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ABSTRACT

Background Finite mixture models posit the existence of
a latent categorical variable and can be used for
probabilistic classification. The authors illustrate the use
of mixture models for dietary pattern analysis. An
advantage of this approach is taking classification
uncertainty into account.

Methods Participants were a random sample of women
from the European Prospective Investigation into Cancer.
Food consumption was measured using dietary
questionnaires. Mixture models identified latent classes
in food consumption data, which were interpreted as
dietary patterns.

Results Among various assumptions examined, models
allowing the variance of foods to vary within and
between classes fit better than alternatives assuming
constant variance (the K-means method of cluster
analysis also makes the latter assumption). An eight-
class model was best fitting and five patterns validated
well in a second random sample. Patterns with lower
classification uncertainty tended to be better validated.
One pattern showed low consumption of foods despite
being associated with moderate body mass index.
Conclusion Mixture modelling for dietary pattern
analysis has advantages over both factor and cluster
analysis. In contrast to these other methods, it is easy to
estimate pattern prevalence, to describe patterns and to
use patterns to predict disease taking classification
uncertainty into account. Owing to substantial error in
food consumptions, any analysis will usually find some
patterns that cannot be well validated. While knowledge
of classification uncertainty may aid pattern evaluation,
any method will better identify patterns from food
consumptions measured with less error. Mixture models
may be useful to identify individuals who under-report
food consumption.

INTRODUCTION

Most of the many recent dietary pattern analy-
ses'® have used one of two apparently contrasting
statistical methods to find patterns in food
consumption data. The first approach using factor
analysis finds dimensions in the diet that represent
an individual’s tendency to eat in certain ways. For
example, reports on the Health Professionals
Study® © and the Nurses’ Health Study’ © have
described ‘Western’ and ‘prudent’ dimensions in the
diets of their participants. A disadvantage, however,
is that an additional step of cross-classifying the
dimensions in some way is necessary if one wishes

to compute pattern prevalence or risk of disease for
one group of individuals compared with another
group.

The second approach classifies individuals
into mutually exclusive groups according to how
(dis)similar they are with respect to their food
consumption using (non-parametric) cluster anal-
ysis, for example, the K-means method used by
Chen et al.” A disadvantage of cluster analysis is that
each individual is assigned to one dietary pattern
with a probability of 1 and all others to a dietary
pattern with a probability of 0. Thus, classification
uncertainty is assumed to be 0. Other disadvantages
stemming from non-parametric approaches include
the difficulty in taking into account covariates and
the lack of a convenient way to compare the many
different clustering criteria.

The primary objectives of a dietary pattern
analysis are to characterise the eating habits of
a population and to associate diet with disease'® ',
A finite mixture model (FMM) can be used to
achieve these objectives with additional advantages
as outlined by Fahey et al.'? Classification uncer-
tainty is measured by the posterior probability of
pattern membership given the data, which for each
individual, may take values between zero and one.
It is also easy to adjust for energy and to choose
among different clustering criteria. An FMM is
analogous to a factor analysis with a categorical
latent variable and can be used to create mutually
exclusive groups. However, it can also be used to
estimate dietary pattern prevalence and to describe
patterns without ‘hard’ classification of individuals
to clusters. Instead, classification is ‘soft’ with
estimates weighted by the posterior probabilities.
We adapt the general approach outlined by Fahey
et al'® in this paper for a very large multi-centre
cohort study and show how an FMM restricted to
be a mixture of multivariate normal (MVN)
distributions can be used to find, interpret and
validate dietary patterns.

