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First-detection time of a quantum state under random probing
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We solve for the statistics of the first detection of a quantum system in a particular desired state, when the
system is subject to a projective measurement at independent identically distributed random time intervals. We
present formulas for the probability of detection in the nth attempt. We calculate as well the mean and mean
square, both of the number of the first successful detection attempt and the time until first detection. We present
explicit results for a particle initially localized at a site on a ring of size L, probed at some arbitrary given site,
in the case when the detection intervals are distributed exponentially. We prove that, for all interval distributions
and finite-dimensional Hamiltonians, the mean detection time is equal to the mean attempt number times the
mean time interval between attempts. We further prove that for the return problem when the initial and target
state are identical, the total detection probability is unity and the mean attempts until detection is an integer,
which is the size of the Hilbert space (symmetrized about the target state). We study an interpolation between the
fixed time interval case to an exponential distribution of time intervals via the Gamma distribution with constant
mean and varying width. The mean arrival time as a function of the mean interval changes qualitatively as we
tune the interarrival time distribution from very narrow (δ peaked) to exponential, as resonances are wiped out
by the randomness of the sampling.
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I. INTRODUCTION

To read out the state of a quantum system, e.g., a quan-
tum computer, some measurement must be performed. Since
one does not typically know when the computation will be
complete, monitoring of the system over time must be per-
formed. Being a quantum system, this monitoring comes at a
price, since it interferes with the dynamics of the computation
[1–4]. One scheme of monitoring is that of repeated strong
measurements at discrete time intervals. In particular, the case
of periodic probing, the so-called stroboscopic protocol, has
received much recent attention [5–25]. Here we focus on the
problem of repeated probing at random rather than constant
intervals [26]. This includes, as a special case, that of al-
most periodic probing, which is of interest since in practice
the intervals between measurements cannot be held exactly
constant and will have some degree of inherent noise. We
study the statistics of how many measurements it takes until
the first successful detection of a given quantum state of the
system and how much time elapses until then, especially the
low-order moments of these quantities. We are particularly

*kessler@dave.ph.biu.ac.il
†eli.barkai@biu.ac.il
‡klaus.ziegler@physik.uni-augsburg.de

interested in how the results of this protocol compare to
the statistics of the stroboscopic protocol. It is known that
stroboscopic measurements have certain advantages and dis-
advantages with respect to classical first-passage processes.
One is that even for small systems the detection probability
can be less than unity due to so-called dark states, which is
undesirable. Other states, however, are detected very quickly
due to constructive interference, and this can lead to more
efficient detection. Yet near a set of exceptional τ ’s, the de-
tection is highly inefficient, with the detection time diverging
as these exceptional τ are approached. The ultimate question
is how will the randomness of the time intervals between
measurements help or hinder the detection process.

It should be noted that this “first-detection” problem is a
natural quantum analog of the classic first-passage problem
[27–29]. In fact, for periodic probing, the generating function
of the first-detection amplitude satisfies a renewal equation
exactly parallel to that of the classic first-passage problem
[8,14]. This renewal equation relates the generating function
of the first-detection amplitude (or probability, in the classic
problem) to the generating function of the free (i.e., unprobed)
propagator. Introducing random monitoring times in the clas-
sical problem simply changes the free propagator. Here we
will see that in the quantum case things are slightly more com-
plicated due to the need to average over squared amplitudes as
opposed to probabilities.
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To set the stage, we will first review the basic principles
of the stroboscopic protocol. One prepares the system in a
specified initial state |ψin〉. One lets the system (living in an N-
dimensional Hilbert space, N finite) propagate unitarily under
its Hamiltonian H for some fixed time τ and then performs
a strong measurement to detect whether the system is in the
desired final state |ψd〉. If the answer is yes, one stops there,
but if the answer is no, one waits a further time τ during
which the system continues its unitary evolution and per-
forms another measurement, and so on until success. By the
fundamentals of quantum mechanics, the unsuccessful mea-
surements change the wave function, projecting out the |ψd〉
component, so that the combined propagation-measurement
procedure breaks unitarity. The probability of successful de-
tection in the nth measurement is given by [6,10,14]

Fn = |〈ψd |φ(n)〉|2, (1)

where

|φ(n)〉 ≡ [U (τ ) P]n−1U (τ )|ψin〉 (2)

is, up to a normalization factor, the wave function at time nτ−,
right before the nth measurement, and P ≡ I − |ψd〉〈ψd |
projects out the detected state, I being the identity operator.
An illustrative example, which we will investigate in some
depth, is the case when H is a tight-binding Hamiltonian on
a graph, say a ring of L sites (so that here N = L), describing
the hopping of a particle from site to site. We can prepare
the system with the particle localized at a given site xin and
ask when we first detect it at some (generally different) site
xd , probing the site xd after every interval τ , with the system
propagating freely between measurements, until the particle
is successfully detected. The statistics of this first successful
detection, which arise from the interplay of the propagation
and measurement, are the focus of our study.

