
1. Introduction
Tropical forests play a key role in the global carbon (C) cycle and the climate system (Keenan et al., 2015). 
They contain 70% of the global live biomass, that is, about 250 Pg carbon (Pg C) (Baccini et al., 2017; Liu 
et al., 2015; Pan et al., 2011; Saatchi et al., 2011). Because of its large carbon stock as well as high sensitivity 
to climate variability (Cox et al., 2013; Seddon et al., 2016) and disturbances (Baccini et al., 2017), the future 
dynamics of tropical forest biomass could result in a large amount of carbon sequestered from or released 
to the atmosphere (Mitchard, 2018). The response of the biomass carbon stocks in tropical forests to climate 
change and anthropogenic land use disturbances thus contributes to feedbacks of the carbon cycle on global 
atmospheric carbon dioxide (CO2) concentration.

Abstract Tropical forests store about 70% of the total living biomass on land and yet very little is 
known about changes in this vital carbon reservoir. Changes in their biomass stock, determined by 
changes in carbon input (i.e., net primary production [NPP]) and carbon turnover time (τ), are critical to 
the global carbon sink. In this study, we calculated transient τ in tropical forest biomass using satellite-
based biomass and moderate-resolution imaging spectroradiometer (MODIS) NPP and analyzed the 
trends of τ and NPP from 2001 to 2012. Results show that τ and NPP generally have opposite trends 
across the tropics. Increasing NPP and decreasing τ (“N+T−”) mainly distribute in central Africa and 
the northeast region of South America, while decreasing NPP and increasing τ (“N−T+”) prevail in 
Southeast Asia and western Amazon forests. Most of the N+T− tropical forest areas are associated with 
mean annual precipitation (MAP) below 2,000 mm·y−1 and most N−T+ tropical forests with MAP above 
2,000 mm·y−1. The τ and NPP trends in the N+T− region are statistically associated with radiation, 
precipitation and vapor pressure deficit (VPD), while the τ and NPP trends in the N−T+ region are mainly 
associated with temperature and VPD. Our results inherit the uncertainties from the satellite-based 
datasets and largely depend on the carbon use efficiency from MODIS. We thus systematically assessed 
the robustness of the findings. Our study reveals regional patterns and potential drivers of biomass 
turnover time and NPP changes and provides valuable insights into the tropical forest carbon dynamics.

Plain Language Summary Tropical forest biomass and its response to climate change is of 
great importance to global carbon cycle. How carbon stock of tropical forest biomass will change depends 
on changes in carbon input (i.e., net primary production [NPP]) and how long carbon will stay in the 
biomass (i.e., turnover time [τ]). Higher NPP and longer τ will persistently increase tropical forest biomass, 
and vice versa. In this study, we used satellite-based biomass and NPP dataset to calculate τ. We found 
NPP and τ generally have opposite trends during 2001–2012. In regions with mean annual precipitation 
>2,000 mm·y−1, there are mainly increasing NPP and decreasing τ, affected by radiation, precipitation 
and vapor pressure deficit [VPD]. In contrast, regions with mean annual precipitation <2,000 mm·y−1 
is dominated by decreasing NPP and increasing τ, associated with the changes of temperature and VPD. 
Results from this study help us understand the processes and predict the future changes in the tropical 
forest carbon dynamics.
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Tropical forest C dynamics are tightly coupled to energy and water exchange between the biosphere and 
atmosphere (Bonan, 2008). Earlier studies suggested that tropical forest productivity could be limited more 
by solar radiation than by temperature and water (Graham et al., 2003; Nemani, 2003; Seddon et al., 2016). 
Recent work suggests that temperature is also important in wet forests that operate close to a temperature 
optimum for their productivity (Corlett, 2011; Huang et al., 2019). Droughts induced by high temperature 
and low precipitation may increase tree mortality and cause a legacy carbon source for several years after 
the drought, as shown for the Amazon (Brienen et al., 2015; Phillips et al., 2009; Yang et al., 2018). How-
ever, much less is known about the response of pantropical forest biomass to climate variations because of 
diverse physiological processes involved.

The complex physiological processes controlling biomass carbon stock dynamics can be grouped into con-
trols on carbon input (i.e., net primary production [NPP]) (W. Wang et al., 2011; Zhou et al., 2018) and 
controls on how fast carbon will be released from biomass pools (defined as carbon turnover time [τ]) (De 
Kauwe et al., 2014; Koven et al., 2015). As two major components, NPP and τ regulate the total biomass car-
bon (TBC, i.e., sum of the aboveground and belowground biomass) through the equilibrium carbon storage 
capacity (Ccap), which equals to NPP multiplied by τ (Luo et al., 2017; Xia et al., 2013). Ccap represents the 
maximum capability of a carbon pool to sequestrate carbon based on instantaneous environmental forcing 
(Luo et al., 2017). TBC will always converge towards Ccap (Luo et al., 2017). When Ccap is dynamic with 
a changing environment, the tendency of TBC will adjust correspondingly. In an ideal steady state, TBC 
approximates to Ccap (fluctuates tightly around Ccap) and reaches its equilibrium (L. Jiang et al., 2017; Luo 
et al., 2017). Therefore, the changes in TBC are largely dependent on the trends of τ and NPP, which are 
impacted by conditions of heat, water and energy (Seddon et al., 2016; Wu et al., 2018).

The climate responses of NPP and τ may contribute differently to biomass change. For example, high-
er temperature may stimulate NPP before reaching the optimum temperature (Huang et al., 2019; Raich 
et al., 2006) but may also increase mortality and accelerate τ (Mitchard, 2018; Park Williams et al., 2013), 
leading to different effects on carbon stock. Brienen et al. (2015) also showed that although forest produc-
tivity in the Amazon slightly increased since 1980s, carbon stock decreased because of a faster increase in 
mortality (indicating lower τ). In addition, climate, soil fertility conditions and forest species and their traits 
are unevenly distributed within tropical forests (Anderegg et al., 2018; Guan et al., 2015). Therefore, differ-
ent patterns of climate change impacts on biomass would be expected in different regions of the tropics. 
For example, Guan et al. (2015) pointed out that forest gross primary productivity (GPP) is higher in the 
wet season than in the dry season in central Africa, while the opposite was true in the Amazon forest north 
of the equator. Unlike productivity, however, there is no direct observation of turnover time. Carvalhais 
et al. (2014) and Wu et al. (2018) analyzed the spatial patterns of turnover time assuming steady state, where 
turnover time is calculated from the carbon pool stock divided by the input flux (i.e., mass/flux). But real 
ecosystems are rarely in equilibrium, and how turnover time changes over time remains unclear.

In this study, we deduced transient turnover time of tropical forest from satellite-derived annual estimates 
of biomass stock and NPP from 2001 to 2012. We examined changes of τ and NPP in different tropical re-
gions and further explored how climate variations (temperature, precipitation, radiation and vapor pressure 
deficit [VPD]) contributed to different temporal trends of τ or NPP across different regions in the tropical 
forest along mean annual precipitation (MAP) gradient.

