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Abstract

We show that local deformations, near closed subsets, of solutions to open par-
tial differential relations can be extended to global deformations, provided all but
the highest derivatives stay constant along the subset. The applicability of this
general result is illustrated by a number of examples, dealing with convex em-
beddings of hypersurfaces, differential forms, and lapse functions in Lorentzian
geometry.

The main application is a general approximation result by sections that have
very restrictive local properties on open dense subsets. This shows, for instance,
that given any K € R every manifold of dimension at least 2 carries a complete
C >1_metric which, on a dense open subset, is smooth with constant sectional
curvature K. Of course, this is impossible for C2-metrics in general. © 2021
The Authors. Communications on Pure and Applied Mathematics published by
Wiley Periodicals LLC.

1 Introduction

In his landmark monograph [19] Gromov develops a wide-ranging perspective
on flexibility phenomena in geometry and topology. Besides a comprehensive the-
oretical background and numerous results, including the well-known /A-principle
for open Diff-invariant relations and the convex integration technique, Gromov’s
text provides many exercises that seemingly play a minor role for the architec-
ture of the theory, but some of which bear a great value of their own, both in
terms of theoretical insight and applications. This article is devoted to one such
topic, the local flexibility lemma; see the exercise “Weak Flexibility Lemma” in
[19, sec. 2.2.7 (H’)] and the “Cut-off Homotopy Lemma” in [21, pp. 693 f.]. It
concerns extensions of local deformations of solutions to open partial differential
relations.

We will formulate and prove this flexibility lemma in Theorem 1.2. It has im-
portant applications in many fields of mathematics, which will be illustrated by
examples from hypersurface theory, geometric structures induced by differential
forms, and Lorentzian geometry.
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Our main application of Theorem 1.2 is Theorem 5.2, which states under rela-
tively mild assumptions that any section of a fiber bundle can be approximated by
sections that have very restrictive local properties on open dense subsets.

We give three sample applications of Theorem 5.2. First, we show in Corol-
lary 5.4 that C !'-functions on a compact interval can be uniformly approximated
by Lipschitz functions that are smooth on open dense subsets and have prescribed
derivative there.

Second, we show in Corollary 5.5 that any C2-embedding of a surface in R3
can be C!-approximated by C !"!-embeddings which are analytic and have pre-
scribed constant Gauss curvature on an open dense subset. Obviously, C 1! cannot
be replaced by C? in this statement. In other words: C 1! is the maximal order
of regularity for which this kind of flexibility holds. This is reminiscent of the
Nash-Kuiper embedding theorem [23,24], which states that each short smooth em-
bedding of a compact Riemannian n-manifold V' into R¥ with k > n + 1 can be
C-approximated by isometric C'-embeddings. Here the critical exponent o for
which approximating isometric C !**-embeddings exist is unknown and subject to
current research; see [9] and subsequent work.

Third, we show in Corollary 6.1 that given K € R any C2-Riemannian metric
on a manifold V of dimension at least 2 can be approximated in the strong C -
topology by Ckl)él -metrics which, on open dense subsets of V', are smooth with
constant sectional curvature equal to K. Clearly, this approximation cannot be
done by C2-metrics because then the curvature would be continuous and equal to
K on all of V, which is only possible in exceptional cases.

This means, for example, that a compact surface of higher genus carries a C 11-
metric which, on an open dense subset, is smooth with constant Gauss curvature
equal to 1, despite the fact that the Gauss-Bonnet theorem holds for these metrics.
Indeed, this is not a contradiction because open dense subsets need not have full
measure. However, it is remarkable that the relevant curvature information en-
tering the Gauss-Bonnet formula can be concentrated on a nowhere dense subset,
although this information governs the global topology.

To formulate local flexibility precisely we will work in the following:

SETTING S1. We denote by

V' a smooth manifold,

Vo C V a closed subset;

U an open neighborhood of Vy in V;

X — V a smooth fiber bundle;

k € Ny a nonnegative integer;

% < JkX an open subset;

foaC k_section on V, solving Z%;

F :[0,1] - C*(U, X) a continuous path such that each F(t) solves #
over U.

vV VvV VVVV VYV
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Furthermore, we assume foly = F(0) and jk_lF(t)|V0 = jk_lf0|V0 for all
t €[0,1].

Here J¥X — V denotes the k™ jet bundle of X and j¥ f is the k-jet of a
section f. We say that a C¥-section f of X — V solves Z if j* f(v) € Z for all
v € V. By C¥(U, X) we denote the space of k-times continuously differentiable
sections of the bundle X |y — U equipped with the weak C k—topology. We use
the notation N = {1,2,3,...} and Ny = {0,1,2,3,...}. See Figure 1.1 for the
case k = 2 and V} a point.

fo

v Ww U

FIGURE 1.1. Setting S1 for k = 2 and V} a point.

DEFINITION 1.1. In Setting S1 we say that local flexibility holds if there exists an
open subset Up with Vo C Uy C U C V and a continuous f : [0, 1] - C*(V, X)
such that

> each f(¢) is a section of X, solving %;

> f(0) = fo;
> f()|lv, = F(t)|y, forallt € [0, 1];

> f(®)|lyv\v = foly\u forallz € [0, 1].

See Figure 1.2 for the case k = 2 and Vj a point.

f(t)

fo
Uy

|4 Ww U

FIGURE 1.2. Local flexibility holds for k = 2 and V} a point.

THEOREM 1.2. Suppose we are in Setting S1. Then local flexibiliy holds.

Moreover, let k € {k.k +1,...,00}, £ € {0,1,...,00}, and assume in ad-
dition that fo € C¥(V,X) and F € C*([0,1],C¥(U, X)). Then we can find
/€ CH(0.1.CH (V. X)).
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Remark 1.3. The “Weak Flexibility Lemma” in [19, sec. 2.2.7 (H’)] and the “Cut-
off Homotopy Lemma” in [21, pp. 693 f.] formulate (without proof) versions of
Theorem 1.2 under strong regularity assumptions on Vy. The footnote on [21,
p. 693] speculates about local flexiblity for all closed subsets Vo C V. This is what
is proved in the present paper.

While the applications worked out in the paper at hand are based on local flex-
ibility for smooth submanifolds Vy C V, we expect that local flexibility for more
general closed subsets Vy C V' may also have interesting consequences.

Remark 1.4. The sections f(z) are obtained from F(¢) by multiplying the homo-
topy parameter ¢ with an appropriate cutoff function near V. It is then relatively
straightforward to control the (k —1)-jets of f(¢) over V'; compare [1, theorem 1.5]
for a related result in the context of holonomic approximations near polyhedral
subsets 1y C V of positive codimension.

For us it is crucial that a careful choice of cutoff function allows us to control
the full k-jets of f(¢) over V, using the assumption that j¥~1F (t)|v, is constant
int. If Vo C V is a compact smooth submanifold, we may in fact use a cutoff
function 75 ¢(r) as in Lemma 2.8, where r is the distance to Vj.

Our paper is structured as follows: The next section introduces the notion of
generalized tangent spaces along arbitrary subsets of smooth manifolds and ap-
plies this concept to construct efficient cutoff functions near these subsets. This
construction is essential for the proof of local flexibility in the subsequent section,
in which we also discuss the necessity of the assumptions in Setting S1, treat a
family version of local flexibility and provide a homotopy theoretic interpretation.

In the fourth section we illustrate the usefulness of local flexibility by examples
from different mathematical contexts. We start by considering the standard sphere
S™®  R"*1!. Itis 1-convex and rigid in the sense that one cannot deform it in such
a way that it becomes p-convex near the north pole for some p > 1 while keeping
it unchanged on the southern hemisphere and 1-convex everywhere. However,
local flexibility shows that a deformation is possible if we only demand that it stay
(1 — &)-convex everywhere.

In the second example we deform closed differential forms satisfying an open
relation along a submanifold through such forms. This applies in particular to
symplectic forms where we recover a statement usually derived using the so-called
Moser trick. The method also applies to closed G-structures on 7-manifolds,
where the result is new, and to codimension-1-foliations in any dimension.

Then we deal with Lorentzian manifolds. We show that given a spacelike Cauchy
hypersurface ¥ we can find a Cauchy time function in such a way that we can
prescribe the lapse function along X.

The fifth section is devoted to formulate and prove Theorem 5.2 together with
the applications to Lipschitz functions and surface embeddings. The proof of The-
orem 5.2 is by repeated application of local flexibility to Vp being a point from a
countable dense subset of M and passage to a limit.
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Our main application of Theorem 5.2 to Riemannian metrics is Corollary 6.1 in
the sixth section concerning the existence of C !*!-metrics which, on open dense
subsets, are smooth and of constant sectional curvature K € R. In this section we
also use the family version of local flexibility to show that, on a fixed manifold V'
and point p € V, the inclusion of metrics with positive sectional curvature that is
equal to K > 0 near p into the space of all positively curved metrics is a weak
homotopy equivalence. The appendices contain the proofs of local flexibility for
k = 0, of an auxiliary lemma needed for the proof of local flexibility for £ > 1, and
of the Gauss-Bonnet theorem for compact surfaces with a metric of low regularity.

2 Generalized Tangent Spaces and Efficient Cutoff Functions

This section contains preparatory material for the proof of Theorem 1.2. We
will have to construct efficient cutoff functions near arbitrary closed subsets of a
manifold. Since closed subsets can be very irregular, we introduce the concept of
generalized tangent spaces, which mimic classical tangent spaces of submanifolds.
The decay of our cutoff functions will have to be chosen differently in the direction
of the tangent spaces and in those perpendicular to them.

DEFINITION 2.1. Let V be an n-dimensional C!-manifold and let A C V be
an arbitrary subset. For a € A let ¥4, denote the set of C l_germs at a which
vanish on A. More precisely, each element in ¥4 , is represented by a C !_function
h : U — R defined on an open neighborhood @ € U C V such that h|4ny = 0.
Then we call
T,A:= () ker(dsh) C T,V
heYs 4

the generalized tangent space of A at a. Here d,h : T,V — R is the differential
of hata.

Remark 2.2. The generalized tangent space T, A is a linear subspace of 7,V . If
A C V is a C'-submanifold, then this reproduces the classical tangent space of A
ata.

If dim(7,A) = m,thenwecanfind h1,...,hyp—p : U — Rsuchthatd hy, ...,
dghn—m are linearly independent, T, A = ker(dgh1)N---Nker(dghy—m), and A is
contained in the m-dimensional C '-submanifold {#{ = --- = h,_» = O} near a.

