

69 1009801953805729792 First day of summer and I’m freezing at work

70 1009802859796402176 First day of summer is a rainy one

Ihre Zusammenfassung für Cluster 3 („First Day of Summer“):

9 / 23

A.4 Survey

157

Cluster 4: „Warren drops out“ (75 Tweets)

Nr. Tweet-ID Text

1 1235230218295685122 Bernie would have easily won Massachusetts, Minnesota, and Texas if neoliberal tool
Elizabeth Warren had dropped out. But that's exactly why she stayed in the race: to split
the "progressive" vote. That's why oligarchs dumped $14 million into her super PAC.

2 1235344882174234624 All seriousness aside for a moment, if Elizabeth Warren drops this in a fundraising email
she’s getting my life savings.

3 1235586284413845504 Wait, it's Wednesday and Elizabeth Warren still hasn't dropped out? Nevertheless, she
persisted.

4 1235590936085680134 Breaking News: Elizabeth Warren is dropping out of the 2020 U.S. presidential race.
Once a front-runner, she was unable to build broad support and placed 3rd in her home
state.

5 1235591196463869952 Elizabeth Warren is dropping out of the race per two sources.

6 1235591254299127808 BREAKING: Elizabeth Warren is dropping out of the presidential race, according to
The New York Times. It's now down to Joe Biden vs. Bernie Sanders.

7 1235591365347721216 BREAKING: Elizabeth Warren is dropping out of the race for President. I would like to
congratulate and thank this amazing woman for her fight. Let's hope that she gets a spot
in the future administration of Joe Biden or Bernie Sanders. We love you Liz!

8 1235591376122847232 BREAKING: Elizabeth Warren is dropping out of the 2020 U.S. presidential race

9 1235591778226536449 JUST IN: Elizabeth Warren is dropping out of the presidential race, a source familiar
with her plans tells CNN, following another round of disappointing finishes in primary
contests across the country on Super Tuesday.

10 1235591900272431105 BREAKING: NYT: Elizabeth Warren is dropping out of the presidential race.

11 1235591937169788928 Elizabeth Warren is dropping out.

12 1235591964784906240 #BREAKING on #OANN: Massachusetts Senator Elizabeth Warrens drops out of the
2020 Presidential race #Elections2020

13 1235592115859709953 Elizabeth Warren has dropped out of the 2020 presidential race.

14 1235592121450508289 Breaking: Elizabeth Warren dropping out. Took her an extra day to conclude the
obvious, she had no path to the nomination. Now officially a two-person race

15 1235592252241653760 Elizabeth Warren is dropping out of the presidential race. Now it’s really a two-man
contest between Biden and Bernie.

16 1235592394348822530 Massachusetts Senator Elizabeth Warren drops out of race for Democratic presidential
nomination #CJAD800

17 1235592468529324034 BREAKING: Elizabeth Warren drops out of the presidential race after a Super Tuesday
defeat.

18 1235592519691493377 Elizabeth Warren is dropping out

19 1235592524091125761 BREAKING: Elizabeth Warren drops out of the presidential race.

20 1235592994096443392 Elizabeth Warren Drops Out of Presidential Race

21 1235593018255818752 JUST IN: Sen. Elizabeth Warren is dropping out of the 2020 presidential race after a
disappointing Super Tuesday showing.

22 1235593076573458432 #BREAKING: Sen. Elizabeth Warren drops out of the 2020 presidential race. #OANN

23 1235593111729926144 Breaking: Pocahontas! See ya!! Elizabeth Warren drops out of presidential race

24 1235593208043679745 Elizabeth Warren has dropped out of the presidential race.

25 1235593287731310592 ELIZABETH WARREN DROPS OUT IF RACE TODAY. Elizabeth Warren, Once a
Front-Runner, Will Drop Out of Presidential Race

26 1235593324318224384 Sen. Elizabeth Warren drops out of the race for president, according to reports, after
failing to win any primary states

27 1235593337320636416 #BREAKING Elizabeth Warren dropping out of Democratic presidential race: US
media

10 / 23

A

158

28 1235593354827661313 Elizabeth Warren drops out of 2020 presidential race

29 1235593430773923846 Elizabeth Warren drops out of 2020 presidential race

30 1235593559358590977 BREAKING: Elizabeth Warren is dropping out of the presidential race, ending a
campaign that at one point seemed poised to win the Democratic nomination

31 1235593581324361729 Prayers up to the Native American community for Elizabeth Warren dropping out of the
election. That was their candidate

32 1235593621484732417 JUST IN: CNN reports that Elizabeth Warren is dropping out of the presidential race.

33 1235593673854812165 BREAKING: Sen. Elizabeth Warren is dropping out of the 2020 presidential race after a
disappointing Super Tuesday showing - NBC

34 1235593746772787200 I’m sad about Elizabeth Warren dropping out. She was one of my favorite candidates in
the race.

35 1235593812023685120 #BREAKING Elizabeth Warren drops out of 2020 presidential race

36 1235593845561147392 Elizabeth Warren Dropping Out Of Presidential Race

37 1235593864569896963 **BREAKING** Elizabeth Warren drops out... her campaign trail of tears has finally
come to an end.

38 1235593884404723712 BREAKING: Elizabeth Warren is dropping out of the Democratic primary, according to
a person with her campaign, after losing across the map on Super Tuesday, including in
her home state of Massachusetts

39 1235593921054617602 Warren is Out! #ElizabethWarren Elizabeth Warren Dropping Out of Presidential Race

40 1235594084653453313 Sen. Elizabeth Warren drops out of presidential race, according to reports

41 1235594231223390208 Elizabeth Warren has dropped out. She was the last Mohican in the race. Now there are
Nohicans.

