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Abstract

Increased dietary intake of Selenium (Se) has been suggested to lower prostate cancer mortality, but supplementation trials
have produced conflicting results. Se is incorporated into 25 selenoproteins. The aim of this work was to assess whether risk
of prostate cancer is affected by genetic variants in genes coding for selenoproteins, either alone or in combination with Se
status. 248 cases and 492 controls from an EPIC-Heidelberg nested case-control study were subjected to two-stage
genotyping with an initial screening phase in which 384 tagging-SNPs covering 72 Se-related genes were determined in 94
cases and 94 controls using the Illumina Goldengate methodology. This analysis was followed by a second phase in which
genotyping for candidate SNPs identified in the first phase was carried out in the full study using Sequenom. Risk of high-
grade or advanced stage prostate cancer was modified by interactions between serum markers of Se status and genotypes
for rs9880056 in SELK, rs9605030 and rs9605031 in TXNRD2, and rs7310505 in TXNRD1. No significant effects of SNPs on
prostate cancer risk were observed when grade or Se status was not taken into account. In conclusion, the risk of high-grade
or advanced-stage prostate cancer is significantly altered by a combination of genotype for SNPs in selenoprotein genes
and Se status. The findings contribute to explaining the biological effects of selenium intake and genetic factors in prostate
cancer development and highlight potential roles of thioredoxin reductases and selenoprotein K in tumour progression.
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Introduction

The micronutrient Selenium (Se) is essential for human health

and sub-optimal intake has been suggested to increase risk of

various multifactorial diseases [1,2]. Increased dietary intake of Se

has been proposed to lower cancer mortality [3] and in particular

Se has been reported to have a protective effect against prostate

cancer [4], based partly on the results of a trial in the US that

found an additional 200 mg Se/day to lower prostate cancer

incidence in individuals who had relatively low Se status prior to

supplementation [5]. However, a second supplementation trial

(SELECT) failed to confirm this observation [6]. Although the

different outcomes of these trials are likely to be due to a higher

baseline Se status in the more recent SELECT study [7], they may

also be affected by differences in the characteristics of the

probands, such as pattern and prevalence of Se-related genetic

variants in the study cohorts.

The biological functions of Se are carried out primarily by

selenoproteins which contain Se in the form of the amino acid

selenocysteine [8] and it is likely that the anti-carcinogenic

properties of Se are brought about through these selenoproteins

[9]. The selenoproteins have functions in cellular antioxidant

protection (glutathione peroxidases, selenoproteins W and H), redox

control (thioredoxin reductases), Se transport (selenoprotein P), and

the endoplasmic reticulum unfolded protein response (selenoprotein

S, 15 kDa selenoprotein, selenoprotein K) [10]. GPx3 and

selenoprotein P (SePP) are secreted into the bloodstream and their

plasma level, as well as serum Se, are commonly used as markers of

Se status [11,12]. A functional interaction between selenoproteins

and prostate cancer has been reported, i.e. serum Se and

selenoprotein P (SePP) concentrations are reduced in prostate

cancer patients and this is correlated with disease severity [13]. This

in turn could reduce selenoprotein expression and associated anti-

oxidant defense resulting in increased oxidative damage leading to

prostate cancer progression [14].
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Selenocysteine incorporation into selenoproteins occurs during

translation and requires proteins such as SECIS-binding protein 2

(SBP2) [7,10]. Genetic variants in genes encoding the selenopro-

teins or components of the selenocysteine incorporation machinery

would be expected to influence the biological pathways that are

modulated by selenoproteins [15,16]. Indeed, functional single

nucleotide polymorphisms (SNPs) have been identified in a

number of selenoprotein genes [13,14] and disease association

studies have linked variants in SEPP1, GPX1, GPX4, SEP15 or

SELS to risk of various diseases [15,16]. Three recent studies have

studied the association of single selenoprotein gene variants with

prostate cancer risk [13,17,18] and importantly they suggest that

interactions between different SNPs in selenoprotein genes or

antioxidant protein genes and Se status may influence suscepti-

bility to prostate cancer or disease mortality. The common

mechanism by which Se is incorporated into selenoproteins, the

hierarchy of selenoprotein synthesis when Se supply is limited and

the related functions of several selenoproteins (e.g. in redox control

and unfolded protein response) all emphasise that selenoproteins

are components of an integrated metabolic pathway. This close

relationship between selenoproteins suggests that the influence of

genetics on selenoprotein function and related disease risk is

complex involving multiple interacting variants and both genetic

and nutritional factors. However, such a comprehensive study of

SNPs throughout the ‘‘Se pathway’’ in relation to prostate cancer

has not been carried out.