The function a + dim 7, A is upper semicontinuous; i.e., every a € A has a
neighborhood a € U C V such that dim 7,4 > dim T, A foralla’ € AN U.

LetAC VandsetX;:={a€ A|dm7,4 >n—{£}for—1 <£ <n. By the
upper semicontinuity of @ — dim 7, A4, the sets 3, are closed in A. They form a
chain

2.1 =% _,C--C3Z,=4

with 2, \ Ty_; C =y = X for 0 < £ < n and where the closures are taken in A.
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DEFINITION 2.3. A subset K C A is called uniform if dimT; A = dim T,/ A for
all a,a’ € K. In other words, K C X\ X;_; forsome 0 < ¢ < n.

Example 2.4. Let V = R2.

> Let A ={(1t]) | t € R}. Then T,A = T,V fora = (0,0) while T, A is
the usual one-dimensional tangent space for all other points a € A. In (2.1)
we have Yo = {(0,0)} and X1 = Xy = A.

> Let A = {|v| < 1}. Then T,A = T,V foralla € A. Hence g = X1 =
3, = A.

> Let Ay = {(t,t?>) | t € R} and A, = {(£,0) | t € R}. Then, for a = (0,0),
we get T,A1 = TyA2 = R x0 C T,V while T,(A1 N A3) = 0 and
T,(A1 U Ap) = T,V. The last equation follows from the fact that, near
a, the set A1 U A5 is not contained in a one-dimensional submanifold and
hence dim(7,A4) > 1.

> Let A = {(1/n,0) | n € N} U {(0,0)}. Then T,A = O fora = (1/n,0),
while T,A = R x 0 C T,V fora = (0,0). In general, for a discrete subset
D C Vand A := D, we have T,A = 0 fora € D, while T, A depends on
the accumulation behaviour of D neara fora € A\ D.

In the remainder of this section we will specialize to the case V = R”. Let
A C V be an arbitrary subset. We use the canonical identifications T,xR” = R”
for x € R”.

Notation 2.5. For B C R, a € A, and x € R” we write

> dist(x, B) for the Euclidean distance of x to B;

> rg(x) = dist(x,a + T, A) for the distance of x to the affine subspace a +
T,A C R", the generalized tangent space with footpoint a;

> B(g, x) C R” for the open &-ball around x.

LEMMA 2.6. Let K C A be a compact and uniform subset. Let § > 0.
Then there exists ) > O such that for all ¢ € (0, 1) and all a € K we have
(1) AN B(g,a) C {ry <8¢} (see Figure 2.1);
(i) |ra’ — ralBe,a) < 8¢ foralla’ € K N B(e, a).

The proof of this statement is simpler if A C R” is a C!-submanifold, since
then A is, locally around ¢ € K, the graph of a (7, A)L-valued C'-function over
a + T, A by the implicit function theorem.

PROOF OF LEMMA 2.6. Leta € K. Letg := n —dim7,A4. We say that a
Cl-map h : U — RY is adapted to A at a if
> h vanisheson A N U;
> Ty,A = ker(dyh);
> dyxh has maximal rank for every x € U.
Note that then T, A = ker(d,h) C R” for all x € K N U because K is a uniform
subset of A. Thus / is adapted to A ateachx € K N U.
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a+T,A

FIGURE 2.1. Inclusion A N B(g,a) C {r, < d¢&}.

For an adapted & = (hy,...,hq) denote by Hy,..., H; : U — R” the vec-
tor fields obtained by the Gram-Schmidt procedure applied to the gradient fields

Vhi,...,Vhy. They form a continuous orthonormal frame for the normal bundle
of the submanifold {4 = 0}.

Step 1. We first show that there exists an 7, > 0 (depending on @) and a C!-
map i : B(ng,a) — R? adapted to 4 at a with

(22) {h=0}NB(.d")C{ye B d)|dist(y.a’ + Ty A) < 8'/2};

(2.3) |Hj(x) — Hj(y)| <

forall x,y € B(e,a);
4-./9

forall0 <&’ <& <ngandalla’ € K N B(g,a).

Indeed, by the definition of generalized tangent space we can find an 4, adapted
to A at a, defined on a neighborhood of B(274,a). After possibly decreasing 74,
the implicit function theorem vyields, for every a’ € B(54.a), a Cl'-map gu :
(@ + Ty A) N B(ng,a’) = (a’ + kerdyh) N B(ng,a’) — ker(dy-h)L such that
{h = 0} N B(n4,d’) is contained in the graph of g,.

Let U C U be a compact neighborhood of a. Since dahlyer(g,ny+ is invertible,
the same is true for dyhlyer(g ,p)+ With y € U and a’ € B(nq.a) provided U and
nq are sufficiently small. Decreasing 7, further if necessary, we have x + g4/ (x) €
U for x € B(2ng,a) N (@’ + Ty A).

Note that g,/(a’) = 0. Differentiating the equation i(x + gu/(x)) = 0 with
respect to x € (a’ + kerd,h) N B(ng,d’) yields

dxga’ = _(dx+ga/(x)h|ker(da/h)J-)_1 : (dx+ga/(x)h|ker(dazh))~
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Since (y,a’) (dyh|ker(da/h)1_)_l is continuous, it is bounded for (y,a’) € U x
B(n4.a). Hence

|dxgar| < ¢ |dxtg, eyhlker(d, ) |

For x = a’ we have dy g ,(x)hlker(d, k) = da'hlxer(a, ny = O so that, after de-
creasing 1), once more, we can assume

5
|1, 0 hker(d my| < o

for all x € B(ng,a’) and a’ € B(n4,a). This implies |dygq| < % and hence
g0 (x)] < § dist(x, a’).

Now equation (2.2) follows: let y € {h = 0} N B(¢’,a’) and write y = x +
ga’(x). Then

] s¢’
dist(y,a’ + T A) < dist(x + ga/(x),x) = |gar(x)] < 3 g < 78

Moreover, the vector fields H; are continuous and hence uniformly continuous on
compact sets. Thus, after possibly decreasing 1, one more time, we also get (2.3).

Step 2. For each a € K let n, € (0, 0] be maximal among all constants for
which (2.2) and (2.3) hold. Let A € (0,n,) and let a; € K N B(A,a). If 0 <
¢ <& < ng— A, then B(s,a;) C B(e + A, a) and thus (2.2) holds for all a’ €
K N B(e,ayp). Similarly, (2.3) remains valid for all x, y € B(g,ay).

This shows that n,, > n, — A for all a1 € B(A,a). Therefore the function
a +— 1,4 is lower semicontinuous and hence attains its minimum # > 0 on the
compact set K.

We now choose 0 < ¢’ = ¢ < panda = a’ in (2.2) and get

AN B(e,a) C{h =0}N Ble,a) C{ry <8e/2} C{rg < de};

see Figure 2.1. This shows (i).

Step 3. Now leta’ € AN B(g,a) C {h =0}N B(e,a) and letag € a +kerdgh
denote the orthogonal projection of @’. Then ag € B(g,a) and |a’ —ag| < §¢/2 by
(2.2). The triangle and Cauchy-Schwarz inequalities together with (2.3) imply for
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x € R™:
dist(x,a’ + ker dg-h) — dist(x, a + ker dyh)|
= |dist(x,a’ + ker d, h) — dist(x, ag + kerd,h)|
< |dist(x,a’ + kerdyh) — dist(x, ag + kerdy h)|
+ |dist(x, ag + ker dgrh) — dist(x, ag + ker d h)|
< 8e/2 + |dist(x, ag + ker dgrh) — dist(x, ag + ker d h)|
= |dist(x — aq, kerdy h) — dist(x — ag. kerdgh)| + 8¢/2

q 1/2 q 1/2 5
2 e
= ‘(Z(X —ao, Hj(@) ) - (Z(x — ao, H,—(a»z) + 5
j=1 j=1
q 1/2 P
2 &
< (Z(x—ao,Hj(a’)—Hj(a)) ) + <
j=1
g 1/2 5
2 &
<|x—aol- (Z\Hj(a/) — Hj(a)| ) +5
j=1
< ¥ — aq| ] n oe
= 0y
If x € B(g,a) then |x — ag| < 2¢ and hence
[rar(x) —rq(x)| < 2&-8/4 + 8¢/2 = be.
This proves part (ii). O

The following corollary, which we formulate with constants adapted to our later
needs, combines the previous estimate with a covering multiplicity bound.

COROLLARY 2.7. Let K C A be a compact and uniform subset. Let § > 0. Then
there is an 1 > 0 such that for each ¢ € (0, n) there exists a finite family (a;)iecy of
points in K with the following properties:
() AN B(e,a;) C {rq, < 8%} fori €1,

(D) |ra; —Ta, |Bea) < 8%€fori,j € I with|a; — aj| < 4e;

(iii)) K C U;ef Ble ai);

(iv) the multiplicity of the family (B(2¢,a;))icy is bounded by 10", i.e., each

point in R" is contained in at most 10" different balls B(2¢, a;).

PROOF. For each ¢ > 0 we find a maximal family (a;);<; of points in K such
that the balls B(g/2,a;) C R” are pairwise disjoint. Then (B(g, a;));ey covers K.

Moreover, the elementary volume comparison % = 10" implies that for

each i € [ the ball B(4¢,a;) contains at most 10” points a;, since otherwise the
balls B(¢/2,aj) C B(5¢,a;) could not be pairwise disjoint. This implies that the
multiplicity of (B(2¢,a;));er is bounded by 10”.



1386 C. BAR AND B. HANKE

By Lemma 2.6 (applied with §2/2 instead of §), assertions (i) and (ii) hold as
well for sufficiently small 7. O

We will now use generalized tangent spaces in order to construct efficient cutoff
functions. The next lemma is proved in Appendix B.

LEMMA 2.8. For0 < § < %andO < & < | there are C*°-functions t5 ; : R — R
with the following properties:
() t5,6(r) = 1forr < de;
(i) 15,.(r) =0forr > &;
(iii) 0 < 15, < 1 everywhere;
(iv) for every k € N there is a constant Cy, > 0 such that

‘Téks)(r)‘ < Cy - P |1n§|_1 forallr> 0.

In the following we use standard coordinates (x!, ..., x™) on R” and the multi-
index notation
glel
T (Axhyer .. (gxnyan
Let X C R” be an affine subspace. For x € R” and A > 0 we set

Q3 x (x) := max{A,dist(x, X)} € [A, 00).