2. Materials and Methods
2.1. MODIS NPP Data

We used forest NPP from the 1 km MOD17A3 product, a light use efficiency model applied to moderate-res-
olution imaging spectroradiometer (MODIS) observations of FPAR, the fraction of absorbed photosyntheti-
cally active sunlight (Zhao et al., 2005). Based on MODIS land cover map (MOD12C1, 0.05°) (Friedl et al., 
2010), only grid cells classified as forest in all years during 2001–2012 are used to build the forest mask. The 
original 1 km NPP dataset was resampled at the resolution of MOD12C1 data (0.05°), to separate forest and 
non-forest NPP. The multiyear average and standard deviation (1-σ, the same below) of total NPP in the 
tropical forest biome was 18.7 ± 0.3 PgC·y−1 (Figure S1c), while the tropical non-forest NPP was 9.3 ± 0.3 
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PgC·y−1. Forest NPP and non-forest NPP were further resampled at 0.25° resolution to match the resolution 
of biomass data used in this study (see Section 2.2).

2.2. Tropical Forest Biomass Data

Aboveground biomass carbon (ABC) in tropical forests (23.5°N to 23.5°S) during 2001–2012 was extracted 
from the global ABC dataset of Liu et al. (2015). The biomass dataset from Liu et al. (2015) was derived from 
harmonized X-band vegetation optical depth (VOD) retrievals based on passive microwave satellite sensors 
(Liu et al., 2011, 2015). In this study, ABC was converted to TBC by using biome-mean conversion factors 
(TBC/ABC ratios) from Liu et al. (2015), with a value of 1.26 for tropical forest. Based on the assumption 
that the biomass carbon turnover time of non-forest vegetation (mostly shrub and grass) was around one 
year (Lauenroth & Adler, 2008), non-forest TBC approximates annual non-forest NPP (Erb et al., 2016). 
Therefore, we subtract annual non-forest NPP from TBC in each 0.25° grid cell in order to derive pure forest 
TBC from the coarse resolution (0.25°) TBC map. The multiyear averaged total TBC in our study region was 
234.4 ± 2.1 PgC, including 225.2 ± 2.3 PgC for forest (Figure S2a) and 9.2 ± 0.3 PgC for non-forest.

2.3. Fire Mask and Climatic Datasets

Tropical forest is subject to both natural and anthropogenic fire (Mitchard, 2018). Forest fires cause large 
carbon emission and may have long-term effects, such as changes in age composition, degradation and suc-
cession (Brando et al., 2019; Deklerck et al., 2019; Pellegrini et al., 2017; Pugh et al., 2019). Fire disturbance 
may change the response of forest TBC to climatic factors because of its strong effects on forest carbon 
cycle (Pellegrini et al., 2017; Pugh et al., 2019). In order to exclude the impacts of fire, we use the burned 
area product (Fire_CCI) from the European Space Agency (ESA) (Chuvieco et al., 2012). We calculated the 
burned area fraction at 0.25° for MODIS NPP, and only grid cells with more than 90% of area without fire 
disturbance in all years during the study period were analyzed for turnover times (Figure S3). Because we 
separated forest NPP from non-forest NPP and only analyzed grids which are persistently defined as forest, 
the impacts of land use change were largely excluded. In the tropical forest that was not disturbed by land 
use change and fire, we further attributed changes of turnover time and NPP to changes of temperature, 
precipitation, radiation and VPD. We used monthly temperature and precipitation data from Climate Re-
search Unit (CRU TS version 4.02, http://www.cru.uea.ac.uk/cru/data/hrg/) and shortwave radiation data 
from the BESS dataset based on MODIS data (Ryu et al., 2018). To obtain VPD, we used surface pressure, 
2-m air temperature and specific humidity from blended datasets of Climatic Research Unit and Japanese 
Meteorological Agency reanalysis (CRU JRA V1.1, University of East Anglia Climatic Research Unit; Har-
ris (2019)). VPD was calculated using the R package “bigleaf” (Knauer et al., 2018). The spatial resolution 
is 0.25° for radiation data and 0.5° for temperature, precipitation and VPD data. The temporal resolution of 
climatic data was integrated into annual scale. Temperature, precipitation and VPD data were resampled at 
0.25° resolution to match the resolution of NPP and TBC.

2.4. Data Analysis

Based on annual forest TBC and NPP, the steady state carbon turnover time (τ, y) is defined as the ratio 
between carbon stock and net carbon output flux (Zhou et al., 2018):

TBC
NPP dTBC

 


 (1)

where, dTBC (kgC·m−2 y−1) is the annual change in TBC. Net output flux of TBC is defined as the difference 
between NPP and changes of TBC (i.e., NPP−dTBC, kgC·m−2· y−1). Because we excluded the impacts of fire 
and land cover change, carbon output flux includes processes like litter fall, mortality, VOCs (volatile organ-
ic compounds) emission and disturbances like drought and herbivory. In some grid cells, negative values of 
τ were derived because NPP < dTBC. However, these grid cells only account for 0.5% of our study region, 
and we thus masked them in the following analyses. Ccap can be calculated by
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cap NPPC   (2)

Because TBC in tropical forests is not in equilibrium, τ and Ccap also change in response to changing climate, 
and their multiyear mean values are shown inFigures S4 andS5, respectively. 3-year moving averages of 
τ, NPP and the climatic factors were used for the subsequent analyses to avoid the impacts of anomalous 
years. We calculated linear trends of forest τ and NPP from 2001 to 2012 for each grid cell. The significant 
trends (p < 0.1) of τ and NPP in each grid cell were used to define subregions in our study (see Section 3.1). 
We also did a Mann-Kendall test to verify the linear trends (see Section 4.2) by package “Kendall” (version 
2.2) in R. We further divided our study period into two-half segments (i.e., the period before 2006 and the 
period after 2006), and tested whether the mean values of τ or NPP during the latter segment are significant-
ly different from the mean values during the former one. Relative trends (absolute trend divided by average) 
and interannual variability (IAV, coefficient of temporal variation) of detrended NPP, τ and biomass were 
also calculated to analyze their temporal variations during 2001–2012 (see Section 4.2).

To analyze how climatic factors impact changes of τ and NPP, partial correlations of climatic factors with τ 
or NPP were calculated. Then, we fitted a multiple linear regression model with the 3-year moving average 
data in each grid cell (Equation 3).

0 Tmp. Tmp. Pre. Pre. Rad. Rad. VPD VPD .y x x x x Resi          (3)

where, y is τ or NPP in each year; explanatory variable Tmp.x , Pre.x , Rad.x  and VPDx  is yearly temperature, pre-
cipitation, shortwave radiation and VPD, respectively. Tmp. , Pre. , Rad.  and VPD  represent temporal sensi-
tivities of τ or NPP to changes of temperature, precipitation, shortwave radiation and VPD; .Resi  represents 
the residual.

Furthermore, we calculated the linear trends of temperature 
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�  in Equation 4.