We now move beyond the stroboscopic protocol, with
its fixed τ , to the case where each successive τ is drawn
from some fixed distribution. At first glance, calculating the
statistics for this seems a tall order, since for anything more
complicated than a two-level system it is well-nigh impossible
to write down an explicit closed-form expression for the Fn

as a function of the sequence τi, i = 1, . . . , n, much less to
average over this large number of random variables. Simulat-
ing this process is simple, at least in principle. The simplest
in principle is a direct simulation, starting the system at ψin,
propagating for a random time interval drawn from the given
distribution, measuring, and if undetected, propagating for
another random interval and again measuring until successful,
then repeating the whole process many, many times. A more
efficient approach is to generate a sequence of IID τ ’s, with
probability density function ρ(τ ), and then to implement the
natural modification of Eq. (2),

|φ(n)〉 =
[

n∏
k=2

[U (τn)P]

]
U (τ1)|ψin〉, (3)

where the product is time ordered from right to left in in-
creasing k, and again, Fn = |〈ψd |φ(n)〉|2. Then one has simply
to repeat this process a huge number of times with different
sequences of τ ’s, averaging to produce 〈Fn〉, where the 〈·〉
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FIG. 1. The distribution P(n̄) of the mean measurements to de-
tection for a given realization of the intermeasurement intervals {τk},
n̄, constructed from 106 different realizations for the return problem
in the two-level system with hopping strength γ = 1. The τ ’s were
drawn from an exponential distribution with mean 〈τ 〉 = 0.6. Note
the square-root divergence near the lower limit of n̄ = 1, due to
cases where τ1 � 1 and so n̄ − 1 ∼ τ 2

1 . The distribution falls off
exponentially at large n̄.

denotes an average over the τ ’s:

〈Fn〉 =
∫∫ ∏

i

[ρ(τi )dτi]Fn({τi}). (4)

For the two-level system, with Hamiltonian H =
−γ (|0〉〈1| + |1〉〈0|), it is possible to express Fn analytically.
For example, for the so-called return problem, where |ψd〉 =
|ψin〉 = |0〉,

F1 = cos2 γ τ1;

Fn = sin2 γ τ1

(
n−1∏
k=2

cos2 γ τk

)
sin2 γ τn. (5)

For each realization of {τk}, one finds that the total detection
probability Pdet ≡ ∑

n Fn = 1. However, each n̄ ≡ ∑
n nFn (as

well as higher moments, of course) is different, even though
for any fixed τ it is exactly 2. The distribution of n̄ for γ = 1
and exponentially distributed τ ’s is displayed in Fig. 1. The
measured mean of this distribution over 106 realizations is
〈n̄〉 = 1.997, in agreement with the analytic calculation of 2,
derived in Appendix B directly from the Fn in Eq. (5) above.
As we shall see below, the fact that 〈n̄〉 in the return problem is
an integer, found by Grünbaum et al. [8] for the stroboscopic
case, is always true, independent of H or the distribution of
time intervals. One can calculate analytically the variance of
n̄:

Varτ [n̄] = 2 Varτ [cos2(γ τ )]

(1 − 〈cos4(γ τ )〉)(1 − 〈cos2(γ τ )〉)
, (6)

where the averages and variance on the right-hand side are
with respect to the single variable τ , with measure ρ(τ ), and
which indeed is seen to vanish for the case of fixed τ . This
evaluates to Varτ [n̄] ≈ 1.713 for exponentially distributed
τ ’s with 〈τ 〉 = 0.6, in excellent agreement with our direct
simulation, which yielded 1.706. This variance diverges for
the stroboscopic protocol with τ an integer multiple of π but
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is finite for any distribution of τ ’s with support outside these
values.

II. GENERAL FORMALISM

For a general Hamiltonian, the calculation of the Fn and
the averaging over the {τk} have to be carried out numerically
and are not obviously amenable to analytic study. Our first
aim is to provide a solution for this problem. We start with a
reformulation of Eqs. (3) and (1):

Fn = Tr

[(
n∏

k=2

D̂kĈ

)
D̂1	̂B̂

]
. (7)

The proof of this formula is given in Appendix A. Here, Fn is
expressed in terms of a product of N2 × N2 matrices. We first
define the N × N matrices

(Dk )i j ≡ δi je
−iEiτk ; Bi j ≡ 1; 
i j ≡ δi j pi

C ≡ I − 
E ; 	i j ≡ δi j〈ψd |Ei〉〈Ei|ψin〉, (8)

where |Ei〉 is the ith energy eigenstate, and pi ≡ |〈Ei|ψd〉|2.
Then N2 × N2 matrices are created via a Kronecker product
[30], via the hat notation Â ≡ A∗ ⊗ A (see Appendix A for
definitions and details).

This formula is similar to one obtained by Varbanov et al.
[26], who then specialized to the case of exponentially dis-
tributed τ ’s. We can, however, formally take the average over
the τks for an arbitrary distribution. Since τk only appears
in the factor D̂k and the τ ’s are independent, to take the
average we simply need to replace each D̂k in the product
by its average 〈D̂〉, which is independent of k. This average
is a diagonal matrix whose entries are just the characteristic
function of the distribution of the waiting times, evaluated at
the pairwise difference of energies:

(〈D̂〉)( jk)(lm) = δ jlδkm〈ei(Ej−Ek )τ 〉

= δ jlδkm

∫ ∞

0
ei(Ej−Ek )τ ρ(τ )dτ. (9)

In particular, the “diagonal” elements (〈D̂〉)( j j)( j j) = 1. Thus,
introducing M ≡ 〈D̂〉Ĉ,

〈Fn〉 = Tr [M(n−1)〈D̂〉	̂B̂]. (10)