DO{

COROLLARY 2.9. Let X C R” be an affine subspace and let r(x) = dist(x, X).
For every multiindex o with || > 1 there is a constant Cy, > 0 (independent of X)
such that

(@) |D(15,601)] < Co - Q0% - 8] 7L

(i) [D%(t5,6 0 (r —€))| < Ca - ()71 In 8|1
forall0 < § < %,forallO <e<l,andforall0 <¢ <e.

PROOF. We show (i). On {r < §e} the function 75 ; o r is constant so that the
estimate is trivial. On {r > e} we have Qs, y = r. The distance function satisfies
the well-known estimate

(2.4) |D%r| < CJ, - 1l

outside of X.
Induction on |«| shows that D¥(zs . o r) is a linear combination of terms of the
form

(‘L’(g;) o r) . Dﬂ(l)ru-Dﬂ(k)r
where k > 1, || > 1, and [BMV] 4 -+ + |f®)| = |«|. Lemma 2.8(iv) together
with (2.4) proves (i).
To show (ii) we put 71 := 75, o (r —¢’). For r < ¢’ 4 8¢ we have 71 = 1; hence
we may assume

(2.5) r>¢ 4+ 8e.
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This time D%ty is a linear combination of terms of the form
(fbgi) o(r—¢)- pFVr...DPYy

where k > 1, || > 1, and |BV] + -+ + |®)] = |a|. The absolute value of
each such term is estimated as follows, using Lemma 2.8 and (2.4):

I

— — —1gM _18(K)
<Cp-lr—¢|7%-|Ing| 1'%(1)?1 1B l"'Cf/;(k)Vl 1B&N

By assumption (2.5) we have |r — ¢/| 7% < (§&)~% and r1=18] < (88)1_|'3(j)|
for 1 < j < k because all exponents are nonpositive. This concludes the proof.
O

For A CR" anda € A we write Q; 4 := Q) 44T, 4-

LEMMA 2.10. Let K C A be a compact and uniform subset. Let U C R" be an
open neighborhood of K. Let k € N. Then there exists a constant Cy > 0 such
that the following holds:

Foreach 0 < § < % there exists an n > 0 such that for each ¢ € (0, n) there
exists a finite family (a;j)iey of points in K and a smooth function p : R" — [0, 1]
with the following properties:

(i) supp(p) C Ujer B(2¢,ai) C U,
(i) p = 1 on some open neighborhood of K
(iii) K C U,y Ble.ai).
(iv) For0 < |@| <k, i € I, and x € B(2¢,a;) we have
|D¥p(x)| < Ck - g2g,4, ()71 - [In 5] 7",

PROOF. Fora € A let r,. (x) = dist(x,a + (T, A)*) denote the distance of x
to the affine subspace a + (T, A)L of R”. For any 0 < ¢ < | we can consider the
following smooth functions R” — [0, 1]:

T1:=Te0(rgt —(1=68)8), mi=T58e07a, Ta:=T1"T2.

The function 7, vanishes outside B(2e,a) and satisfies 7, = 1 on {r, < §%¢} N
B(g,a) (see Figure 2.2). Let 0 < |a| < k and let x € R" with 7,(x) # 0; hence
rq(x) < 8e. Then, on the one hand, we have

[(D%11)(x)] < Co - (8) 71 [In8|™! < Cy - Qgag o (x) 7 - [In g7,

where in the first inequality we use Corollary 2.9(ii) with X = a + (T, A4)* and
the second inequality uses max{82e, r,(x)} < 8e.

On the other hand, Corollary 2.9(i) with X = a + T, A and ¢ replaced by d¢
yields

|D%0a| < Co - 2522) - s,
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a+(T,A)* a+(LA)*

a+T,A

(b)

FIGURE 2.2. (a) Inclusion supp(t,) C B(2¢,a). (b) Identity 7, = 1
on {r, < 8%¢}N B(e,a).

The product rule and [In§|=2 < [In§|~! for 0 < § < % imply
2.6) D%24| < € - 252 g
For the given § and for any 7, ¢, and (a;);j<s as in Corollary 2.7 we now set

,o:=1—1_[(1—rai):R”—>R.
i€l

It is clear that (i) holds if n (and hence &) is smaller than %dist(K, R™\ U),
which can be assumed without loss of generality. Also, (ii) is satisfied because
the B(g, a;) cover K and for every i € I we have K N B(s,a;) C {rq; < 8%} by
Corollary 2.7(i) and 74; = 1 on {rg, < §%¢} N B(e, a;).

Finally, assertion (iv) follows from the product rule, estimate (2.6) applied to
each 74, j € I, and the following facts:

> There are at most 10" indices j € J with B(2¢,a;) N B(2¢,a;) # @.

> If B(2¢,a;) N B(2¢,a;) # & we have [rg; —714;] < §2¢; hence Qs204, <
2- QSZS,aj'

> Higher powers of |In§|~! can be estimated by |In§|~!. O

This assertion can be extended to nonuniform subsets as follows:

LEMMA 2.11. Let K C A be compact but not necessarily uniform. Let U be an
open neighborhood of K in R™. Let k € N.

Then there exists a constant Ci > 0 such that for each 0 < § < % and 0 <
A < 1 there exist finite families (&;)icy, 0 < &; < A, and (aj)iey, ai € K, and a

C®-function p : R"™ — [0, 1] with the following properties:
(i) supp(p) C U
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(i) p = 1 on some open neighborhood of K
(iii) For every x € supp(p) and 0 < |a| < k thereis ani € I with x €
B(2¢;,a;) and

IDp(x)| < Cr - Qy2g; 0, () - [In8] 7.

PROOF. We use the chain (2.1) for an inductive proof. For —1 < £ < n we
set Ky := K N Xy, which is a compact subset of A. We start the induction with
£ = —1. Then K_; = & and we simply put p—; := 0.

Assume py_1 has been constructed for the compact set K, ; C A with index
set I;_;. Using the inductive assumption (ii) we find a compact and uniform subset
K C Kg\ Ky_y with Ky C K'U{py_; = 1}.

We apply Lemma 2.10 to K’ to obtain 0 < ¢’ < A, a family (a;);ey/, a; € K',
and a smooth function p’ : R” — [0, 1] with properties as stated in Lemma 2.10
(with K’ instead of K).

Setly:=1Iy_1Ul',g :=¢ fori € I’ ,and py := 1 — (1 — py—_1)(1 —p’). Then
p is a C*°-function R” — [0, 1] with properties (i) (for small enough &’) and (ii)
(with K, instead of K).

For (iii) let x € supp{p¢). Then there is ani € Iy, with x € B(2¢;, a;). From all
those i choose the one for which €252, ,. (x) attains its minimal value. Then (iii)
holds by the product rule and by the induction hypothesis for py_; (and estimating
higher powers of |In§|~! by |In§|™1). g

In the remainder of this section we use generalized tangent spaces to obtain
improved Taylor estimates. Let k > 1 and let F : U — R be a C*-function
defined on a neighborhood U of A4 in R”. Furthermore, let jk_lF lanu = 0. For
ae ANU let

1

JakF(x):= Y 2 DPF@)-(x —a)f
Iﬂlskﬂ'
= Z i'-DﬁF(a)-(x—a)’s :R" - R
|ﬂ|=kﬂ'

denote the k" Taylor polynomial of F at a. The point of the following lemma is
the fact that the function r, in the estimate is not the distance to the point a but the
(smaller) distance to the affine space a + T, A.

LEMMA 2.12. Let K C A be compact but not necessarily uniform. Then there is
a constant Cg > 0 such that for all a € K and x € B(1,a) we have

| T i F(x)] < Ck - 1a(x)*.

PROOF. Let |8| = k — 1. Since dy(D? (7, xF)) = dao(DPF) and DPF :
U — R is a C!-function that vanishes on A N U, the affine map Dﬁ(%,kF) :
R"™ — R vanishes on the affine subspace a + T,A C R” by the definition of
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generalized tangent spaces. Using j¥~1 FakF(a) = 0, this implies, by iterative
integration that jk_le%’kF|a+TaA =0.

Now let x € B(l,a) and let xg be its orthogonal projection onto the affine
subspace a + T, A C R”. Let y : [0,r4(x)] — R” be a unit speed line segment
joining xo = y(0) and x = y(rg(x)). Since jk_le%,kF(xo) = 0, Taylor’s
theorem implies

1 k k
[ Tak F@)| = 751 TadeF o) cogo,r, o )
1
< o 1ZakFllekma.ay a0,
Hence we can work with Ck := % ‘maxgek || Zak Fllck(B1.a))- O

For the remainder term %, x F(x) := F(x) — 9, 1 F(x) we have the following
standard estimate:

LEMMA 2.13. Let K C A be compact. Then for 8§ > O there exists 1 > 0 such that
forall0 < e <n ac K, and x € B(2e,a), we have x € U and | %y j F(x)| <

(82e)k.

PROOF. Let r(x) = |x — a| denote the distance of x to the point a. The lemma
follows from the standard estimate of the remainder term in the Taylor expansion:

B i F| = o(rF) = o(F)

where the estimate is uniform on K. O

3 Proof of Theorem 1.2

For k = 0 the proof is easy and postponed to Appendix A. In this section we
will concentrate on the case k > 1.

We use the “tilde notation” to denote by F the map [0,1] x U — X corre-
sponding to F via F(, u) = F(t)(u). The condition F € C¥([0, 1], C*(U, X))
is equivalent to the requirement that, in local coordinates u L . u"of U, the par-
tial derivatives (%)m(a%)al ... (%)“" F exist and are continuous for m < £ and
|| = a1 +--- + o < k. See [12, theorem 2] for the case £ = k = 0 and [2] for
the general case.

PROOF OF THEOREM 1.2 FOR k > 1.

Step 1. We first show that we can assume without loss of generality that X — V
is a C°°-vector bundle.

For this aim we equip the total space X with an auxiliary complete Riemannian
metric. Let 7" X — X be the vertical tangent bundle, whose fibers are the
tangent spaces of the fibers of X. For each choice of fj € C*(V,X) we can
consider the C*°-vector bundle ( f;)*7V"X — V. The fiberwise exponential
map yields a fiber-preserving C °°-diffeomorphism from a fiberwise convex open



LOCAL FLEXIBILITY FOR OPEN PARTIAL DIFFERENTIAL RELATIONS 1391

neighborhood C C (fy)*TV*"X of the zero section onto an open neighborhood
Wof fo(V) C X.

Choosing fy close enough to fp in the strong topology on C%(V, X) we can
assume that the image of fy is contained in W. Hence it defines a C*-section of
the C*°-vector bundle ( f)*TV*"X — X.