MATERIALS AND METHODS

Study design, measures and subjects

The European Prospective Investigation into
Cancer (EPIC) cohort study consists of approxi-
mately 520000 individuals recruited into subco-
horts by 23 research centres in 10 countries.’® A
subsample of the female participants was used here
because dietary patterns have been shown to be
gender specific.'? Two random samples stratified by
EPIC centre, each having 6009 women, were drawn
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from the population of EPIC subcohorts after excluding women
in the top and bottom percentiles of energy intake. The model
was developed on the ‘estimation’ sample and validated on the
other. Self-reported diet was assessed using country-specific
dietary questionnaires (DQs). Food group consumption (g/d)
was calculated from the DQs. The 24 food groups listed in
table 1 are the slightly modified versions of the food groups used
by Slimani er al.'* Log-transformed values of consumptions
(g/d +1) were used in all analyses and back-transformed to the
original scale for presentation.

The finite mixture model

We define dietary patterns as unobserved classes in a sample
having different food consumption probability distributions.
They are identified by decomposing the aggregate distribution
into a sum of class-specific food consumption distributions as
per equation (1)*:

fo = Tifi + Tofs + = + Txfx 0

The multivariate probability density function for the observed
food consumptions, denoted fy, is a mixture of K class-specific
probability densities, f1...fx. A normal mixture model postulates
that the K probability densities each have an MVN distribution.
Thus, the kth density f;, is defined by mean food consumptions
and a covariance matrix ), containing parameters for the vari-
ances and covariances among the food consumptions. The
parameters T;...Tx are the class prevalences, indicating the
proportion of the aggregate data described by each of the K
probability densities. Identification of the class-specific densities
is done after fixing their number (K) and, in principle, is achieved
by finding the K-category latent variable that ‘best’ explains
associations among the observed food consumptions within
classes. See McLachlan er al' for examples using other types of
data.

Table 1 Content of food groups and abbreviations (EPIC, 1992—2000)

Parameter estimation and posterior classification

Parameter estimates and posterior probability of class member-
ship were obtained using Latent GOLD 3.0 and 4.0.6 Software
default values were used for posterior mode estimation and to
choose starting values for all models."® '° Posterior probabilities
were used to assign women to their most likely class.

Clustering criterion and choice of covariance matrix
Non-parametric cluster analysis can be done using optimisation
methods that partition a sample into K clusters by minimising
some criterion. For example, the K-means method that has been
used by other authors to find dietary patterns’ minimises the
multivariate analogue of the within-cluster sums of squares.
There is a correspondence between the choice of the minimising
criterion in the non-parametric approach and the parameter-
isation of the covariance matrix in an FMM. The K-means
method implicitly assumes that food consumptions have
constant variances within and across clusters and that they are
uncorrelated within clusters. This assumption is equivalent to
restricting the covariance matrix of the kth class in an EMM, >,
such that Y ,=0?I, where I is the identity matrix.!” Our previous
work has shown that these assumptions are too restrictive for
human food consumption.’? Thus, we compared various struc-
tures for the covariance matrix Y, to make an empirical choice
for its form using an approach similar to Fahey er al.'? Included
for comparison were models with food consumption variances
allowed to vary within and/or across classes as well as models
with or without covariances among food consumptions.

Model comparison and number of classes (parity)

The Bayesian information criterion (BIC) was used to compare
models that differed in covariance matrix structure and in
number of fitted classes’® ® and to choose a final model for
further analysis. The number of classes, K, was determined as
follows. We first fit the trivial 1-class model, where all

Food groups (abbreviation) Content

Vegetables (veget)

Fruits (fruit)

Potatoes (potat)

Legumes (legum)

Cereals and cereal products (cerea)

Leafy, fruiting, root, grain, pod and stalk vegetables, mushroom, allium, cruciferous, sprouts and mixed salad/vegetables
Fresh fruits, nuts, seeds, stewed fruit, mixed fruits and olives

Potatoes and potato products, except chips

Dried peas, lentils and beans, except soya

Flour, flakes, starches, pasta, rice and other grains, bread, crispbread, rusks, breakfast cereals, salty and aperitif biscuits,

dough and pastry (puff, short-crust, pizza)

Cakes (cake)
Sugar and confectionery (sugar)

Cakes, pies, pastries, puddings (non-milk-based), dry cakes, biscuits
Sugar, jam, marmalade, honey, chocolate and products, candy bars, confetti/flakes, drops, boiled sweets, chewing gum,

nougat, cereal bars, marzipan, syrup, water ice and ice cream

Vegetable oils (oil)