This formula allows a direct calculation of the 〈Fn〉. In
particular, it works for the stroboscopic protocol of interval
τ0 with ρ(τ ) = δ(τ − τ0). It is interesting to note that an
immediate result is that 〈Fn〉 decays exponentially for large n
(accompanied by oscillations), at a complex rate determined
by the eigenvalue of M closest to the unit circle. It would
naively appear that in general 〈Fn〉 is a linear combination of
N2 such decaying modes, which, however, does not square
with what we know from the stroboscopic case. There, the
amplitude |φ(n)〉 in Eq. (2), is a linear combination of N − 1
dying (and generally oscillating) exponentials, corresponding
to the N − 1 nonzero eigenvalues λi of the operator U (τ )P
appearing in that equation. This implies that in this fixed τ

case, Fn, the absolute square of the projection of |φ(n)〉 on
|ψd〉 is a linear combination of only (N − 1)2 modes, with
decay rates − ln(λi + λ∗

j ). The answer to this puzzle lies in the
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FIG. 2. The distribution of the attempt number n of first success-
ful detection for arrival at xd = 12 from an initial state localized at
xin = 0 on a ring of length L = 24. We compare the case of fixed
τ = 0.6 with an exponentially distributed τ , with mean 〈τ 〉 = 0.6,
γ = 1. The probabilities in both cases start near 0, rise rapidly until
n ≈ 11–12, and then decay exponentially in n with superimposed
oscillations. The oscillations for the fixed τ case are both larger,
longer-lived, and more complex.

fact that, as discussed in Appendix C, M has at least 2N − 1
zero modes, leaving at most (N − 1)2 nonzero eigenmodes.

In Fig. 2 we show 〈Fn〉 for the arrival of the quantum walker
at the detection site xd = 0, starting from the state localized at
xin = 12, on a ring of size L = 24, with a nearest-neighbor
hopping Hamiltonian H = −γ

∑
k (|k〉〈k − 1| + |k〉〈k + 1|).

We compare the case of a fixed τ = 0.6 with an exponential
distributed τ with mean 〈τ 〉 = 0.6. The probabilities in both
cases start near 0, rise rapidly until n ≈ 11–12, corresponding
to ballistic motion at the maximum group velocity [17]. Both
then decay exponentially in n with superimposed oscillations.
The oscillations for the fixed τ case are both larger, longer-
lived, and more complex, so that, as might be expected, the
random τ case looks somewhat like a smeared-out version
of the fixed τ case. Also, the asymptotic decay rate of the
magnitude is slower for the fixed τ case. For both cases
the total detection probability Pdet = ∑

n〈Fn〉 = 1. There is
a difference in 〈n̄〉, n̄ averaged over the interval times, with
〈n̄〉 = 63 for the exponential distribution and n̄ ≈ 101.4 for
fixed τ . This is an example where the exponential sampling
is much more efficient at detection than the stroboscopic
protocol.

III. MOMENTS: RESULTS

We can use our results to calculate Pdet, 〈n̄〉, and 〈n2〉 (and
higher moments, if we desire) by summing the geometric
series Eq. (10). We first define the matrix sum SF :

SF ≡
∑

n

[M(n−1)〈D̂〉	̂B̂] = J −1〈D̂〉	̂B̂, (11)

where

J ≡ I − M, (12)
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FIG. 3. The mean of the attempt number, 〈n̄〉, of first success-
ful detection of arrival at xd = 1 from xin = 0 on a ring of length
L = 7. We compare the case of fixed τ = 〈τ 〉 with an exponentially
distributed τ as a function of 〈γ τ 〉.

and so

Pdet = Tr SF = Tr [J −1〈D̂〉	̂B̂],

〈n̄〉 ≡ 1

Pdet

∑
n

n〈Fn〉 = 1

Pdet
Tr [J −2〈D̂〉	̂B̂],

〈n2〉 ≡ 1

Pdet

∑
n

n2〈Fn〉 = 1

Pdet
Tr [J −3(I + M)〈D̂〉	̂B̂].

(13)

Here we have to insert a caveat—it can happen that J is sin-
gular [6]. This happens precisely when there are dark states,
energy eigenstates which are orthogonal to the detection state
[7,22]. This typically happens when the evolution operator
U (τ ) has a degeneracy in the spectrum. In such cases one
has to interpret Eq. (13) in the sense of pseudoinverses [26].
Physically, this can be done by working from the very start
in the restricted Hilbert space where the dark states have
been eliminated so that the dimension of this new Hilbert
space is Nr � N . In the problem of the ring with random τ

or the fixed τ case with nonexceptional τ , this is equivalent
to working in the subspace of states symmetric about the
detection site. The detection state |xd〉 can be expressed as
a linear combination of these Nr = �L/2 + 1� orthonormal
states, which we can call |ψe

i 〉, and so
∑

i |〈ψe
i |xd〉|2 = 1,

whereas for xin = xd , xd + L/2,
∑

i |〈ψe
i |xin〉|2 = 1/2 = Pdet.

In this last scenario, 〈n̄〉 is nominally infinite [6,7,26], but one
can calculate instead a conditional average [14], redefining
〈n̄〉 ≡ 〈∑ nFn〉/Pdet (and similarly with other averages) so that
it is the expectation value, conditioned on successful detec-
tion, which is finite.

In Fig. 3 we show 〈n̄〉 vs 〈τ 〉 for the 0 → 1 arrival problem
on a ring of size L = 7, for both fixed τ and exponen-
tially distributed τ ’s. For the arrival problem with fixed τ ,
n̄ diverges as τ → 0 as well as when τ approaches each
exceptional τ [14,15], this being a value of τ for which the
operator U (τ ) = e−iHτ has an accidental degeneracy due to
the vanishing of τ (Ei − Ej ) mod 2π for some pair of energy
eigenvalues Ei, Ej . The divergence at small τ is a sign of the
quantum Zeno effect [23] and arises since in the limit τ → 0
all eigenvalues of U (τ ) are unity and hence degenerate. For
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FIG. 4. The mean-squared attempt number, 〈n2〉, of first success-
ful detection at xd = 0, starting from xin = 1 on a ring of length
L = 7. We compare the case of fixed τ = 〈τ 〉 (red, dashed) with
an exponentially distributed τ (black, solid) as a function of 〈γ τ 〉.
Notice the qualitative similarity with the corresponding curves for
〈n̄〉 in Fig. 3, as both are dominated by the divergences as 〈τ 〉 → 0
(exponential distribution and fixed τ ) and at the exceptional τ (fixed
τ ). The graphs of the ensemble variance 〈n2〉 − (〈n̄〉)2 (not shown)
are also qualitatively similar.