Since k > 1 the function F(¢)|y, is independent of ¢ by assumption. Shrinking
U if necessary we can assume that the image of F is contained in W a C. The
constructions in Step 3 will never leave the image of F, and also the mollifying
procedure (3.10) in Step 4 happens within the fiberwise convex neighborhood C
of 0.

Hence we can and will assume without loss of generality that X — V is a
C°°-vector bundle.

Step 2. We can furthermore assume that V' is an open subset of some Euclidean
space R” and Vj is not only closed in V' but also closed in R”.

For this aim choose a smooth proper embedding V' C R” for the given smooth
manifold V. By properness of the embedding, V and Vj become closed subsets
of R”. Furthermore we find a continuous map 1 : ¥V — R_ such that the normal
exponential map along V identifies {(v,£&) | v € V, § € (T,V)+ C R”, |§| <
n(v)} C V x R” with an open tubular neighborhood Ny of V in R”. Let p :
Ny — V be the bundle projection and p*X — Ny be the pullback bundle. This
results in a bundle map

X L x

|,

Ny 2~V

Then p~!(U) C Ny is an open neighborhood of the closed subset Vo C Ny . We
define a PDR % C J*(p*X) over Ny by setting

R = {jk¢(x) | x € Ny, ¢ is alocal section of p* X near x
such that ¢ |gom(g)nv solves Z}.

One easily checks that this relation is open. The section p* fq (characterized by po
(p* fo) = foo p)of p*X solves 73 Similarly, the section p* F(¢) of p* X |,-1 (¢
solves Z over p~Y(U) and the (k — 1)-jet of p* F(t) is independent of ¢ along Vj.
Conversely, any C*-solution of 7 (with k¥ > k) restricts to a C*-solution of &%
over V.

Hence, working with Ny instead of V' and with the given Vo C V', we can and

will assume in the following that V' C R” is an open subset and Vj is closed in
R™,
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Step 3. Now we prove Theorem 1.2 for £ = oo and k = k > 1. Since we
assume that V' C R” is an open subset we can work with global coordinates
(xI,....x")onV.

Since Vp C R” is closed we find a countable family of compact sets (K, )ye s,
K, C Vy, whose union covers Vj, together with relatively compact open neighbor-
hoods K, C U, C U such that the family (U,),e.s satisfies the following:

> This family is locally finite; that is, around each point in R” there is a neigh-

borhood in R” meeting only finitely many U,,.

> Foreachv € # theset %, :={u € ¥ | U, NU, # O} is finite.

> The vector bundle X can be trivialized over each U,, and we fix such trivial-

izations.

Foreachv € .4 we fix 0 < §, < % and 0 < A, < % The precise values will

be determined later. Put &, := max{d, | u € A}

Apply Lemma 2.11to A = Vp, K = K, C A, and U = U,. We get finite
families (¢vi)ier,. 0 < evi < Ay, and (av;)ier,, av,i € K, together with
C®°-functions p, : R” — [0, 1] as described in Lemma 2.11.

We define the C *°-function

(3.1) ri=1-[[—p):R" - [0.1].
vES

This is well-defined and C *° since (U,,)ye.s is locally finite. In addition, supp(z) C
Uyes Uy C U and 7 = 1 on a neighborhood of V.

Let x € supp(7r). By Lemma 2.11(iii) and finiteness of the .#, there are finitely
many (v,i) with x € B(2¢y;.ay,;). Among all such (v, i) we choose the one for
which Q 826, a; (x) attains its minimal value. The estimate in Lemma 2.11(iii) and
the product rule yield

(x)7 . n 8, !

Ey.i vy, i

(3.2) ID(x)] < Cr - Qg2

for all @ with 1 < || < k. Here the constant Cy, ,, is independent of 6,,, Ay, €.i,
au,i,and x.
We define sections f(¢t) : V — X by

F(tz(v),v) ifveUl,
Jo(v) otherwise.

(3.3) fOw) =

This defines C*-sections of X that depend smoothly on 7. We will show that the
f(t) solve Z if the constants 8, and A, are properly chosen.
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Using the trivialization of the bundle X over U,, we identify sections of U,, with
vector-valued functions. Induction' on || shows

(D)t x)
(3.4) - ul &) A
= (D*F)(tr(x).x) + > Y (DO} F)(tr(x). x) - t* - Poga(x).

A=1 @&
Since F(t) solves Z and the relation is open there exists A, > 0 such that if

||

(3.5) DY U(DUF)t(p).y)  t* Paga ()] < Ay
A=1 @&

for all |¢| < k and for some y € U, then f(¢) solves Z over y as well.

In (3.4) and (3.5) the inner sum is taken over all multiindices & satisfying & < «
and A + |@| < |a|. Each P,z is a universal polynomial in derivatives of t,
independent of F. It is weighted homogeneous of degree || — |&| if we assign to
each a™ x-derivative of t the weight a. The product rule together with (3.2) shows,

estimating higher powers of |In 8y |~! by |In 8y =1,

(3.6) | Pagn (0] < Cr - Qg g (1)@ In g,

Note that in (3.4) we have A + |@] < |a| and A > 1; thus the exponent of
8¢, 1.ay I_(x) in (3.6) is negative.
Lemma 2.12 implies that there is a constant Cg,, > 0, independent of x, §,,, and

Ay, such that for our x € B(2¢y5,a,,;) C B(l,a,,;),0 <|a| <k,t €[0,1], and
0 < £ <k, wehave

(37) ‘%u,i,k_|&|(D&afﬁ)(t’x)‘ = CKU “FTa, ; (X)k_lm.

Moreover, by Lemma 2.13, we can choose A, so small (depending on §,, but inde-
pendently of x) that

. a1 (DFOE P 0.0 = (53e0)

I For || = 0 equation (3.4) is nothing but the definition f(l, X) = f(tr, x). The induction step
consists of differentiating (3.4).
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With this choice of A, we get, using (3.6), (3.7), and (3.8),
|(D¥0} F)(tt(x). x) - t* - Paga ()]
< Gy [(DFO}F)(t1(x). )| Q2,4 (0P 105, |1
< Gy (Ciy Ty, T8 4 (8220 KT Q- ()17
[Ind, |~
< Choy + (CK, Ty (0T ()1
n (538v,i)k_|&| ) (8381,,,-)'&'_'“') g, |t
= Crv* (Ck, *7a,, ()1 + (8§sv,i)k_|°‘|) 8,
< Cry- (Ck, +1)-|Ing, |7t

3.9

Thus for gv > 0 sufficiently small, estimate (3.5) holds for y = x. This imposes
finitely many conditions on each §, and can therefore be arranged. This completes
the proof of Theorem 1.2 for £ = oo andk = k > 1.

Step 4. Now we drop the differentiability assumption in the path variable and
consider the case £ = 0 and x = k > 1. We equip the vector bundle X — V with
a Euclidean structure and a compatible C °°-connection V. We introduce a second
path variable and define

F) fort <0,
F(s,t) := { F(st) forO<t <1,
F(s) forr>1.

Then F € C°([0, 1] x R, C¥(U, X)).
Let y € C*(RR) be nonnegative with supp(y) C [—1, 1] and f_ll x(@)do = 1.
We mollify F in the ¢-variable by putting, for § € (0, 1],

(3.10) Ff(t) = é/R)(((l * 28); =4 _U)F(s,a)da.

Then each Ff e C([0, 1], C*(U, X)) and Ff is also smooth in §. Using

I (1+28)i —6—0
_ =1
S/RX( ; )d"

and the support property of y it is straightforward to check

F3(0) = F(0). Fi(1)= F(s). Fy(r) = F(0),

forall s, ¢ € [0, 1]. Moreover, since F is uniformly continuous, we can, given ¢ > 0
and a compact subset K C U, find an ¢’ > O such that |[F(s, 1) |x —F(s,2)|x| < ¢
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for all s and all ¢y, 7, with |f; — f] < &'. Then

IFS ()| — F(s,0)|k]|
< é/RX((l + 28)2—8—0)‘F(s,0)|1< —F(s.1)|g|do < ¢

provided 28 < &’. The same argument applies to the covariant derivatives. Thus
F‘g (1) converges in C*¥ (U, X) to F(s, ¢) uniformly in s and ¢ as § — 0 with respect
to the weak C*-topology. In particular, Ff solves Z over K for § < §(K).

We choose a locally finite cover of U by relatively compact open sets O,,. Then
we can find a positive smooth function § : U — R such that §(v) < 8(0,) for all
v e O, and all v.

We rewrite (3.10) as

R0 =5 [ o ) e - o+ g

and recall that all derivatives up to order k — 1 of F(s,0) — fo vanish along Vj.
Thus all derivatives up to order & — 1 of

5 ()0 — o

vanish as well. For the k™ derivative we obtain
~ 1 14+28)t—46— - ~
VORO @) = < / X(( = U)V(")(Fu,o) — foydo +V® fy
R

:l/ 1 (1+28)—8—0 ﬁ(k)F(s,o)da.
5 Jr 5

No derivatives of § occur in this formula. In particular, v Ff(v)(z‘)(v) solves Z

along Vy. By shrinking U if necessary, v — Ff(v)(t)(v) solves Z also over U'.
We can now apply the results obtained in Step 3 to each Fg(') and get f; €

C°°(]0, 1], Ck(V, X)) such that for all s, 7 € [0, 1]

each fy(¢) is a section of X solving #;

f5(0) = fo;

£y, = F 0],

fsOlvu = folv\u-

Furthermore, over U the section fs(¢) is of the form ?;(t, V) = Ff(u)(tt(v), v)
with a 7 as in Step 3. Note that here we can in fact choose 7 and Uy independently
of s.

We set f(s) := fy(1). Then f € C°([0,1],C¥(V, X)) and

> f(s) is a section of X solving %;

> over U we have f(0) = fo(1) = F3O(x () = F(0) = fo;

> over Up we have f(s) = f;(1) = FO(1) = F(s);

> over V \ U we have f(s) = fs(1) = fo.

Y

vV vV V
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Finally, if F € C4([0,1], C*(U, X)), then Fo™) (t)(v) is C* in s, smooth in ¢,
and C¥ in v. Hence f € C%([0,1],C*(U, X)). This concludes the proof of
Theorem 1.2. 0

Remark 3.1. One cannot drop the assumption that V4 is a closed subset even if it
is a smooth embedded submanifold. For example, we may choose V = R? and
Vo = {(x,y) € R? | x = 0,y > 0}. As an open neighborhood of Vg we choose
U = {(x,y) € R? | y > 0}. The fiber bundle X is the trivial real line bundle,
S0 our sections are just real-valued functions. We consider the case k = | and the
relation Z = J!'X. In other words, the relation does not impose any restrictions
on our functions.