42 1235594379357638660 Elizabeth Warren says she’s dropping out of the race for president, solidifying the
Democratic contest as a two-way race between Joe Biden and Bernie Sanders

43 1235594397431074817 BREAKING: U.S. Senator Elizabeth Warren is dropping out of the race for president -
NBC

44 1235594629333929985 Elizabeth Warren Drops out of Presidential Race ... bye bye Pocahontas
@realDonaldTrump

45 1235594680223625222 Breaking: Elizabeth Warren will be dropping out of the presidential race today

46 1235594860587036672 Elizabeth Warren To Drop Out of Presidential Race

47 1235595007387734016 @realDonaldTrump @PamelaGeller Trump I CAN'T TAKE ALL THIS WINNING.
BREAKING: Sen. Elizabeth Warren is dropping out of the 2020 presidential race after a
disappointing Super Tuesday showing - NBC

48 1235595134978478082 Massachusetts Sen. Elizabeth Warren is dropping out of the 2020 presidential race.

49 1235595217102729216 Wise choice.Sen. Elizabeth Warren Drops Out Of 2020 Presidential Race

50 1235595225499922433 Elizabeth Warren is dropping out of the 2020 race - CNNPolitics

51 1235595256315469825 Warren Out: Elizabeth Warren is dropping out today. If @ewarren endorses Bernie
Sanders, I know for a fact, a lot of her supporters are not going to follow her. I know I
won't. I want no part of the cantankerous con-man from Vermont.

52 1235595306873401344 Sen. Elizabeth Warren Drops Out Of The 2020 Presidential Race

53 1235595313575915521 Elizabeth Warren to drop out of Democrat race

54 1235595435214962688 Elizabeth Warren drops out of presidential race #KMOV

55 1235595481344073731 Elizabeth Warren has Dropped out of the 2020 Democratic Presidential Race.

56 1235595917564071939 Sen. Elizabeth Warren Drops Out Of 2020 Presidential Race

57 1235595956021874688 BREAKING: Massachusetts Sen. Elizabeth Warren is dropping out of the 2020
presidential race.

58 1235596232128487424 absolutely the best time to find out that elizabeth warren dropped out is while i was on
hold with my insurance company to find out why they denied coverage for my therapist
appointments

11 / 23

A.4 Survey

159

59 1235596274042318848 Elizabeth Warren drops out of the presidential race, following another round of
disappointing finishes in primary contests across the country on #SuperTuesday. The
Massachusetts senator centered her bid on a promise to wipe out corruption in
#Washington

60 1235596316526252033 BREAKING: Elizabeth Warren Drops Out Of Race.

61 1235596393735053316 Fun fact: If Elizabeth Warren had dropped out before #SuperTuesday, Bernie would
most likely have the most delegates right now. It sure feels like a DNC set up.
#RiggedPrimary

62 1235596965876031488 JUST IN: Elizabeth Warren to drop out of the 2020 presidential race

63 1235597251327791106 Elizabeth Warren is dropping out of the 2020 presidential race.

64 1235597469448155136 Extremely sad. Consolidation is we'll still have her a major force in Senate. Elizabeth
Warren is dropping out of the 2020 presidential race. via @HuffPostPol

65 1235597604370739200 BREAKING: Elizabeth Warren drops out of presidential race after disappointing Super
Tuesday finish

66 1235598018214129664 Breaking: Elizabeth Warren has dropped out of the Democratic presidential race, just
days after the onetime front-runner couldn't win a single Super Tuesday state - not even
her own.

67 1235598799034343427 Elizabeth Warren to drop out of Democrat race to be presidential candidate

68 1235599411410907137 Elizabeth Warren has dropped out LOL LOL LOL LOL LOL LOL!

69 1235600180704993281 now that elizabeth warren dropped out can we please vote for bernie sanders thanks

70 1235600453762715648 Democrats Disenfranchise Their Own Voters by Dropping Out ‼️‼️And Elizabeth Warren
just bit the dust ‼️‼️‼️

71 1235600569017880578 Elizabeth Warren Drops Out of White House Race via @BreitbartNews

72 1235600946534604800 I’m really sad about Elizabeth Warren dropping, and she will forever be my favorite –
but now I’d love for her to endorse Sanders, campaign her heart out for him, and deliver
us from Joe Biden (and Trump). She singlehandedly destroyed Bloomberg, so I have
high hopes!

73 1235601065959014401 Scenes from the Democratic Primaries as Elizabeth Warren drops out

74 1235602599077752833 After Bloomberg, once a frontrunner Elizabeth Warren drops out of Democratic
Presidential race

75 1235602833946238976 Elizabeth Warren dropping out after decimating Bloomberg's campaign, which cleared
the way for a Biden consolidation, is maddening yet wholly unsurprising to any woman
who has ever worked in a male-dominated field.

Ihre Zusammenfassung für Cluster 4 („Warren drops out“):

12 / 23

A

160

Cluster 5: „Separating children“ (65 Tweets)

Nr. Tweet-ID Text

1 1008828027088900097 In my latest for @Playboy, I note that children separated from their parents at the border
may end up de facto trafficked via mostly religious adoption agencies. White
supremacist theocracy is here. #FamiliesBelongTogether #Exvangelical

2 1008878718943617024 Up to 200 children separated from their parents at the U.S.-Mexico border are being
held in this tent city outside Tornillo, Texas

3 1009116764230356992 We all should be able to agree that in the United States of America, we will not
intentionally separate children from their parents. We will not do that. We are better than
that! We are so much better!