the arrival problem with exponentially distributed τ ’s, 〈n̄〉
again diverges at small 〈τ 〉 but then falls monotonically with
increasing 〈τ 〉. With fixed τ then, this implies that there is a
value of τ which minimizes the conditional mean number of
attempts to detection, whereas there is no such minimum with
exponentially distributed τ ’s. In fact, for a ring of size L and
exponentially distributed τ ’s, we can find 〈n̄〉 generally for the
0 → xd arrival problem:

〈n̄〉 =

⎧⎪⎪⎨
⎪⎪⎩

xd (L−xd )
8γ 2〈τ 〉2 + 2L+3

4 , L odd, 1 � xd < L
xd L

8γ 2〈τ 〉2 + L+3
2 L even, 1 � xd < L/2

L2

32γ 2〈τ 〉2 + L+2
2 L even, xd = L/2

. (14)

These results were obtained by noticing that the analytic
solution for 〈n̄〉 for small L revealed the common structure
〈n̄〉 = A/〈τ 〉2 + B, with A and B rational. This pattern was
seen numerically to persist for larger L, and the coefficients
A and B as functions of L and xd were guessed and verified
numerically for 3 � L � 16 and 1 � xd � L/2. Nevertheless,
a proof for all L, xd remains to be achieved. The results below
for 〈n2〉 and 〈t2〉 for the case of exponentially distributed τ ’s
on a ring were obtained similarly. It is interesting to compare
these results to the classical first-passage time problem, either
with fixed or random τ . For small τ , or equivalently, 〈τ 〉, the
chance of crossing the absorbing site is very small, and the
problem reduces to that of the first passage to the end of an
interval of length L, and so 〈n̄〉 is proportional to x(L − x)/τ ,
as opposed to the x(L − x)/〈τ 〉2 here, the difference being due
to the quantum Zeno effect. For large τ , on the other hand,
classically 〈n̄〉 goes to L, since the distribution after diffusing
for a large time interval is constant, and so the probability of
absorption in a single step is 1/L, and the mean number of
steps until absorption is L.

The special nature of the case L even, xd = L/2, arises
from the fact that here states even around xd are also even
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around xin = 0, and so Pdet = 1 in this case, as noted above,
whereas generally on a ring when xd = xin, Pdet = 1/2. This is
reflected in the fact that limxd →L/2〈n̄〉 ∼ L2/(16〈τ 〉2) for large
L, whereas for xd = L/2, 〈n̄〉 ∼ L2/(32〈τ 〉2).

In Fig. 4 we show 〈n2〉 for the 0 → 1 arrival problem on the
L = 7 ring, again comparing the exponentially distributed τ ’s
to fixed τ as a function of 〈τ 〉. The curves are quite similar to
those for 〈n̄〉 shown in Fig. 3 and are dominated by the diver-

gences of the stroboscopic case at the exceptional τ ’s, as well
as the shared Zeno 〈τ 〉 → 0 divergence. Here the stroboscopic
data show divergences for the return problem as well as the
arrival problem, both at the exceptional τ as well as at τ = 0
[14]. The exponential distribution data also diverges at τ → 0,
with a 1/〈τ 〉2 divergence for the return problem and a stronger
1/〈τ 〉4 divergence for the arrival problem, and is again mono-
tonically decreasing with increasing 〈τ 〉. For this case,

〈n2〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(L+1)(L−1)
48γ 2〈τ 〉2 + 2L2+3L−1

4 L odd, xd = 0
Lxd (L−xd )(xd (L−xd )+2)

192γ 4〈τ 〉4 + L3+2xd (L−xd )(L+7)−L
32γ 2〈τ 〉2 + (4L2+10L−3)

8 L odd, 1 � xd < L
L3

32γ 2〈τ 〉2 + L(L+4)
2 L even, xd = 0

3x2
d L3−4xd (x2

d −1)L2

384γ 4〈τ 〉4 + 9L3+12xd L2+24xd (xd +4)L−16xd (2x2
d +1)

192γ 2〈τ 〉2 + (L2+6L)
2 L even, 1 � xd < L/2

L3(L2+8)
3072γ 4〈τ 〉4 + 5L3+12L2−2L

96γ 2〈τ 〉2 + L2+4L
2 L even, xd = L/2

. (15)

The case where the detection state is identical to the initial
state, the so-called return problem, exhibits some unique
properties, as it does in the stroboscopic case [8,14,15].
Firstly, Pdet = 1 for any distribution of τ . Secondly, 〈n̄〉 is
always an integer and independent of the distribution of the
τ ’s, and equal to Nr , the dimensionality of the symmetrically
reduced problem, as described above. These statements
are proved below. For the fixed τ protocol, the accidental
degeneracies at the exceptional τ imply that the reduced
dimensionality and so also n̄ are even lower at these special
values. Although the divergences in n̄ are absent for the fixed
τ return problem, they are present in the fixed τ results for n2.