Margarines (marga)

Butter (butte)

Milk and milk beverages (milk)
Cheese (chees)

Vegetable oils

Margarines, mixed dairy margarines, baking fat

Butter, herbal butter, butter concentrate

Liquid milk (eg, cow, goat), processed milk (condensed, dried), whey and milk beverages
Cheese, fromage blance, petites suisses

Yogurt (yogur)

Eggs (egg)

Fresh red meat (rmeat)
Fresh white meat (wmeat)
Processed meat (pmeat)
Fish and shellfish (fish)
Sauces (sauce)

Tea (tea)

Coffee (coffe)

Soft drinks (soda)
Fruit/vegetable juices (juice)
Alcohol (alcoh)

Yogurt

Eggs (eg, chicken, turkey, duck, goose, quail) and egg products, except if used for bread and bakery products
Beef, veal, pork, lamb/mutton, horse, goat and offal

Poultry, game

Processed meat from red meat or poultry (eg, ham, bacon, sausages, pates, etc)

Fish and fish products, crustaceans and molluscs

Tomato sauces, dressing sauces, mayonnaises and similars dressings

Tea (with and without caffeine), iced tea: infusion, powder, instant beverage

Coffee (with and without caffeine): infusion, powder, instant beverage
Carbonated/soft/isotonic drinks, diluted syrups

Fruit and/or vegetable juices and nectars, freshly squeezed juices: pure or diluted with water
Total ethanol intake from all beverages
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individuals belong to the same class. Class parity was succes-
sively increased by 1 in each subsequent model until the value of
the BIC ceased to monotonically decrease or until parity reached
10. This value was chosen as a maximum to ensure substantial
dimension reduction from 24 food groups to the number of
latent classes.

Covariate adjustment

Food consumptions and class prevalence were conditioned on
three categorical covariates: region, age and total energy intake
as per Fahey er al.'? EPIC recruitment centres were categorised
according to their location in one of five regions differing in
proximity, type of DQ or cohort, and between-country variation
in food consumption'® '?: (1) France or Spain; (2) Italy or Greece;
(8) Denmark, Norway or Sweden; (4) Germany, the Netherlands
or the UK general population; (5) UK health-conscious popula-
tion. Age at recruitment was categorised into four groups: <35,
35—54, 55—64 and =65 years. Total energy intake (kcal) was
estimated from the country-specific DQs and categorised into
EPIC-wide quintiles.

Model interpretation and validation
To interpret results for the final model, predicted class prevalence
and food consumption means were computed as functions of
estimated parameters. Dietary patterns were interpreted by
examining the predicted geometric mean consumption of each
food group by class. To describe dietary patterns in terms of the
covariates age, energy and body mass index (BMI) and reflect an
individual’s partial contribution to each class, mean or
percentage values were computed by weighting them by the
posterior probabilities. Regional distribution within classes was
examined after assigning women to their most likely class.
Split-sample validation of the final model was done in two
ways. First, the model was fitted to the validation sample and
interpreted in the same way as described above for the estima-
tion sample. Second, the model fitted to the validation sample
was used to assign women to their most likely class. Then the
parameters obtained from the model fitted to the estimation
sample were used to predict a second set of assignments of
women into their most likely class on the validation sample.
Agreement between assignment sets was measured by two
statistics. First, we calculated K to adjust individual agreement
for chance. To do so, it was necessary to find a correspondence
between the two assignment sets, because, for example, class 1
in set 1 has no intrinsic correspondence to class 1 in set 2.
Therefore, Kk was computed from a cross-tabulation of assign-
ment sets after matching the class labels based on interpretation.
Second, assignment agreement among pairs was measured using
the Rand index, which is invariant to permutation of class
labels. It can be interpreted as the probability of a randomly
chosen pair of women being assigned the same way in both sets.
We report the adjusted Rand index (ARI),*® which takes into
account chance agreement. Its values usually fall between 0 1
and were calculated using a SAS macro.?!