Tmp. Pre. Rad. VPD
Tmp. Pre. Rad. VPD

.dxdy dx dx dx dResi
dt dt dt dt dt dt

        (4)

2.5. Other NPP Datasets for Validation

To evaluate the robustness of the results based on MODIS NPP, we also tested NPP from GIMMS (Smith 
et  al.,  2016), and NPP derived from GPP estimates from BESS (C. Jiang & Ryu,  2016) and the updated 
P-model from Stocker et al. (2019) (Stocker19, hereafter). Brief description of these NPP datasets can be 
found in Table S1. The GIMMS NPP dataset was mainly based on the remote sensing products (i.e., LAI3g 
and FPAR3g) from Global Inventory Modeling and Mapping Studies (GIMMS) and used the same light use 
efficiency algorithm as MODIS NPP (Smith et al., 2016; Zhu et al., 2013). The original datasets of BESS 
and Stocker19 are GPP instead of NPP, and we multiplied GPP by the carbon use efficiency (CUE = NPP/
GPP) in each year from MOD17A3 product (mean CUE is 0.42 ± 0.08 across the tropical forest, Figure S6) 
to convert GPP to NPP (more details in Text S1). In BESS, GPP was calculated based on MODIS leaf area 
index (LAI) and a simplified process-based model including radiation transfer, canopy photosynthesis and 
evapotranspiration (C. Jiang & Ryu, 2016; Ryu et al., 2011). In Stocker et al. (2019), GPP was calculated from 
a leaf scale photosynthesis model driven by climate variables and assuming coordinated photosynthesis 
(P-model) (H. Wang et al., 2017) with MODIS FPAR, accounting for soil moisture stress on GPP (Stocker 
et al., 2019).
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NPP derived from the GPP of BESS and Stocker19 cover the time period of the MODIS NPP product (2001–
2012), but GIMMS NPP only covers 2001 to 2011. The resolution of NPP from GIMMS, BESS and Stocker19 
is 1°, 0.5°, and 0.5°, respectively, so it is not possible to separate forest NPP from non-forest NPP directly at a 
finer resolution. We therefore used the ratio between forest NPP and non-forest NPP from MODIS NPP data 
in each corresponding grid cell to derive forest NPP map from the other three NPP datasets. Total NPP in 
the tropical forest was 14.1 ± 0.2, 14.4 ± 0.2, and 12.2 ± 0.2 PgC·y−1 based on GIMMS, BESS and Stocker19, 
respectively, which is lower than MODIS NPP (i.e., 18.7 ± 0.3 PgC·y−1, Figure S1c). In addition, the spatial 
patterns of NPP from these three datasets were different from MODIS NPP, especially in the dry tropical 
forests (Figure S1). For the analysis based on NPP from GIMMS, BESS and Stocker19, gridded radiation data 
(0.25°) were resampled at 0.5° resolution.

To assess the satellite based NPP and τ trends, we collected site-level field observations from ForestPlots.
net (http://www.forestplots.net/) repository (Lopez-Gonzalez et al., 2011): NPP and carbon loss in tropical 
Africa (Hubau et al., 2020); NPP, carbon loss and biomass in Amazon (Brienen et al., 2015) within our 
study region. Trends from satellite-based data were then compared against the trends from field data (see 
Section 4.3 and Text S2).

3. Results
3.1. Trends of Turnover Time and NPP During 2001–2012

Trends of τ and MODIS NPP show generally opposite spatial patterns (Figures 1a and 1b and Figures S7 and 
S8). τ decreased along the Atlantic coast (in central Africa and northeastern South America) but increased 
along the Pacific coast (Southeast Asia and western Amazon) as shown in Figure  1a. On the contrary, 
MODIS NPP shows an increasing trend in regions near the Atlantic coast but decreasing along the Pacific 
coast (Figure 1b). Because τ and NPP jointly determine the Ccap (Equation 2) which further controls TBC, 
opposite trends of τ and NPP result in a nonsignificant Ccap trend (Figure S9) and a weak TBC trend (Fig-
ure S2) in most regions. These results suggest a strong spatial covariance between NPP and τ.

There were 70.4% grid cells (0.25°) with significant trends (p < 0.1) of either τ or NPP, and 46.1% grid cells 
with significant trends for both τ and NPP (Table S2). Based on grid cells with significant trends of both τ 
and NPP, we divided the study area into four subregions (Figure 1c and Table S2): (1) increasing NPP and 
increasing τ (N+T+), (2) decreasing NPP and increasing τ (N−T+), (3) increasing NPP and decreasing τ 
(N+T−), and (4) decreasing NPP and decreasing τ (N−T−). An increasing input flux and increasing turn-
over time (i.e., decreasing output flux) in the N+T+ subregion would sequester more carbon by increasing 
Ccap, while grid cells in N−T− regions are losing carbon from biomass pools. The total area of these grid cells 
is very small across tropical forest, representing only 0.4% and 1.2% of all tropical forests, respectively (Ta-
ble S2). The few N+T+ grid cells are found mainly in Africa and the few N−T− ones are in South America 
and Southeast Asia (Figure 1c). The N−T+ and N+T− subregions, on the other hand, cover most parts of 
tropical forests (blue and green colors in Figure 1c), which could be expected from the covariance of NPP 
and τ trends in Figures 1a and 1b. The future change in forest Ccap and TBC in these two subregions remains 
uncertain since most grid cells have opposite trends of τ and NPP (Figures 1a and 1b). Whether future Ccap 
and TBC will steadily increase or decrease largely depends on the trade-off between the trends of τ and NPP. 
Thus, we will mainly focus on the two subregions (N−T+ and N+T−) hereafter.

We further analyzed grid cells in these two subregions in relation with spatial patterns of mean annual 
precipitation (MAP, Figure S10). After plotting the frequency distribution of the N−T+ and N+T− subre-
gions along MAP gradient (the inset plot in Figure 1c), we found a MAP threshold at about 2,000 mm·y−1 
that separates these two subregions. The N+T− grid cells with MAP <2,000 mm·y−1 are mainly in central 
Africa (i.e., rainforests in DRC) while the fewer N+T− grid-cells with MAP >2,000 mm·y−1 are in the cen-
tral Amazon north of the equator and in the Guyana shield (Figure 1c and Figure S10). Most N−T+ grid 
cells with MAP >2,000 mm·y−1 are in western Amazon and Southeast Asia and the fewer ones with MAP 
<2,000 mm·y−1 are around the border between Brazil and Peru (Figure 1c and Figure S10).
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3.2. Partial Correlations Between Climatic Variables and Turnover Time or NPP

Partial correlations between annual τ or NPP time series and time series of temperature, precipitation, 
radiation and VPD were calculated as described in Section 2.4. Spatial distributions of (temporal) partial 
correlation coefficients between each climatic factor and τ or NPP are shown in Figures S11 and S12.

Figure 2 shows heat maps of (temporal) partial correlation coefficients between each climatic factor and τ or 
NPP in the N−T+ and N+T− subregions along the MAP gradient. In grid cells with MAP <2,000 mm·y−1, 
about half grid cells show a positive correlation τ and temperature, and the other half show a negative corre-
lation, but when MAP exceeds 2,000 mm·y−1, τ is mainly negatively correlated with temperature (Figure 2a). 
Negative partial correlation between τ and precipitation is dominant in regions with MAP <2,000 mm·y−1 
(Figure 2b). Partial correlation coefficients between τ and precipitation gather in strong negative values 
around MAP of 2,000 mm·y−1, and become weak when MAP >2,400 mm·y−1 (Figure 2b). The partial cor-
relations between τ and radiation are mainly negative in regions with MAP <2,000 mm·y−1 and weak in re-
gions with MAP >2,000 mm·y−1 (Figure 2c). The correlations of τ with VPD are rather symmetrical to those 
with temperature, with mainly positive and fewer negative values for MAP <2,000 mm·y−1 (Figure 2d) and 
mainly positive values for MAP >2,000 mm·y−1 (Figure 2d).