4 1009138091066523648 Today I'm recalling four Virginia National Guard soldiers and one helicopter from
Arizona. Virginia will not devote any resource to border enforcement actions that
support the inhumane policy of separating children from their parents.

5 1009177548343963648 To ALL border agents: This is a public call asking all Border Agents to Refuse any and
all orders to separate children from their parents. You will go down in history as a hero,
and as a patriot. You will not regret it! Please share if you support this call to action!

6 1009397278124249090 Brexit has made us so desperate for a trade deal with Trump, that even the "Leader of
the Opposition" can't risk asking the government to condemn the inhuman treatment of
children separated from their parents and caged. #PMQs

7 1009425028113461249 Kirstjen Nielsen should resign immediately. She is leading an agency that is separating
children from their parents for no reason. It’s immoral, it’s unnecessary, and it’s got to
stop. She should go

8 1009443871967850497 Newflash: you can be conservative on immigration policy and still be humane and
compassionate enough to reject the idea of separating children from their parents. Come
on, people.

9 1009447406956498947 I am appalled by the state of the children who are being separated from their parents,
after getting caught at the US-Mexico border. What I don’t understand is, what other
options does the US administration have? What did Obama govt do for similar cases
#WorldRefugeeDay

10 1009456082505248769 (Thread) There are a lot of people writing about how separating children from parents is
“not the law.” In fact, what’s happening is unconstitutional under two leading Supreme
Court cases. Here you go everyone: Twitter Law 101

11 1009474822290771969 hi it's me, guy who had a full on nervous breakdown because of a politically correct
thing in a movie last month. heres why the uproar about children being separated from
their parents and put in cages is irrational female hysterics caused by an absence of
testosterone and logic

12 1009475925962977280 NYT reports that, rather than separating children from parents, the Trump administration
will hold children indefinitely with their parents, violating a court settlement and
inevitably triggering a legal challenge

13 1009483722876432384 We will make sure that voters in November remember which members of Congress
allowed the President to separate children from their parents.

14 1009486573581275136 It personally hurts me that American children are separated from their parents because
of bogus child cases, lost in the foster care system, stolen & sold into sex trafficking
AND there is not much outrage about that? I guess you have to be an illegal to matter

15 1009498042410655744 Dear Democrats, there are currently 400,000 children in foster care in the United States.
Children who were “separated” from their parents. TAKE CARE OF OUR CHILDREN
and stop pushing your false narrative just because you hate Trump.

16 1009503862275878912 I'd like to thank everyone making sure that politicians who endorsed separating children
from their parents get separated from their jobs.

17 1009507453631901696 Hey Spanky @realDonaldTrump don't cha just hate when you get caught lying?
Like the time you tweeted, Democrats are responsible for separating children from their
parents, when in fact, everyone knew you were Lying, since it's your Policy! Sad Liar!

18 1009522546478342144 @peopleenespanol Editor in Chief @ArmandoCorrea: "Those caged children who are
separated from their parents and cry out in desperation, could be our children."

13 / 23

A.4 Survey

161

19 1009536707664936966 Glad to see that the Administration is listening to Americans on the moral atrocity of
separating children from parents at the border. This is a good first step. Now let’s fix this
system. We can have security while still showing compassion to those fleeing violence.

20 1009542866962509826 Just to be clear, separating children from parents is inhumane, and keeping children with
parents is inhumane. Which means the only humane solution is release. Which is the
entire agenda.

21 1009565034446385152 "There will not be a grandfathering of existing cases.” Trump admin has no plans to
promptly reunite the 2,300 children who've already been separated from their parents

22 1009569771732553729 The Democrat pivot from "Trump is a monster who wont help children separated from
parents at the border" to "Trump is monster who imprisons WHOLE FAMILIES!" is so
shameless, its hilarious and depressing at the same time

23 1009570811991207936 Trump's executive order stops the horrors of separating children from their parents. As
for the 1000s already separated? Nothing. They remain alone, interned, crying, with no
one to console them. An Cult45 doesnt give a damn.

24 1009574132248449024 There are 239 immigrant children separated from their parents who are now in the
custody of a social service organization in East Harlem that's placing them in foster
homes, according to Mayor de Blasio. The youngest is just 9 months old.

25 1009578928544124929 BREAKING: HHS says that children who have already been separated from their
parents will NOT be reunited while their parents face hearings. #ExecutiveOrder

26 1009579930525499394 NEW: Per @CNN, the Trump administration has confirmed that Trump's
#ExecutiveOrder does *nothing* to address the thousands of children who have already
been separated from their parents under Trump's "zero-tolerance" policy.

27 1009581345025163264 What happened at the Border should alarm everyone. That things devolved that quickly
should scare anyone with even a scintilla of common decency. If you can separate a
child from their parents, dehumanize them to that degree, then you’ve already set the
ground work for genocide.

28 1009589194736455680 Children already separated from parents will NOT be reunited with their parents. and
placed in some sort of foster care. So, we kidnap the kids, deport or indefinitely detain
the parents, then hand the kid over to the system? Some are so you young they do not
know their parents

29 1009605359600668672 First, Trump created a crisis by repealing DACA, and threatened to deport DREAMErs
if he didn’t get his wall. Next, he created a crisis by separating children from their
parents, and held them hostage. This nightmare isn’t over. And it won’t be over until his
presidency is.

