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Abstract

We show that local deformations, near closed subsets, of solutions to open par-
tial differential relations can be extended to global deformations, provided all but
the highest derivatives stay constant along the subset. The applicability of this
general result is illustrated by a number of examples, dealing with convex em-
beddings of hypersurfaces, differential forms, and lapse functions in Lorentzian
geometry.

The main application is a general approximation result by sections that have
very restrictive local properties on open dense subsets. This shows, for instance,
that given any K 2 R every manifold of dimension at least 2 carries a complete
C 1;1-metric which, on a dense open subset, is smooth with constant sectional
curvature K. Of course, this is impossible for C 2-metrics in general. © 2021
The Authors. Communications on Pure and Applied Mathematics published by
Wiley Periodicals LLC.

1 Introduction
In his landmark monograph [19] Gromov develops a wide-ranging perspective

on flexibility phenomena in geometry and topology. Besides a comprehensive the-
oretical background and numerous results, including the well-known h-principle
for open Diff-invariant relations and the convex integration technique, Gromov’s
text provides many exercises that seemingly play a minor role for the architec-
ture of the theory, but some of which bear a great value of their own, both in
terms of theoretical insight and applications. This article is devoted to one such
topic, the local flexibility lemma; see the exercise “Weak Flexibility Lemma” in
[19, sec. 2.2.7 (H’)] and the “Cut-off Homotopy Lemma” in [21, pp. 693 f.]. It
concerns extensions of local deformations of solutions to open partial differential
relations.

We will formulate and prove this flexibility lemma in Theorem 1.2. It has im-
portant applications in many fields of mathematics, which will be illustrated by
examples from hypersurface theory, geometric structures induced by differential
forms, and Lorentzian geometry.
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Our main application of Theorem 1.2 is Theorem 5.2, which states under rela-
tively mild assumptions that any section of a fiber bundle can be approximated by
sections that have very restrictive local properties on open dense subsets.

We give three sample applications of Theorem 5.2. First, we show in Corol-
lary 5.4 that C 1-functions on a compact interval can be uniformly approximated
by Lipschitz functions that are smooth on open dense subsets and have prescribed
derivative there.

Second, we show in Corollary 5.5 that any C 2-embedding of a surface in R3

can be C 1-approximated by C 1;1-embeddings which are analytic and have pre-
scribed constant Gauss curvature on an open dense subset. Obviously, C 1;1 cannot
be replaced by C 2 in this statement. In other words: C 1;1 is the maximal order
of regularity for which this kind of flexibility holds. This is reminiscent of the
Nash-Kuiper embedding theorem [23,24], which states that each short smooth em-
bedding of a compact Riemannian n-manifold V into Rk with k � nC 1 can be
C 0-approximated by isometric C 1-embeddings. Here the critical exponent � for
which approximating isometric C 1;�-embeddings exist is unknown and subject to
current research; see [9] and subsequent work.

Third, we show in Corollary 6.1 that given K 2 R any C 2-Riemannian metric
on a manifold V of dimension at least 2 can be approximated in the strong C 1-
topology by C

1;1
loc -metrics which, on open dense subsets of V , are smooth with

constant sectional curvature equal to K. Clearly, this approximation cannot be
done by C 2-metrics because then the curvature would be continuous and equal to
K on all of V , which is only possible in exceptional cases.

This means, for example, that a compact surface of higher genus carries a C 1;1-
metric which, on an open dense subset, is smooth with constant Gauss curvature
equal to 1, despite the fact that the Gauss-Bonnet theorem holds for these metrics.
Indeed, this is not a contradiction because open dense subsets need not have full
measure. However, it is remarkable that the relevant curvature information en-
tering the Gauss-Bonnet formula can be concentrated on a nowhere dense subset,
although this information governs the global topology.

To formulate local flexibility precisely we will work in the following:

SETTING S1. We denote by

F V a smooth manifold;
F V0 � V a closed subset;
F U an open neighborhood of V0 in V ;
F X ! V a smooth fiber bundle;
F k 2 N0 a nonnegative integer;
F R � J kX an open subset;
F f0 a C k-section on V , solving R;
F F W �0; 1� ! C k.U;X/ a continuous path such that each F.t/ solves R

over U .
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Furthermore, we assume f0jU D F.0/ and j k�1F.t/jV0 D j k�1f0jV0 for all
t 2 �0; 1�.

Here J kX ! V denotes the kth jet bundle of X and j kf is the k-jet of a
section f . We say that a C k-section f of X ! V solves R if j kf .v/ 2 R for all
v 2 V . By C k.U;X/ we denote the space of k-times continuously differentiable
sections of the bundle X jU ! U equipped with the weak C k-topology. We use
the notation N D f1; 2; 3; : : :g and N0 D f0; 1; 2; 3; : : :g. See Figure 1.1 for the
case k D 2 and V0 a point.

FIGURE 1.1. Setting S1 for k D 2 and V0 a point.

DEFINITION 1.1. In Setting S1 we say that local flexibility holds if there exists an
open subset U0 with V0 � U0 � U � V and a continuous f W �0; 1�! C k.V;X/

such that

F each f .t/ is a section of X , solving R;
F f .0/ D f0;
F f .t/jU0 D F.t/jU0 for all t 2 �0; 1�;
F f .t/jV nU D f0jV nU for all t 2 �0; 1�.

See Figure 1.2 for the case k D 2 and V0 a point.

FIGURE 1.2. Local flexibility holds for k D 2 and V0 a point.

THEOREM 1.2. Suppose we are in Setting S1. Then local flexibiliy holds.
Moreover, let � 2 fk; k C 1; : : : ;1g, ` 2 f0; 1; : : : ;1g, and assume in ad-

dition that f0 2 C �.V;X/ and F 2 C `.�0; 1�; C �.U;X//. Then we can find
f 2 C `.�0; 1�; C �.V;X//.
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Remark 1.3. The “Weak Flexibility Lemma” in [19, sec. 2.2.7 (H’)] and the “Cut-
off Homotopy Lemma” in [21, pp. 693 f.] formulate (without proof) versions of
Theorem 1.2 under strong regularity assumptions on V0. The footnote on [21,
p. 693] speculates about local flexiblity for all closed subsets V0 � V . This is what
is proved in the present paper.

While the applications worked out in the paper at hand are based on local flex-
ibility for smooth submanifolds V0 � V , we expect that local flexibility for more
general closed subsets V0 � V may also have interesting consequences.

Remark 1.4. The sections f .t/ are obtained from F.t/ by multiplying the homo-
topy parameter t with an appropriate cutoff function near V0. It is then relatively
straightforward to control the .k�1/-jets of f .t/ over V ; compare [1, theorem 1.5]
for a related result in the context of holonomic approximations near polyhedral
subsets V0 � V of positive codimension.

For us it is crucial that a careful choice of cutoff function allows us to control
the full k-jets of f .t/ over V , using the assumption that j k�1F.t/jV0 is constant
in t . If V0 � V is a compact smooth submanifold, we may in fact use a cutoff
function ��;".r/ as in Lemma 2.8, where r is the distance to V0.

Our paper is structured as follows: The next section introduces the notion of
generalized tangent spaces along arbitrary subsets of smooth manifolds and ap-
plies this concept to construct efficient cutoff functions near these subsets. This
construction is essential for the proof of local flexibility in the subsequent section,
in which we also discuss the necessity of the assumptions in Setting S1, treat a
family version of local flexibility and provide a homotopy theoretic interpretation.

In the fourth section we illustrate the usefulness of local flexibility by examples
from different mathematical contexts. We start by considering the standard sphere
S
n � RnC1. It is 1-convex and rigid in the sense that one cannot deform it in such

a way that it becomes �-convex near the north pole for some � > 1 while keeping
it unchanged on the southern hemisphere and 1-convex everywhere. However,
local flexibility shows that a deformation is possible if we only demand that it stay
.1 � "/-convex everywhere.

In the second example we deform closed differential forms satisfying an open
relation along a submanifold through such forms. This applies in particular to
symplectic forms where we recover a statement usually derived using the so-called
Moser trick. The method also applies to closed G2-structures on 7-manifolds,
where the result is new, and to codimension-1-foliations in any dimension.

Then we deal with Lorentzian manifolds. We show that given a spacelike Cauchy
hypersurface � we can find a Cauchy time function in such a way that we can
prescribe the lapse function along �.

The fifth section is devoted to formulate and prove Theorem 5.2 together with
the applications to Lipschitz functions and surface embeddings. The proof of The-
orem 5.2 is by repeated application of local flexibility to V0 being a point from a
countable dense subset of M and passage to a limit.
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Our main application of Theorem 5.2 to Riemannian metrics is Corollary 6.1 in
the sixth section concerning the existence of C 1;1-metrics which, on open dense
subsets, are smooth and of constant sectional curvature K 2 R. In this section we
also use the family version of local flexibility to show that, on a fixed manifold V
and point p 2 V , the inclusion of metrics with positive sectional curvature that is
equal to K > 0 near p into the space of all positively curved metrics is a weak
homotopy equivalence. The appendices contain the proofs of local flexibility for
k D 0, of an auxiliary lemma needed for the proof of local flexibility for k � 1, and
of the Gauss-Bonnet theorem for compact surfaces with a metric of low regularity.

2 Generalized Tangent Spaces and Efficient Cutoff Functions
This section contains preparatory material for the proof of Theorem 1.2. We

will have to construct efficient cutoff functions near arbitrary closed subsets of a
manifold. Since closed subsets can be very irregular, we introduce the concept of
generalized tangent spaces, which mimic classical tangent spaces of submanifolds.
The decay of our cutoff functions will have to be chosen differently in the direction
of the tangent spaces and in those perpendicular to them.

DEFINITION 2.1. Let V be an n-dimensional C 1-manifold and let A � V be
an arbitrary subset. For a 2 A let GA;a denote the set of C 1-germs at a which
vanish on A. More precisely, each element in GA;a is represented by a C 1-function
h W U ! R defined on an open neighborhood a 2 U � V such that hjA\U D 0.
Then we call

TaA WD
\

h2GA;a

ker.dah/ � TaV

the generalized tangent space of A at a. Here dah W TaV ! R is the differential
of h at a.

Remark 2.2. The generalized tangent space TaA is a linear subspace of TaV . If
A � V is a C 1-submanifold, then this reproduces the classical tangent space of A
at a.

If dim.TaA/ D m, then we can find h1; : : : ; hn�m W U ! R such that dah1; : : : ;
dahn�m are linearly independent, TaA D ker.dah1/\� � �\ker.dahn�m/, and A is
contained in the m-dimensional C 1-submanifold fh1 D � � � D hn�m D 0g near a.

The function a 7! dimTaA is upper semicontinuous; i.e., every a 2 A has a
neighborhood a 2 U � V such that dimTaA � dimTa0A for all a0 2 A \ U .

Let A � V and set �` WD fa 2 A j dimTaA � n � `g for �1 � ` � n. By the
upper semicontinuity of a 7! dimTaA, the sets �` are closed in A. They form a
chain

(2.1) ¿ D ��1 � � � � � �n D A

with �` n�`�1 � �` D �` for 0 � ` � n and where the closures are taken in A.
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DEFINITION 2.3. A subset K � A is called uniform if dimTaA D dimTa0A for
all a; a0 2 K. In other words, K � �` n�`�1 for some 0 � ` � n.