In summary, for most of the drier grid cells near the lower range of tropical MAP (<2,000 mm·y−1), partial 
correlations between τ and radiation tend to be more negative (from −0.6 to −1.0, Figure 2c), and partial 
correlations with temperature, precipitation and VPD vary across a large range from negative to positive 
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Figure 1. Trends of turnover time (τ) and NPP during 2001–2012 and division of four subregions. Panels (a and b) 
show trends of τ (day·y−1) and NPP (gC·m−2 y−2), respectively, with dots indicating the significant trends (p < 0.1). 
The division of four subregions in panel c was based on the significant trends in panels (a and b) (“N” and “T” refer 
to NPP and τ). Standardized frequency (the range of density was stretched into 0 to 1) of grid cell number with colors 
corresponding to N+T− and N−T+ subregions along the MAP gradient is embedded in panel (c). MAP, mean annual 
precipitation; NPP, net primary production.
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values (i.e., −1.0 to 0.9, −0.9 to 0.5, and −0.2 to 1.0, respectively, see in Figures 2a, 2b, and 2d). In wetter grid 
cells where MAP >2,000 mm·y−1, the partial correlations with temperature, precipitation and VPD have a 
more mono-modal distribution (Figures 2a, 2b, and 2d), while correlations with radiation are weak.

Compared to the partial correlations between τ and climate variables (Figures 2a and 2d), a generally re-
versed pattern is shown for NPP (Figures 2e and 2h) except for some slight differences. For example, there 
are more positive partial correlation coefficients between NPP and temperature (Figure 2e) than those be-
tween τ and temperature towards negative values (compare Figures 2a and 2e), indicating a more unified 
control of temperature changes on NPP changes than on τ changes. VPD positively correlated to τ in most of 
grids in our study region (Figure 2d), and it was generally negatively correlated with NPP (Figure 2h). This 
is expected because MODIS NPP algorithms rely on a VPD sensitivity function in their light use efficiency 
model (Running & Zhao, 2015). In addition, the partial correlation coefficients between NPP and VPD are 
more concentrated to negative values (−0.5 to −1.0, Figure 2h) than those between τ and VPD (−0.2 to 1.0, 
Figure 2d), especially in regions with MAP <2,000 mm·y−1.

Figure 3 shows the partial correlations of τ and NPP with climatic factors in the two major subregions (i.e., 
N−T+ and N+T−) along the MAP gradient with intervals of 200 mm·y−1. The blue (N−T+) is separated 
from the green line (N+T−) in Figure 3a, indicating the different impacts of temperature on τ along MAP 
in these two subregions. In the N+T− grid cells with MAP >2,200 mm·y−1, positive correlations between 
τ and temperature are found in green line of Figure 3a but the corresponding area is small (Figure 1c, in-
set). Therefore, in regions with MAP >2,200 mm·y−1, τ is mainly negatively correlated with temperature 
with prevailing N−T+ as indicated by the blue line in Figure 3a. In the N+T− subregion, the partial cor-
relation between τ and precipitation is persistently negative along the MAP gradient below 2,200 mm·y−1 
(green line in Figure 3b). In the N−T+ sub region, the coefficients between τ and precipitation are small 
on average (blue line in Figure 3b). The negative correlations between τ and radiation in regions with MAP 
<2,000 mm·y−1 in Figure 2c are mainly contributed by N+T− grid cells (green line in Figure 3c). The cor-
relations between τ and radiation are generally weak when MAP exceeds 2,200 mm·y−1 in the N−T+ sub-
region (blue line in Figure 3c). In both N−T+ and N+T−, the partial correlation coefficients between τ and 
VPD are generally positive, except N−T+ grids with MAP around 1,400 mm·y−1 and around 3,800 mm·y−1 
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Figure 2. Heat-maps of partial correlation coefficients with turnover time (τ) and NPP along MAP gradient. Four columns of panels are for temperature (a and 
e), precipitation (b and f), radiation (c and g), and VPD (d and h), respectively, while two rows of panels are for τ (a to d) and NPP (e to h). The vertical line in 
each panel indicates MAP of 2,000 mm·y−1 and horizontal line indicates division of negative or positive correlation. Relative density by stretching the original 
density into the range of 0 to 1 was used to be comparable across different panels. Only significant correlation coefficients in grid cells in N+T− and N−T+ 
regions (see Figure 1c) are shown here. MAP, mean annual precipitation; NPP, net primary production; VPD, vapor pressure deficit.
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where they are negative (Figure 3d), but only 3% and 0.4% of total grid cells are concerned. The partial cor-
relations of NPP with climatic factors in the two major subregions are shown in Figures 3e and 3h, and their 
patterns are generally reversed from those of τ (Figures 3a and 3d).

3.3. Contributions of Climatic Factors to Turnover Time and NPP Trends

How changes of climatic factors contribute to the trends of τ (or NPP) depends not only on the temporal 
sensitivities ( i  in Equation 3) but also on the trends of the climatic factors (Figures S13 and S14). That is, 
if the sensitivity of τ (or NPP) to a climatic factor has the same sign as the trend of this climatic factor, it 
will contribute to an increment (i.e., positive trend) of τ (or NPP), and vice versa (Figure S14). The temporal 
trend of τ and NPP can largely be explained by the four climate factors selected with a spatially averaged 
R2 of 0.77 for τ (Figure S15) and 0.83 for NPP (Figure S16), while residuals of the multiple linear regression 
models only contributing small parts (Figures S17 and S18).

Figure 4 summarized the contributions of each factor in the N+T− and N−T+ subregions. In the N+T− 
subregion (mainly where MAP <2,000 mm·y−1), both precipitation and radiation are associated with de-
creasing τ trends, with a dominant role of radiation (Figure 4a). This is mainly caused by the negative con-
tributions of radiation and precipitation in central Africa to the τ trends (see Figures S15b and S15c). The 
dominant contribution of radiation to τ trends in the N+T− grid cells is jointly determined by the negative 
sensitivity of τ to radiation and the positive radiation trend, which is shown as the hotspot concentrated 
into the fourth quadrant in Figure S14i. VPD also has considerable negative contributions to τ trends, while 
the contribution of temperature is minor in the N+T− subregion (Figure 4a). In the N−T+ region (mainly 
where MAP >2,000 mm·y−1), the contributions of precipitation and radiation to the positive trends of τ are 
smaller in absolute values than in the N+T− region (Figure 4a), indicating differences in the contributions 
of climatic factors to τ trends in different subregions. By contrast, temperature and VPD contribute to a large 
proportion of the increasing τ trends in the N−T+ subregion (Figure 4a), which is driven by their positive 
contribution in Southeast Asia and western Amazon (Figures S15a and S15d). In these regions, temperature 
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Figure 3. Partial correlations with turnover time (τ) and NPP along MAP gradient. Four columns of panels are for partial correlations with temperature (a and 
e), precipitation (b and f), radiation (c and g), and VPD (d and h), respectively, while two rows of panels are for τ (a to d) and NPP (e to h). The medians (solid 
lines) and quartiles (shades) of significant partial correlation coefficients in the two subregions (green for N+T− and blue for N−T+) were shown for each MAP 
bin of 200 mm·y−1. MAP, mean annual precipitation; NPP, net primary production; VPD, vapor pressure deficit.
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mainly has decreasing trends (Figure S13a) and negatively correlates to τ (Figure S11a), while VPD has 
mainly increasing trends (Figure S13d) and positively correlates to τ (Figure S11d).

Compared to their contributions to τ trends (Figure  4a and Figure  S15), climatic factors generally have 
similar contributions to NPP trends, but with an opposite sign (Figure 4b and Figure S16). Still, there are 
some differences. For example, VPD has more relative contributions to the NPP trends than the τ trends in 
the N−T+ region. In turn, temperature contributed relatively less to the NPP trends than to the τ trends. 
In addition, VPD tends to suppress rather than stimulate NPP, because VPD generally has negative corre-
lations with NPP and increasing trends in the N−T+ region (Figure 4b and Figures S12d, S13d, and S14p).