RESULTS

Characteristics of the data

Analysis of the logged data showed that mean consumption of
food groups in the samples was very similar to the EPIC study
proper (not shown) and that by EPIC region the standard
deviations of food groups were proportional to mean intakes.
The proportion of the total sample that indicated non-
consumption of a particular food group was greater than or
equal to 15% for nine food groups: soft drinks (41%), tea (40%),

butter (31%), margarine (26%), legumes (25%), fruit juice (23%),
yogurt (19%), alcohol (15%) and white meat (15%). When non-
consumption was low, the distributions of logged food
consumptions were often approximately symmetric.

Choice of covariance matrix and class parity

These results are not reported in detail, but we note that given
parity greater than 2, model fit was always better when the
covariance matrix was allowed to vary by class, and structures
with constant variance across classes fit poorly. Adding
additional classes was more effective in improving model fit
than adding correlations among food consumptions. Over the
range of covariance structures and class parities examined, the
smallest BIC corresponded to an eight-class model having
a class-specific diagonal covariance matrix. This structure
allowed variances to be class specific and assumed that food
consumptions were uncorrelated within classes. All following
results are based on this (final) model. Average posterior proba-
bilities for the final model obtained after classifying each
woman into her most likely class ranged from 0.903 to 0.999 and
indicate classification uncertainty (table 2).

Class characteristics and dietary patterns

Class characteristics are reported in table 2 and patterns are
presented in figure 1. From bottom to top, food groups in figures
begin with plant products, followed by refined foods, fats, dairy
products, animal products and drinks. The values plotted are, for
each food group and class, predicted geometric means expressed
as percentage deviation from the mean over classes. Wald test
results showed very strong associations between class prevalence
and age, energy and region, and between many food groups and
these same covariates (p values not shown).

The shapes of the figures indicated that, with the exception of
class 6, patterns exhibited relatively strong preferences for or
against several foods. Four patterns were strongly associated
with region. The fourth and fifth patterns comprised entirely
Nordic women but were distinguished by their relative prefer-
ences (figure 1, classes 4 and 5). The former showed preferences
for fish and processed meat and avoidance of tea and soft drinks.
The latter showed strong preferences for fresh meat, tea and
alcohol and avoidance of cakes and added fats. The seventh class
comprised women from France and Spain. Their profile resem-
bled a ‘Mediterranean’ diet'” (figure 1, class 7). The eighth
pattern included the youngest women (table 2, figure 1, class 8)
and had obvious vegetarian tendencies. Ninety per cent of these
women were from the UK health-conscious cohort and 10%
from other regions.

The sixth pattern was notable for having all food consump-
tions below the average (with the exception of vegetables) and
for not having strong food preferences (figure 1, class 6). This
class had the highest proportion of women with reported
energy intake below the EPIC-wide second quintile. They were
not the smallest women though, and three other classes had
more women with normal or low BMI (table 2). The third
pattern showed preferences for dairy products, margarine and
non-alcoholic drinks. Almost 60% of these women were Dutch,
Germans or British. The two largest classes (1 and 2) were
similar with regard to many food preferences. However, women
in class 1 preferred coffee and yogurt, but avoided soft drinks,
while the opposite trend was apparent for women in class 2.
Class 1 was about 70% southern European, while class 2 had
the most uniform geographical distribution of the eight
patterns.
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Table 2 Characteristics of latent classes in normal mixture model (EPIC, 1992—2000)