Example 2.4. Let V D R
2.

F Let A D f.t; jt j/ j t 2 Rg. Then TaA D TaV for a D .0; 0/ while TaA is
the usual one-dimensional tangent space for all other points a 2 A. In (2.1)
we have �0 D f.0; 0/g and �1 D �2 D A.

F Let A D fjvj � 1g. Then TaA D TaV for all a 2 A. Hence �0 D �1 D
�2 D A.

F Let A1 D f.t; t2/ j t 2 Rg and A2 D f.t; 0/ j t 2 Rg. Then, for a D .0; 0/,
we get TaA1 D TaA2 D R � 0 � TaV while Ta.A1 \ A2/ D 0 and
Ta.A1 [ A2/ D TaV . The last equation follows from the fact that, near
a, the set A1 [ A2 is not contained in a one-dimensional submanifold and
hence dim.TaA/ > 1.

F Let A D f.1=n; 0/ j n 2 Ng [ f.0; 0/g. Then TaA D 0 for a D .1=n; 0/,
while TaA D R � 0 � TaV for a D .0; 0/. In general, for a discrete subset
D � V and A WD xD, we have TaA D 0 for a 2 D, while TaA depends on
the accumulation behaviour of D near a for a 2 A nD.

In the remainder of this section we will specialize to the case V D R
n. Let

A � V be an arbitrary subset. We use the canonical identifications TxRn D R
n

for x 2 Rn.

Notation 2.5. For B � Rn, a 2 A, and x 2 Rn we write
F dist.x; B/ for the Euclidean distance of x to B;
F ra.x/ D dist.x; a C TaA/ for the distance of x to the affine subspace a C
TaA � Rn, the generalized tangent space with footpoint a;

F B."; x/ � Rn for the open "-ball around x.

LEMMA 2.6. Let K � A be a compact and uniform subset. Let � > 0.
Then there exists � > 0 such that for all " 2 .0; �/ and all a 2 K we have

(i) A \ B."; a/ � fra < �"g (see Figure 2.1);
(ii) jra0 � rajB.";a/ < �" for all a0 2 K \ B."; a/.

The proof of this statement is simpler if A � R
n is a C 1-submanifold, since

then A is, locally around a 2 K, the graph of a .TaA/?-valued C 1-function over
aC TaA by the implicit function theorem.

PROOF OF LEMMA 2.6. Let a 2 K. Let q WD n � dimTaA. We say that a
C 1-map h W U ! R

q is adapted to A at a if
F h vanishes on A \ U ;
F TaA D ker.dah/;
F dxh has maximal rank for every x 2 U .

Note that then TxA D ker.dxh/ � R
n for all x 2 K \ U because K is a uniform

subset of A. Thus h is adapted to A at each x 2 K \ U .
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FIGURE 2.1. Inclusion A \ B."; a/ � fra < �"g.

For an adapted h D .h1; : : : ; hq/ denote by H1; : : : ;Hq W U ! R
n the vec-

tor fields obtained by the Gram-Schmidt procedure applied to the gradient fields
rh1; : : : ;rhq . They form a continuous orthonormal frame for the normal bundle
of the submanifold fh D 0g.

Step 1. We first show that there exists an �a > 0 (depending on a) and a C 1-
map h W B.�a; a/! R

q adapted to A at a with�
h D 0

	 \ B."0; a0/ � �
y 2 B."0; a0/ j dist.y; a0 C Ta0A/ < �"0=2

	I(2.2)

jHj .x/ �Hj .y/j < �

4 � pq
for all x; y 2 B."; a/I(2.3)

for all 0 < "0 � " < �a and all a0 2 K \ B."; a/.
Indeed, by the definition of generalized tangent space we can find an h, adapted

to A at a, defined on a neighborhood of xB.2�a; a/. After possibly decreasing �a,
the implicit function theorem yields, for every a0 2 B.�a; a/, a C 1-map ga0 W
.a0 C Ta0A/ \ B.�a; a

0/ D .a0 C ker da0h/ \ B.�a; a
0/ ! ker.da0h/? such that

fh D 0g \ B.�a; a
0/ is contained in the graph of ga0 .

Let zU � U be a compact neighborhood of a. Since dahjker.dah/? is invertible,
the same is true for dyhjker.da0h/? with y 2 zU and a0 2 xB.�a; a/ provided zU and
�a are sufficiently small. Decreasing �a further if necessary, we have xCga0.x/ 2
zU for x 2 B.2�a; a/ \ .a0 C Ta0A/.

Note that ga0.a0/ D 0. Differentiating the equation h.x C ga0.x// D 0 with
respect to x 2 .a0 C ker da0h/ \ B.�a; a

0/ yields

dxga0 D �.dxCga0 .x/hjker.da0h/?/
�1 � .dxCga0 .x/hjker.da0h//:
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Since .y; a0/ 7! .dyhjker.da0h/?/
�1 is continuous, it is bounded for .y; a0/ 2 zU �

xB.�a; a/. Hence

jdxga0 j � c � ��dxCga0 .x/hjker.da0h/
��:

For x D a0 we have dxCga0 .x/hjker.da0h/ D da0hjker.da0h/ D 0 so that, after de-
creasing �a once more, we can assume

��dxCga0 .x/hjker.da0h/
�� � �

3c

for all x 2 B.�a; a
0/ and a0 2 B.�a; a/. This implies jdxga0 j � �

3
and hence

jga0.x/j � �
3

dist.x; a0/.
Now equation (2.2) follows: let y 2 �h D 0

	 \ B."0; a0/ and write y D x C
ga0.x/. Then

dist.y; a0 C Ta0A/ � dist.x C ga0.x/; x/ D jga0.x/j �
�

3
� "0 < �"0

2
:

Moreover, the vector fields Hj are continuous and hence uniformly continuous on
compact sets. Thus, after possibly decreasing �a one more time, we also get (2.3).

Step 2. For each a 2 K let �a 2 .0;1� be maximal among all constants for
which (2.2) and (2.3) hold. Let � 2 .0; �a/ and let a1 2 K \ B.�; a/. If 0 <

"0 � " < �a � �, then B."; a1/ � B." C �; a/ and thus (2.2) holds for all a0 2
K \ B."; a1/. Similarly, (2.3) remains valid for all x; y 2 B."; a1/.

This shows that �a1 � �a � � for all a1 2 B.�; a/. Therefore the function
a 7! �a is lower semicontinuous and hence attains its minimum � > 0 on the
compact set K.

We now choose 0 < "0 D " < � and a D a0 in (2.2) and get

A \ B."; a/ � fh D 0g \ B."; a/ � fra < �"=2g � fra < �"gI

see Figure 2.1. This shows (i).
Step 3. Now let a0 2 A\B."; a/ � fh D 0g\B."; a/ and let a0 2 aCker dah

denote the orthogonal projection of a0. Then a0 2 B."; a/ and ja0�a0j < �"=2 by
(2.2). The triangle and Cauchy-Schwarz inequalities together with (2.3) imply for
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x 2 Rn:

jdist.x; a0 C ker da0h/ � dist.x; aC ker dah/j
D jdist.x; a0 C ker da0h/ � dist.x; a0 C ker dah/j
� jdist.x; a0 C ker da0h/ � dist.x; a0 C ker da0h/j
C jdist.x; a0 C ker da0h/ � dist.x; a0 C ker dah/j

< �"=2C jdist.x; a0 C ker da0h/ � dist.x; a0 C ker dah/j
D jdist.x � a0; ker da0h/ � dist.x � a0; ker dah/j C �"=2

D
�����
 

qX
jD1



x � a0;Hj .a

0/
�2!1=2 �  qX

jD1

hx � a0;Hj .a/i2
!1=2�����C �"

2

�
 

qX
jD1



x � a0;Hj .a

0/ �Hj .a/
�2!1=2 C �"

2
�

� jx � a0j �
 

qX
jD1

��Hj .a
0/ �Hj .a/

��2!1=2 C �"

2

� jx � a0j � �
4
C �"

2
:

If x 2 B."; a/ then jx � a0j < 2" and hence

jra0.x/ � ra.x/j < 2" � �=4C �"=2 D �":

This proves part (ii). �

The following corollary, which we formulate with constants adapted to our later
needs, combines the previous estimate with a covering multiplicity bound.

COROLLARY 2.7. Let K � A be a compact and uniform subset. Let � > 0. Then
there is an � > 0 such that for each " 2 .0; �/ there exists a finite family .ai /i2I of
points in K with the following properties:

(i) A \ B."; ai / � frai < �2"g for i 2 I ;
(ii) jrai � raj jB.2";ai / < �2" for i; j 2 I with jai � aj j � 4";

(iii) K �S
i2I B."; ai /;

(iv) the multiplicity of the family .B.2"; ai //i2I is bounded by 10n; i.e., each
point in Rn is contained in at most 10n different balls B.2"; ai /.

PROOF. For each " > 0 we find a maximal family .ai /i2I of points in K such
that the balls B."=2; ai / � Rn are pairwise disjoint. Then .B."; ai //i2I covers K.
Moreover, the elementary volume comparison vol.B.5";0//

vol.B."=2;0// D 10n implies that for
each i 2 I the ball B.4"; ai / contains at most 10n points aj , since otherwise the
balls B."=2; aj / � B.5"; ai / could not be pairwise disjoint. This implies that the
multiplicity of .B.2"; ai //i2I is bounded by 10n.
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By Lemma 2.6 (applied with �2=2 instead of �), assertions (i) and (ii) hold as
well for sufficiently small �. �

We will now use generalized tangent spaces in order to construct efficient cutoff
functions. The next lemma is proved in Appendix B.

LEMMA 2.8. For 0 < � < 1
4

and 0 < " < 1 there are C1-functions ��;" W R! R

with the following properties:
(i) ��;".r/ D 1 for r � �";

(ii) ��;".r/ D 0 for r � ";
(iii) 0 � ��;" � 1 everywhere;
(iv) for every k 2 N there is a constant Ck > 0 such that��� .k/

�;"
.r/
�� � Ck � r�k � jln �j�1 for all r > 0:

In the following we use standard coordinates .x1; : : : ; xn/ on Rn and the multi-
index notation

D� D @j�j

.@x1/�1 � � � .@xn/�n :
Let X � Rn be an affine subspace. For x 2 Rn and � > 0 we set

��;X .x/ WD maxf�; dist.x;X/g 2 ��;1/:

COROLLARY 2.9. Let X � R
n be an affine subspace and let r.x/ D dist.x;X/.

For every multiindex � with j�j � 1 there is a constant C� > 0 (independent of X )
such that

(i) jD�.��;" � r/j � C� ���j�j
�";X

� jln �j�1 I
(ii) jD�.��;" � .r � "0//j � C� � .�"/�j�j � jln �j�1I

for all 0 < � < 1
4

, for all 0 < " < 1, and for all 0 � "0 � ".