4. Discussion
4.1. Factors Contributing to Changes of Turnover Time and NPP

We analyzed the temporal correlations between τ and climatic factors in this study. Some previous studies 
also focused on vegetation carbon turnover time globally or regionally but on the spatial relationships be-
tween external factors and τ instead of temporal correlations (Carvalhais et al., 2014; J. Wang et al., 2018; 
Wu et  al.,  2018). Our temporal correlation coefficients show high spatial heterogeneity, which may not 
be reflected in the spatial correlations. For example, the signs of partial correlation coefficients between 
temperature and τ in the N+T− and N−T+ subregions are different across a MAP threshold of about 
2,000 mm·y−1 in (Figure 3a), but Wu et al. (2018) showed a generally positive spatial correlation between 
temperature and τ in tropics. The relatively uniform correlation coefficients and regression coefficients may 
be caused by the multiyear mean data (2000–2005) they used and by the close association among neigh-
bor grids when calculating spatial correlation and fitting the multiple linear regression (Wu et al., 2018). 
Therefore, temporal correlations could provide more direct evidence to understand how transient turnover 
time may change in future climate by excluding the possible biases raised by spatially heterogeneous soil 
conditions in the spatial correlation.

In regions with MAP <2,000 mm·y−1, both positive and negative partial correlations of temperature with τ 
or NPP were found (Figures 2a and 2e), which resulted in an unclear contribution of temperature to τ and 
NPP trends (Figure 4). Tropical forest is not limited by temperature; on the contrary, excessive temperatures 
may exceed the optima of tropical forest to sequestrate carbon and enhance water-stress in the precipita-
tion-limited regions (Corlett, 2011; Huang et al., 2019; Samaniego et al., 2018). Where precipitation is not 
limiting (i.e., MAP >2,000 mm·y−1 in this study), higher temperature tends to further accelerate turnover 
processes (decrease of τ) and enhance productivity over the study period (Figures 2a and 2e and the blue 
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Figure 4. Contribution of temperature, precipitation, radiation, and VPD to the significant trends of turnover time 
(τ) and NPP in the N+T− and N−T+ subregions. Based on the multiple linear regression in Equation 3, trends of τ 

(panel a, day·y−1) and NPP (panel b, gC·m−2 y−2) were decomposed into contributions of climatic variables ( i
i
x
dt

  in 

Equation 4) and trends of residuals (in gray). Black lines indicate trends of τ and NPP. NPP, net primary production; 
VPD, vapor pressure deficit.
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line of Figures 3a and 3e). Precipitation mainly has negative correlation with τ and positive correlation 
with NPP in regions with MAP <2,000 mm·y−1 (Figures 2b and 2f). Increasing precipitation trends in arid 
regions (such as some regions in Africa) would alleviate the potential water stress and may explain in-
creases in NPP and decreases in τ (Phillips et al., 2009). Although less rainfall (and the potential drought 
induced) may increase litter fall and mortality rate and accelerate turnover (decrease τ) in regions with 
MAP <2,000 mm·y−1, the negative correlation between precipitation and τ are dominated by its dependence 
on NPP (Figures 2b and 2f). Where vegetation is less limited by water (e.g., MAP >2,500 mm·y−1 in Fig-
ure 2f), more rainfall will not always stimulate NPP, which is partly revealed by the responses of vegetation 
index to precipitation from Guan et al. (2015). Similarly, Ahlström et al. (2017) also found a threshold of 
∼2,000 mm·y−1 in the Amazon rainforest, below which evapotranspiration, GPP and biomass increase with 
precipitation but become saturated above.

Although radiation has no direct impact on the turnover processes, τ and radiation are negatively cor-
related in regions with MAP <2,000  mm·y−1 (Figure  2c and central Africa in Figure  S11). This may be 
because τ is linked with NPP (Schlenger et al., 2019; Stephenson & van Mantgem, 2005) from its definition 
(Equation 1) and more solar radiation absorbed will increase carbon input through NPP. In the regions 
with MAP <2,000 mm·y−1, NPP is strongly positively correlated with radiation (Figure 2g). In central Afri-
ca where MAP <2,000 mm·y−1, increasing radiation (Figure S13c) accompanied by the increasing rainfall 
(Figure  S13b, which alleviated water stress caused by radiation-driven evapotranspiration) largely con-
tributed to increasing NPP trends (Figure S16b). More solar radiation absorbed in the regions with MAP 
<2,000 mm·y−1, indirectly changed τ because of its disproportionate impacts on NPP and carbon efflux. In 
regions with MAP >2,000 mm·y−1, more clouds limit radiation available for vegetation and thus radiation 
may also limit productivity (Huete et al., 2006; Seddon et al., 2016). However, the temporal correlations 
between radiation and NPP or τ in these regions are generally weak (Figures 2g and 3g). Optical satellite 
measurements of productivity are generally limited to cloud-free days, so they may be biased over wet trop-
ical forests. Small temporal variations of radiation there (coefficient of variation is 2.3%) during this period 
may also limits its contribution to NPP or τ trend.

VPD positively correlated to τ in most of grids in our study region (Figures 2d and 3d), and it was generally 
negatively correlated with NPP (Figures 2h and 3h). This is expected because VPD was used as a predic-
tor variable in the MODIS NPP algorithms (Running & Zhao, 2015). Higher VPD is also associated with 
droughts (Park Williams et al., 2013), which may suppress NPP (Cleveland et al., 2011; Novick et al., 2016; 
Zhao & Running, 2010) or change its allocation among different organs (Doughty et al.,  2015; Girardin 
et al., 2016). Trends of τ may be indirectly affected by the impacts of VPD on NPP because of the covariance 
between NPP and τ (see in Section 4.3).

In this study, drivers for trends of τ and NPP were analyzed after overlaying a fire mask. Many processes 
could be impacted by the fire regime which is controlled partly by climate (Mitchard, 2018). For example, 
fire driven by extreme high temperature and low rainfall may promote tree mortality rate, cause large CO2 
emission from biomass, induce forest edge effects and determine succession of species (Brando et al., 2019; 
Deklerck et al., 2019; Pellegrini et al., 2017; Pugh et al., 2019). We applied a fire mask in our analyses since 
we only aimed to reveal the direct contribution of climatic factors on τ and NPP without being affected 
by fire disturbance. Therefore, we note here that the indirect effects (e.g., climate induced fires) on τ are 
not included in this study. In addition, due to lack of appropriate datasets, disturbances like pest outbreak 
(Nair, 2001) and windstorm (Magnabosco Marra et al., 2018) are not considered specifically in our study. In 
addition to temperature, precipitation, radiation, and VPD, other external factors like soil moisture and at-
mospheric dryness should also influence the trends of τ and NPP (e.g., drought events across Amazon forest 
in 2005 and 2010) (Doughty et al., 2015; Green et al., 2019; Trugman et al., 2018). However, temperature, 
precipitation, radiation and VPD represent the major factors controlling the biophysical processes that are 
directly related to biomass change (Seddon et al., 2016). Soil moisture largely depends on evapotranspira-
tion and precipitation, indicating that soil moisture effects may indirectly be represented by a combination 
of temperature and precipitation (Dorigo et al., 2017; Humphrey et al., 2017). Although soil moisture may 
bring in some lag effects of climate conditions, a lack of gridded soil moisture dataset (e.g., a large data 
gap in the ESA CCI soil moisture dataset (Dorigo et al., 2017)) limits its use for the multiple linear regres-
sions in our study. Similarly, atmospheric aridity is related to temperature and precipitation (Park Williams 
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et  al.,  2013), and its impacts on forest TBC can be mostly expressed by the impacts of VPD (Anderegg 
et al., 2018; Novick et al., 2016; Zhou et al., 2019).