As the selenoprotein family and selenoprotein biosynthesis

pathway are well characterised, the aim of the present study was to

investigate the association between SNPs throughout the genes

encoding selenoproteins, factors essential for selenocysteine

incorporation and related antioxidant proteins, Se status (as

assessed by measurement of total serum Se, selenoprotein P (SePP)

concentration and serum glutathione peroxidase (GPx3) activity)

and prostate cancer risk in a European population with a Se status

lower than that found in the USA. To achieve this aim, DNA

samples from EPIC-Heidelberg, a prospective cohort study aiming

to evaluate the association between dietary, lifestyle and metabolic

factors and the risk of cancer, were genotyped and plasma samples

analysed for plasma selenium status, selenoprotein P concentration

and GPx activity. Previously, the samples had been analysed for

six selenoprotein SNPs and rs1053040 in GPX1 was found to

modulate the effect of serum Se on prostate cancer risk [13]. These

six SNPs were not examined in the present study but instead the

approach taken was a two-stage genotyping study: the first stage

was an unbiased hypothesis-generating phase in which genotyping

for 384 tagging-SNPs covering 72 Se-related genes (including

selenoprotein genes, selenoprotein synthesis machinery, factors

known to be influenced by selenoproteins, some related transcrip-

tion factors and genes in linkage disequilibrium with these genes)

was carried out in 94 advanced prostate cancer cases and an equal

number of matched controls; in the second phase genotyping for a

selected number of SNPs identified in the first phase was carried

out in all 492 cases and controls.

Methods

Study Population and Data Assessment
The EPIC-Heidelberg study was designed to evaluate the

association between dietary, lifestyle and metabolic factors and the

risk of cancer. A random sample of the general population of

Heidelberg, Germany, and surrounding communities was provid-

ed by the local registries and invited to participate. From 1994 to

1998, 11928 men (aged 40–64) and 13612 women (aged 35–64)

were recruited, comprising 38% of those approached [19]. Details

of the collection of dietary, lifestyle and socioeconomic data have

been described previously [13]. Blood samples were taken and

fractionated into serum, plasma, buffy coat and erythrocytes, and

stored stored in liquid nitrogen. All participants gave written

informed consent and the study was approved by the ethics

committee of the Heidelberg Medical School. Subsequently

participants were contacted three times (every 2–3 years) by

follow-up questionnaires to assess health status; participation rates

of the completed three follow-ups were .90%. Based on all male

EPIC-Heidelberg participants with blood samples available and

free of prevalent cancer (except non-melanoma skin cancer) at

baseline we set up a nested case-control study. Incident prostate

cancer cases diagnosed by end of February 2007 were selected and

two controls were matched per case by age (5-year age groups) and

time of recruitment (6 month intervals) following an incidence

density matching protocol. The final study comprised 248 cases

and 492 controls.

Self-reported cases of prostate cancer were verified by

examination of medical records or death certificates (C61, C63.8

and C63.9; International Classification of Diseases for Oncology,

2nd edition). Tumor grade information (Gleason histologic grade)

was used to categorize cases as high-grade (Gleason score $7),

low-grade (,7) or unknown. Advanced prostate cancer was

defined as prostate cancer with a Gleason sum score $7, TNM

staging score of T3/4, N1-3 or M1 or prostate cancer as

underlying cause of death. During the 2nd and 3rd follow-up

rounds questions addressed history of prostate cancer in 1st degree

relatives and participation in prostate specific antigen (PSA)

screening. Only those cases who participated in screening before

the date of cancer diagnosis were coded as having a positive

screening history. Similarly, only controls participating in screen-

ing before the date of diagnosis were classified as controls

participating in prostate cancer screening. Samples for analysis

during the initial screening phase of genotyping include advanced

prostate cancer cases and one matched control per case.