Let fo = Oon V and F(¢,x,y) = txsin(1/y) on U. The assumptions of
Theorem 1.2 are now satisfied (except for closedness of Vy), but for ¢ > 0 the
derivative %—I; does not have a limit as y — 0. Thus no restriction of F to [0, 1]x Uy

for any neighborhood Uy of Vg can be extended as a C '-map to [0, 1] x V.

Remark 3.2. The assumption j¥~1F(r) = j*~1 fy along ¥y cannot be dropped
either. For example, let V = R and Vy = {—1, +1}. We still work with real-valued
functions and k = 1. Let the relation & not impose any restrictions on 0-jets and
force first derivatives to lie in the interval (—1,1). Let fo = 0and U = R \ {0},
and set F(¢,x) = 10-¢ forx > 0 and F(z,x) = —10-¢ for x < 0. With these
choices a function f as in Definition 1.1 does not exist.

Remark 3.3. If F is sufficiently regular in the path variable—more precisely, if F' €
C4(]0,1], C*(U, X)) with £ > k—then, as in the proof of Theorem 1.2, we can use
theansatz /' (t)(v) = F(tt(v),v)forv € U toobtain f € C¥*([0, 1], C*(V, X)).
With this definition the deformation f takes only values that are taken by fy
and F. This means that for the values (but not their derivatives) we can also pre-
serve nonopen relations. For instance, if our sections are real-valued functions and
fo = 0and F > 0 holds, then we have also f > 0.

We get the following family version of Theorem 1.2.

ADDENDUM 3.4. Let K be a compact Hausdorff space and let k € Nyg. Let fy €
CYUK,Ck(V, X)), and let F € C°(K,C°([0, 1], CK(U, X))) such that fo(£) and
F (&) fall in Setting S1 for each & € K.

Then parametrized local flexibility holds: There exists

f e C%K,Co, 11, C*(V, X)))

such that (&) enjoys the properties of Definition 1.1 for each & with Uy indepen-
dent of §.
Moreover, let £ € {0,1,...,00}andk €{k,k + 1,...,00}. Let

foe CUK,C(V, X)) and F e COK,C%(0,1],C*(U, X))).
Then we can assume in addition that f € C°(K,C*([0,1], C¥(V, X))).
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Finally, if £ € K is such that the deformation F(§) is constant in the path
variable, then in all the previous cases f(&) can be assumed to be constant in the
path variable as well.

PROOF. We concentrate on the case & > 1 and leave the case &k = 0 to the
reader.

If F(§) € C*([0,1],C*(U, X)) as in Step 3 of the proof of Theorem 1.2,
then the bounds on the A, and 8, depend on bounds on derivatives of F'. Thus
they can be chosen independently of £ € K, by compactness of K. Therefore the
cutoff function 7 in (3.1) can be chosen independently of £&. Hence f depends
continuously on £.

If F(§) € C°o,1], Ck(U, X)), then the function § in Step 4 of the proof
can be chosen independently of &, again by compactness of K. The mollify-
ing procedure in (3.10) yields a continuous map C°([0, 1], C%(R, C* (U, X))) —
C2([0,1], C®(R, C*(U, X))). Then Step 3 applies. A similar argument applies
to the case F € CO(K, C4([0, 1], C¥(U, X))) for more general £ and k.

The last assertion follows directly from the definition of f(£)(¢) in (3.3) if
F(£) € C°°([0,1], C¥(U, X)). In the remaining cases we observe that the molli-
fied function Ff (z) in (3.10) is constant in s and ¢ if the original function F(¢) is
constant in 7. U

This can be reformulated in homotopy theoretic language. Let ¢ be a fixed C k_
germ of sections of X around Vj solving %. We say that a C k_section of X over
some open neighborhood of Vj is ¢p-compatible if it has the same (k — 1)-jet along
Vo as ¢. Now consider

> the space E of all ¢-compatible C*-solutions of Z over V,
> the space Eq of all ¢-compatible C k—germs of solutions of & around Vj.

The space Eg is equipped with the quasi-C k -topology induced by the directed
system C* (U, X), Vo € U C V open. This means that a continuous map K — Eo
for compact K is represented by a continuous map K — C k(U, X) for some open
Vo C U C V with image in the ¢-compatible solutions of Z over U.

Applying Addendum 3.4 we now have the following assertion.

COROLLARY 3.5. The restriction map E — Eg has the homotopy lifting property
with respect to all compact Hausdorff spaces. In particular, it is a Serre fibration.

This formulation provides a link of local flexibility to other h-principle concepts,
such as flexibility and microflexibility; compare [19, sec. 1.4.2 (B")].

4 Applications

The following applications from different mathematical contexts illustrate situ-
ations in which local flexibility applies naturally.
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p

FIGURE 4.1. Image fo(V') is u-convex at p.

4.1 Deforming hypersurfaces

Let V' be an n-dimensional manifold and fo : V 9> R”*! an immersion. For
a constant i > 0 we call fy u-convex if all eigenvalues of the Weingarten map
(the principal curvatures) of fo(V) w.r.t. suitable choice of unit normal are > u
everywhere. If fj is a p-convex embedding, then fo(}') C B for any closed ball B
of radius i whose boundary touches fy(V) tangentially at a point p and is curved
in the same direction; i.e., the unit normals of fy(}') and dB at p coincide when
chosen such that both Weingarten maps are positive; see [11, sec. 6.3] and Figure
4.1 for an illustration.

Now let fo : S” <> R”*! be the standard embedding. Then f is 1-convex and
rigid in the following sense: Given a point p € S we cannot find an embedding
J1 such that fi = fo on the opposite hemisphere S} _ := {v € S" | (v, p) < 0},
and f7 is 1-convex everywhere and p-convex near p for some p > 1.

Namely, assume such an f; exists. By 1-convexity and since Sy _ is contained
in f1(S™), we have f1(S™) C B;(0). By p-convexity near f1(p), f1(S™) contains
points in the interior of B1(0). Let ¢ € fi(S™) be such a point. Again by I-
convexity, applied at ¢, f1(S™) C By (m) for some m # 0.

On the other hand, S; _ C f1(S") C B, (m), which is possible only if m = 0;
see Figure 4.2. We have arrived at a contradiction.

Now we relax the conditions. Let ¢ > 0. We look for an embedding f1 : S” <
R”*1 such that f; = fp on Sp.—» f1is (1 — g)-convex everywhere and p-convex
near p for any given p > 1. Such an f; actually exists.

To see this, we put V' = S", Vo = {p}, and U = S" \ S} _. Being an
immersion with principal curvatures > 1 — & imposes an open partial differen-
tial relation % of order 2 on C*°(V,R*T1). Consider a smooth one-parameter
family of smooth diffeomorphisms W(¢) : U — U such that ¥(¢)(p) = p and
dv()|, = midny,t € [0, 1]. We set

F(t,v) = (1 _KEZ 1t)\1’(t)(v) Tl ltp.
n n
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f1(S™)

FIGURE 4.2. Image f1(S") is u-convex at f1(p).

Then each F(z) is a -convex embedding U < R”T! that satisfies

S
u—(u—1)t
F(t)(p)=p and dF(t)|, =idr,y foralls.

Hence the 1-jet of F(¢) is constant at Vy = {p}.

We apply Theorem 1.2 and obtain f € C>°([0, 1], C®(S", R"*1)) such that
each f(r) is a (1 — &)-convex immersion, f(t) = fo onS; _, and f(t) = F(¢)
near p. In particular, f1 := f(1) is p-convex near p.

It remains to see that f] is injective and hence an embedding since V' is compact.
By Remark 3.3, fi is of the form fi(v) = F(z(v),v) on U for some function
7 : U — [0, 1]. Now injectivity of f; follows from injectivity of F [0, 1]x(U\{p})-

4.2 Deforming differential forms

Let V be a smooth manifold and let Vy C V be a smooth submanifold, which is
closed as a subset. For p > 1 we consider the exterior form bundle A?(T*V) —
V and fix an open subset 2 C AP(T*V). Letwy € C'(V, AP(T*V)) be a closed
differential form of degree p solving 2.

Let U be an open neighborhood of Vp in V' and let

Qe C%0,1],CH(U. AP(T*V)))

be a path of closed forms solving 2 with wg|y = ©(0). W.l.o.g. we can assume
that U is a tubular neighborhood, shrinking it if necessary. Furthermore, we assume
that 7§ Q(¢) is constant in t where ig : Vo < U is the embedding. Note that this is
a weaker condition than the restriction of €2(¢) to V, being constant in ¢.

Now (7) — ©(0) is a family of closed forms satisfying i5 (€2(¢) — 2(0)) = 0.
Let p € C°°(]0, 1], C*°(U, U)) be a retraction of U onto Vy, i.e., p(1) = idy,
p(s)|y, = idy, for all s € [0,1], and p(0)(U) = Vy. We obtain F € C°([0, 1],
CY(U, AP~1(T*V))) by setting

1
FWO)(Er .. Epmr) = /0 Q1) — QO (LL(5). p(5)ab1. - . p()uEp1)ds
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TABLE 4.1. Geometric structures defined by a closed form satisfying an
open condition.

|4 form degree p ‘ condition 2 ‘ resulting geometric structure
n-manifold 1 nonvanishing codimension-1-foliation
2n-manifold 2 " #£0 symplectic structure
7-manifold 3 definite closed G,-structure

where §1,...,§p—1 € T,U andu € U. Then F has the following properties:
> F(0) =0;
> F(t)|y, =0forall¢ € [0,1];
> Q) = Q) +dF(t) forallt € [0, 1];
> If € > 0,k > 1,and Q € C4([0, 1], C¥(U, AP(T*V))), then F € C*([0, 1],
C*(U, AP~Y(T*V))).
Only the third property requires a small computation; compare, e.g., [8, prop. 6.8].
We set X := AP"Y(T*V) — V and k := 1. The condition wy + dn € 2
imposes an open relation on the 1-jet of the (p — 1)-form 7. Denote this first-order
relation on A?~1(T*V) by %. Now we apply Theorem 1.2 to fy = 0, F(t), and
2 and obtain f € C°([0,1], C'(V, AP~1(T*V))) such that f(0) = fo = 0 and
f(t) = F(¢) on a smaller neighborhood Uy of Vj.
For simplicity, let us assume that wg and Q are smooth. Then F is smooth and
SO is ]7 . We obtain a smooth family of closed smooth p-forms

w(t) := wo + df (1)
solving 2, coinciding with €2(¢) on Uy and Q(¢) = wg outside U. We summarize:

PROPOSITION 4.1. Let V be a smooth manifold, Vo C V a submanifold, closed as
a subset. Let U be an open neighborhood of Vo in V. Let 2 C AP(T*V) be an
open subset.