Climate conditions in the tropics are tightly associated to ENSO events, which further control forest dy-
namics and the carbon cycle (Zhang et al., 2018). We calculated the Kendall rank correlation between Mul-
tivariate ENSO Index (MEI (Wolter & Timlin, 2011), https://www.esrl.noaa.gov/psd/enso/mei/) and τ or 
NPP. Correlations between MEI and τ or NPP (Figure  S19) have similar patterns as trends of τ or NPP 
(Figures 1a and 1b), although with few significant correlation coefficients. The response of NPP to ENSO 
events is consistent with former studies (Bastos et al., 2013), with increased NPP along the Pacific coast and 
decreased along the Atlantic coast. The decreased τ during the El Niño years may result from higher mor-
tality induced by droughts (Laurance Susan et al., 2009; Leitold et al., 2018) or lower wood NPP allocation 
(Rifai et al., 2018). ENSO events change temperature and precipitation differently across different regions 
in tropics, which further determine water availability for forest production (Bastos et al., 2013; Laurance 
Susan et al., 2009).

4.2. Robustness of Turnover Time and NPP Trends

We calculated trends and temporal correlations using data from a relatively short period (2001–2012) which 
may also induce some uncertainties. To assess the significance of trends of τ and NPP statistically, we tested 
the trends by MK methods and calculate the difference of mean values between the two-half segments of 
our study period (i.e., the period before 2006 and the period after 2006). The MK test results (Figure S20) and 
the difference of mean values between the two-half segments of our study period (Figure S21) are generally 
consistent with the linear trends of τ and NPP (Figures 1a and 1b), verifying our analyses based on MODIS 
products in the study period.

We also calculated the relative trend and detrended coefficient of IAV to investigate the temporal variation 
of NPP, τ and biomass. The relative biomass trends range from 0% and 1.1% per year (90% CI, confidence in-
terval, and the median = 0.07%, the same below) across the tropical forest (Figure S22c). The relative trends 
of NPP and τ range from 0.16% to 2.9% per year (median = 0.09%, Figure S22a) and from 0.22% to 4.1% 
per year (median = 1.3%, Figure S22b), respectively. Relative trends of NPP are much larger than biomass 
in most of the grid cells. By contrast, in some grid cells in southeastern Amazon and western Indonesia, 
relative trends of biomass are higher than that of NPP. The spatial distributions of detrended IAV of NPP, τ 
and biomass (Figure S23) are generally similar to relative trends (Figure S22) in Southeast Asia and Africa 
but different in South America. In Southeast Asia, both IAVs and relative trends are high and decrease from 
west to east (Figures S22 and S23). In central Africa, relative trends of NPP and τ are much higher in the 
Congo basin than the surrounding area (Figure S22), but spatial gradients for IAVs are less noticeable (Fig-
ure S23). In South America, the high relative trends of NPP and τ mainly appear in grid cells near Peru, and 
southwestern Amazon (Figure S22), while the high IAV values of NPP and τ mainly appear in southeastern 
Amazon (Figure S23).

In addition, as described in Section 2.5, NPP from the other three datasets were used to calculate forest NPP 
and τ in tropics and to verify our results based on MODIS NPP, which were shown in the supporting infor-
mation (Figures S24–S27). Although NPP from BESS and Stocker19 were also based on MODIS FPAR or 
LAI, they used different algorithms. By contrast, the algorithms to produce GIMMS NPP data are the same 
as MODIS NPP but with different input data (Section 2.5). Results based on GIMMS NPP and on NPP from 
BESS and Stocker19 are generally in agreement with MODIS NPP with some slight differences (Figure 1 
and Figures S24–S27). For example, there were less significant trends of NPP or τ based on the GIMMS da-
taset (Figure S24), and temperature had a less negative contribution to trends of τ in N+T− subregion with 
this dataset (Figure S27b). Although the GIMMS NPP has a similar spatial distribution as BESS and Stock-
er19 (Figure S1), the time period of GIMMS NPP is 1 year shorter and the resolution (1°) is coarser, which 
may partly account for the difference. As a whole, results from all four NPP data sources showed a similar 
spatial distribution of subregions as well as a similar threshold of MAP ≈ 2,000 mm·y−1 that delineate the 
N+T− and N−T+ subregions (Figure 1 and Figure S24).
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4.3. Assessment of Uncertainties

We deduced the turnover time by taking transient changes in TBC into account rather than using the ra-
tio between TBC and NPP by assuming a steady state of the carbon pool in previous studies (De Kauwe 
et al., 2014; Wu et al., 2018). Still, the deduced τ in this study (Equation 1) is not fully decoupled with NPP as 
reflected by the generally reverse patterns between τ and NPP. NPP contributes 60.1% ± 14.7% to temporal 
variation of τ in our study region, while TBC contributes 20.7% ± 18.2% (Figure S28). Although impact of 
TBC on τ trend cannot be neglected (e.g., the same signs of trends for τ and dTBC in a few grid cells shown 
in Figure S29, the trend of τ is mainly inherited from NPP because the trends of TBC and dTBC are generally 
weak (Figure S2b) or nonsignificant (Figures S29 and Figure S30e). Although NPP and the deduced τ are 
not fully decoupled, they have different ecological implications. On the one hand, turnover time in biomass 
is impacted by carbon input flux (i.e., NPP), allocation of NPP, and carbon output fluxes (i.e., processes like 
litter fall and mortality, disturbances like fire, drought, insect, etc.). Therefore, NPP is indeed physically con-
nected to τ. On the other hand, it is still disputable in how to represent τ, and most studies used mass/flux as 
an approximation, which may largely reflect the changes in turnover rate. To better represent τ, differences 
in turnover processes among various carbon pools (Lu et al., 2018; Sierra et al., 2018) should be considered. 
To our knowledge, there is no large-scale observation based data to explicitly represent turnover processes 
of multiple pools and the carbon transit time is only possibly calculated by some process-based models, 
some specific field experiments or with the help of stable isotopes (Lu et al., 2018).

In this study, uncertainties in τ trends are inherited from uncertainties in biomass and NPP data we used. 
Uncertainties and the assessments were summarized in Table S3. To validate results based on MODIS NPP, 
we calculated the results based on BESS, GIMMS and Stocker19 datasets and they generally agree with 
MODIS NPP (Figures S24–S27). However, it is worth mentioning that these datasets are not fully independ-
ent from MODIS NPP (Table S1). These associations mainly include the same algorithms as MOD17A3 
products, input data based on MODIS products or the CUE (deduced from MODIS NPP/GPP) used to con-
vert NPP from GPP in BESS and Stocker19.

GIMMS NPP is calculated with the same algorithm as MODIS NPP but based on GIMMS products (i.e., 
FPAR3g and LAI3g) and different climatic datasets (Smith et al., 2016; Zhu et al., 2013). The algorithms to 
generate FPAR3g and LAI3g were trained by the MODIS FPAR and LAI, and these algorithms were then 
applied to AVHRR NDVI to generate GIMMS FPAR3g and LAI3g (Zhu et al., 2013). BESS GPP, which cou-
pled processes such as radiation transfer, photosynthesis and evapotranspiration, used 7 MODIS products 
(Table S1, including MODIS LAI) and other 11 datasets as inputs (C. Jiang & Ryu, 2016; Ryu et al., 2011). 
One of input data for GPP from Stocker19 was FPAR3g (Stocker et al., 2019), which may relate to MODIS 
FPAR as we discussed before. Climate variables, atmospheric CO2 concentration and soil moisture were also 
included in the P-model to derive GPP (Stocker et al., 2019; H. Wang et al., 2017).