30 1009606854610219008 Trump retreats because his family separation policy was evil, and because of you. Your
outrage & activism beat @realDonaldTrump. But keeping 2,300 babies & children
separated from their parents continues to be evil. We need your activism to increase.
Also, vote this November.

31 1009610961769127936 Ok, listen carefully. Putting children in jail with their parents is not a solution to
separating parents from their children.

32 1009622275027623936 When Trump won the elections Melania decided not to move their 10 yo son to DC in
the middle of the school year because "At that age, it's hard to explain to them", "at that
age, every child would worry" But separating children from their parents while fleeing
persecution is fine

33 1009629975169982464 “President Trump’s executive order is little solace to the children and parents who have
already been separated from one another," @RepRosaDelauro says

34 1009633888950472704 He said today that the problem of separating children from parents at the border has
been going on for years. NO, IT HAS NOT. The policy began with his administration.
The law allowed him to do it but the law did not call for it. Sessions & Miller admitted
they devised the plan.

35 1009637094136958976 This ugly chapter in American history is not closed. There are 2,000+ children separated
from their parents. @DHSgov must reunite them NOW. #ReuniteFamilies

36 1009643916688265216 @CNNPolitics So, the legislation would eliminate separating children from their parents
- which is what @RepLujanGrisham wanted - but, but you're not gonna support it? It's
almost like you're just a liar and have no compassion for "the children". Like you were
using them for political gain.

14 / 23

A

162

37 1009655579562991616 Side 1: Separates children from their parents, throws them in cages, and forcibly injects
some of them with psychiatric drugs. Side 2 : Respond with vituperative words.*****
NYT: Both sides, guys. Both sides are behaving badly.

38 1009656797408518145 Both Obama and Clinton separated children from parents at the border so SHUT THE
ENTIRE FUCK UP WITH YOUR FAKE MORAL OUTRAGE ABOUT TRUMP.

39 1009681797326745600 How is it evil to support separating children from their parents? How is it evil to support
putting children in cages? How is it evil to defend the indefensible? You tell me?

40 1009754732695465990 @realDonaldTrump I challenge Trump supporters to prove Obama was separating
children from their parents at the border. Obama did not prosecute people for seeking
asylum. The pictures of children being held under Obama are of minors who arrived
unaccompanied, not with parents.

41 1009757064359538693 Guess who is not turned away at the border? Legal Immigrants. Guess which children
are not separated from their parents? Children of parents that have followed our
countries rule of law. #EnforceUSLaws #KeepAmericaSafe #MAGA

42 1009759695698096129 Today at the WH, Pres holds a Cabinet Meeting, his 14th since taking office. Includes a
photo op, where he's certain to be asked how the Government will reunite immigrant
children already separated from their parents detained elsewhere. His Exec Order makes
no provision for that.

43 1009762778125651968 American, Frontier, Southwest and United airlines are refusing to fly immigrant children
separated from their parents for the federal government.

44 1009763659588030464 HAPPENING NOW-Foster parents are walking immigrant children separated from their
parents at the border into the Cayuga Center in East Harlem. Some of them so young
they’re being carried in or hands held. #nbc4ny

45 1009764012417044481 Dems forced to show their hand: After the President’s EO to eliminate children being
separated from their parents, the Democrats shifted their tactic from child abuse to the
elimination of all Border violation enforcement. That’s been their goal all along. Zero
law enforcement.

46 1009766838417416192 Why didn't CNN care when the Obama administration separated children from their
parents when they had crossed the border illegally?

47 1009767468250742784 @StatesWatchman Did separating children from their parents fix, alleviate or in any
way assuage any of those very real problems? If so, how?

48 1009768152849362945 Most Texas voters oppose separating children and parents apprehended while trying to
enter the country illegally. But our polling found that male Republicans support
separating families.

49 1009773341991948288 These images were provided to us by @HHSGov - the agency claims this is a facility in
Bristow, VA. which is housing children who’ve been separated from their parents after
allegedly crossing the southern border illegally; boys & girls as young as infants are at
this facility

50 1009775592735215619 Democrats have been defending and promoting abortion for over fifty years. Now they
expect everyone to believe they care about separating children from parents.

51 1009778059711565824 Trump signs executive order to undo his own policy that separated children from their
parents @politicususa

52 1009780214757494785 But the point all along was to break up families in order to cause fear in (read: terrorize)
parents that they might be separated from their children and therefore shouldn’t think
about immigrating to the us

53 1009780495780114434 What about all the children separated from there parents due to drug overdoses.....
#KeepFamiliesTogether

54 1009781461287931904 CNN's Erica Hill: Are you confident that the children separated from their parents will
be reunited? Rep. Elijah Cummings: "No, I am not confident ... The Trump
administration has told us all kinds of untruths, so why should we believe them now?"

55 1009782492239400960 "there are more than 2,000 children already separated from their parents; the executive
order does nothing to address that nightmare." #WelcometoAmerica

56 1009783030733471744 #Congress, you can stop this madness. End @realDonaldTrump's horrific policy of
separating children from their parents. Now. CALL & don't stop: (844)899-8261
#KeepFamiliesTogether ADD YOUR NAME & join this event

15 / 23

A.4 Survey

163

57 1009784282863239168 Families Belong Together Rally - 6/30: DPOP supports Families Belong Together. We
cannot remain silent as families seeking a new life in the U.S. are torn apart and children
are separated from their parents.