Let wg be a smooth closed differential p-form on V solving 2, p > 1. Let Q €
C°([0, 1], C°(U, AP (T*V))) such that Q(t) is closed and solves 2, 2(0) = wy
onU, and i[Q(t) is constant in t.

Then there exists a smaller neighborhood Uy of Vo and

w € C®([0,1], C®(V, AP(T*V)))

such that each w(t) is closed and solves 2, w(0) = wy, w(t) = Q(t) on Uy,
and w(t) = wg outside U. Moreover, the de Rham cohomology class of w(t) is
independent of t.

Table 4.1 lists some geometric examples in which Proposition 4.1 applies.

The second example is a well-known consequence of the relative Moser lemma;
see [8, theorem 7.4]. A similar argument can be applied to the first example, where
we use the one-to-one correspondence (after the choice of a Riemannian metric on
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V') of nonvanishing 1-forms and nonvanishing vector fields in order to solve the
Moser equation. For background on the G;-example, we refer to [6, secs. 3.1 and
4.6]. In this case a Moser-type argument cannot be applied because G;-structures
induce Riemannian metrics which have local invariants.

Dropping the closedness conditions on the forms, Theorem 1.2 can be applied
directly to Q for k = 0 without passing to a family #(¢) of primitives of €2(¢) —
€2(0). This can be used to extend local deformations of contact forms, for instance.

4.3 Prescribing the lapse function

This application deals with Lorentzian geometry. For a general introduction to
and standard notation in this field, see, e.g., [3]. Let V' be a time-oriented globally
hyperbolic Lorentzian manifold. Then V is isometric to R x ¥ with metric

4.1 g=—-N%dT? + gr

where N : V — R is smooth and positive, and 7" : V' — R is smooth with past-
directed timelike gradient such that each level {7} x X is a Cauchy hypersurface;
see [4, theorem 1.1]. The levels are then automatically closed, smooth, spacelike
hypersurfaces. Here g7 is a smooth one-parameter family of Riemannian metrics
on the levels. We will call N the lapse function and T the Cauchy time function. A
simple computation shows g(grad T, grad T) = —N ~2.

In [5, theorem 1.2] Bernal and Sdnchez show that one can prescribe the Cauchy
hypersurface. More precisely, let V be a smooth spacelike Cauchy hypersurface.
Then the Cauchy time function 7" can be chosen in such a way that Vj is one of its
levels.

Using Theorem 1.2 we will now show that one can also prescribe the lapse
Sfunction along Vy.

Let N : Vo — R be smooth and positive. Let T be a smooth function de-
fined on a neighborhood U of V{ that coincides with 7" on Vp and such that
grad T = N='-v where v is the past-directed timelike unit normal field along Vj.
By shrinking U if necessary we can arrange that the gradient of T is past-directed
timelike on all of U and that there are smooth spacelike Cauchy hypersurfaces > _
and X in V that lie in the causal past and future of U, respectively.

Now put fo = T and F(t,v) = t?(v) + (1 —¢)T (v). Since the cone of past-
directed timelike tangent vectors is convex, the function F(z,-) has a past-directed
timelike gradient field on U for each ¢ € [0, 1].

Having a past-directed timelike gradient field imposes an open first-order differ-
ential relation on functions on V. We apply Theorem 1.2 with £ = 1 and obtain
a smooth function f :[0,1] x V — R such that f(0) = fo = T, each f(¢)
has past-directed timelike gradient field and coincides with fj outside U and with
F (1) on a smaller neighborhood of Vj.

Claim. Each f(¢) is a Cauchy time function; i.e., its nonempty level sets are
Cauchy hypersurfaces.
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PROOF. Fix ¢ and write & = f(¢) for brevity. Let ¢ : (0,1) — V be an
inextendible future-directed timelike curve. Since the gradient of £ is timelike
past-directed and the velocity vector of ¢ is timelike future-directed, the function A
increases strictly along c¢. Thus each level of 4 is hit at most once by c.

Moreover, ¢ intersects ~_ and X4 at points ¢(s—) and ¢(s4+), 0 < s_ <
s+ < 1, as X4 are Cauchy hypersurfaces. Thus the level sets of & for values in
[h(c(s-)), h{c(s+))] intersect ¢ as well. For the levels below A(c(s—)) and above
h(c(s+)), this is also true because / coincides with the Cauchy time function 7" in
the past of X_ and in the future of . O

Now consider the Cauchy time function T=F (1). Since T coincides with T
near Vp we have along Vj

g(grad T, grad T) = g(grad T, grad f) = g(ﬁ_lv, N_lv) =_-N"2

Hence if we replace 7" by T in (4.1), then the lapse function will be N along Vp. We
have deformed a given Cauchy time function through Cauchy time functions into
one that has prescribed lapse function along a given level set. This procedure can
be repeated and yields prescribed lapse functions along finite or countable families
of Cauchy hypersurfaces as long as they do not intersect nor accumulate.

5 Counterintuitive Approximations

Now we turn to our main application of local flexibility, the construction of
sections that have possibly very restrictive local properties on open dense subsets.
Typically, it is impossible to achieve this on all of V.

5.1 The approximation theorem

In order to formulate this theorem precisely, we consider the following setting:

SETTING S2. We denote by
> V' a smooth manifold,
> 1 : X — V asmooth vector bundle;
> k € N a positive integer,
> ' a subsheaf of the sheaf of C k_sections of X;
> f a Ck-section on V;
> N a neighborhood of f in the strong C k ~Ltopology.

Recall the commutative diagram

Jex L gk1y

y\ Ti—1

%

Since 7 : X — V is a vector bundle, 3 and mj;_; are vector bundle projections
as well, while 7y g : JkX — Jk=1X is an affine bundle.
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Notation 5.1. We set J¥T := {j*y(p) | y is a local section of T, defined near p,
peVicJkx.

THEOREM 5.2. Suppose we are in Setting S2 and assume that for each p € V there
is an open neighborhood W of j*= f(p) in J*'X and amap o - W — JkX
such that
> ow maps compact subsets of W to relatively compact subsets of J kX (this
holds for example if ow is continuous);
> Tk k—1°0W = idw;
> ow(w) € JXT foreachw € W.

Then there exists a section f of X — V and an open dense subset % C V with
the following properties:

> [ e v x);

> ,]:e N;
> flo € T(U).

For the proof of the theorem we need the following lemma:

LEMMA 5.3. Under the assumptions of Theorem 5.2 there exists an open neigh-
borhood Z of the image of j* f in JXX such that # N ()~ (K) is relatively
compact in J kx for every compact K C V and the following “convexity” condi-
tion holds:

Let p € V and let ¢ be a C k—germ of sections around p solving %. Then there
exists an open neighborhood U of p and an F € C°([0, 1], CK(U, X)) such that

> F(0) represents ¢;

F(1) € CKU, X) solves # over U forallt € [0,1];
F(1) e P(U);
JTEE@(p) = 5 ¢(p) forall t € [0, 1].

PROOF. We fix an auxiliary Euclidean inner product on the vector bundle my, :
J¥X — V with induced fiber norm ||-|| jxy. At each p € V the restriction
of my x—1 to the orthogonal complement of ker(mg x—1) C nk_l(p) is a linear
isomorphism onto nk__ll (p). Thus

vV vV V

0= (nk,k—1|ker(n’k’k_1)L)_1 IRl o gkx

defines a global smooth section of 7y g : Jekx - Jk-1x,

Choose a neighborhood # of the image of j k-1 finJ k=1X that is a union of
open sets W as in the statement of Theorem 5.2. Shrinking % if necessary, we can
assume w.l.o.g. that it is relatively compact over each compact K C V.

On such a W the function JK&=1X — R U {oo} defined by & +> dist(o (),

Jkrn ”k_,llc—l (w)) satisfies

dist(a(a)), Jkrn nk_’,l(_l(a))) < |lo(w) —ow(w)| jrx
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and is hence locally bounded. Therefore we can find a continuous function R :

# — R such that dist(c (), JXT' N 77t (@) < R(w) forall o € #. By

increasing R if necessary, we ensure that

175 f —oGE D ey < RGFTLS)

for the given section f.
We define Z by

%= {Q €t (M) 119 — 0 (-1 (@) 5 x < R(Thjem1 ()}

Then & is an open neighborhood of the image of j k finJ k X . For each compact
K C V the set

AN (K)={Qen i (¥ Nnal(K)|
12 = o (rr k-1 (@ Ik x < Rk f—1(R))
is relatively compact. Let ¢ be a C¥-section of X — V/, defined on a neighborhood
of p € V such that the image of jkgo is contained in &%. By construction, &%
intersects JkFﬂnk_ch_l (i *19(p)). Pick a k-jetin %ﬂJkI‘ﬂnk_}c_l (G5 o(p))
and represent it by a local section y of . The straight line segment (1—1) jX o (p)+

1j*y is entirely contained in % N T ,16_1 (j*¥=19(p)) by convexity of norm balls.
Thus

(5.1) F@)y:==(_10-t)p+1ty
has all the required properties if the neighborhood U of p is chosen sufficiently
small. g

PROOF OF THEOREM 5.2. We choose an open neighborhood .4 of im j%~1 f
in J¥=1X such that {h € C¥=Y(V,X) | j*h(p) € A4, p € V} C N. Pick
some Z C J¥X as in Lemma 5.3.