Genotyping
Genomic DNA was extracted from buffy coat with FlexiGene

Kit (Qiagen, Hilden, Germany) in accordance with the manufac-

turer’s instructions. DNA was stored at 4uC until use. A custom

IlluminaTM GoldenGate assay was designed for analysis of 384

candidate SNPs (tagSNPs and potential functional SNPs) in the

selenoprotein and selenium pathway. Tag SNPs were selected,

using Haploview 3.2, with a cutoff minimum minor allele

frequency (MAF, in CEU population) of 0.05 and pairwise tagging

(r2 = 1-0.8). To include promoter regions and SNPs in LD in

neighboring genes, regions covering the coding region +/22 to15

kbp beyond the 59 and 39 ends were used for the selection.

Selected SNPs were then assessed for suitability for the IlluminaTM

GoldenGate genotyping platform, and the analysis was carried out

on SNPs which were GoldeneGate validated or two-hit validated

with scores .60%. The average call rate was .99%. The list of

SNPs on the chip is presented in Table S1. Genotyping using the

custom chip was carried out by ServiceXs, Leiden, The Nether-

lands.

Subsequently genotyping for selected SNPs (rs9880056 in SELK,

rs7310505 in TXNRD1, rs9605031 and rs9605030 in TXNRD2,

rs28665122 in SEPS1 and rs3211684 in SBP2) was performed as

multiplex on the MassArrayH system (Sequenom, San Diego,

USA) applying the iPLEXH method and MALDI-TOF mass

spectrometry for analyte detection. The analysis was carried out by

Bioglobe (Hamburg, Germany). All duplicated samples (quality

control repeats of 8% of the samples) to verify inter-experimental

reproducibility and accuracy delivered concordant genotype
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results. Similarly a control sample applied on every plate yielded

identical genotypes. All laboratory analyses were carried out with

the laboratory personnel blinded to the case-control status.

GPx Activity, Serum Se and Selenoprotein P
Concentrations

GPx activity was determined with Ransel RS 505 kits (Randox,

Crumlin, UK), as described previously [13,20]. Total serum Se

was determined by dynamic reaction cell-inductively coupled

plasma field mass spectrometry as described previously [13,21].

Coefficients of intra-assay and inter-assay variation have been

reported previously [13]. Serum Selenoprotein P concentration

was measured by an immunoluminometric sandwich assay [22] as

described in detail previously [13]. Six samples had insufficient

amounts of serum to be analyzed.

Statistical Analysis
Baseline characteristics of the study population are given as

mean and standard deviation or percentages by case-control

status. Serum Se and SePP concentrations as well as GPx3 activity

were nearly normally distributed and are presented as mean and

standard deviation.

Among healthy controls, Pearson correlation coefficients were

computed for serum Se, SePP and GPx3 activity. Genotype

frequencies for the selected polymorphisms were computed and

deviations from Hardy-Weinberg equilibrium were determined by

Chi2 test. Conditional logistic regression stratified by the matched

case set was used to calculate odds ratios (OR) and 95%

confidence intervals (CI) for the association of the SNPs with

prostate cancer risk, using the frequent homozygous genotype wild

type as reference category. As reported earlier [13], the final

model included participation in PSA screening, smoking status,

vigorous physical; activity and family history of prostate cancer as

adjustments.

To evaluate potential effect modification of the association

between serum Se concentration and prostate cancer risk by

genotype, we calculated OR (and 95% CI) of prostate cancer for

the continuous variables (serum Se, SePP and GPx) stratified by

genotype with unconditional logistic regression adjusting for the

matching variables (time of recruitment and 5-year age group).

Additionally adjustments were made for family history of prostate

cancer, participation in PSA screening, smoking status and

vigorous physical activity. Due to small numbers in the homozy-

gous mutant genotype we also combined the heterozygote and

homozygote (mutant) categories. We tested for interaction by

comparing the unconditional logistic regression model with and

without crossproduct terms (of genotype and continuous Se

variable) based on the likelihood ratio statistic. This analysis was

repeated in the subgroups according to stage and grade of prostate

cancer. All analyses were performed with SAS 9.1 (SAS Institute,

Cary, USA).

Results

Baseline characteristics of the study population have been

presented previously [13]. Cases and controls were matched for

age and were of comparable BMI. No significant differences were

observed in mean serum concentration of Se or SePP or GPx3

activity between cases and controls [13].

Identification of SNPs Interacting with Se Status Markers
to Determine Prostate Cancer Risk

Genotyping was carried out in two phases. In the initial

hypothesis-generating phase the sub-group of advanced prostate

cancer cases (n = 94) and an equal number of matched controls

were genotyped for 384 SNPs including functional SNPs in

selenoprotein genes and tagging SNPs covering the 25 selenopro-

tein genes and factors important for selenoprotein biosynthesis

(Table S1) selected as described in Materials and Methods.