We can also calculate 〈t̄〉, the conditioned mean time to
detection. Obviously, for the stroboscopic protocol, t̄ = τ n̄.
This is not at all obvious for the case of random τ ’s, since the
τ ’s and ns are coupled. To compute 〈t̄〉, we need to compute
Nn ≡ ∑

n

∑
k�n〈τkFn〉. For example,

N1 = 〈τ1F1〉 = 〈τ D̂〉	̂B̂,

N2 = 〈(τ2 + τ1)F2〉 = 〈τ D̂〉Ĉ〈D̂〉	̂B̂ + 〈D̂〉Ĉ〈τ D̂〉	̂B̂,

Nn = 〈τ D̂〉ĈMn−2〈D̂〉	̂B̂ + 〈D̂〉ĈNn−1. (16)

We can then sum the infinite series and take the trace to get

SN ≡
∑

Nn = J −1[〈τ D̂〉ĈSF + N1]〈t̄〉 = Tr SN . (17)

Evaluating this, we find that even for random τ ’s, no matter
their distribution, 〈t̄〉 = 〈τ 〉〈n̄〉. This is true both for the return
and the arrival problem.

We can thus ask the question of which value of 〈τ 〉 min-
imizes the mean detection time, conditioned on detection.
For the exponential distribution in the arrival problem on
a ring, 〈t̄〉 takes the form 〈t̄〉 = A/〈τ 〉 + B〈τ 〉, A, B being
L-dependent coefficients, which is obviously minimized at
〈τ 〉∗ = √

A/B. Since for fixed xd both A and B grow linearly
with L, 〈τ 〉∗ approaches a constant value as L → ∞ and so
the optimal 〈t̄〉 grows linearly with L as well. When xd is of
order L, then A scales as L2 while B still scales as L, so that
〈τ 〉∗ scales as L1/2, and the optimal 〈t̄〉 scales as L3/2. All this
is in sharp contrast to the stroboscopic protocol, where the τ

which minimizes t̄ = τ n̄ is essentially controlled by the strong
minimum that exists for n̄ due to the divergences of n̄ at τ → 0
and τ ≈ π/2γ .

Proceeding similarly, we can calculate t2:

〈t2〉 = Tr [J −1(〈τ 2D̂〉ĈSF + 2〈τ D̂〉ĈSN + 〈τ 2D̂〉	̂B̂)].
(18)

For the return problem, this is directly related to 〈n2〉, namely,
〈t2〉 = (〈τ 〉)2〈n2〉 + NrVar[τ ], for an arbitrary distribution.
There does not appear to be any such simple relation for the
arrival problem. Again, for exponentially distributed τ ’s, we
can calculate 〈t2〉 explicitly:

〈t2〉 =

⎧⎪⎪⎨
⎪⎪⎩

Lxd (L−xd )[xd (L−xd )+2]
192γ 4〈τ 〉2 + L3+2xd (L−xd )(L+1)−L

32 + (4L2+14L+3)
8 〈τ 〉2 L odd, 1 � xd < L

3x2
d L3−4xd (x2

d −1)L2

384〈τ 〉2 + 9L3+12xd L2+24xd (xd +1)L−16xd (2x2
d +1)

192 + (L2+7L+3)
2 〈τ 〉2 L even, 1 � xd < L/2

L3(L2+8)
3072〈τ 〉2 + 5L3+3L2−2L

96 + L2+5L+2
2 〈τ 〉2 L even, xd = L/2

. (19)

IV. MOMENTS: PROOFS

lt just remains for us to prove our various claims
above. In the following we assume that we are

working with the symmetry-reduced Hilbert space
so that the inverses are not singular and Nr is the
reduced dimension. We start with the observation
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that

[B̂J −1](i j)(kl ) = 1

pk
δk,l ≡ W(i j)(kl ), (20)

where, as above, pk ≡ |〈Ek|ψd |2. This is easily proved by
multiplying out WJ and recovering B̂. To evaluate the second
term, one first notices that W 〈D̂〉 = W , so only the “diagonal”
columns of W are nonzero, and the corresponding entries of
〈D̂〉 are unity. Then

[WĈ](i j)(kl ) =
∑
mn

1

pm
δmn(δmk − pm)(δnl − pn)

= 1

pk
δkl +

∑
m

1

pm

(−pmδkm − pmδml + p2
m

)

= 1

pk
δkl − 1. (21)

Thus, WĈ = W − B̂ and so WJ = B̂, as desired. From this
follows the result that 〈t̄〉 = 〈τ 〉〈n̄〉, since

〈t̄〉 = Tr (J −1[〈τ D̂〉ĈSF + N1])

= Tr (J −1[〈τ D̂〉ĈJ −1〈D̂〉	̂B̂ + 〈τ D̂〉	̂B̂])

= Tr (B̂J −1〈τ D̂〉[ĈJ −1〈D̂〉	̂ + 	̂])

= Tr (W 〈τ D̂〉[ĈJ −1〈D̂〉	̂ + 	̂])

= 〈τ 〉Tr (W 〈D̂〉[ĈJ −1〈D̂〉	̂ + 	̂])

= 〈τ 〉〈n̄〉. (22)

The key step here is that since only the “diagonal” columns of
W are nonzero, and the corresponding elements of 〈τ D̂〉 are
〈τ 〉, it follows that 〈τ D̂〉 can be replaced by 〈τ 〉〈D̂〉.

Our result about W has another corollary regarding Pdet:

Pdet = Tr [J −1〈D̂〉	̂B̂] = Tr [B̂J −1〈D̂〉	̂]

= Tr [W 	̂] =
∑

i

1

pi
piqi =

∑
i

qi, (23)

where qi = |〈Ei|ψin〉|2. For the return problem, qi = pi and
the sum of pi is unity, so Pdet = 1. For the arrival problem, if
there are no dark states, the sum of the qi is unity, whereas
if there are dark states, then if |ψin〉 has some overlap with a
dark state, it follows that Pdet < 1.