We provide the jet bundles of X with fiber metrics and induced norms ||-|| ym x
so that the usual C™-norms of sections of X are defined as

lullemy = supllj™ullgmx.
|4

Let {p1, p2, p3, - .- } be a countable dense subset of V. We construct a sequence
(fv)v=0.1,..0f C k_sections of X together with open neighborhoods U, of p,, for
v =1,2,... such that the following holds:

> fo=f;

> U, DUy_q;

> fo= focronUy_1;

> fy solves Z N (nk,k_l)_l(JV) over V;

> there is a neighborhood U of U, such that f, |y € T(U);
> |l fo = fomillgr—1gry <277
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Assume that £, has been constructed, together with U,_1, where v > 1. If
Py € U,_1, then, by the inductive assumption, there is an open neighborhood U,
of Uy_1 such that f,_i|y € T'(U) for a neighborhood U of U,. We then simply
put fy := fu-1. _

Now assume p, ¢ U,_1. We consider a local deformation F),, € C O([0, 1],
ck (Up,, X)) as in Lemma 5.3 for the germ represented by ¢ := f,_1 around p,.
By shrinking U,, if necessary we can assume that Uy, is disjoint from U,_1, that
Fp,(t) solves .4 for ¢t € [0, 1], and that || jK=1F, — jK=1f, || je—1x < 27V.
For the second and the last requirement we recall that .4” is an open subset of
J*¥=1X and jk_lev (t)(p) is constant in ¢.

We apply Theorem 1.2 to the section f,_1, to Vo = {py}, to the deformation
Fp, and to the open PDR

Ry = R0 (g f—1) " (A)

Mo € JX | [mip-1@) = 57 foot | jmr g <277,
We obtain an open neighborhood Up, .0 C Up, of py and a global deformation
fp, € CO([0,1], Ck(V, X)) such that Jp, (1) solves Z, over V, it coincides with
Fp, (1) (and hence is a section of ") over a neighborhood of Uy, o, and it coincides
with Fj (0) (and hence with f,_1) over a neighborhood of U,_i. Put U, :=
Uy—1 U Up, 0. Then f, is a section of I" over a neighborhood of U,.

Moreover, we have | fy — fu—1llcx-1(y < 277. This implies that (f, — fo)v
is a Cauchy sequence in the space of C k=1_sections with bounded derivatives up
to order k — 1. Thus there is a limit section in CX~1(V, X) that we denote as
f — fo. By the properties of %, the derivatives of order k of f, — fo are locally
uniformly bounded. Hence the derivatives of order k — 1 are Lipschitz with lo-
cally uniform Lipschitz constant. Such a Lipschitz bound persists under uniform
convergence; thus f— fo € Cllgc_l’l(V, X). Since fy € CK(V, X) we conclude
feck v x).

ocC
The set % := ;< j1<oo Up is open and dense in V. Since the sequence (f,) is

eventually constant (in v) on each Uy, the limit section f satisfies f |y € T(U).
Finally, since each f;, solves ./, the image of j*¥~! f is contained in .4 and
hence f € N. d

5.2 Lipschitz functions

Theorem 5.2 can be used in many different contexts to derive counterintuitive
approximation results. Let us start with a relatively elementary example, namely
real-valued functions.

COROLLARY 5.4. Let f :[0,1] = R be a C'-function, let ¢ > 0, and let K € R.
Then there exists a Lipschitz function f : [0, 1] — R such that

> 1 f = fl<e
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> f is smooth and satisfies f " = K on an open dense subset of [0, 1].

PROOF. We extend f to a C!-function on R, again denoted by f. We apply
Theorem 5.2 with the following choices in Setting S2: V' = R, X is the trivial
line bundle so that sections are nothing but real-valued functions, & = 1, and
I is the sheaf of smooth functions with constant derivative K. The strong C°-
neighborhood of f is givenby N = {h € CO(R) | | f — h| < ¢}.

Theorem 5.2 applies because we can put W := J°X = X = V xR and
ow (p, &) defined to be the 1-jet of the affine function t > K - (t — p) + &.
The function f : R — R given by Theorem 5.2 is locally Lipschitz; hence its
restriction to [0, 1] is Lipschitz. O

If we apply this corollary to f(@) =1t, K =0,and ¢ = 0.0001, then we geta
Lipschitz function f [0,1] — R with f(O) < 0.0001, f(l) > 0.9999, and f’
0 on an open dense subset. Note that Lipschitz functions are differentiable almost

everywhere by Rademacher’s theorem and the fundamental theorem of calculus
holds. Thus we have

/1 F'(x)dx = £(1) — £(0) > 0.9998,
0

which, at first glance, seems to violate f ’ = 0 on the open dense subset. The point
is that open dense subsets need not have full measure, so there is no contradiction.
Clearly, f cannot be C! in this case.

This function is not to be confused with the Cantor function (see, e.g., [10]), also
known as the devil’s staircase. The Cantor function is a Holder-continuous function
[0,1] — [0, 1] with Holder exponent @ = In2/1In3. It has vanishing derivative
on an open subset of full measure but it is not absolutely continuous. Hence the
fundamental theorem of calculus cannot be applied and the Cantor function is not
Lipschitz.

5.3 Embeddings of surfaces

Next we approximate embedded surfaces by those with constant Gauss curva-
ture on open dense subsets.

COROLLARY 5.5. Let K € R. Let V be an analytic surface, let f : V < R3 be
a C?-embedding, and let N be a netghborhood of f in the strong C-topology.

Then there exists a C''-embedding f V < R3in N that is analytic on an
open dense subset % C V and has constant Gauss curvature K on % (w.r.t. the
induced metric).

PROOF. We apply Theorem 5.2 with the following choices in Setting S2: Let X
be the trivial R3-bundle so that sections are maps ¥V — R3. Let k = 2 and I be
the sheaf of analytic maps w satisfying

det 2w 8wX8w _ K. det Jw dw
© ouioul dul T ou2l) © out’ dul

ow y ow
dul = Ju?
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in local coordinates (u',u?) on V. If %"1 and aau—wz are linearly independent, then
this condition is equivalent to the induced Gauss curvature being K and otherwise
it is void. Since the set of embeddings is open in the strong C !-topology [22, theo-
rem 1.4], we can assume w.l.o.g. that all maps in N are embeddings, by shrinking
N if necessary.

To see that Theorem 5.2 applies, let D C R? be an open disk about the origin
and let 2 : D — R be an analytic function such that #(0) = 0, VA(0) = 0, and the
graph of / is a surface of constant Gauss curvature K in D x R. Let (U, x!, x?) be

a local analytic chart of V. We put
W= {a) emny L(U) | the differential of (a map representing) w is injective}.

Now, given w € W, put p := m1(w) and represent @ by an analytic map ¢
defined near p. By shrinking the domain we can ensure that ¢ is an embedding.
Let A,, be the unique special orthogonal matrix 4, € SO(3) with

9
Ager = 222 (o). Ao,
dx!

0 d
Auer = - 20 () + v S D)), v >0,

Here e1, €2, e3 denote the standard basis of R3. The matrix A, is uniquely de-
termined by w (and the coordinate system) and depends continuously on @. Con-
sider the Euclidean motion E,, : R? — R? defined by E,x = Apx + ¢(p) =
Apx + m1,0(w). The map
(Eg' o)t
Sy = Epo (E 1 o¢)a
h((Eg" o 9)1.(E5" 0 9)2)
is analytic, parametrizes a surface with constant Gauss curvature K, and has 1-jet
w at p. Thus
ow (@) := j*(S)(p) € J*T

is a local section as required in the assumptions of Theorem 5.2. g

Corollary 5.5 is an extrinsic companion to Corollary 6.1 below. It does not
contradict the Gauss-Bonnet theorem; see Remark 6.4.

6 Deforming Riemannian Metrics
In this final section we apply our results to Riemannian metrics.

COROLLARY 6.1. Let V be a differentiable manifold of dimensionn > 2 and let g
be a C?-Riemannian metric on V. Let N be a neighborhood of g in the strong
C'-topology. Let K € R.
Then there exists a Riemannian metric g on V with the following properties:
> g has local CV1-Lipschitz regularity;
> geN,;
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> g is smooth and has constant sectional curvature equal to K on an open
dense subset of V.

PROOF. We apply Theorem 5.2 with the following choices in Setting S2: Let
m . X — V be the vector bundle of symmetric (2, 0)-tensors and let k = 2. Let I"
be the sheaf of smooth Riemannian metrics of constant sectional curvature K.

To see that Theorem 5.2 applies, let gﬁg] be the metric of constant sectional cur-
vature K on an open ball about the origin, expressed in normal coordinates. Then

g][RIi] has the same 1-jet at O as the Euclidean metric and orthogonal transformations
are isometries. For any n-dimensional Euclidean vector space ¥ we can choose a

linear isometry A : ¥ — R” and pull the metric back, gE/K] = A* g]gg]. The

metric gg,K] does not depend on the choice of A.

Next pick a local chart (U, x!, ... ,x")on V. Put
W .= {a) € JTI_I(U) | 1,0(w) is positive deﬁnite}.

The local section oy is defined as follows: Express the 1-jet w € m L(U) in the
given coordinates as ® = wg + »_ j a)jxj and associate the metric /i, given by
this formula, kg, = wo + Y ;@) x/, defined in a neighborhood of p := 7y ().

Clearly, j1(hy)(p) = w. Denote the exponential map of /,, at p by expzw. Now
put
. -1 K
ow(w) 1= ]2(((expzw) )*g[TPL)(p) e J*T.

Observe that indeed
72,1 (0w (@) = 71 (((expfe) ) k) ) (p) = j ' (ho)(p) =

because j 1 ((expl?)* 1) (0) = j 1 (geuet)(0) = jl(g[TIj]V)(O)- O

Remark 6.2. Corollary 6.1 would be false if we demanded that g have regularity
C? on all of V. Then the sectional curvature of (V, g) would be continuous and
secz = K on a dense subset would imply that this holds on all of V. But most V'
do not admit such a metric.

Remark 6.3. Even if the metric & on V has constant sectional curvature 1 on an
open dense subset 7/, it cannot, in general, have curvature > 1 in the sense of
Alexandrov spaces on all of V. Namely, this implies that the diameter of (V, g) is
bounded above by 7, at least if V' is compact; see, e.g., [7, theorem 10.4.1]. Now
if diam(V, g) is much larger than s, then this contradicts g being C!-close (and
hence C-close) to g.

In fact, if a metric has curvature > 1 in the Alexandrov sense on an open dense
subset only, then there is no upper bound on the diameter. This is illustrated by
Figure 6.1.
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FIGURE 6.1. Space with curvature > 1 on a dense open subset but
diam > 7.

Remark 6.4. Let V be a compact surface of higher genus. By Corollary 6.1 we
can find a C '*!-metric on ¥ whose Gauss curvature (which is defined as an L*°-
function on V') satisfies K = 1 on an open dense subset 2 C V. The Gauss-
Bonnet theorem (which holds for C '!-metrics, see Appendix C) says /i v KdA =
27 x(V) < 0. This may seem to be a contradiction, but, again, open dense subsets
need not have full measure.