58 1009785285721427968 @realDonaldTrump Yes, Republicans, now we get it. Having a President who separates
children from their parents & throws them into concentration camps makes us EVERY
BIT AS ANGRY as it made you when we had a President who raised taxes to pay for
national health care

59 1009786850838532096 I'm just finding all this Trump hatred funny. Y'all live in a country with a decades old
industrial prison complex that separates children from parents on a DAILY basis, yet
THIS is what triggered you. Welcome to America fam.

60 1009786892068577280 @realDonaldTrump #TrumpPolicy created the #BorderCrisis. #TrumpPolicy interned
children. #TrumpPolicy separated children from their parents and sent them across state
lines, some as young as 9mos old. #TrumpPolicy enables the corruption of the
#TrumpAdministration. #TrumpPolicy needs to be stopped.

61 1009788510872666112 We need a countdown clock beginning the minute Trump signed the order backing down
from his own policy of separating children from their parents at the border. The clock
will stop the minute the last child is reunited with their parents. I predict the clock will
run for months.

62 1009789047932379136 NEA prez @Lily_NEA calls Trump plan to merge federal agencies an attempt to distract
Americans from humanitarian crisis he created by separating children from their
parents. #FamiliesBelongTogther

63 1009792127985946624 Thank you for your kind words. Much respect to you too. However, if you dig down to
what this zero tolerance policy has spawned you will see this is not liberal rhetoric.
Children separated from their parents ripples through their lives forever.

64 1009793372263858177 @Auxarcman @AngelWhyspr @bartramscenic @Piatfernandez @SenSchumer
@realDonaldTrump You haven’t shared a single piece of evidence dude! Do you
actually hear yourself? You think separating children from their parents ensures their
safety when we have provided you plenty of scientific evidence otherwise

65 1009802092247044096 @Sheilaehuffman @realDonaldTrump Going forward.. does nothing for the 2300
children already separated from their parents.

Ihre Zusammenfassung für Cluster 5 („Separating Children“):

16 / 23

A

164

Abschließende Fragen – Teil 1:

Bitte beantworten/vervollständigen Sie die nachfolgenden Fragen/Aussagen (z.B. durch
Markieren/Durchstreichen)! Hier ist ausschließlich nach Ihrem persönlichen Eindruck gefragt – es
gibt weder richtig noch falsch!

1. Das Zusammenfassen von Cluster 1 („Corona Boris Johnson“) fiel mir...

Sehr leicht (1) (2) (3) (4) (5) Sehr schwer

2. Das Zusammenfassen von Cluster 2 („Max von Sydow“) fiel mir...

Sehr leicht (1) (2) (3) (4) (5) Sehr schwer

3. Das Zusammenfassen von Cluster 3 („First Day of Summer“) fiel mir...

Sehr leicht (1) (2) (3) (4) (5) Sehr schwer

4. Das Zusammenfassen von Cluster 4 („Warren drops out“) fiel mir...

Sehr leicht (1) (2) (3) (4) (5) Sehr schwer

5. Das Zusammenfassen von Cluster 5 („Separating Children“) fiel mir...

Sehr leicht (1) (2) (3) (4) (5) Sehr schwer

6. Fanden Sie es unangenehm/lästig pro Cluster mindestens 45 Tweets zu lesen?

Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

7. Würden Sie auch von sich aus eine Vielzahl (mindestens 45) von Suchergebnissen
(z.B. Tweets) lesen, wenn Sie nicht darum gebeten werden?

Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

8. Fanden Sie es unangenehm/lästig, die angegebenen Cluster zusammenzufassen?

Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

9. Die Zusammenfassung welches Clusters war für Sie am ehesten/meisten unangenehm?

Cluster (1) (2) (3) (4) (5)

10. Was genau fanden Sie an der Zusammenfassung des unter 9. genannten Clusters
unangenehmer als bei den anderen Clustern (Mehrfachnennungen erlaubt)?

O Die aufwühlende/uninteressante Thematik

O Das Identifizieren der wichtigsten Inhalte

O
O
O

17 / 23

A.4 Survey

165

Abschließende Fragen – Teil 2:

Nachfolgend finden Sie für jedes Cluster eine automatisiert erstellte Aggregation. Bitte beantworten
Sie auch hierzu die angegebenen Fragen! Nutzen Sie dafür zunächst nur die jeweils unter a)
aufgeführten Antwortmöglichkeiten! Zeile b) benötigen Sie später.

• Agg_C1 : Aggregation von Cluster 1 („Corona Boris Johnson“):

#breaking british prime minister boris johnson move to intensive care after he coronavirus
symptom worsen downing street have confirm. British prime minister #borisjohnson move
to intensive care unit of hospital after coronavirus symptom worsen. Bbc news coronavirus
boris johnson move to intensive care after be admit to hospital with coronavirus itv news get
well soon @borisjohnson we be all route for you #prayforboris.