We now turn to 〈n̄〉 in the return problem. For the return
problem we note that (SF )(i j)(kl ) = δi j pi. We can prove this
by computing J SF = 〈D̂〉
̂B̂, since in the return problem,
	̂ = 
̂. This computation is similar to the one for W above
and involves the computation that V B̂ − ĈV B̂ = 
̂B̂. Given
this, we note that we can rewrite SF as V B̂ where V(i j)(kl ) =
δikδ jlδi j pi:

〈n̄〉 = Tr [J −1SF ] = Tr [EJ −1V ]

= Tr [WV ] =
∑

i

1

pi
pi = Nr . (24)

It should be kept in mind that Nr here is the dimension of
the symmetric (i.e., nondark) subspace. If the distribution is
discrete, it is possible that there are exceptional values of 〈τ 〉

where this dimension is atypically small, and accordingly, 〈n̄〉.
For continuous distributions, this is not a concern. We see that
the τ averaged value of n̄ is quantized for any distribution
of waiting times, including, of course, the δ-function fixed
τ distribution, thereby extending the stroboscopic measure-
ment result of [8] concerning quantization of n̄ in the return
problem.

We next turn to 〈t2〉 for the return problem. We have

〈t2〉 = Tr (J −1(〈τ 2D̂〉ĈSF + 〈τ 2D̂〉
̂B̂

+ 2〈τ D̂〉ĈJ −1[〈τ D̂〉ĈSF + N1]))

= Tr (W (〈τ 2D̂〉ĈV + 〈τ 2D̂〉
̂
+ 2〈τ D̂〉ĈJ −1[〈τ D̂〉ĈV + 〈τ D̂〉
̂]))

= τ 2Tr (W [〈D̂〉ĈV + 〈D̂〉
̂])

+ 2〈τ 〉Tr (W 〈D̂〉ĈJ −1[〈τ D̂〉ĈV + 〈τ D̂〉
̂]). (25)

The first two terms are relatively simple to treat, as their sum
is simply τ 2〈n̄〉. The last term, which we will label T , requires
more work:

T = 2〈τ 〉Tr (J −1〈D̂〉ĈJ −1〈τ D̂〉[ĈV B̂ + 
̂B̂])

= 2〈τ 〉Tr (J −1〈D̂〉ĈJ −1〈τ D̂〉[(V B̂ − 
̂B̂) + 
̂B̂])

= 2〈τ 〉Tr (J −1〈D̂〉ĈJ −1〈τ D̂〉V B̂)

= 2(〈τ 〉)2Tr (J −1〈D̂〉ĈJ −1〈D̂〉V B̂)

= (〈τ 〉)2(〈n2〉 − 〈n̄〉). (26)

Thus, 〈t2〉 = (〈τ 〉)2〈n2〉 + N (τ 2 − (〈τ 〉)2), so that 〈t2〉 −
(〈τ 〉)2〈n2〉 = NVar(τ ), our desired result. Note that in the
trivial case of N = 1, when n = 1 identically, this equation
reads 〈t2〉 = 〈τ 2〉, which is obviously correct.

V. ALMOST PERIODIC PROBING

Lastly, we turn to the question of what the effect of a
little noise is on the stroboscopic results. To examine this, we
choose the Gamma distribution,

Pα,β (τ ) = βα

�(α)
τα−1e−βτ , (27)

with characteristic function E [eisτ ] = (1 − is/β )−α . As the
mean of the distribution is α/β, we fix β = α/〈τ 〉. Then,
for α = 1 we have the exponential distribution, while in the
limit α � 1, we have a narrow distribution peaked at 〈τ 〉
with the small variance 〈τ 〉2/α. We show in Fig. 5 〈n̄〉 as a
function of 〈τ 〉 for α = 5, 25, 125. We see the increase of α

induces the oscillations characteristic of the stroboscopic data,
with peaks whose height scales as the inverse of the squared
width of the distribution. This is a consequence of the fact
that 〈D〉 ∼ e−i�〈τ 〉 + O(1/α) for large α, where the first term
corresponds to the value of 〈D〉 for the stroboscopic protocol.
This is consistent with our results for 〈n̄〉 for the arrival prob-
lem in the two-level system, Eq. (B16), where for a narrow
distribution of width δ around τ = π/γ , 1 − 〈cos2 γ τ 〉 ∼ δ2,
leading to a 1/δ2 divergence.
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FIG. 5. The mean number, 〈n̄〉, of first successful detection for
the arrival at xd = 0 from xin = 1 on a ring of length L = 7, with
a Gamma distribution of mean 〈τ 〉 characterized by α = 5, 25, 125.
Note that the extreme cases of an exponential distribution (α = 1)
and the case of fixed τ = 〈τ 〉 (α → ∞) are presented in Fig. 3. For
small τ , all the various α yield similar results, while the oscillations
increase in number and strength as α grows, turning into divergences
in the infinite α limit.