Remark 6.5. Similarly, we can refine Remark 6.3. Let V' be compact for simplicity.
If % C V has full measure, then the Bonnet-Myers theorem for C !>!-metrics
applies [14, theorem 4.1], and we get diam(V') < m. Hence, if diam(V) > =,
which we can arrange by Remark 6.8 below, %/ cannot have full measure.

Remark 6.6. Even if g has constant sectional curvature —1 on an open dense subset,
we cannot demand that the curvature be < —1 in the Alexandrov sense on all of
V. In this case we would violate Preissmann’s theorem [7, theorem 9.3.3], for
instance.

COROLLARY 6.7. Let K € R. Each differentiable manifold of dimension > 2
has a complete Cl(l)él -Riemannian metric that is smooth and has constant sectional
curvature = K on an open dense subset.

PROOF. Choose a complete smooth Riemannian metric g on V. We can choose
a neighborhood N of g in the strong C'-topology such that each metric in N is
complete. Now apply Corollary 6.1. U

Remark 6.8. As discussed above, this is false for C2-metrics. Since the C !-metric
can be chosen C !-close to an arbitrary smooth metric on V', we can in Corollary 6.7
in addition prescribe geometric quantities like volume, diameter, and injectivity
radius up to arbitrarily small error.

Remark 6.9. One might be tempted to think that a metric as in Corollary 6.7 can be
constructed as follows: triangulate the manifold, then equip the open n-simplices
with metrics of constant sectional curvature K and glue the metrics along the (n —
1)-skeleton. Such a procedure will not give a metric of Cl(ljél -regularity. Indeed,
such a metric would satisfy sec = K on an open dense subset of full measure and
hence violate the Gauss-Bonnet theorem; cf. Remark 6.4.
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Remark 6.10. Corollary 6.7 should be contrasted with the implications of Gro-
mov’s A-principle for diffeomorphism-invariant partial differential relations. The
latter implies that every connected noncompact manifold has a smooth but incom-
plete Riemannian metric with positive sectional curvature and another one with
negative sectional curvature; see [18, theorem 4.5.1].

Remark 6.11. In his famous precompactness theorem [20, sec. 8.20], Gromov
proves C%!-regularity of the limit metric occurring in that theorem. This regu-
larity result was later improved to C ¢ for all @ € (0, 1); see [17,25,26]. The
C!!-regularity shown in Corollary 6.1 is the borderline case of this. It would be
interesting to know if this is a coincidence or if there is a deeper relationship.

Epilogue 6.12. Let(V, g) be aRiemannian manifold with sectional curvature secy >
0 and let Vo = {p} consist of just one point. Let K > 0. In the following we
use the notation introduced in the proof of Corollary 6.1. With the local section
y = ((expg)_l)*g[Tf]V of X around p, the map defined in (5.1) for ¢ = g lo-
cally deforms g through positive curvature metrics into one of constant positive
curvature K, keeping the 1-jet constant at p. Theorem 1.2 for k = 2 implies:

One can deform a Riemannian metric of positive sectional curvature on V
through such metrics into one which has constant sectional curvature K > 0
near p.

A similar argument works if { p} is replaced by an embedded geodesic Vo C V,
working with local Fermi coordinates around V. This is an application of The-
orem 1.2 with possibly noncompact V3. Moreover, we can treat other curvature
quantities and curvature bounds.

This discussion extends to families of metrics as follows. Let Sec (V') be the
space of Riemannian metrics of positive sectional curvature on V', equipped with
the weak C°°-topology, and let Secx (V, p) denote the subspace of metrics of con-
stant sectional curvature K in some neighborhood of p, equipped with the quasi-
C*°-topology induced by the directed system C*°(U, X), {p} C U C V open;
cf. the remarks preceding Corollary 3.5. Let

fo: Dk Sect+ (V)

be a continuous map such that, by definition of quasi-topologies, there is a uniform
neighborhood of p on which f(£) has constant sectional curvature K for all £ €
aDk.

Using compactness of D¥, we find an open neighborhood of 0 C 7, M such

that exp{;‘)(g) : TyM — M maps this neighborhood diffeomorphically onto an

open neighborhood of p for all metrics fo(§), &€ € DX. Let {p} C U C V be an
open neighborhood of p that is contained in these neighborhoods for all £. We can
choose U so small that working with the &é-dependent sections ¢ (§) = fo(§) and

y(€) = ((exp;;()(g))_l)* g%f]v of X over U, equation (5.1) defines a continuous
map F : D — C°([0, 1], Sec+(U)) with F(£)(0) = fo(§)|v, and F(£)(1) =
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y (&) for all £ € D¥. In addition, we can assume that F(£)(¢) is constant in ¢ for
£ € aDk.

By Addendum 3.4, we find an open neighborhood {p} C Uy C U and a contin-
uous map f : D¥ — C°°([0, 1], Sec (V) such that for all £ € D* the deforma-
tions (&) and F(£) coincide on Up, and for all £ € DX the deformation f(£) is
constant. This shows that the inclusion

Secx (V, p) = Sec (V)

is a weak homotopy equivalence.

Appendix A Proof of Local Flexibility for £k = 0

Let fo € C¥(V,X)and F € C*([0, 1], C¥(U, X)), where £,k € {0, 1, ..., 00}
We choose a complete Riemannian metric on V' in such a way that {v € V | r(v) <
2} C U where r is the distance function from Vp w.r.t. this metric. Let t : R — R
be a C°°-function with z(r) = 1 forr < 1, t(r) =0forr > 2,and 0 < 7 < 1
everywhere. Furthermore, we find a smooth function r* € C*®(U \ Vy) with
r<r*<r-+1/2

Since Z C X is open, we can replace F by a map F* € C£(]0,1], C¥(U, X))
with the following properties:

Forall t € [0, 1] we have F*(t) = F(t) on {r* < 1} U {r* > 2}.
F*(0) = F(0).

F* induces a map in C*°([0, 1], C*({1 < r* <2}, X)).

F*(t) solves # over U forall ¢t € [0, 1].

Now let £ € C9([0,1], C°(V, X)) be defined by

F*(¢-t(r*(v))(v) ifr(v) <2,
fo(v) if r(v) > 2.

This is possible since r(v) > 2 implies #*(v) > r(v) > 2 and hence 7(r*(v)) = 0.
We have f € C4([0, 1], C¥(V, X)) by the choice of F*. Also, for r(v) < 1/2 we
have r*(v) < 1, which implies 7(r*(v)) = 1 and hence f(¢)(v) = F*(¢)(v) =
F(t)(v) forallt € [0, 1].

This means that f has all the required properties with Uy = {r < 1/2}, and
Theorem 1.2 is proved for k = 0.

vV vV VvV Vv

fO)) =

Remark A.1. If £ > , then one need not introduce F* and can simply put

fO@) = Ft-(r*(v)(v)
for r(v) < 2.

Appendix B Proof of Lemma 2.8

The function 7s . defined by
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1.0
1 for r < §e, 05
T56(r) = % forde <r <eg,
0 forr > ¢, 5 >

Figure B.1. The function 7 .

has all properties listed in Lemma 2.8 (with C; = 1) except that (iv) does not
make sense at the points r = §¢ and r = ¢ where the function is not differentiable.
We need to see that we can smooth 75 . near these two points without destroying
properties (i)—(iv).

At r = e this is easy: Choose a smooth function In: (0, 00) — R such that

0-0 0.4 0.6 0.8 .0
ffl(r) = In(r) for r < 0.9,
fﬁ(r) = 0 forr > 1 and —05
n<o everywhere.
-1.0

Figure B.2. The function In.

Then we can put 75 .(r) = % for r > £. Indeed,

d* (in(r/e)\|
‘drk( Iné )‘_

because 1’1\1(1’ /€) vanishes for r > e.
At r = e we proceed as follows: We choose a smooth function y : R — R
such that

n® (r/e)

NG NG
- 0| o011 /2,17 - 10| Loo1 /2,1
ck1né

| In §|ek - |In§|rk

2.0
1.8
x(r)=1forr <1, 1.6
x(r) =rforr > 1.1, 12
x <2on/l,1.1], and Lo

1 = Teverywhere. 0.0 0.5 1.0 15 2.0

Figure B.3. The function y.

E.
Now we put for r < 5:
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1.0
_ In(8x(r/é¢))
15,6(r) = EETY 0.5
1+ In y(r/8¢)
1n8 ' 55 &

Figure B.4. The function g .

For r > 1.1-8¢ we then have 75 .(r) = 75 (r) and for r < de we have 75 ((r) = 1.
It remains to check (iv) on [88, 1.1- 88]. We compute

(k) §
M= - 9 nox)r/se). G )k
Putting
dk
C/ = H_(IHOX) s
k drk L°°[1,1.1]
we get for r € [0e, 1.1 - §¢]:
1 ¢k

1
*) Cl. < _
[0 < s % Ge)k = Jnd|rk

This concludes the proof.

Appendix C Gauss-Bonnet for Metrics with Low Regularity

The Gauss-Bonnet theorem for compact surfaces holds for Riemannian metrics
with regularity lower than C2. This is a folklore fact but since it seems hard to find
a reference in the literature we provide a proof.

Let V be a compact surface equipped with a Riemannian metric g of Sobolev
regularity H2? with p > 2. We choose a sequence (g,) of smooth metrics con-
verging to g in H*?. Since p > 2, the sequence also converges in C! by the
Sobolev embedding theorem.

Denoting the Gauss curvature of g by K¢ and the area element by dAg, the
expressions in local coordinates,

2 J
1 ik ((ik 8F1k
Ke = 3 Z g (Bx_f oxi + lower-order terms,
iajakzl
2
1 agi 0gmi  0gij

k _ km im mj  08ij

bij = ZW;g (axj + axt  axm )

dAg = /€11822 — g12821 dx' dx?.
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show that the second derivatives of g enter linearly in the Gauss-Bonnet integrand
K4 dAg. The terms involving no or first-order derivatives converge uniformly and
the second derivatives converge in L? as u — oo. Thus K¢, dAg, — KgdAg
in L?. In particular, the Gauss-Bonnet integrand of g exists as an L7 -density.

Since integration is a bounded linear functional on L7 by the Holder inequality,
we find

/KgudAgu—>/ KgdAg asp — oo.
|4 |4

The Gauss-Bonnet theorem for smooth metrics now implies Gauss-Bonnet for g.
We have shown:

The Gauss-Bonnet theorem for compact surfaces holds for Riemannian metrics
of Sobolev regularity H*P with p > 2 and, in particular, for C > -metrics.
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