Genotype alone showed no significant effects of selenoprotein

SNPs on prostate cancer risk. However, taking both genotype and

Se status into account, analysis of all these variants for the 94

advanced prostate cancer cases and controls indicated that a

limited number of SNPs showed a significant interaction with one

or more measures of Se status on prostate cancer risk when the

SNP was considered as either a continuous variable or in a

dominant mode (data not shown). To limit the number of tests on

the whole cohort SNPs were identified which showed statistically

significant interaction with at least one measure of Se status on

prostate cancer risk at the 1% level. Using these criteria,

rs9880056 in SELK, rs9605030 and rs9605031 in TXNRD2,

rs7310505 in TXNRD1, rs3211684 in SBP2 and rs28665122 in

SEPS1 were considered for further study.

Interaction between Genotype and Selenium Status
Affects Prostate Cancer Risk for Selected Individual SNPs

In a second genotyping phase, the full nested case-control study

(248 cases/492 controls) was genotyped for SNPs that showed a

significant interaction with markers of Se status in the first,

pathway analysis, stage (see above: SNPs in TXNRD1, TXNRD2,

SELK, SEPS1 and SBP2). The genotype frequencies are shown in

Table 1. In the controls, genotype frequencies of these five SNPs

were in Hardy-Weinberg equilibrium. There was no statistically

significant main effect of any of these five SNPs on prostate cancer

risk. However, as shown in Table 2, when the influence of Se

status on the effects of genotype for the selected polymorphisms

was taken into account SNPs in TXNRD1 and TXNRD2 genes

were found to influence prostate cancer risk. Firstly, subjects

homozygous for the C allele of rs7310505 in TXNRD1 had an OR

of 0.88 for prostate cancer risk (95% CI = 0.78–1.00, p = 0.045)

per 10 mg/l increase in serum Se concentration, whereas in

subjects carrying the A allele (heterozygous or homozygous) no

association was found (Pinteraction = 0.06). Secondly, subjects

carrying the T allele (heterozygous or homozygous) for

rs9605031 in the TXNRD2 gene had an OR of 0.82 for disease

risk (95% CI = 0.69–0.96, p = 0.016) per 10 mg/l increase in serum

Se concentration, whereas in subjects carrying the homozygous C

no association was found (Pinteraction = 0.02). Interaction terms with

other markers of Se status (serum SePP or GPx activity) did not

reveal significant changes in prostate cancer risk.

Association of Genotype for SNPs in Selenoprotein Genes
with Prostate Tumour Grade and Stage

Analysis of the data for the prostate cancer cases according to

clinical parameters showed that within the study there were 69

advanced cases and 172 cases with localized disease, 90 individuals

with high-grade tumours and 130 with low grade tumours.

Regardless of markers of Se status, when tumour grade and disease

stage were taken into account in the analysis there was a trend

towards reduced risk of a high grade tumour in individuals

carrying at least one T allele for rs28665122 in the gene SEPS1

(OR = 0.57, 95% CI = 0–31–1.06, p = 0.08) (Table 3). Further

analysis of the data incorporating both tumour category and

markers of Se status was carried out. As shown in Table 4, when

analysis was restricted to advanced stage prostate cancer, subjects

homozygous for the C allele of rs7310505 in TXNRD1 had an OR

of 0.72 (95% CI = 0.56–0.93, p = 0.011) per 10 mg/l increase in
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serum Se concentration, whereas in subjects carrying the A allele

(heterozygous and homozygous) no association was found (pinterac-

tion = 0.02). Similarly, the C allele of rs7310505 was associated with

lower risk of advanced cancer as serum SePP increased (OR 0.43

(95% CI = 0.21–0.88, p = 0.02). In contrast when analysis was

restricted to local stage prostate cancer subjects there was no

significant association of rs7310505 and either serum Se or SePP

concentration with disease risk (Table 4). There was also evidence

of lower risk of advanced prostate cancer in homozygous CC

carriers for rs9605030 in the TXNRD2 gene (OR = 0.53, 95%

CI = 0.29–0.95, p = 0.03) as serum SePP increased. No compara-

ble differences were seen in local stage cancer patients. Restriction

of analysis to subjects with high grade tumours showed that

subjects carrying the T allele for rs28665122 (heterozygous and

homozygous) in the SEPS1 gene (OR = 0.46, 95% CI = 0.24–0.89,

p = 0.02) were at lower risk of a high grade tumour per 10 mg/l

increase in serum Se concentration but no association was

observed in homozygous subjects where pinteraction did not reach

statistical significance (Table 4).