11. Wie bewerten Sie die Verständlichkeit der angegebenen Agg_C1?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

12. Enthält die angegebene Agg_C1 die wichtigsten Informationen des Clusters?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

13. Fehlen in der angegebenen Agg_C1 noch Inhalte, die zwingend vorhanden sein sollten?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

14. Wie bewerten Sie die angegebene Agg_C1 im Allgemeinen?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

15. Wie bewerten Sie die angegebene Agg_C1 hinsichtlich Ihrer eigenen Zusammenfassung?
Im Vergleich zu meiner von Hand verfassten Aggregation ist Agg_C1…

a) Viel schlechter (1) (2) (3) (4) (5) Viel besser
b) Viel schlechter (1) (2) (3) (4) (5) Viel besser

18 / 23

A

166

• Agg_C2: Aggregation von Cluster 2 („Max von Sydow“):

Rip max von sydow star of the exorcist and the seventh seal die age 90. The exorcist and
star war actor max von sydow who appear in more than 100 film and tv series have die at
the age of 90. Rest in peace max von sydow die at 90 wife tell french media.

16. Wie bewerten Sie die Verständlichkeit der angegebenen Agg_C2?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

17. Enthält die angegebene Agg_C2 die wichtigsten Informationen des Clusters?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

18. Fehlen in der angegebenen Agg_C2 noch Inhalte, die zwingend vorhanden sein sollten?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

19. Wie bewerten Sie die angegebene Agg_C2 im Allgemeinen?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

20. Wie bewerten Sie die angegebene Agg_C2 hinsichtlich Ihrer eigenen Zusammenfassung?
Im Vergleich zu meiner von Hand verfassten Aggregation ist Agg_C2…

a) Viel schlechter (1) (2) (3) (4) (5) Viel besser
b) Viel schlechter (1) (2) (3) (4) (5) Viel besser

19 / 23

A.4 Survey

167

• Agg_C3: Aggregation von Cluster 3 („First Day of Summer“):

Happy first day of summer before leave on vacation follow these housekeeping tip to
minimize any damage from severe weather. It be june 21st the first day of summer and
instead of be out play where they belong 2000 child will be spend they day in prison unable
to hug they sibling & have no clue if they will see they parent ever again welcome to
america #summersolstice. Before summer playdate the american academy of pediatrics want
you to ask if there be unlock gun in the house and they have designate today the first day of
summer if you have any change with you insurance need or have any question give we a
call.

21. Wie bewerten Sie die Verständlichkeit der angegebenen Agg_C3?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

22. Enthält die angegebene Agg_C3 die wichtigsten Informationen des Clusters?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

23. Fehlen in der angegebenen Agg_C3 noch Inhalte, die zwingend vorhanden sein sollten?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

24. Wie bewerten Sie die angegebene Agg_C3 im Allgemeinen?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

25. Wie bewerten Sie die angegebene Agg_C3 hinsichtlich Ihrer eigenen Zusammenfassung?
Im Vergleich zu meiner von Hand verfassten Aggregation ist Agg_C3…

a) Viel schlechter (1) (2) (3) (4) (5) Viel besser
b) Viel schlechter (1) (2) (3) (4) (5) Viel besser

20 / 23

A

168

• Agg_C4: Aggregation von Cluster 4 („Warren drops out“):

Break elizabeth warren drop out of the 2020 presidential race after a disappointing super
tuesday show nbc. @pamelageller trump i can not take all this win breaking sen elizabeth
warren be drop out of the presidential race accord to the new york time it be now down to
joe biden vs bernie sanders. #breaking on #oann massachusetts senator elizabeth warren
drop out of the democratic presidential race just day after the onetime frontrunner could not
win a single super tuesday state not even she own.

26. Wie bewerten Sie die Verständlichkeit der angegebenen Agg_C4?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

27. Enthält die angegebene Agg_C4 die wichtigsten Informationen des Clusters?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

28. Fehlen in der angegebenen Agg_C4 noch Inhalte, die zwingend vorhanden sein sollten?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

29. Wie bewerten Sie die angegebene Agg_C4 im Allgemeinen?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

30. Wie bewerten Sie die angegebene Agg_C4 hinsichtlich Ihrer eigenen Zusammenfassung?
Im Vergleich zu meiner von Hand verfassten Aggregation ist Agg_C4…

a) Viel schlechter (1) (2) (3) (4) (5) Viel besser
b) Viel schlechter (1) (2) (3) (4) (5) Viel besser

21 / 23

A.4 Survey

169

• Agg_C5: Aggregation von Cluster 5 („Separating children“):

We need a countdown clock begin the minute trump sign the order back down from he own
policy of separate child from they parent at the border the clock will stop the minute the last
child be reunite with they parent i predict the clock will run for month. There be 239
immigrant child already separate from parent will not be reunite with they parent and place
in some sort of foster care so we kidnap the kid deport or indefinitely detain the parent then
hand the kid over to the system some be so you young they do not know they parent. Dem
force to show they hand after the president s eo to eliminate child from they parent & throw
they into concentration camp make we every bit as angry as it make you when we have a
president who raise tax to pay for national health care.

31. Wie bewerten Sie die Verständlichkeit der angegebenen Agg_C5?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

32. Enthält die angegebene Agg_C5 die wichtigsten Informationen des Clusters?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

33. Fehlen in der angegebenen Agg_C5 noch Inhalte, die zwingend vorhanden sein sollten?

a) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall
b) Überhaupt nicht (1) (2) (3) (4) (5) Auf jeden Fall

34. Wie bewerten Sie die angegebene Agg_C5 im Allgemeinen?

a) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut
b) Sehr schlecht (1) (2) (3) (4) (5) Sehr gut

35. Wie bewerten Sie die angegebene Agg_C5 hinsichtlich Ihrer eigenen Zusammenfassung?
Im Vergleich zu meiner von Hand verfassten Aggregation ist Agg_C5…

a) Viel schlechter (1) (2) (3) (4) (5) Viel besser
b) Viel schlechter (1) (2) (3) (4) (5) Viel besser

22 / 23

A

170

Abschließende Fragen – Teil 3:

Sie haben die automatisiert generierten Zusammenfassungen ohne Vorwissen gelesen und bewertet.
Nehmen Sie nun bitte folgende Sachverhalte, die Eigenheiten/Folgen des Erstellungsprozesses sind,
zur Kenntnis:

• Jede Aggregation ist auf maximal 3 Sätze festgelegt, die (wenn möglich) auch
immer ausgeschöpft werden. Eine Folge hiervon sind u.a. sich teils überschneidende
Informationen.