PROOF. We show (i). On fr < �"g the function ��;" � r is constant so that the
estimate is trivial. On fr � �"gwe have ��";X D r . The distance function satisfies
the well-known estimate

(2.4) jD�r j � C 0
� � r1�j�j

outside of X .
Induction on j�j shows that D�.��;" � r/ is a linear combination of terms of the

form �
�
.k/

�;"
� r� �D� .1/r � � �D� .k/r

where k � 1, j�.j /j � 1, and j�.1/j C � � � C j�.k/j D j�j. Lemma 2.8(iv) together
with (2.4) proves (i).

To show (ii) we put �1 WD ��;" � .r � "0/. For r � "0C �" we have �1 D 1; hence
we may assume

(2.5) r � "0 C �" :
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This time D��1 is a linear combination of terms of the form�
�
.k/

�;"
� .r � "0/

� �D� .1/r � � �D� .k/r

where k � 1, j�.j /j � 1, and j�.1/j C � � � C j�.k/j D j�j. The absolute value of
each such term is estimated as follows, using Lemma 2.8 and (2.4):���� .k/

�;"
� .r � "0/

� �D� .1/r � � �D� .k/r
��

� Ck � jr � "0j�k � jln �j�1 � C 0
� .1/

r1�j�
.1/j � � �C 0

� .k/
r1�j�

.k/j:

By assumption (2.5) we have jr � "0j�k � .�"/�k and r1�j�
.j/j � .�"/1�j�

.j/j

for 1 � j � k because all exponents are nonpositive. This concludes the proof.
�

For A � Rn and a 2 A we write ��;a WD ��;aCTaA.

LEMMA 2.10. Let K � A be a compact and uniform subset. Let U � R
n be an

open neighborhood of K. Let k 2 N. Then there exists a constant Ck > 0 such
that the following holds:

For each 0 < � < 1
4

there exists an � > 0 such that for each " 2 .0; �/ there
exists a finite family .ai /i2I of points in K and a smooth function � W Rn ! �0; 1�

with the following properties:
(i) supp.�/ �S

i2I B.2"; ai / � U ;
(ii) � � 1 on some open neighborhood of K;

(iii) K �S
i2I B."; ai /.

(iv) For 0 < j�j � k, i 2 I , and x 2 B.2"; ai / we have

jD��.x/j � Ck ���2";ai
.x/�j�j � jln �j�1:

PROOF. For a 2 A let ra?.x/ D dist.x; a C .TaA/
?/ denote the distance of x

to the affine subspace aC .TaA/
? of Rn. For any 0 < " < 1 we can consider the

following smooth functions Rn ! �0; 1�:

�1 WD ��;" � .ra? � .1 � �/"/; �2 WD ��;�" � ra; �a WD �1 � �2:
The function �a vanishes outside B.2"; a/ and satisfies �a D 1 on fra � �2"g \
B."; a/ (see Figure 2.2). Let 0 < j�j � k and let x 2 Rn with �a.x/ ¤ 0; hence
ra.x/ < �". Then, on the one hand, we have

j.D��1/.x/j � C� � .�"/�j�j � jln �j�1 � C� ���2";a.x/
�j�j � jln �j�1 ;

where in the first inequality we use Corollary 2.9(ii) with X D a C .TaA/
? and

the second inequality uses maxf�2"; ra.x/g < �".
On the other hand, Corollary 2.9(i) with X D a C TaA and " replaced by �"

yields ��D��2
�� � C� ���j�j

�2";a
� jln �j�1:
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(a) (b)

FIGURE 2.2. (a) Inclusion supp.�a/ � B.2"; a/. (b) Identity �a � 1

on fra � �2"g \ B."; a/.

The product rule and jln �j�2 � jln �j�1 for 0 < � < 1
4

imply

(2.6)
��D��a

�� � C 0
� ���j�j

�2";a
� jln �j�1:

For the given � and for any �, ", and .ai /i2I as in Corollary 2.7 we now set

� WD 1 �
Y
i2I

.1 � �ai / W Rn ! R:

It is clear that (i) holds if � (and hence ") is smaller than 1
2

dist.K;Rn n U/,
which can be assumed without loss of generality. Also, (ii) is satisfied because
the B."; ai / cover K and for every i 2 I we have K \ B."; ai / � frai < �2"g by
Corollary 2.7(i) and �ai D 1 on frai < �2"g \ B."; ai /.

Finally, assertion (iv) follows from the product rule, estimate (2.6) applied to
each �aj , j 2 I , and the following facts:

F There are at most 10n indices j 2 J with B.2"; ai / \ B.2"; aj / ¤ ¿.
F If B.2"; ai / \ B.2"; aj / ¤ ¿ we have jrai � raj j < �2"; hence ��2";ai

�
2 ���2";aj

.
F Higher powers of jln �j�1 can be estimated by jln �j�1. �

This assertion can be extended to nonuniform subsets as follows:

LEMMA 2.11. Let K � A be compact but not necessarily uniform. Let U be an
open neighborhood of K in Rn. Let k 2 N.

Then there exists a constant Ck > 0 such that for each 0 < � < 1
4

and 0 <

� < 1 there exist finite families ."i /i2I , 0 < "i < �, and .ai /i2I , ai 2 K, and a
C1-function � W Rn ! �0; 1� with the following properties:

(i) supp.�/ � U ;
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(ii) � D 1 on some open neighborhood of K;
(iii) For every x 2 supp.�/ and 0 < j�j � k there is an i 2 I with x 2

B.2"i ; ai / and

jD��.x/j � Ck ���2"i ;ai
.x/�j�j � jln �j�1:

PROOF. We use the chain (2.1) for an inductive proof. For �1 � ` � n we
set K` WD K \ �`, which is a compact subset of A. We start the induction with
` D �1. Then K�1 D ¿ and we simply put ��1 WD 0.

Assume �`�1 has been constructed for the compact set K`�1 � A with index
set I`�1. Using the inductive assumption (ii) we find a compact and uniform subset
K 0 � K` nK`�1 with K` � K 0 [ f�`�1 D 1g.

We apply Lemma 2.10 to K 0 to obtain 0 < "0 < �, a family .ai /i2I 0 , ai 2 K 0,
and a smooth function �0 W Rn ! �0; 1� with properties as stated in Lemma 2.10
(with K 0 instead of K).

Set I` WD I`�1t I 0, "i WD "0 for i 2 I 0, and �` WD 1� .1��`�1/.1��0/. Then
� is a C1-function Rn ! �0; 1� with properties (i) (for small enough "0) and (ii)
(with K` instead of K).

For (iii) let x 2 supp.�`/. Then there is an i 2 I` with x 2 B.2"i ; ai /. From all
those i choose the one for which ��2"i ;ai

.x/ attains its minimal value. Then (iii)
holds by the product rule and by the induction hypothesis for �`�1 (and estimating
higher powers of jln �j�1 by jln �j�1). �

In the remainder of this section we use generalized tangent spaces to obtain
improved Taylor estimates. Let k � 1 and let F W U ! R be a C k-function
defined on a neighborhood U of A in Rn. Furthermore, let j k�1F jA\U D 0. For
a 2 A \ U let

Ta;kF.x/ WD
X
j� j�k

1

��
�D�F.a/ � .x � a/�

D
X
j� jDk

1

��
�D�F.a/ � .x � a/� W Rn ! R

denote the kth Taylor polynomial of F at a. The point of the following lemma is
the fact that the function ra in the estimate is not the distance to the point a but the
(smaller) distance to the affine space aC TaA.

LEMMA 2.12. Let K � A be compact but not necessarily uniform. Then there is
a constant CK > 0 such that for all a 2 K and x 2 B.1; a/ we have

jTa;kF.x/j � CK � ra.x/k :
PROOF. Let j�j D k � 1. Since da.D

� .Ta;kF // D da.D
�F / and D�F W

U ! R is a C 1-function that vanishes on A \ U , the affine map D� .Ta;kF / W
R
n ! R vanishes on the affine subspace a C TaA � R

n by the definition of
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generalized tangent spaces. Using j k�1Ta;kF.a/ D 0, this implies, by iterative
integration that j k�1Ta;kF jaCTaA D 0.

Now let x 2 B.1; a/ and let x0 be its orthogonal projection onto the affine
subspace a C TaA � R

n. Let  W �0; ra.x/� ! R
n be a unit speed line segment

joining x0 D .0/ and x D .ra.x//. Since j k�1Ta;kF.x0/ D 0, Taylor’s
theorem implies

jTa;kF.x/j �
1

k�
� .Ta;kF � /.k/

C0.�0;ra.x/�/
� ra.x/k

� 1

k�
� kTa;kF kCk.B.1;a// � ra.x/k :

Hence we can work with CK WD 1
k�
� maxa2KkTa;kF kCk.B.1;a//. �

For the remainder term Ra;kF.x/ WD F.x/�Ta;kF.x/ we have the following
standard estimate:

LEMMA 2.13. Let K � A be compact. Then for � > 0 there exists � > 0 such that
for all 0 < " < �, a 2 K, and x 2 B.2"; a/, we have x 2 U and jRa;kF.x/j �
.�2"/k .

PROOF. Let r.x/ D jx � aj denote the distance of x to the point a. The lemma
follows from the standard estimate of the remainder term in the Taylor expansion:

jRa;kF j D o.rk/ D o."k/

where the estimate is uniform on K. �

3 Proof of Theorem 1.2
For k D 0 the proof is easy and postponed to Appendix A. In this section we

will concentrate on the case k � 1.
We use the “tilde notation” to denote by zF the map �0; 1� � U ! X corre-

sponding to F via zF .t; u/ D F.t/.u/. The condition F 2 C `.�0; 1�; C k.U;X//

is equivalent to the requirement that, in local coordinates u1; : : : ; un of U , the par-
tial derivatives . @

@t
/m. @

@u1
/�1 � � � . @

@un
/�n zF exist and are continuous for m � ` and

j�j D �1 C � � � C �n � k. See [12, theorem 2] for the case ` D k D 0 and [2] for
the general case.

PROOF OF THEOREM 1.2 FOR k � 1.
Step 1. We first show that we can assume without loss of generality thatX ! V

is a C1-vector bundle.
For this aim we equip the total space X with an auxiliary complete Riemannian

metric. Let T vertX ! X be the vertical tangent bundle, whose fibers are the
tangent spaces of the fibers of X . For each choice of f 0

0 2 C1.V;X/ we can
consider the C1-vector bundle .f 0

0/
�T vertX ! V . The fiberwise exponential

map yields a fiber-preserving C1-diffeomorphism from a fiberwise convex open
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neighborhood C � .f 0
0/
�T vertX of the zero section onto an open neighborhood

W of f 0
0.V / � X .

Choosing f 0
0 close enough to f0 in the strong topology on C 0.V;X/ we can

assume that the image of f0 is contained in W . Hence it defines a C �-section of
the C1-vector bundle .f 0

0/
�T vertX ! X .