Class number

Characteristic* 1 2 3 4 5 6 17 8
Class prevalence (% of sample) 26 17 17 13 8 8 6 5
Average modal posterior probability 0.983 0.906 0.919 0.998 0.999 0.903 0.991 0.993
Average age (yrs) 53 50 50 51 57 53 49 40
Distribution of energy intake (%)t
Low to <Q1 17 19 16 28 10 35 18 27
Q1 to <Q2 18 16 21 26 15 23 21 25
02 to <03 21 18 21 22 24 13 21 16
Q3 to <04 22 21 22 16 25 14 19 15
Q4 to high 22 25 20 8 26 16 20 17
Proportion with BMI <25 kg m~2 (%) 65 57 49 65 52 61 28 78
Region (% of class)
France, Spain 50 23 5 0 0 41 100 3
Italy, Greece 19 21 23 0 0 12 0 0
Netherlands, Germany, UK general population 23 32 42 0 0 24 0 7
UK health conscious 6 15 16 0 0 5 0 90
Norway, Denmark, Sweden 1 9 13 100 100 19 0 0

*Entries are means or percentages as indicated.
1Q1—Q4 are thresholds corresponding to EPIC-wide quintiles of total energy intake.

Model validation

Dietary patterns were also identified by fitting the final model to
the validation data (results not shown). Five validation data
patterns corresponded very closely to classes 4—8 in table 2, four
of which had very low classification uncertainty. Two other
validation data patterns agreed with estimation classes 1 and 3,
each with the exception of three food groups. The profile of the
last validation data pattern was dissimilar, with respect to eight
food groups, to estimation class 2, which had the second highest
classification uncertainty among classes (table 2).

The above correspondence between classes was used to
compute K equal to 58% between the two sets of assignments
obtained on the validation sample. Individual agreement
depends on matching classes in one set with classes in the other
set. For example, switching the correspondence between classes
will, in general, give different agreement. By considering pairs,
the ARI is invariant to this problem of label switching and is
therefore useful when the correspondence between class labels is
subjective. The value of the ARI for the two sets of assignments
on the validation sample was 37%.

DISCUSSION
The application of a mixture model to EPIC women has shown
some of the advantages of this approach for dietary pattern
identification. In particular, pattern prevalence is estimated
directly from the model parameters. There is no need to classify
individuals or to arbitrarily categorise factor scores, and individ-
uals contribute proportionately to pattern prevalence and
predicted means for all classes. Moreover, the mixture modelling
analogue of the clustering criterion can be chosen objectively by
comparing alternative parameterisations of the covariance matrix.
In this regard, our results were consistent with the findings from
an analysis of the 2000—2001 British National Diet and Nutrition
Survey.'? Both studies indicated preference for a model allowing
food wvariances to vary within and between classes over
approaches like K-means that assume variances are constant.
Our eight-class solution included plausible dietary patterns
that differed with respect to their total energy intake, their
sources of protein and added fats, and their consumption of
plant foods, dairy products and alcohol content. Five of these
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patterns constituting 40% of the data were well validated in an
independent sample and were strongly related to age, energy and
region. The ‘low consuming’ pattern has not been found previ-
ously in EPIC and we know of no other study reporting it in DQ
data, although Fahey et a/*? found a very similar pattern in
British food diary data. Interpretation of this pattern as a class of
under-reporters was supported by the women’s BMI. Further
analysis of this class could focus on physical activity and
metabolic factors.

Two other well-validated patterns comprised Nordic women
only. An analysis of average food consumption measured by
a dietary recall in the same EPIC centres has also distin§uished
between at least two patterns among Nordic women."* Given
the nature of the EPIC cohorts,'® we expected to identify
Mediterranean and vegetarian dietary patterns. It was
surprising, however, that Italian and Greek women were not
placed in an obvious Mediterranean-type pattern.

Split-sample validation also indicated that classification could
be improved for many women. In particular, the second pattern
found here constituting 17% of the sample had relatively high
classification uncertainty and was poorly validated. One reason
for lack of validation is measurement error in food consumption.
It is also likely that differential measurement error among DQs
obscured pattern identification.