VI. SUMMARY

Thus, summing up, we have shown how to calculate the
average over all sets of random independent τ ’s generated
by some given distribution ρ(τ ), both for the probability
distribution Fn of the number of attempts until detection and
for its moments. Using randomly generated τ ’s have been
seen to preserve several of the salient features seen with the
stroboscopic protocol. One major distinction is the presence
of divergences and discontinuities associated with exceptional
values of τ in the stroboscopic case, which do not exist for
continuous distributions. These divergences are “tamed” into
fluctuations, whose magnitude depend on the specifics of the
τ distribution, ρ(τ ). Among the universal features which sur-
vive unchanged is the nature of the Zeno, i.e., small 〈τ 〉 limit.
Also, various special features of the return problem, namely,
Pdet = 1 and 〈n̄〉 = Nr , are preserved. A unique property of the
return problem, the simple relation between the mean-squared
number of attempts and the mean-square time to detection
is revealed. The introduction of random τ ’s leads to a set
of quantities associated with the time until detection, which
is correlated with, but not trivially related to, the number
of attempts until detection. Nevertheless, we have the gen-
eral identity between the mean time and the average number
times the mean interval between detections. The correlations
show up in the variance of the times. One direction which
is interesting to explore is to what extent we can relax the
assumption of independent τ ’s. We hope to report on this in
the near future. We are also investigating the connection of
the quantization of the mean return time to Berry’s phase and
topology [31].
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APPENDIX A: DERIVATION OF EQ. (7)

We start by noting that the amplitude χ ≡ 〈�|O|�〉 for
some operator O sandwiched between two arbitrary states can
be written in the energy representation as

χ =
∑
k,l

ψ∗
k Oklφl = Tr [OREQ∗], (A1)

where ψk = 〈Ek|�〉, φk = 〈Ek|�〉, E is the N × N
matrix of all 1’s, R = diag(φ1, φ2, . . . , φn), and
Q = diag(ψ1, ψ2, . . . , ψn). With |�〉 = |ψd〉 and
|�〉 = |ψin〉, and defining the matrices 	 ≡ Q∗R,
Dj = diag(e−iE1τ j , e−iE2τ j , . . . , e−iEN τ j ), we have, due to
the cyclical property of the trace,

〈ψd |ψ (1)〉 = Tr [D1REQ∗] = Tr [Q∗D1RE ] = Tr [D1	E ],
(A2)

since the diagonal matrices D1 and Q∗ commute. Continuing,
since P = I − QEQ∗, we have

〈ψd |ψ (2)〉 = Tr [D2(I − QEQ∗)D1REQ∗]

= Tr [D2Q∗(I − QEQ∗)D1RE ]

= Tr [D2(I − 
E )D1Q∗RE ]

= Tr [D2CD1	E ], (A3)

where we have introduced C ≡ I − 
E . This generalizes to

〈ψd |ψ−(n)〉 = Tr

[(
n∏

k=2

DkC

)
D1	E

]
. (A4)

The point of this reformulation is it allows us to compute
not only 〈ψd |ψ−(n)〉, but its absolute square, i.e., Fn, through
the use of the Kronecker product, since for any N × N matri-
ces A, B,

Tr A Tr B = Tr [A ⊗ B], (A5)

where the Kronecker product (A ⊗ B) is the N2 × N2 block
matrix, with the i, j block, (i, j as always running from 1 to
N) being the matrix Ai jB. It will be convenient to label the
elements of A ⊗ B by the compound indices ( j, k)(l, m) with
(A ⊗ B)( j,k)(l,m) = Ajl Bkm. Another useful identity is (A1 ⊗
B1)(A2 ⊗ B2) = (A1A2) ⊗ (B1B2). Then,

F1 = |〈ψd |ψ (1)〉|2 = Tr [D∗
1	

∗E ]Tr [D1	E ]

= Tr [(D∗
1 ⊗ D1)(	∗ ⊗ 	)(E ⊗ E )] ≡ Tr [D̂1	̂B̂], (A6)

where we have introduced the hat notation, Â = A∗ ⊗ A. Ex-
tending this to general n gives us Eq. (7).

APPENDIX B: TWO-LEVEL SYSTEM

We work out here the results for the symmetric two-level
system, first directly from Eqs. (2) and (1), and then using
our general formulism. What is special about the two-level
system, with Hamiltonian H = −γ (|0〉〈1| + |1〉〈0|), is that
immediately after any measurement at the detector site |0〉,
the particle is definitely in the state |1〉. Using this, we have
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for the return problem xin = 0,

|ψ (1)〉 = cos γ τ1|0〉 + i sin γ τ1|1〉
|φ(n)〉 = An(cos γ τn|1〉 + i sin γ τn|0〉)

An = i sin γ τ1

n−1∏
k=2

cos γ τk

F1 = cos2 γ τn

Fn = |An|2 sin2 γ τn. (B1)

Thus,

〈F1〉 = 〈cos2 γ τ 〉;
〈Fn〉 = [〈sin2 γ τ 〉]2[〈cos2 γ τ 〉]n−2; n � 2. (B2)

We can recover these results from the formalism presented in Sec. II. We have

〈D̂〉 = diag(1, c + is, c − is, 1)
̂ = 	̂ = diag(1/4, 1/4, 1/4, 1/4)

Ĉ = 1

4

⎛
⎜⎜⎜⎝

1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎠, (B3)

where c ≡ 〈cos(2γ τ )〉, s ≡ 〈sin(2γ τ )〉, and B̂ is the 4 × 4 matrix of all 1’s. Then,

〈F1〉 = Tr
1

4

⎛
⎜⎜⎜⎝

1 1 1 1

c + is c + is c + is c + is

c − is c − is c − is c − is

1 1 1 1

⎞
⎟⎟⎟⎠ = 1 + c

2
= 〈cos2 γ τ 〉. (B4)

To calculate the other Fn, we need

M = 1

4

⎛
⎜⎜⎜⎝

1 −1 −1 1

−(c + is) c + is c + is −(c + is)

−(c − is) c − is c − is −(c − is)

1 −1 −1 1

⎞
⎟⎟⎟⎠, (B5)

and, more generally, as may be proved by induction,

Mn =
(

1 + c

2

)(n−1)

M. (B6)

Then, for n � 2,

〈Fn〉 =
(

1 + c

2

)(n−2)

Tr

⎡
⎢⎢⎢⎣1 − c

8

⎛
⎜⎜⎜⎝

1 1 1 1

−(c + is) −(c + is) −(c + is) −(c + is)