Since k � 1 the function F.t/jV0 is independent of t by assumption. Shrinking
U if necessary we can assume that the image of zF is contained in W � C . The
constructions in Step 3 will never leave the image of zF , and also the mollifying
procedure (3.10) in Step 4 happens within the fiberwise convex neighborhood C

of 0.
Hence we can and will assume without loss of generality that X ! V is a

C1-vector bundle.
Step 2. We can furthermore assume that V is an open subset of some Euclidean

space Rn and V0 is not only closed in V but also closed in Rn.
For this aim choose a smooth proper embedding V � R

n for the given smooth
manifold V . By properness of the embedding, V and V0 become closed subsets
of Rn. Furthermore we find a continuous map � W V ! RC such that the normal
exponential map along V identifies f.v; �/ j v 2 V; � 2 .TvV /

? � R
n; j�j <

�.v/g � V � Rn with an open tubular neighborhood NV of V in Rn. Let p W
NV ! V be the bundle projection and p�X ! NV be the pullback bundle. This
results in a bundle map

p�X
xp //

��

X

��
NV

p // V:

Then p�1.U / � NV is an open neighborhood of the closed subset V0 � NV . We
define a PDR yR � J k.p�X/ over NV by setting

yR WD fj k�.x/ j x 2 NV ; � is a local section of p�X near x

such that �jdom.�/\V solves Rg:

One easily checks that this relation is open. The section p�f0 (characterized by xp�
.p�f0/ D f0 �p) of p�X solves yR. Similarly, the section p�F.t/ of p�X jp�1.U /

solves yR over p�1.U / and the .k� 1/-jet of p�F.t/ is independent of t along V0.
Conversely, any C �-solution of yR (with � � k) restricts to a C �-solution of R
over V .

Hence, working with NV instead of V and with the given V0 � V , we can and
will assume in the following that V � R

n is an open subset and V0 is closed in
R
n.
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Step 3. Now we prove Theorem 1.2 for ` D 1 and � D k � 1. Since we
assume that V � R

n is an open subset we can work with global coordinates
.x1; : : : ; xn/ on V .

Since V0 � R
n is closed we find a countable family of compact sets .K�/�2I ,

K� � V0, whose union covers V0, together with relatively compact open neighbor-
hoods K� � U� � U such that the family .U�/�2I satisfies the following:
F This family is locally finite; that is, around each point in Rn there is a neigh-

borhood in Rn meeting only finitely many U� .
F For each � 2 I the set I� WD f� 2 I j U� \ U� ¤ ¿g is finite.
F The vector bundle X can be trivialized over each xU� , and we fix such trivial-

izations.
For each � 2 I we fix 0 < �� <

1
4

and 0 < �� <
1
2

. The precise values will
be determined later. Put z�� WD maxf�� j � 2 I�g.

Apply Lemma 2.11 to A D V0, K D K� � A, and U D U� . We get finite
families ."�;i /i2I� , 0 < "�;i < �� , and .a�;i /i2I� , a�;i 2 K� , together with
C1-functions �� W Rn ! �0; 1� as described in Lemma 2.11.

We define the C1-function

(3.1) � WD 1 �
Y
�2I

.1 � ��/ W Rn ! �0; 1�:

This is well-defined andC1 since .U�/�2I is locally finite. In addition, supp.�/ �S
�2I U� � U and � D 1 on a neighborhood of V0.
Let x 2 supp.�/. By Lemma 2.11(iii) and finiteness of the I� there are finitely

many .�; i/ with x 2 B.2"�;i ; a�;i /. Among all such .�; i/ we choose the one for
which ��2�"�;i ;ai

.x/ attains its minimal value. The estimate in Lemma 2.11(iii) and
the product rule yield

(3.2) jD��.x/j � Ck;� ���2�"�;i ;a�;i
.x/�j�j � jln z�� j�1

for all � with 1 � j�j � k. Here the constant Ck;� is independent of ��, ��, "�;i ,
a�;i , and x.

We define sections f .t/ W V ! X by

(3.3) f .t/.v/ WD
( zF .t�.v/; v/ if v 2 U;

f0.v/ otherwise:

This defines C k-sections of X that depend smoothly on t . We will show that the
f .t/ solve R if the constants �� and �� are properly chosen.
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Using the trivialization of the bundle X over U� we identify sections of U� with
vector-valued functions. Induction1 on j�j shows

.D�f /.t; x/

D .D� zF /.t�.x/; x/C
j�jX
�D1

X
y�

�
Dy�@�t

zF /.t�.x/; x/ � t� � P�y��.x/:
(3.4)

Since F.t/ solves R and the relation is open there exists �� > 0 such that if

(3.5)

�����
j�jX
�D1

X
y�

�
Dy�@�t

zF �.t�.y/; y/ � t� � P�y��.y/
����� < ��

for all j�j � k and for some y 2 U� , then f .t/ solves R over y as well.
In (3.4) and (3.5) the inner sum is taken over all multiindices y� satisfying y� � �

and � C jy�j � j�j. Each P�y�� is a universal polynomial in derivatives of � ,
independent of F . It is weighted homogeneous of degree j�j � jy�j if we assign to
each ath x-derivative of � the weight a. The product rule together with (3.2) shows,
estimating higher powers of jln z�� j�1 by jln z�� j�1,

(3.6) jP�y��.x/j � Ck;� ���2�"�;i ;a�;i
.x/jy�j�j�j � jln z�� j�1:

Note that in (3.4) we have � C jy�j � j�j and � � 1; thus the exponent of
��2�"�;i ;a�;i

.x/ in (3.6) is negative.
Lemma 2.12 implies that there is a constant CK�

> 0, independent of x, ��, and
��, such that for our x 2 B.2"�;i ; a�;i / � B.1; a�;i /, 0 � jy�j � k, t 2 �0; 1�, and
0 < ` � k, we have

(3.7)
��Ta�;i ;k�jy�j

�
Dy�@`t

zF �.t; x/�� � CK�
� ra�;i .x/k�jy�j:

Moreover, by Lemma 2.13, we can choose �� so small (depending on �� but inde-
pendently of x) that

(3.8)
��Ra�;i ;k�jy�j

�
Dy�@`t

zF �.t; x/�� � �
�2�"�;i

�k�jy�j
:

1 For j�j D 0 equation (3.4) is nothing but the definition zf .t; x/ D zF .t�; x/. The induction step
consists of differentiating (3.4).
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With this choice of �� we get, using (3.6), (3.7), and (3.8),

(3.9)

���Dy�@�t
zF �.t�.x/; x/ � t� � P�y��.x/j

� Ck;� �
���Dy�@�t

zF �.t�.x/; x/�� ���2�"�;i ;ai
.x/jy�j�j�j � j ln z�� j�1

� Ck;� �
�
CK�

� ra�;i .x/k�jy�j C .�2�"�;i /
k�jy�j

� ���2�"�;i ;ai
.x/jy�j�j�j

� jln z�� j�1

� Ck;� �
�
CK�

� ra�;i .x/k�jy�j � ra�;i .x/jy�j�j�j

C �
�2�"�;i

�k�jy�j � ��2�"�;i�jy�j�j�j� � jln z�� j�1
D Ck;� �

�
CK�

� ra�;i .x/k�j�j C
�
�2�"�;i

�k�j�j� � jln z�� j�1
� Ck;� � .CK�

C 1/ � jln z�� j�1:

Thus for z�� > 0 sufficiently small, estimate (3.5) holds for y D x. This imposes
finitely many conditions on each �� and can therefore be arranged. This completes
the proof of Theorem 1.2 for ` D1 and � D k � 1.

Step 4. Now we drop the differentiability assumption in the path variable and
consider the case ` D 0 and � D k � 1. We equip the vector bundle X ! V with
a Euclidean structure and a compatible C1-connection �r. We introduce a second
path variable and define

F.s; t/ WD

8�<�:
F.0/ for t � 0;

F.st/ for 0 � t � 1;

F.s/ for t � 1:

Then F 2 C 0.�0; 1� �R; C k.U;X//.
Let � 2 C1.R/ be nonnegative with supp.�/ � ��1; 1� and

R 1
�1 �.�/ d� D 1.

We mollify F in the t -variable by putting, for � 2 .0; 1�,

(3.10) F�s .t/ WD
1

�

Z
R

�

�
.1C 2�/t � � � �

�

�
F.s; �/d�:

Then each F�s 2 C1.�0; 1�; C k.U;X// and F�s is also smooth in �. Using

1

�

Z
R

�

�
.1C 2�/t � � � �

�

�
d� D 1

and the support property of � it is straightforward to check

F�s .0/ D F.0/; F�s .1/ D F.s/; F�0.t/ D F.0/;

for all s; t 2 �0; 1�. Moreover, since F is uniformly continuous, we can, given " > 0

and a compact subset K � U , find an "0 > 0 such that jF.s; t1/jK�F.s; t2/jK j < "
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for all s and all t1; t2 with jt1 � t2j < "0. Then��F�s .t/jK � F.s; t/jK
��

� 1

�

Z
R

�

�
.1C 2�/t � � � �

�

���F.s; �/jK � F.s; t/jK
��d� < "

provided 2� < "0. The same argument applies to the covariant derivatives. Thus
F�s .t/ converges in C k.U;X/ to F.s; t/ uniformly in s and t as � ! 0 with respect
to the weak C k-topology. In particular, F�s solves R over K for � � �.K/.

We choose a locally finite cover of U by relatively compact open sets O� . Then
we can find a positive smooth function � W U ! R such that �.v/ � �. xO�/ for all
v 2 xO� and all �.

We rewrite (3.10) as

F�s .t/ D
1

�

Z
R

�

�
.1C 2�/t � � � �

�

�
.F.s; �/ � f0/ d� C f0

and recall that all derivatives up to order k � 1 of F.s; �/ � f0 vanish along V0.
Thus all derivatives up to order k � 1 of

1

�

Z
R

�

�
.1C 2�/t � � � �

�

�
.F.s; �/ � f0/d�

vanish as well. For the kth derivative we obtain�r.k/F�.�/s .t/ D 1

�

Z
R

�

�
.1C 2�/t � � � �

�

��r.k/.F.s; �/ � f0/ d� C �r.k/f0

D 1

�

Z
R

�

�
.1C 2�/t � � � �

�

��r.k/F.s; �/ d�:

No derivatives of � occur in this formula. In particular, v 7! F�.v/s .t/.v/ solves R

along V0. By shrinking U if necessary, v 7! F�.v/s .t/.v/ solves R also over U .
We can now apply the results obtained in Step 3 to each F�.�/s and get fs 2

C1.�0; 1�; C k.V;X// such that for all s; t 2 �0; 1�

F each fs.t/ is a section of X solving R;
F fs.0/ D f0;
F fs.t/jU0 D F�.�/s .t/jU0 ;
F fs.t/jV nU D f0jV nU .

Furthermore, over U the section fs.t/ is of the form efs.t; v/ DAF�.v/s .t�.v/; v/

with a � as in Step 3. Note that here we can in fact choose � and U0 independently
of s.