• Je häufiger bestimmte Informationen vorkommen, desto wichtiger werden sie im
Allgemeinen eingestuft.

• Alles außer dem jeweils ersten Buchstaben eines jeden Satzes ist grundsätzlich klein
geschrieben.

• Die meisten Wörter in den Aggregationen sind auf ihre Grundform reduziert,
z.B. („am“, „are“, „is“ → „be“), („his“ → „he“) oder („goes“, „went“ → „go“).

Bitte beantworten Sie die Fragen 11 – 35 in Anbetracht dieser neu gewonnenen Informationen
erneut! Nutzen sie dafür die unter b) aufgeführten Antwortmöglichkeiten! Beantworten Sie die
Fragen bitte auch, falls sich Ihr Meinungsbild nicht verändert haben sollte!

Falls Sie Ihrerseits noch Anmerkungen oder Vorschläge haben, können Sie diese im nachfolgenden
Textfeld hinterlassen:

VIELEN DANK

23 / 23

A.4 Survey

171

Appendix B

B.1 Code

Link to the code:
https://git.rz.uni-augsburg.de/rudenkol/diss

https://git.rz.uni-augsburg.de/rudenkol/diss

A Database Approach for Categorical Preferences on Hierarchies

P. Roocks, F. Wenzel, L. Rudenko, M. Endres, W. Kießling
9th Multidisciplinary Workshop on Advances in Preference Handling,

in conjunction with IJCAI-15, Buenos Aires, Argentina

A Preference-based Stream Analyzer
L. Rudenko, M. Endres, P. Roocks, W. Kießling

ECML PKDD 2016 Workshop on Large-scale Learning from Data Streams in
Evolving Environments, Riva del Garda, Italien, Sep. 2016

Personalized Stream Analysis with PreferenceSQL

L. Rudenko, M. Endres
Workshop Präferenzen und Personalisierung in der Informatik PPI17 @ BTW

2017, Stuttgart, Deutschland

Preference-based Stream Analysis for Efficient Decision-Support

Systems
L. Rudenko

Doctoral Consortium @ ADBIS 2017, Nicosia, Zypern

Real-Time Skyline Computation on Data Streams
L. Rudenko, M. Endres

New Trends in Databases and Information Systems @ ADBIS 2018,
Budapest, Hungary

Analyzing and Clustering Pareto-Optimal Objects in Data Stream

M. Endres, J. Kastner and L. Rudenko
In M. Sayed-Mouchaweh (Eds.): “Large-scale Learning from Data Streams in

Evolving Environments”, Springer, 2018

A Tour of Lattice-Based Skyline Algorithms

M. Endres and L. Rudenko
In M. K. Habib (Eds.): “Emerging Investigations in Artificial Life Research

and Development”, IGI Global, 2018

Preference-based Twitter Analytics
L. Rudenko, C. Haas

12th Multidisciplinary Workshop on Advances in Preference Handling
M-PREF2020 on ECAI 2020, Santiago de Compostela, Spain (online)

Analyzing Twitter Data with Preferences

L. Rudenko, C. Haas and M. Endres
New Trends in Databases and Information Systems @ ADBIS 2020,

Lyon, France (online)

B.2 Publications

B.2 Publications

173

LIST OF FIGURES

List of Figures

2.1 Taxonomy of base preference constructors. 10
2.2 BETWEENd preference and level values. 12
2.3 AROUNDd preference and level values. 13
2.4 LAYEREDm preference and level values. 15
2.5 Structure of BTGs for WOPs. 18
2.6 BTG for a LAYERED3 preference. 19
2.7 BTG for the Pareto preference. 21
2.8 System architecture of Preference SQL. 23
2.9 Preference SQL query block. 24
2.10 Stream of records. 26
2.11 Stream of �ltered records. 28
2.12 Total sum calculation across the stream records. 29
2.13 Size and time based tumbling windows on the stream. 29
2.14 Sliding windows on the stream. 30
2.15 Schematic representation of the streaming data-�ow. 31
2.16 A very �rst tweet posted by Jack Dorsey 34
2.17 A very small excerpt from Twitter account of Donald Trump 35
2.18 The �rst tweet about "Miracle on the Hudson" 36
2.19 Some �elds in extended search form 37

3.1 Streaming architecture for preference analytics. 40
3.2 A very simple JSON object example. 42
3.3 Tweet screenshot by user @endocrinez 43
3.4 Simpli�ed JSON object of a tweet. 43