−(c − is) −(c − is) −(c − is) −(c − is)

1 1 1 1

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

=
(

1 + c

2

)(n−2) (1 − c)2

4
= (〈cos2 γ τ 〉)n−2)(〈sin2 γ τ 〉)2. (B7)

From this we get, with C ≡ 〈cos2 γ τ 〉,

Pdet = C +
∞∑

n=2

(1 − C)2Cn−2 = 1, 〈n̄〉 = C +
∞∑

n=2

n(1 − C)2Cn−2 = 2,

〈n2〉 = C +
∞∑

n=2

n2(1 − C)2Cn−2 = 2 + 2

1 − C
. (B8)

We see immediately that 〈n2〉 is finite as long as C < 1. For the fixed τ case, C = cos2 γ τ , so n2 diverges for γ τ = kπ . For
any continuous distribution, n2 only diverges in the Zeno limit, in which case C → 1 − γ 2〈τ 2〉, so that 〈n2〉 ∼ 2/γ 2〈τ 2〉. In
comparing these results to those of the exponential distribution reported in the main text, it should be noted that γT LS = 2γL=2

should be taken, since for our general ring, Ek = 2γ cos k, while for the two-level system, Ek = {−γ , γ }.
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We can similarly calculate 〈t̄〉, denoting Ct ≡ 〈t cos2 γ τ 〉:

〈t̄〉 = Ct +
∞∑

k=2

2[(〈τ 〉 − Ct )(1 − C)Ck−2 + (k − 2)(1 − C)2CtC
k−3] = Ct + 2(〈τ 〉 − Ct ) + Ct = 2〈τ 〉, (B9)

so that 〈t̄〉 = 〈n̄〉〈τ 〉, as expected. Also, defining Ctt ≡ 〈τ 2 cos2 γ τ 〉,

〈t2〉 = Ctt +
∞∑

k=2

[2(〈τ 2〉 − Ctt )(1 − C)Ck−2 + (k − 2)Ctt (1 − C)2Ck−3 + 4(k − 2)(〈t̄〉 − Ct )(1 − C)CtC
k−3

+ (k − 2)(k − 3)(1 − C)2(Ct )
2Ck−4 + 2(〈τ 〉 − Ct )

2Ck−2]

= Ctt + 2(〈τ 2〉 − Ctt ) + Ctt + 4(〈t̄〉 − Ct )Ct

1 − C
+ 2C2

t

1 − C
+ 2(〈τ 〉 − Ct )2

1 − C

= 2〈τ 2〉 + 2〈τ 〉2

1 − C
= 2(〈τ 2〉 − 〈τ 〉2) + 〈τ 〉2〈n2〉, (B10)

again in line with expectation.
To calculate Var(n̄), we need to calculate

〈(n̄)〉 =
∑
k,l

kl〈FkFl〉. (B11)

This calculation breaks up into three pieces. The first is the “diagonal” contribution, k = l:

∑
k=1

〈
k2F 2

k

〉 = C4 +
(
4 − 3C4 + C2

4

)
S2

4

(1 − C4)3
, (B12)

where C4 ≡ 〈cos4 γ τ 〉 and S4 ≡ 〈sin4 γ τ 〉. The contributions from k = 1, l > 1 and l = 1, k > 1 are identical:∑
k=1

〈kF1Fk〉 = (2 − C)(C − C4)

(1 − C)
. (B13)

Lastly, the contributions from k � 2, l > k and l � 2, k > l are also identical:∑
k=2

∑
l=k+1

〈klFkFl〉 = (6 − 4C − 2(3 − C4)C4 + (3 − C4)CC4)(C − C4)S4

(1 − C)(1 − C4)3
. (B14)

Putting this all together yields Eq. (6) in the main text.
For the arrival problem, proceeding as above, we have

Fn = sin2 γ τn

n−1∏
k=1

cos2 γ τk . (B15)

In this case,

Pdet =
∞∑

n=1

(1 − C)Cn−1 = 1〈n̄〉 =
∞∑

n=1

n(1 − C)Cn−1 = 1

1 − C
〈n2〉 =

∞∑
n=1

n2(1 − C)Cn−1 = 1 + C

(1 − C)2
, (B16)

and for the moments of the time,

〈t̄〉 = 〈τ 〉
1 − C

〈t2〉 = 〈τ 2〉
1 − C

+ 2〈τ 〉〈τ cos2 γ τ 〉
(1 − C)2

. (B17)

APPENDIX C: ZEROS MODES OF M

Here we demonstrate that M has as least 2N − 1 zero
modes. These eigenmodes arise from the fact that B has N − 1
zero modes and one eigenvector with eigenvalue N , namely,
(1; 1; 1; . . . ; 1). Thus 
B also has N − 1 zero modes, with
one eigenvector with eigenvalue 1, namely, (p1; p2; . . . ; pN ).
In turn, C = I − 
B has N − 1 eigenvectors with eigenvalue
unity and one zero mode, (p1; p2; . . . ; pN ). Denote the N − 1

zero eigenmodes as |ui〉 and the remaining eigenvector with
eigenvalue unity |z〉. Then the vectors |ui〉 ⊗ |z〉, |z〉 ⊗ |ui〉,
and |z〉 ⊗ |z〉 constitute a set of 2N − 1 zero modes of Ĉ and
hence of M. Thus M has at most (N − 1)2 nonzero modes.
As long as all the elements of 〈D̂〉 are nonvanishing, as in the
stroboscopic case as well for an exponential or γ distribution
of τ , M has in fact exactly (N − 1)2 nonzero modes, consis-
tent with our expectations.
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