We set f .s/ WD fs.1/. Then f 2 C 0.�0; 1�; C k.V;X// and
F f .s/ is a section of X solving R;
F over U we have f .0/ D f0.1/ D F�.�/0 .�.�// D F.0/ D f0;
F over U0 we have f .s/ D fs.1/ D F�.�/s .1/ D F.s/;
F over V n U we have f .s/ D fs.1/ D f0.
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Finally, if F 2 C `.�0; 1�; C �.U;X//, then F�.v/s .t/.v/ is C ` in s, smooth in t ,
and C � in v. Hence f 2 C `.�0; 1�; C �.U;X//. This concludes the proof of
Theorem 1.2. �

Remark 3.1. One cannot drop the assumption that V0 is a closed subset even if it
is a smooth embedded submanifold. For example, we may choose V D R

2 and
V0 D f.x; y/ 2 R2 j x D 0; y > 0g. As an open neighborhood of V0 we choose
U D f.x; y/ 2 R2 j y > 0g. The fiber bundle X is the trivial real line bundle,
so our sections are just real-valued functions. We consider the case k D 1 and the
relation R D J 1X . In other words, the relation does not impose any restrictions
on our functions.

Let f0 � 0 on V and zF .t; x; y/ D tx sin.1=y/ on U . The assumptions of
Theorem 1.2 are now satisfied (except for closedness of V0), but for t > 0 the
derivative @F

@x
does not have a limit as y ! 0. Thus no restriction of F to �0; 1��U0

for any neighborhood U0 of V0 can be extended as a C 1-map to �0; 1� � V .

Remark 3.2. The assumption j k�1F.t/ D j k�1f0 along V0 cannot be dropped
either. For example, let V D R and V0 D f�1;C1g. We still work with real-valued
functions and k D 1. Let the relation R not impose any restrictions on 0-jets and
force first derivatives to lie in the interval .�1; 1/. Let f0 � 0 and U D R n f0g,
and set zF .t; x/ D 10 � t for x > 0 and zF .t; x/ D �10 � t for x < 0. With these
choices a function f as in Definition 1.1 does not exist.

Remark 3.3. IfF is sufficiently regular in the path variable—more precisely, ifF 2
C `.�0; 1�; C k.U;X//with ` � k—then, as in the proof of Theorem 1.2, we can use
the ansatzf .t/.v/ D zF .t�.v/; v/ forv 2 U to obtainf 2 C `�k.�0; 1�; C k.V;X//.
With this definition the deformation f takes only values that are taken by f0
and F . This means that for the values (but not their derivatives) we can also pre-
serve nonopen relations. For instance, if our sections are real-valued functions and
f0 � 0 and F � 0 holds, then we have also f � 0.

We get the following family version of Theorem 1.2.

ADDENDUM 3.4. Let K be a compact Hausdorff space and let k 2 N0. Let f0 2
C 0.K;C k.V;X//, and let F 2 C 0.K;C 0.�0; 1�; C k.U;X/// such that f0.�/ and
F.�/ fall in Setting S1 for each � 2 K.

Then parametrized local flexibility holds: There exists

f 2 C 0
�
K;C 0.�0; 1�; C k.V;X//

�
such that f .�/ enjoys the properties of Definition 1.1 for each � with U0 indepen-
dent of � .

Moreover, let ` 2 f0; 1; : : : ;1g and � 2 fk; k C 1; : : : ;1g. Let

f0 2 C 0.K;C �.V;X// and F 2 C 0.K;C `.�0; 1�; C �.U;X///:

Then we can assume in addition that f 2 C 0.K;C `.�0; 1�; C �.V;X///.
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Finally, if � 2 K is such that the deformation F.�/ is constant in the path
variable, then in all the previous cases f .�/ can be assumed to be constant in the
path variable as well.

PROOF. We concentrate on the case k � 1 and leave the case k D 0 to the
reader.

If F.�/ 2 C1.�0; 1�; C k.U;X// as in Step 3 of the proof of Theorem 1.2,
then the bounds on the �� and �� depend on bounds on derivatives of F . Thus
they can be chosen independently of � 2 K, by compactness of K. Therefore the
cutoff function � in (3.1) can be chosen independently of �. Hence f depends
continuously on �.

If F.�/ 2 C 0.�0; 1�; C k.U;X//, then the function � in Step 4 of the proof
can be chosen independently of �, again by compactness of K. The mollify-
ing procedure in (3.10) yields a continuous map C 0.�0; 1�; C 0.R; C k.U;X/// !
C 0.�0; 1�; C1.R; C k.U;X///. Then Step 3 applies. A similar argument applies
to the case F 2 C 0.K;C `.�0; 1�; C �.U;X/// for more general ` and �.

The last assertion follows directly from the definition of f .�/.t/ in (3.3) if
F.�/ 2 C1.�0; 1�; C k.U;X//. In the remaining cases we observe that the molli-
fied function F�s .t/ in (3.10) is constant in s and t if the original function F.t/ is
constant in t . �

This can be reformulated in homotopy theoretic language. Let � be a fixed C k-
germ of sections of X around V0 solving R. We say that a C k-section of X over
some open neighborhood of V0 is �-compatible if it has the same .k � 1/-jet along
V0 as �. Now consider

F the space E of all �-compatible C k-solutions of R over V ,
F the space E0 of all �-compatible C k-germs of solutions of R around V0.

The space E0 is equipped with the quasi-C k-topology induced by the directed
systemC k.U;X/, V0 � U � V open. This means that a continuous mapK ! E0

for compact K is represented by a continuous map K ! C k.U;X/ for some open
V0 � U � V with image in the �-compatible solutions of R over U .

Applying Addendum 3.4 we now have the following assertion.

COROLLARY 3.5. The restriction map E ! E0 has the homotopy lifting property
with respect to all compact Hausdorff spaces. In particular, it is a Serre fibration.

This formulation provides a link of local flexibility to other h-principle concepts,
such as flexibility and microflexibility; compare [19, sec. 1.4.2 (B’)].

4 Applications
The following applications from different mathematical contexts illustrate situ-

ations in which local flexibility applies naturally.
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FIGURE 4.1. Image f0.V / is �-convex at p.

4.1 Deforming hypersurfaces
Let V be an n-dimensional manifold and f0 W V # R

nC1 an immersion. For
a constant � > 0 we call f0 �-convex if all eigenvalues of the Weingarten map
(the principal curvatures) of f0.V / w.r.t. suitable choice of unit normal are � �

everywhere. If f0 is a �-convex embedding, then f0.V / � B for any closed ball B
of radius 1

�
whose boundary touches f0.V / tangentially at a point p and is curved

in the same direction; i.e., the unit normals of f0.V / and @B at p coincide when
chosen such that both Weingarten maps are positive; see [11, sec. 6.3] and Figure
4.1 for an illustration.

Now let f0 W Sn ,! R
nC1 be the standard embedding. Then f0 is 1-convex and

rigid in the following sense: Given a point p 2 Sn we cannot find an embedding
f1 such that f1 D f0 on the opposite hemisphere Snp;� WD fv 2 Sn j hv; pi � 0g,
and f1 is 1-convex everywhere and �-convex near p for some � > 1.

Namely, assume such an f1 exists. By 1-convexity and since Snp;� is contained
in f1.Sn/, we have f1.Sn/ � xB1.0/. By �-convexity near f1.p/, f1.Sn/ contains
points in the interior of xB1.0/. Let q 2 f1.S

n/ be such a point. Again by 1-
convexity, applied at q, f1.Sn/ � xB1.m/ for some m ¤ 0.

On the other hand, Snp;� � f1.S
n/ � xB1.m/, which is possible only if m D 0;

see Figure 4.2. We have arrived at a contradiction.
Now we relax the conditions. Let " > 0. We look for an embedding f1 W Sn ,!

R
nC1 such that f1 D f0 on Snp;�, f1 is .1 � "/-convex everywhere and �-convex

near p for any given � > 1. Such an f1 actually exists.
To see this, we put V D S

n, V0 D fpg, and U D S
n n Snp;�. Being an

immersion with principal curvatures > 1 � " imposes an open partial differen-
tial relation R of order 2 on C1.V;RnC1/. Consider a smooth one-parameter
family of smooth diffeomorphisms �.t/ W U ! U such that �.t/.p/ D p and
d�.t/jp D �

��.��1/t
idTpU , t 2 �0; 1�. We set

zF .t; v/ WD
�
1 � � � 1

�
t

�
�.t/.v/C � � 1

�
tp:
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FIGURE 4.2. Image f1.Sn/ is �-convex at f1.p/.

Then each F.t/ is a �
��.��1/t

-convex embedding U ,! R
nC1 that satisfies

F.t/.p/ D p and dF.t/jp D idTpU for all t :

Hence the 1-jet of F.t/ is constant at V0 D fpg.
We apply Theorem 1.2 and obtain f 2 C1.�0; 1�; C1.Sn;RnC1// such that

each f .t/ is a .1 � "/-convex immersion, f .t/ D f0 on Snp;�, and f .t/ D F.t/

near p. In particular, f1 WD f .1/ is �-convex near p.
It remains to see that f1 is injective and hence an embedding since V is compact.

By Remark 3.3, f1 is of the form f1.v/ D zF .�.v/; v/ on U for some function
� W U ! �0; 1�. Now injectivity of f1 follows from injectivity of zF j�0;1��.Unfpg/.
4.2 Deforming differential forms

Let V be a smooth manifold and let V0 � V be a smooth submanifold, which is
closed as a subset. For p � 1 we consider the exterior form bundle �p.T �V / !
V and fix an open subset Q � �p.T �V /. Let !0 2 C 1.V;�p.T �V // be a closed
differential form of degree p solving Q.

Let U be an open neighborhood of V0 in V and let

� 2 C 0.�0; 1�; C 1.U;�p.T �V ///

be a path of closed forms solving Q with !0jU D �.0/. W.l.o.g. we can assume
thatU is a tubular neighborhood, shrinking it if necessary. Furthermore, we assume
that i�0�.t/ is constant in t where i0 W V0 ,! U is the embedding. Note that this is
a weaker condition than the restriction of �.t/ to V0 being constant in t .

Now �.t/ ��.0/ is a family of closed forms satisfying i�0 .�.t/ ��.0// D 0.
Let � 2 C1.�0; 1�; C1.U; U // be a retraction of U onto V0, i.e., �.1/ D idU ,
�.s/jV0 D idV0 for all s 2 �0; 1�, and �.0/.U / D V0. We obtain F 2 C 0.�0; 1�;

C 1.U;�p�1.T �V /// by setting

F.t/.�1; : : : ; �p�1/ WD
Z 1

0

.�.t/ ��.0//
�d�
ds
.s/; �.s/��1; : : : ; �.s/��p�1

�
ds



1400 C. BÄR AND B. HANKE

TABLE 4.1. Geometric structures defined by a closed form satisfying an
open condition.

V form degree p condition Q resulting geometric structure

n-manifold 1 nonvanishing codimension-1-foliation
2n-manifold 2 !n ¤ 0 symplectic structure
7-manifold 3 definite closed G2-structure

where �1; : : : ; �p�1 2 TuU and u 2 U . Then F has the following properties:
F F.0/ � 0;
F F.t/jV0 � 0 for all t 2 �0; 1�;
F �.t/ D �.0/C dF.t/ for all t 2 �0; 1�;
F If ` � 0, � � 1, and � 2 C `.�0; 1�; C �.U;�p.T �V ///, then F 2 C `.�0; 1�;

C �.U;�p�1.T �V ///.
Only the third property requires a small computation; compare, e.g., [8, prop. 6.8].