In this study, CUE from MOD17A3 products was used to calculate NPP from BESS and Stocker19 in each 
year, which make these products not fully independent from MODIS NPP. Distribution of MODIS CUE 
trends are similar to MODIS NPP (see Figure S6b and Figure 1b), while the distributions of GPP trends 
from BESS and Stocker19 (Figures S31a and S31b) are rather different from their NPP trends derived from 
GPP (which are more similar to MODIS NPP, Figure S8). In order to compare the contributions of MODIS 
CUE and GPP to the trend of derived NPP, we calculated their relative trends and decomposed the trend of 
derived NPP into the trend induced by GPP and the trend induced by CUE (see Text S1 and Figures S32–S34 
for detail). Relative trends of MODIS CUE are generally twice larger than BESS GPP and Stocker19 GPP 
and relative trends of CUE overwhelm the relative trends of GPP in most regions (Figure S32). Although 
the spatial distribution of NPP trends is mainly contributed by MODIS CUE (91% and 73% for NPP derived 
from BESS and Stocker19 GPP, respectively), contributions of BESS GPP (9%) and Stocker19 GPP (27%) are 
not negligible (Text S1).

We applied a time-invariant CUE (i.e., mean MODIS CUE during 2001–2012, temporally constant but spa-
tially variant) on BESS and Stocker19 GPP to remove the impact of MODIS CUE on trends of the derived 
NPP. The trends of NPP and τ based on the time-invariant CUE (Figure S35) are generally insignificant and 
different from the results based on time-variant MODIS CUE (Figure S24). Only in the northeast region of 
South America, the “N+T−” trends are consistent in both MODIS NPP (Figure S24) and the alternative NPP 
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derived by the time-invariant CUE (Figure S35). In other regions, using time-invariant CUE trends largely 
changed the patterns of NPP and τ trends. Therefore, the trends of NPP derived from BESS and Stocker19 
GPP and MODIS CUE (Figure S24) are largely driven by the temporal trends in MODIS CUE. The robust-
ness of MODIS CUE thus determines the robustness of trends in the derived NPP. That is if the MODIS 
CUE is reliable, the spatial patterns from BESS and Stocker19 would be similar to the MODIS NPP, which 
could verify the results derived from MODIS NPP data.

In order to assess the MODIS CUE, we collected field observation CUE data from Collalti et al. (2019) and 
Malhi et  al. (2015). Within our study region, 21 plot observations for tropical forest CUE were selected 
(Figure S36). After merging field plots in the same 0.25° grid cells, observed CUE values in ten 0.25° grid 
cells were compared with MODIS CUE used in our study (Figure S37 and Table S4). In general, MODIS 
CUE can reproduce 7 out of 10 observations with error bars crossing the 1:1 line (Figure S37), implying 
consistency between the MODIS CUE and the observed CUE. The two mismatched sites are located in 
Xishuangbanna in China (mean observed CUE = 0.38 and mean MODIS CUE = 0.52, #9 in Figures S36 and 
S37 and Table S4) and in Tambopata in Peru (mean observed CUE = 0.42 and mean MODIS CUE = 0.60, 
#3 in Figures S36 and S37 and Table S4). Both sites lie on the regions with a high MODIS CUE (Figure S36 
and Table S4), indicating that MODIS may overestimate the CUE. The observed CUE is generally smaller 
than 0.5. By contrast, MODIS CUE is greater than 0.5 in some regions like northern Indo-China Peninsula, 
northeastern Amazon and along the Andes (Figure S36). MODIS CUE in these regions may be overesti-
mated because MODIS CUE in the tropics largely relies on the meteorological inputs which contains high 
uncertainties in the high elevations (Cleveland et al., 2015). Fortunately, in these regions with possible CUE 
overestimation, the trends of derived NPP from MODIS CUE and BESS GPP or Stocker19 GPP are mainly 
contributed by GPP instead of CUE (Figures S33 and S34). Therefore, the uncertainty of CUE in these re-
gions may have little impact on the NPP trends. Actually, we compared the field observed NPP trends with 
MODIS NPP trends (Text S2, Figures S38–S40), and the trends are generally consistent on a regional scale 
(Figures S39 and S40).

We should however remain cautious about MODIS CUE trends because of the underlying assumptions 
regarding autotrophic respiration. MODIS assumes a biome-type based constant fraction of GPP as growth 
respiration fraction and a high sensitivity of maintenance respiration to temperature (see details in the 
User's Guide of MOD17A2/A3 from (Running & Zhao, 2015). In contrast, plant respiration may be slightly 
changed by temperature variation because of thermal acclimation (Gifford, 2003; O'Leary et al., 2019; Reich 
et al., 2016). The globally high Q10 value in MODIS algorithms has been challenged by Medlyn (2011). 
Zhao and Running (2011) therefore tested different Q10 values and showed that the mean annual global 
NPP changed little with different Q10 values. They further checked the NPP trends after reducing Q10. The 
NPP trend during 2000–2009 decreased from −0.0548 to −0.0061 PgC·y−2, but the direction of global NPP 
trend didn’t change from negative to positive and the interannual variability of NPP changed little. In ad-
dition, algorithms of MODIS CUE don’t consider a lagged effect of plant response to temperature (Atkin & 
Tjoelker, 2003; Wen et al., 2018) and effect of elevated CO2 fertilization effect (Running et al., 2004; Running 
& Zhao, 2015), which may also contribute to CUE trends. However, due to lack of time series of observed 
CUE, it is not possible to independently verify the MODIS CUE trends. Although the mean values of CUE 
across different field studies are very close (e.g., 0.47 based on literatures in Waring et al. (1998) and 0.46 
based on literatures in Collalti and Prentice (2019)), considerable variations of CUE may be caused by for-
est type, stand age, climatic and soil conditions, disturbance and management (Collalti & Prentice, 2019). 
Therefore, the CUE trends in the tropical forest still need to be confirmed by future research with long-term 
observations of CUE.

Trends from field data were used to test the results based on satellite observation in our study as described 
in Section 2.5 and Text S2. On a regional scale, NPP from field observations are generally lower than MODIS 
NPP (Figure S39) and there are differences in the magnitude of trends, especially in the N−T+ subregion of 
Amazon where the field data shows a very weak trend compared to the strong trend of MODIS NPP (Fig-
ure S39c). But the overall trends from field observations are in the same direction as the MODIS NPP trends 
on a regional scale (i.e., N+ or N−, Figure S39). τ calculated from the field observations are generally higher 
than τ based on satellite data. Similarly, the field observation based τ trends agree with the satellite based τ 
trends on a regional scale (Figures S40a, S40c, and S40d) except in the N+T− subregion in tropical Africa 
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(Figure S40b), probably due to the large variations across different sites. It should be noted that the increas-
ing trend of τ in the N−T+ subregion in tropical Africa is mainly driven by the high τ value (1,292 years) 
in 2012 (Figure S40a) since the field data are very limited, which is consistent with the few area of N−T+ 
subregion in tropical Africa (Figure 1c). The comparison of NPP and τ trends (Figures S39 and S40) is based 
on a regional scale and thus partly avoids the impacts of extreme values and large variations at one single 
site and the strong heterogeneity in the whole 0.25° grids.