Several aspects of our approach deserve comment. First, an
FMM takes measurement error into account by assuming that
each food measures a latent variable, that is, a dietary pattern,
with error. Considering the food consumptions jointly helps to
identify the latent variable. However, an FMM is not immune to
measurement error in individual food consumptions and one
expects that dietary patterns would be better identified from
foods measured with less error. The latent variable approach
contrasts with measurement error models for a single food that
seek to identify consumption of the food in question without
error. Second, an FMM is invariant to linear transformations of
the consumption units even when they vary by food, for
example, standardisation. This characteristic is not true of the
most frequently used methods for dietary patterns.'? Third,
although an FMM has the advantage of not needing to make
assumptions about the observed food distributions, an MVN
assumption is made for the underlying classes. Owing to
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EGG-36 EGG -30
YOGUR 31 YOGUR -31
CHEES 12 CHEES -7
MILK -54 MILK -69
BUTTE 76 1BUTTE 77
MARGA 9 MARGA 14
Cllezs ol -23
SUGAR -2 SUGAR 5
:':| CAKE 22 CAKE 41
CEREA 6 CEREAS
LEGUM -31 [ LEGUM 20|
[T POTAT 8 L] POTAT 19
FRUIT-3 FRUIT -8
VEGET -12| VEGET -14
-150 -100 -50 0 50 100 150 200 150 100 50 0 50 100 150 200
Class 3 Class 4
JUICE 81 JUICE -10[]
ALCOH -25[ IT] ALCOH 8
SODA 223 SODA -58
COFFE 80 ] COFFE 83
TEA22 TEA -98[
SAUCEN FISH 113
FISH-26 |
[T0] PMEAT 11  IPMEAT33
WMEAT -9 WMEAT -7|
RMEAT 14 RMEAT -2
EGG-35 | 1EGG 111
YOGUR 136 YOGUR -76
CHEES 31
oL -18[__] SUGAR 21
VEGET -4 VEGET 18
150 100 50 0 50 100 150 200 -150 -100 -50 0 50 100 150 200
Class 5 Class 6
JUICE -17
ALCQOH 213
SODA -4[]
COFFE 76
TEAZ288
SAUCE 31
FISH 30
PMEAT -21
] WMEAT 91
T RMEAT 140
JEGG 132
YOGUR-15
CHEES 23
MILK -59
SUGAR 27
VEGET 27 VEGET 0
-150 -100 -50 0 50 100 150 200 -150 -100 -50 0 50 100 150 200
Class 7 Class 8
JUICE 67
ALCOH -34
SODA -76
COFFE -62|
TEA -19
|1 SAUCE 13
FISH -93
FISH 25 PMEAT -94]
WMEAT -100|
WMEAT 95 RMEAT -95
RMEAT -5 EGG 47
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Figure 1

Predicted dietary patterns* from an eight-class normal mixture model (EPIC, 1992—2000). *Values plotted for each food group are model-

predicted geometric mean consumptions expressed as percentage deviation from the mean over classes. See table 1 for food group abbreviations.

probabilistic classification of individuals to classes, model
checking, including normality and outlier detection, cannot be
evaluated using standards methods. These problems will be the
focus of a subsequent paper. Fourth, owing to the size of the
data, we fitted models to random samples drawn from the EPIC

study. Classification could be predicted for all women using the
estimated parameters.

Mixture models are a flexible alternative to other multivariate
methods for finding and describing dietary patterns. The esti-
mated patterns could be used to predict disease after hard
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What is already known on this subject

» Most dietary patterns have been identified using statistical
methods not based on an underlying probability model.

» A consequence, for example, of using non-parametric cluster
analysis is that classification uncertainty is assumed to be 0.

» Owing to measurement error, dietary pattern analysis
produces some patterns that do not validate well.

What this study adds

» Finite mixture models can be applied to large multi-centre
epidemiological studies to identify dietary patterns taking
classification uncertainty into account.

» Classification uncertainty aids pattern description and evalu-
ation.

» Mixture models may be useful to identify under-reporting in
food consumption.

assignment of individuals to a single class or, taking classification
uncertainty into account, by using the posterior probabilities
directly in a Cox regression model. Future work could focus on
using mixture models to identify individuals who under-report
food consumption.
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