We set X WD �p�1.T �V / ! V and k WD 1. The condition !0 C d� 2 Q
imposes an open relation on the 1-jet of the .p � 1/-form �. Denote this first-order
relation on �p�1.T �V / by R. Now we apply Theorem 1.2 to f0 D 0, F.t/, and
R and obtain f 2 C 0.�0; 1�; C 1.V;�p�1.T �V /// such that f .0/ D f0 D 0 and
f .t/ D F.t/ on a smaller neighborhood U0 of V0.

For simplicity, let us assume that !0 and �� are smooth. Then zF is smooth and
so is zf . We obtain a smooth family of closed smooth p-forms

!.t/ WD !0 C df .t/

solving Q, coinciding with �.t/ on U0 and �.t/ D !0 outside U . We summarize:

PROPOSITION 4.1. Let V be a smooth manifold, V0 � V a submanifold, closed as
a subset. Let U be an open neighborhood of V0 in V . Let Q � �p.T �V / be an
open subset.

Let !0 be a smooth closed differential p-form on V solving Q, p � 1. Let � 2
C1.�0; 1�; C1.U;�p.T �V /// such that �.t/ is closed and solves Q, �.0/ D !0
on U , and i�0�.t/ is constant in t .

Then there exists a smaller neighborhood U0 of V0 and

! 2 C1
�
�0; 1�; C1.V;�p.T �V //

�
such that each !.t/ is closed and solves Q, !.0/ D !0, !.t/ D �.t/ on U0,
and !.t/ D !0 outside U . Moreover, the de Rham cohomology class of !.t/ is
independent of t .

Table 4.1 lists some geometric examples in which Proposition 4.1 applies.
The second example is a well-known consequence of the relative Moser lemma;

see [8, theorem 7.4]. A similar argument can be applied to the first example, where
we use the one-to-one correspondence (after the choice of a Riemannian metric on
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V ) of nonvanishing 1-forms and nonvanishing vector fields in order to solve the
Moser equation. For background on the G2-example, we refer to [6, secs. 3.1 and
4.6]. In this case a Moser-type argument cannot be applied because G2-structures
induce Riemannian metrics which have local invariants.

Dropping the closedness conditions on the forms, Theorem 1.2 can be applied
directly to � for k D 0 without passing to a family F.t/ of primitives of �.t/ �
�.0/. This can be used to extend local deformations of contact forms, for instance.

4.3 Prescribing the lapse function
This application deals with Lorentzian geometry. For a general introduction to

and standard notation in this field, see, e.g., [3]. Let V be a time-oriented globally
hyperbolic Lorentzian manifold. Then V is isometric to R �� with metric

(4.1) g D �N 2dT 2 C gT

where N W V ! R is smooth and positive, and T W V ! R is smooth with past-
directed timelike gradient such that each level fT0g �� is a Cauchy hypersurface;
see [4, theorem 1.1]. The levels are then automatically closed, smooth, spacelike
hypersurfaces. Here gT is a smooth one-parameter family of Riemannian metrics
on the levels. We will call N the lapse function and T the Cauchy time function. A
simple computation shows g.gradT; gradT / D �N�2.

In [5, theorem 1.2] Bernal and Sánchez show that one can prescribe the Cauchy
hypersurface. More precisely, let V0 be a smooth spacelike Cauchy hypersurface.
Then the Cauchy time function T can be chosen in such a way that V0 is one of its
levels.

Using Theorem 1.2 we will now show that one can also prescribe the lapse
function along V0.

Let }N W V0 ! R be smooth and positive. Let �T be a smooth function de-
fined on a neighborhood U of V0 that coincides with T on V0 and such that
grad �T D }N�1 � � where � is the past-directed timelike unit normal field along V0.
By shrinking U if necessary we can arrange that the gradient of �T is past-directed
timelike on all of U and that there are smooth spacelike Cauchy hypersurfaces ��

and �C in V that lie in the causal past and future of U , respectively.
Now put f0 D T and zF .t; v/ D t�T .v/C .1 � t /T .v/. Since the cone of past-

directed timelike tangent vectors is convex, the function F.t; �/ has a past-directed
timelike gradient field on U for each t 2 �0; 1�.

Having a past-directed timelike gradient field imposes an open first-order differ-
ential relation on functions on V . We apply Theorem 1.2 with k D 1 and obtain
a smooth function zf W �0; 1� � V ! R such that f .0/ D f0 D T , each f .t/

has past-directed timelike gradient field and coincides with f0 outside U and with
F.t/ on a smaller neighborhood of V0.

Claim. Each f .t/ is a Cauchy time function; i.e., its nonempty level sets are
Cauchy hypersurfaces.



1402 C. BÄR AND B. HANKE

PROOF. Fix t and write h D f .t/ for brevity. Let c W .0; 1/ ! V be an
inextendible future-directed timelike curve. Since the gradient of h is timelike
past-directed and the velocity vector of c is timelike future-directed, the function h
increases strictly along c. Thus each level of h is hit at most once by c.

Moreover, c intersects �� and �C at points c.s�/ and c.sC/, 0 < s� <

sC < 1, as �� are Cauchy hypersurfaces. Thus the level sets of h for values in
�h.c.s�//; h.c.sC//� intersect c as well. For the levels below h.c.s�// and above
h.c.sC//, this is also true because h coincides with the Cauchy time function T in
the past of �� and in the future of �C. �

Now consider the Cauchy time function }T D F.1/. Since }T coincides with �T
near V0 we have along V0

g.grad }T ; grad }T / D g.grad �T ; grad �T / D g.}N�1�; }N�1�/ D �}N�2:

Hence if we replace T by }T in (4.1), then the lapse function will be }N along V0. We
have deformed a given Cauchy time function through Cauchy time functions into
one that has prescribed lapse function along a given level set. This procedure can
be repeated and yields prescribed lapse functions along finite or countable families
of Cauchy hypersurfaces as long as they do not intersect nor accumulate.

5 Counterintuitive Approximations
Now we turn to our main application of local flexibility, the construction of

sections that have possibly very restrictive local properties on open dense subsets.
Typically, it is impossible to achieve this on all of V .

5.1 The approximation theorem
In order to formulate this theorem precisely, we consider the following setting:

SETTING S2. We denote by
F V a smooth manifold;
F � W X ! V a smooth vector bundle;
F k 2 N a positive integer;
F � a subsheaf of the sheaf of C k-sections of X ;
F f a C k-section on V ;
F N a neighborhood of f in the strong C k�1-topology.

Recall the commutative diagram

J kX
�k;k�1 //

�k

!!

J k�1X
�k�1

{{
V

Since � W X ! V is a vector bundle, �k and �k�1 are vector bundle projections
as well, while �k;k�1 W J kX ! J k�1X is an affine bundle.
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Notation 5.1. We set J k� WD fj k.p/ j  is a local section of � , defined near p;
p 2 V g � J kX .

THEOREM 5.2. Suppose we are in Setting S2 and assume that for each p 2 V there
is an open neighborhood W of j k�1f .p/ in J k�1X and a map �W W W ! J kX

such that
F �W maps compact subsets of W to relatively compact subsets of J kX (this

holds for example if �W is continuous);
F �k;k�1 � �W D idW ;
F �W .!/ 2 J k� for each ! 2 W .

Then there exists a section yf of X ! V and an open dense subset U � V with
the following properties:

F yf 2 C
k�1;1
loc .V;X/;

F yf 2 N ;
F yf jU 2 �.U /.

For the proof of the theorem we need the following lemma:

LEMMA 5.3. Under the assumptions of Theorem 5.2 there exists an open neigh-
borhood R of the image of j kf in J kX such that R \ .�k/

�1.K/ is relatively
compact in J kX for every compact K � V and the following “convexity” condi-
tion holds:

Let p 2 V and let � be a C k-germ of sections around p solving R. Then there
exists an open neighborhood U of p and an F 2 C 0.�0; 1�; C k.U;X// such that

F F.0/ represents �;
F F.t/ 2 C k.U;X/ solves R over U for all t 2 �0; 1�;
F F.1/ 2 �.U /;
F j k�1F.t/.p/ D j k�1�.p/ for all t 2 �0; 1�.

PROOF. We fix an auxiliary Euclidean inner product on the vector bundle �k W
J kX ! V with induced fiber norm k�kJkX . At each p 2 V the restriction
of �k;k�1 to the orthogonal complement of ker.�k;k�1/ � ��1

k
.p/ is a linear

isomorphism onto ��1
k�1

.p/. Thus

� WD .�k;k�1jker.�k;k�1/?/
�1 W J k�1X ! J kX

defines a global smooth section of �k;k�1 W J kX ! J k�1X .
Choose a neighborhood W of the image of j k�1f in J k�1X that is a union of

open sets W as in the statement of Theorem 5.2. Shrinking W if necessary, we can
assume w.l.o.g. that it is relatively compact over each compact K � V .

On such a W the function J k�1X ! R [ f1g defined by ! 7! dist.�.!/;
J k� \ ��1

k;k�1
.!// satisfies

dist
�
�.!/; J k� \ ��1k;k�1.!/

� � k�.!/ � �W .!/kJkX
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and is hence locally bounded. Therefore we can find a continuous function R W
W ! R such that dist.�.!/; J k� \ ��1

k;k�1
.!// < R.!/ for all ! 2 W . By

increasing R if necessary, we ensure thatj kf � �.j k�1f /

JkX

< R.j k�1f /

for the given section f .
We define R by

R WD �
� 2 ��1k;k�1.W / j k� � �.�k;k�1.�//kJkX < R.�k;k�1.�//

	
:

Then R is an open neighborhood of the image of j kf in J kX . For each compact
K � V the set

R \ ��1k .K/ D �
� 2 ��1k;k�1.W \ ��1k�1.K// j
k� � �.�k;k�1.�//kJkX < R.�k;k�1.�//

	
is relatively compact. Let ' be aC k-section ofX ! V , defined on a neighborhood
of p 2 V such that the image of j k' is contained in R. By construction, R
intersects J k�\��1

k;k�1
.j k�1'.p//. Pick a k-jet in R\J k�\��1

k;k�1
.j k�1'.p//

and represent it by a local section  of � . The straight line segment .1�t /j k'.p/C
tj k is entirely contained in R \ ��1

k;k�1
.j k�1'.p// by convexity of norm balls.

Thus

(5.1) F.t/ WD .1 � t /' C t

has all the required properties if the neighborhood U of p is chosen sufficiently
small. �

PROOF OF THEOREM 5.2. We choose an open neighborhood N of im j k�1f

in J k�1X such that fh 2 C k�1.V;X/ j j k�1h.p/ 2 xN ; p 2 V g � N . Pick
some R � J kX as in Lemma 5.3.

We provide the jet bundles of X with fiber metrics and induced norms k�kJmX
so that the usual Cm-norms of sections of X are defined as

kukCm.V / D sup
V

kjmukJmX :

Let fp1; p2; p3; : : : g be a countable dense subset of V . We construct a sequence
.f�/�D0;1;::: of C k-sections of X together with open neighborhoods U� of p� for
� D 1; 2; : : : such that the following holds:

F f0 D f ;
F U� � U��1;
F f� D f��1 on U��1;
F f� solves R \ .�k;k�1/

�1.N / over V ;
F there is a neighborhood U of xU� such that f� jU 2 �.U /;
F kf� � f��1kCk�1.V / < 2�� .
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Assume that f��1 has been constructed, together with U��1, where � � 1. If
p� 2 xU��1, then, by the inductive assumption, there is an open neighborhood U�
of xU��1 such that f��1jU 2 �.U / for a neighborhood U of xU� . We then simply
put f� WD f��1.