In this study, when converting ABC to TBC, the constant TBC/ABC ratio (1.26 for tropical forest) may not 
reflect the heterogeneity across tropics and may also enlarge the uncertainty of separation between forest 
and non-forest biomass. In order to evaluate the uncertainty induced by the constant TBC/ABC ratio (1.26 
used in this study), we used the range of this ratio (1.19–1.49) reported in previous studies for tropics (see 
Table S4 in Liu et al. (2015)). We assigned the TBC/ABC in each tropical grid cell randomly by assuming an 
even distribution from 1.19 to 1.49 (Figure S41) and recalculated τ and the corresponding trends. Although 
the random TBC/ABC ratios changed magnitudes of τ and τ trends, the direction of τ trends was little 
changed (Figure S42), because the temporal variations of τ are mainly contributed by NPP instead of bio-
mass. Therefore, the uncertainty caused by the TBC/ABC ratio has a very small impact on our major results.

The annual biomass data we used is deduced from X-band VOD retrievals (Liu et al., 2015), which may sat-
urate when biomass is high in the tropical forest (Rodríguez-Fernández et al., 2018; Chaparro et al., 2019). 
From Figure S43a, biomass based on X-band VOD retrievals in tropical forest generally saturate at 18 kg-
C·m−2. Biomass in regions with actual biomass above 18 kgC·m−2 may be insensitive to climate variations 
and contribute little to τ trend calculation (i.e., dTBC ≈ 0 in Equation 1), which result in the strong co-
variance between τ and NPP as we discussed before. In addition, X-band VOD may be more sensitive to 
canopy water content than to stem water content because of its shorter wavelength (Rodríguez-Fernández 
et al., 2018). The significant positive correlation between biomass and mean annual MODIS C6 FPAR (res-
ampled into 0.25°, Figure S43b) partly supports the connection between biomass and leaf density. Still, bio-
mass based on X-band VOD may reflect some signals of woody parts, because biomass continues to increase 
from 7 to 15 kgC·m−2 when FPAR becomes relatively flat (Figure S43b).

To assess biomass data from Liu et  al.  (2015), we first used satellite-based biomass data from Baccini 
et al. (2017). Because the annual biomass data from Baccini et al. (2017) are not publicly available, we only 
used the released biomass gain and loss for the whole period of 2003–2014 to assess biomass data from Liu 
et al. (2015). We resampled the aboveground biomass gain and loss (500 × 500 m) from Baccini et al. (2017) 
into 0.25° grid cells and merged them into the net changes. Net changes of forest aboveground biomass 
during 2001–2012 from Liu et al.  (2015) were then compared against the net changes during 2003–2014 
from Baccini et al. (2017) in Figure S44 and Table S5. The net changes from Liu et al. (2015) are generally 
lower than the net changes from Baccini et al. (2017) in most tropical forest regions, but the directions of 
net changes are overall consistent (Figure S44 and Table S5). In Africa, biomass from Baccini et al. (2017) 
shows net loss in the Congo basin and net gains in the surrounding regions (Figure S44a), but biomass data 
from Liu et al.  (2015) only shows net gain in the surrounding regions (Figure S44b). In South America, 
net biomass loss appears in most grid cells from Baccini et al. (2017) (Figure S44a), but the signal is only 
strong in the Southeast Amazon from Liu et al. (2015) (Figure S44b). The weaker biomass loss from Liu 
et al. (2015) in South America and tropical Africa (Figure S44) can be also reflected by the lower continental 
net changes in Table S5. In tropical Asia, biomass from Liu et al. (2015) shows stronger loss in Malaysia and 
West Indonesia but weaker gain in India and the northern parts of Indo-China Peninsula compared with 
biomass from Baccini et al. (2017) (Figure S44), which results in a larger carbon loss from Liu et al. (2015) 
in Table S5.

Aboveground biomass and the fitted linear trends from Liu et al. (2015) were also compared with 136 field 
observations in Amazon from Brienen et al. (2015). In Figure S45, the biomass magnitude and trend from 
Liu et al. (2015) are both lower than the field observations, but the overall trend from Liu et al. (2015) is 
in the same direction as the trend from field observations. Although the dataset from Liu et al. (2015) may 
underestimate biomass and be insensitive to biomass change due to the saturation of X-band VOD in the 
tropical forest, the directions of the trends are generally consistent with field based estimates both indicat-
ing a slight increase in tropical biomass over the period of analysis.
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In addition, the temporal resolution (annually) from Liu et al. (2015) may hide the effects of seasonal cli-
mate conditions (e.g., cooling trends of seasonal temperature during September to November as pointed 
out by (Cohen et al., 2012)). Also, the spatial resolution (0.25°) may be difficult to validate by field data and 
to separate forest and non-forest grid cells directly (i.e., the methods for separation in Section 2.2 may also 
bring uncertainties). However, biomass data with finer resolution (Baccini et al., 2017; Bouvet et al., 2018) 
as far as we can access are not temporally resolved so that can't be used to analyze the temporal changes as 
we do in this study.

5. Conclusion
Although many factors may contribute to changes of turnover time and NPP, the combination of tempera-
ture, precipitation, radiation and VPD represents most part of climatic impacts. Transient turnover time and 
its temporal association with climatic variables reveal the impacts of climate change on turnover time more 
directly than spatial correlation which may be biased by heterogeneity of soil condition. However, limited 
by the availability of long-term and large-scale observation based data, the long-term capability of carbon 
sequestration in tropical forest biomass cannot be fully assessed at this stage. In addition, the spatial pat-
terns of τ and NPP trends seem to depend largely on the CUE trends from MODIS because NPP trends are 
very sensitive to the CUE trend. Although the mean MODIS CUE generally agree with the mean CUE from 
field observations, uncertainties in CUE trends are not verifiable based on current knowledge and available 
data, and we should remain cautious when interpreting the results. It therefore calls for more observations 
of CUE trends in the future. In addition, long-term biomass data with finer resolution and better quality 
would improve the accuracy of the deduced turnover time and offer more insights for understanding tropi-
cal forest dynamics under future climate change.

Data Availability Statement
The original MODIS C6 FPAR data (MODIS FPAR product (MOD15A2H) Collection 6) is available through 
Chen et al. (2017) and can be downloaded from U.S. Geological Survey (https://lpdaac.usgs.gov/products/
mod15a2hv006/). MODIS NPP dataset (MOD17A3) is available from U.S. Geological Survey (https://lp-
daac.usgs.gov/products/mod17a3hv006/). The temperature and precipitation datasets are the public data 
from Climate Research Unit (CRU TS version 4.02, https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/
cruts.1811131722.v4.02/). The fire dataset is available from the fire projects of European Space Agency Cli-
mate Change Initiative (CCI) (Fire_CCI, http://www.esa-fire-cci.org/). The 2-m air temperature and spe-
cific humidity datasets are available from Climatic Research Unit and Japanese Meteorological Agency 
reanalysis (CRU JRA V1.1, University of East Anglia Climatic Research Unit; Harris (2019)). The Stocker19 
GPP data is available through Stocker et al. (2019) (https://zenodo.org/record/1423484). The BESS GPP data 
is available through C. Jiang and Ryu (2016) and can be downloaded from http://environment.snu.ac.kr/
bess_flux/. The radiation data is available through Ryu et al. (2018) and can be downloaded from http://
environment.snu.ac.kr/bess_rad/.
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