4.1 Pipeline of tweets preprocessing steps. 55
4.2 Tweet before and after normalization. 56

5.1 Example of stream data evaluation with BNL. 68
5.2 Stream data processing with SLS. 70

174

LIST OF FIGURES

5.3 In�uence of the chunk size. SLS vs BNL, anti-correlated data distribu-
tion. 75

5.3 In�uence of the chunk size. SLS vs BNL, anti-correlated data distribu-
tion. 76

5.3 In�uence of the chunk size. SLS vs BNL, anti-correlated data distribu-
tion. 77

5.4 In�uence of the chunk size. SLS vs BNL, independent data distribution. 78
5.4 In�uence of the chunk size. SLS vs BNL, independent data distribution. 79
5.5 In�uence of the chunk size. SLS vs BNL, correlated data distribution. 80
5.5 In�uence of the chunk size. SLS vs BNL, correlated data distribution. 81
5.5 In�uence of the chunk size. SLS vs BNL, correlated data distribution. 82
5.6 In�uence of the chunk size on SLS. 82
5.6 In�uence of the chunk size on SLS. 83
5.6 In�uence of the chunk size on SLS. 84
5.6 In�uence of di�erent domains, n=500K, anti-correlated data distribution. 85
5.7 In�uence of di�erent domains, n=500K, independent data distribution. 86
5.7 In�uence of di�erent domains, n=500K, independent data distribution. 87
5.8 In�uence of di�erent domains, n=500K, correlated data distribution. . 88
5.10 In�uence of the data distribution on SLS. 89
5.10 In�uence of the data distribution on SLS. 90
5.11 In�uence of the data distribution on SLS. 91
5.12 SLS vs Hexagon vs BNL, anti-correlated data distribution. 92
5.13 SLS vs Hexagon vs BNL, independent data distribution. 93
5.14 SLS vs Hexagon vs BNL, correlated data distribution. 94
5.15 Performance of SLS vs BNL on real Twitter data. 95
5.15 Performance of SLS vs BNL on real Twitter data. 96
5.16 Performance of SLS on real and generated independent data. 96
5.16 Performance of SLS on real and generated independent data. 97

6.1 Text graph. 104
6.2 Single tweet graphs. 115
6.3 Complete cluster graph. 115
6.4 Reduced cluster graph (remote nodes are marked light grey). 116
6.5 Survey results on the quality of aggregation (part 1). 124
6.6 Survey results on the quality of aggregation (part 2). 125

A.1 (Re)tweet screenshot by the user Dill Peekle. 142
A.2 JSON representation of the (re)tweet from Figure A.1 146

175

LIST OF TABLES

List of Tables

2.1 Example of Twitter data about the YOG. 23
2.2 Preference SQL Syntax. 24
2.3 Sample data set containing tweets. 25
2.4 Sample data set containing authors of tweets. 26

3.1 YOG data from Table 2.1 splitted in two chunks. 47

4.1 A tagged example sentence. 56
4.2 The four most common spelling mistakes [Dam64]. 58
4.3 Number of hits using two di�erent methods. 61
4.4 Precision (P) and Recall (R) for two di�erent methods. 61
4.5 Runtime in microseconds (µs) of two di�erent methods per tweet for P1. 63
4.6 Runtime in microseconds (µs) of two di�erent methods per tweet for P2. 63
4.7 Full and getScore runtime in in microseconds (µs) for P1 and P2. . . . 64

6.1 Input tweets with the corresponding 3�grams. 111
6.2 Clusters with the corresponding tweets, 3�grams used as centroids. . . 112
6.3 Merging of the overlapping clusters, discarding of the small cluster. . . 113
6.4 Cluster with the tweets. 114
6.5 Determination of the main path. 117
6.6 Determination of the second path. 117
6.7 Determination of the third path. 117
6.8 Determination of the forth path. 118
6.9 Building the �nal message. 119
6.10 Performance with standard parameters. 121
6.11 Analysis of the used tweet �les. 122

A.1 Alphabetically sorted selected attributes of tweet object with short
description. 148

176

List of Algorithms

1 Construction Phase . 72
2 Adding Phase . 72
3 Removal Phase . 73

	Introduction
	Background
	Preferences - Theory
	Preferences - Basics
	Preference SQL

	Data Streams
	Apache Flink - Framework for Stream Processing
	Twitter - Micro-blogging and Social Networking Service

	A Framework for Preference-Based Stream Processing
	Twitter as Stream Source
	ETL Process
	Tweet Representation in a Preference SQL Processable Format
	Building of Chunks

	Preference SQL Evaluation on Data Streams
	Aggregation and Summarization of Tweets

	Tweet Text Processing
	|CONTAINS| Preference
	Natural Language Processing of Tweets
	Preprocessing of Tweets
	Edit Distance

	Experiments
	Quality Tests
	Runtime Tests

	Preference Algorithms on Data Streams
	Pareto Queries on Data Streams
	Stream Lattice Skyline Algorithm (SLS)
	Concept of SLS
	The SLS Algorithm

	Experiments
	Benchmark Framework
	Influence of the Chunk Size
	Influence of Different Domains
	Influence of the Data Distribution
	Runtime Comparison of SLS, Hexagon and BNL
	Real-World Data

	Summarization and Aggregation of Tweets
	General Concept
	Data Preprocessing
	Data Clustering
	Data Aggregation

	Implementation
	Preprocessing
	Clustering
	Aggregation

	Experiments
	Performance Test
	Evaluation of the Aggregation

	Related Work
	Conclusion
	Bibliography
	
	Tweet Object
	Default List of Stopwords
	Short Description of Selected Tweet Attributes
	Survey

	
	Code
	Publications

	List of Figures
	List of Tables
	List of Algorithms
	Index