Now assume p� � xU��1. We consider a local deformation Fp� 2 C 0.�0; 1�;

C k.Up� ; X// as in Lemma 5.3 for the germ represented by � WD f��1 around p� .
By shrinking Up� if necessary we can assume that Up� is disjoint from xU��1, that
Fp� .t/ solves N for t 2 �0; 1�, and that kj k�1Fp� � j k�1f��1kJk�1X < 2�� .
For the second and the last requirement we recall that N is an open subset of
J k�1X and j k�1Fp� .t/.p/ is constant in t .

We apply Theorem 1.2 to the section f��1, to V0 D fp�g, to the deformation
Fp� and to the open PDR

R� WD R \ .�k;k�1/
�1.N /

\ �! 2 J kX j �k;k�1.!/ � j k�1f��1

Jk�1X

< 2��
	
:

We obtain an open neighborhood Up� ;0 � Up� of p� and a global deformation
fp� 2 C 0.�0; 1�; C k.V;X// such that fp� .1/ solves R� over V , it coincides with
Fp� .1/ (and hence is a section of �) over a neighborhood of xUp� ;0, and it coincides
with Fp� .0/ (and hence with f��1) over a neighborhood of xU��1. Put U� WD
U��1 [ Up� ;0. Then f� is a section of � over a neighborhood of xU� .

Moreover, we have kf� � f��1kCk�1.V / < 2�� . This implies that .f� � f0/�

is a Cauchy sequence in the space of C k�1-sections with bounded derivatives up
to order k � 1. Thus there is a limit section in C k�1.V;X/ that we denote as
yf � f0. By the properties of R, the derivatives of order k of f� � f0 are locally

uniformly bounded. Hence the derivatives of order k � 1 are Lipschitz with lo-
cally uniform Lipschitz constant. Such a Lipschitz bound persists under uniform
convergence; thus yf � f0 2 C

k�1;1
loc .V;X/. Since f0 2 C k.V;X/ we conclude

yf 2 C
k�1;1
loc .V;X/.

The set U WDS
1��<1 U� is open and dense in V . Since the sequence .f�/ is

eventually constant (in �) on each U�, the limit section yf satisfies yf jU 2 �.U /.
Finally, since each f� solves N , the image of j k�1 yf is contained in xN and

hence yf 2 N . �

5.2 Lipschitz functions
Theorem 5.2 can be used in many different contexts to derive counterintuitive

approximation results. Let us start with a relatively elementary example, namely
real-valued functions.

COROLLARY 5.4. Let f W �0; 1�! R be a C 1-function, let " > 0, and let K 2 R.
Then there exists a Lipschitz function yf W �0; 1�! R such that

F jf � yf j < ";
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F yf is smooth and satisfies yf 0 D K on an open dense subset of �0; 1�.

PROOF. We extend f to a C 1-function on R, again denoted by f . We apply
Theorem 5.2 with the following choices in Setting S2: V D R, X is the trivial
line bundle so that sections are nothing but real-valued functions, k D 1, and
� is the sheaf of smooth functions with constant derivative K. The strong C 0-
neighborhood of f is given by N D fh 2 C 0.R/ j jf � hj < "g.

Theorem 5.2 applies because we can put W WD J 0X D X D V � R and
�W .p; �/ defined to be the 1-jet of the affine function t 7! K � .t � p/ C �.
The function yf W R ! R given by Theorem 5.2 is locally Lipschitz; hence its
restriction to �0; 1� is Lipschitz. �

If we apply this corollary to f .t/ D t , K D 0, and " D 0:0001, then we get a
Lipschitz function yf W �0; 1�! R with yf .0/ < 0:0001, yf .1/ > 0:9999, and yf 0 D
0 on an open dense subset. Note that Lipschitz functions are differentiable almost
everywhere by Rademacher’s theorem and the fundamental theorem of calculus
holds. Thus we haveZ 1

0

yf 0.x/dx D yf .1/ � yf .0/ > 0:9998;

which, at first glance, seems to violate yf 0 D 0 on the open dense subset. The point
is that open dense subsets need not have full measure, so there is no contradiction.
Clearly, yf cannot be C 1 in this case.

This function is not to be confused with the Cantor function (see, e.g., [10]), also
known as the devil’s staircase. The Cantor function is a Hölder-continuous function
�0; 1� ! �0; 1� with Hölder exponent � D ln 2= ln 3. It has vanishing derivative
on an open subset of full measure but it is not absolutely continuous. Hence the
fundamental theorem of calculus cannot be applied and the Cantor function is not
Lipschitz.

5.3 Embeddings of surfaces
Next we approximate embedded surfaces by those with constant Gauss curva-

ture on open dense subsets.

COROLLARY 5.5. Let K 2 R. Let V be an analytic surface, let f W V ,! R
3 be

a C 2-embedding, and let N be a neighborhood of f in the strong C 1-topology.
Then there exists a C 1;1-embedding yf W V ,! R

3 in N that is analytic on an
open dense subset U � V and has constant Gauss curvature K on U (w.r.t. the
induced metric).

PROOF. We apply Theorem 5.2 with the following choices in Setting S2: Let X
be the trivial R3-bundle so that sections are maps V ! R

3. Let k D 2 and � be
the sheaf of analytic maps w satisfying

det
��

@2w

@ui@uj
;
@w

@u1
� @w

@u2

��
D K � det

��
@w

@ui
;
@w

@uj

��
�
���� @w@u1 � @w

@u2

����
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in local coordinates .u1; u2/ on V . If @w
@u1

and @w
@u2

are linearly independent, then
this condition is equivalent to the induced Gauss curvature being K and otherwise
it is void. Since the set of embeddings is open in the strong C 1-topology [22, theo-
rem 1.4], we can assume w.l.o.g. that all maps in N are embeddings, by shrinking
N if necessary.

To see that Theorem 5.2 applies, let D � R
2 be an open disk about the origin

and let h W D ! R be an analytic function such that h.0/ D 0, rh.0/ D 0, and the
graph of h is a surface of constant Gauss curvature K in D�R. Let .U; x1; x2/ be
a local analytic chart of V . We put

W WD �
! 2 ��11 .U / j the differential of (a map representing) ! is injective

	
:

Now, given ! 2 W , put p WD �1.!/ and represent ! by an analytic map �

defined near p. By shrinking the domain we can ensure that � is an embedding.
Let A! be the unique special orthogonal matrix A! 2 SO.3/ with

A!e1 D � � @�
@x1

.x.p//; � > 0;

A!e2 D � � @�
@x1

.x.p//C � � @�
@x2

.x.p//; � > 0:

Here e1; e2; e3 denote the standard basis of R3. The matrix A! is uniquely de-
termined by ! (and the coordinate system) and depends continuously on !. Con-
sider the Euclidean motion E! W R3 ! R

3 defined by E!x D A!x C �.p/ D
A!x C �1;0.!/. The map

S! WD E! �
0@ .E�1

! � �/1
.E�1

! � �/2
h
�
.E�1

! � �/1; .E�1
! � �/2

�
1A

is analytic, parametrizes a surface with constant Gauss curvature K, and has 1-jet
! at p. Thus

�W .!/ WD j 2.S!/.p/ 2 J k�

is a local section as required in the assumptions of Theorem 5.2. �

Corollary 5.5 is an extrinsic companion to Corollary 6.1 below. It does not
contradict the Gauss-Bonnet theorem; see Remark 6.4.

6 Deforming Riemannian Metrics
In this final section we apply our results to Riemannian metrics.

COROLLARY 6.1. Let V be a differentiable manifold of dimension n � 2 and let g
be a C 2-Riemannian metric on V . Let N be a neighborhood of g in the strong
C 1-topology. Let K 2 R.

Then there exists a Riemannian metric yg on V with the following properties:
F yg has local C 1;1-Lipschitz regularity;
F yg 2 N ;
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F yg is smooth and has constant sectional curvature equal to K on an open
dense subset of V .

PROOF. We apply Theorem 5.2 with the following choices in Setting S2: Let
� W X ! V be the vector bundle of symmetric .2; 0/-tensors and let k D 2. Let �
be the sheaf of smooth Riemannian metrics of constant sectional curvature K.

To see that Theorem 5.2 applies, let g�K�
Rn

be the metric of constant sectional cur-
vature K on an open ball about the origin, expressed in normal coordinates. Then
g
�K�
Rn

has the same 1-jet at 0 as the Euclidean metric and orthogonal transformations
are isometries. For any n-dimensional Euclidean vector space Y we can choose a
linear isometry A W Y ! R

n and pull the metric back, g�K�
Y WD A�g

�K�
Rn

. The

metric g�K�
Y does not depend on the choice of A.

Next pick a local chart .U; x1; : : : ; xn/ on V . Put

W WD �
! 2 ��11 .U / j �1;0.!/ is positive definite

	
:

The local section �W is defined as follows: Express the 1-jet ! 2 ��11 .U / in the
given coordinates as ! D !0 C

P
j !jx

j and associate the metric h! given by
this formula, h! D !0 C

P
j !jx

j , defined in a neighborhood of p WD �1.!/.

Clearly, j 1.h!/.p/ D !. Denote the exponential map of h! at p by exph!p . Now
put

�W .!/ WD j 2
���

exph!p
��1��

g
�K�
TpV

�
.p/ 2 J k�:

Observe that indeed

�2;1.�W .!// D j 1
���

exph!p
��1��

g
�K�
TpV

�
.p/ D j 1.h!/.p/ D !

because j 1..exph!p /�h!/.0/ D j 1.geucl/.0/ D j 1.g
�K�
TpV

/.0/. �

Remark 6.2. Corollary 6.1 would be false if we demanded that yg have regularity
C 2 on all of V . Then the sectional curvature of .V; yg/ would be continuous and
secyg � K on a dense subset would imply that this holds on all of V . But most V
do not admit such a metric.

Remark 6.3. Even if the metric yg on V has constant sectional curvature 1 on an
open dense subset U , it cannot, in general, have curvature � 1 in the sense of
Alexandrov spaces on all of V . Namely, this implies that the diameter of .V; yg/ is
bounded above by � , at least if V is compact; see, e.g., [7, theorem 10.4.1]. Now
if diam.V; g/ is much larger than � , then this contradicts yg being C 1-close (and
hence C 0-close) to g.

In fact, if a metric has curvature � 1 in the Alexandrov sense on an open dense
subset only, then there is no upper bound on the diameter. This is illustrated by
Figure 6.1.
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FIGURE 6.1. Space with curvature � 1 on a dense open subset but
diam > � .

Remark 6.4. Let V be a compact surface of higher genus. By Corollary 6.1 we
can find a C 1;1-metric on V whose Gauss curvature (which is defined as an L1-
function on V ) satisfies K � 1 on an open dense subset U � V . The Gauss-
Bonnet theorem (which holds for C 1;1-metrics, see Appendix C) says

R
V K dA D

2��.V / < 0. This may seem to be a contradiction, but, again, open dense subsets
need not have full measure.

Remark 6.5. Similarly, we can refine Remark 6.3. Let V be compact for simplicity.
If U � V has full measure, then the Bonnet-Myers theorem for C 1;1-metrics
applies [14, theorem 4.1], and we get diam.V / � � . Hence, if diam.V / > � ,
which we can arrange by Remark 6.8 below, U cannot have full measure.

Remark 6.6. Even if yg has constant sectional curvature�1 on an open dense subset,
we cannot demand that the curvature be � �1 in the Alexandrov sense on all of
V . In this case we would violate Preissmann’s theorem [7, theorem 9.3.3], for
instance.

COROLLARY 6.7. Let K 2 R. Each differentiable manifold of dimension � 2

has a complete C 1;1
loc -Riemannian metric that is smooth and has constant sectional

curvature � K on an open dense subset.

PROOF. Choose a complete smooth Riemannian metric g on V . We can choose
a neighborhood N of g in the strong C 1-topology such that each metric in N is
complete. Now apply Corollary 6.1. �

Remark 6.8. As discussed above, this is false for C 2-metrics. Since the C 1-metric
can be chosenC 1-close to an arbitrary smooth metric on V , we can in Corollary 6.7
in addition prescribe geometric quantities like volume, diameter, and injectivity
radius up to arbitrarily small error.

Remark 6.9. One might be tempted to think that a metric as in Corollary 6.7 can be
constructed as follows: triangulate the manifold, then equip the open n-simplices
with metrics of constant sectional curvature K and glue the metrics along the .n�
1/-skeleton. Such a procedure will not give a metric of C 1;1

loc -regularity. Indeed,
such a metric would satisfy sec � K on an open dense subset of full measure and
hence violate the Gauss-Bonnet theorem; cf. Remark 6.4.
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Remark 6.10. Corollary 6.7 should be contrasted with the implications of Gro-
mov’s h-principle for diffeomorphism-invariant partial differential relations. The
latter implies that every connected noncompact manifold has a smooth but incom-
plete Riemannian metric with positive sectional curvature and another one with
negative sectional curvature; see [18, theorem 4.5.1].

Remark 6.11. In his famous precompactness theorem [20, sec. 8.20], Gromov
proves C 0;1-regularity of the limit metric occurring in that theorem. This regu-
larity result was later improved to C 1;� for all � 2 .0; 1/; see [17, 25, 26]. The
C 1;1-regularity shown in Corollary 6.1 is the borderline case of this. It would be
interesting to know if this is a coincidence or if there is a deeper relationship.

Epilogue 6.12. Let .V; g/beaRiemannianmanifoldwith sectional curvature secg >

0 and let V0 D fpg consist of just one point. Let K > 0. In the following we
use the notation introduced in the proof of Corollary 6.1. With the local section
 D ..expgp /�1/�g

�K�
TpV

of X around p, the map defined in (5.1) for ' D g lo-
cally deforms g through positive curvature metrics into one of constant positive
curvature K, keeping the 1-jet constant at p. Theorem 1.2 for k D 2 implies:

One can deform a Riemannian metric of positive sectional curvature on V

through such metrics into one which has constant sectional curvature K > 0

near p.
A similar argument works if fpg is replaced by an embedded geodesic V0 � V ,

working with local Fermi coordinates around V0. This is an application of The-
orem 1.2 with possibly noncompact V0. Moreover, we can treat other curvature
quantities and curvature bounds.

This discussion extends to families of metrics as follows. Let SecC.V / be the
space of Riemannian metrics of positive sectional curvature on V , equipped with
the weak C1-topology, and let SecK.V; p/ denote the subspace of metrics of con-
stant sectional curvature K in some neighborhood of p, equipped with the quasi-
C1-topology induced by the directed system C1.U;X/, fpg � U � V open;
cf. the remarks preceding Corollary 3.5. Let

f0 W Dk ! SecC.V /

be a continuous map such that, by definition of quasi-topologies, there is a uniform
neighborhood of p on which f0.�/ has constant sectional curvature K for all � 2
@Dk .

Using compactness of Dk , we find an open neighborhood of 0 � TpM such
that expf0.�/p W TpM ! M maps this neighborhood diffeomorphically onto an
open neighborhood of p for all metrics f0.�/, � 2 Dk . Let fpg � U � V be an
open neighborhood of p that is contained in these neighborhoods for all �. We can
choose U so small that working with the �-dependent sections �.�/ D f0.�/ and
.�/ D ..expf0.�/p /�1/�g

�K�
TpV

of X over U , equation (5.1) defines a continuous

map F W Dk ! C1.�0; 1�;SecC.U // with F.�/.0/ D f0.�/jU , and F.�/.1/ D
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.�/ for all � 2 Dk . In addition, we can assume that F.�/.t/ is constant in t for
� 2 @Dk .

By Addendum 3.4, we find an open neighborhood fpg � U0 � U and a contin-
uous map f W Dk ! C1.�0; 1�;SecC.V // such that for all � 2 Dk the deforma-
tions f .�/ and F.�/ coincide on U0, and for all � 2 @Dk the deformation f .�/ is
constant. This shows that the inclusion

SecK.V; p/ ,! SecC.V /

is a weak homotopy equivalence.

Appendix A Proof of Local Flexibility for k D 0

Let f0 2 C �.V;X/ and F 2 C `.�0; 1�; C �.U;X//, where `; � 2 f0; 1; : : : ;1g.
We choose a complete Riemannian metric on V in such a way that fv 2 V j r.v/ �
2g � U where r is the distance function from V0 w.r.t. this metric. Let � W R! R

be a C1-function with �.r/ D 1 for r � 1, �.r/ D 0 for r � 2, and 0 � � � 1

everywhere. Furthermore, we find a smooth function r� 2 C1.U n V0/ with
r � r� � r C 1=2.

Since R � X is open, we can replace F by a map F � 2 C `.�0; 1�; C �.U;X//

with the following properties:
F For all t 2 �0; 1� we have F �.t/ D F.t/ on fr� < 1g [ fr� > 2g.
F F �.0/ D F.0/.
F F � induces a map in C1.�0; 1�; C �.f1 � r� � 2g; X//.
F F �.t/ solves R over U for all t 2 �0; 1�.

Now let f 2 C 0.�0; 1�; C 0.V;X// be defined by

f .t/.v/ WD
(
F �
�
t � �.r�.v//�.v/ if r.v/ < 2,

f0.v/ if r.v/ � 2:

This is possible since r.v/ � 2 implies r�.v/ � r.v/ � 2 and hence �.r�.v// D 0.
We have f 2 C `.�0; 1�; C �.V;X// by the choice of F �. Also, for r.v/ < 1=2 we
have r�.v/ < 1, which implies �.r�.v// D 1 and hence f .t/.v/ D F �.t/.v/ D
F.t/.v/ for all t 2 �0; 1�.

This means that f has all the required properties with U0 D fr < 1=2g, and
Theorem 1.2 is proved for k D 0.

Remark A.1. If ` � �, then one need not introduce F � and can simply put

f .t/.v/ D F.t � �.r�.v//.v/
for r.v/ < 2.

Appendix B Proof of Lemma 2.8
The function y��;" defined by
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y��;".r/ D

8�<�:
1 for r � �";
ln.r="/

ln � for �" � r � ";

0 for r � ";

Figure B.1. The function y��;".

has all properties listed in Lemma 2.8 (with Ck D 1) except that (iv) does not
make sense at the points r D �" and r D " where the function is not differentiable.
We need to see that we can smooth y��;" near these two points without destroying
properties (i)–(iv).

At r D " this is easy: Choose a smooth function bln W .0;1/! R such that

bln.r/ D ln.r/ for r � 0:9,bln.r/ D 0 for r � 1 andbln � 0 everywhere.

Figure B.2. The functionbln.

Then we can put ��;".r/ D bln.r="/
ln � for r � "

2
. Indeed,

���� dkdrk

�bln.r="/
ln �

����� D ����bln.k/.r="/"k ln �

���� � kbln.k/kL1�1=2;1�

j ln �j"k � kbln.k/kL1�1=2;1�

j ln �jrk

because bln.r="/ vanishes for r > ".
At r D �" we proceed as follows: We choose a smooth function � W R ! R

such that

�.r/ D 1 for r � 1,

�.r/ D r for r � 1:1,

� � 2 on �1; 1:1�, and
� � 1 everywhere.

Figure B.3. The function �.

Now we put for r � "
2

:
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��;".r/ D
ln.��.r=�"//

ln �

D 1C ln�.r=�"/
ln �

:

Figure B.4. The function ��;".

For r � 1:1��" we then have ��;".r/ D y��;".r/ and for r � �" we have ��;".r/ D 1.
It remains to check (iv) on ��"; 1:1 � �"�. We compute

�
.k/

�;"
.r/ D 1

ln �
� d

k

drk
.ln ��/.r=�"/ � 1

.�"/k
:

Putting

C 0
k D

 dkdrk
.ln ��/


L1�1;1:1�

;

we get for r 2 ��"; 1:1 � �"�:��� .k/" .r/
�� � 1

jln �j � C
0
k �

1

.�"/k
� C 0

k
� 1:1k

jln �jrk :

This concludes the proof.

Appendix C Gauss-Bonnet for Metrics with Low Regularity
The Gauss-Bonnet theorem for compact surfaces holds for Riemannian metrics

with regularity lower than C 2. This is a folklore fact but since it seems hard to find
a reference in the literature we provide a proof.

Let V be a compact surface equipped with a Riemannian metric g of Sobolev
regularity H 2;p with p > 2. We choose a sequence .g�/ of smooth metrics con-
verging to g in H 2;p. Since p > 2, the sequence also converges in C 1 by the
Sobolev embedding theorem.

Denoting the Gauss curvature of g by Kg and the area element by dAg , the
expressions in local coordinates,

Kg D 1

2

2X
i;j;kD1

gik
�
@�

j

ik

@xj
�
@�

j

jk

@xi

�
C lower-order terms;

�k
ij D

1

2

2X
mD1

gkm
�
@gim

@xj
C @gmj

@xi
� @gij

@xm

�
;

dAg D p
g11g22 � g12g21 dx

1 dx2:
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show that the second derivatives of g enter linearly in the Gauss-Bonnet integrand
Kg dAg . The terms involving no or first-order derivatives converge uniformly and
the second derivatives converge in Lp as � ! 1. Thus Kg� dAg� ! Kg dAg

in Lp. In particular, the Gauss-Bonnet integrand of g exists as an Lp-density.
Since integration is a bounded linear functional on Lp by the Hölder inequality,

we find Z
V

Kg� dAg� !
Z
V

Kg dAg as �!1:

The Gauss-Bonnet theorem for smooth metrics now implies Gauss-Bonnet for g.
We have shown:

The Gauss-Bonnet theorem for compact surfaces holds for Riemannian metrics
of Sobolev regularity H 2;p with p > 2 and, in particular, for C 1;1-metrics.
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