Analysis of the data taking both clinical parameters and

measures of Se status into account showed consistent association

of rs9880056 in the SELK gene with advanced stage or high grade

disease risk. As shown in Table 4, when analysis was restricted to

advanced stage prostate cancer subjects with the C allele

(homozygous and heterozygous) for rs9880056 had an OR of

0.67 (95% CI = 0.50–0.89, p = 0.006) per 10 mg/l increase in

serum Se concentration. Similarly, the C allele of rs9880056 was

associated with lower risk of advanced stage cancer as serum SePP

increased (OR 0.39 (95% CI = 0.16–0.91, p = 0.029). When

analysis was restricted to high grade prostate cancer, subjects

with the C allele (homozygous and heterozygous) for rs9880056

had an OR of 0.76 (95% CI = 0.61–0.94, p = 0.01) per 10 mg/l

increase in serum Se concentration (Table 4), whereas in subjects

homozygous for the T allele no association was found (pinterac-

tion = 0.05). Similarly, the C allele of rs9880056 was associated with

lower risk of high grade tumour as serum SePP increased (OR

0.47 (95% CI = 0.26–0.87, p = 0.016)) with a pinteraction of 0.01. In

addition there was a trend towards carriers of the C allele having a

lower risk of advanced stage disease as serum GPx3 activity

increased (OR = 0.79, 95% CI = 0.61–1.02, p = 0.08). Even when

markers of Se status were included in the analysis no association of

rs9880056 in SELK was found with risk of low grade tumour or

local stage disease.

Discussion

Although previous work has suggested a possible inverse

association between Se levels and risk of prostate cancer [4],

studies of the influence of genetic variants in selenoprotein genes

on prostate cancer risk or survival have been limited [13,17,18].

These earlier studies have provided evidence that variants in a

Table 1. Genotype frequencies of polymorphisms in selected selenoproteins association with prostate cancer risk in the EPIC-
Heidelberg nested case-control study.

Gene RS number Genotype Control N Case N OR (95%CI) p-value

SELK rs9880056 TT 256 122

TC 207 105 1.07 (0.78, 1.47) 0.68

CC 29 21 1.51 (0.83, 2.77) 0.18

TC/CC 236 126 1.12 (0.83, 1.52) 0.47

TXNRD2_1 rs9605030 CC 377 184

CT 104 61 1.18 (0.83, 1.68) 0.36

TT 11 3 0.54 (0.15, 1.97) 0.35

CT/TT 115 64 1.13 (0.80, 1.60) 0.49

TXNRD2_2 rs9605031 CC 272 128

CT 185 98 1.12 (0.82, 1.53) 0.48

TT 35 22 1.32 (0.75, 2.33) 0.34

CT/TT 220 120 1.15 (0.85, 1.55) 0.36

SBP2 rs3211684 TT 436 218

GT 54 28 1.03 (0.65, 1.66) 0.89

GG 2 2 2.01 (0.28, 14.27) 0.49

GT/GG 56 30 1.07 (0.67, 1.69) 0.78

TXNRD1 rs7310505 CC 310 149

CA 161 88 1.14 (0.82, 1.57) 0.43

AA 21 11 1.09 (0.51, 2.32) 0.83

CA/AA 182 99 1.13 (0.83, 1.54) 0.43

SEPS1 rs28665122 CC 365 192

CT 121 53 0.84 (0.59, 1.20) 0.34

TT 6 3 0.98 (0.25, 3.93) 0.98

CT/TT 127 56 0.85 (0.60, 1.20) 0.35

OR, 95% confidence interval (CI) and P values were calculated for each SNP analysed using logistic regression. For each SNP, ORs are presented with reference to the
most frequent homozygous genotype.
doi:10.1371/journal.pone.0048709.t001
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Table 2. Odds ratio and 95% confidence interval for association of serum Se concentration, serum SePP concentration or serum
GPx activity and prostate cancer in strata of genetic polymorphisms.

Gene RS number Genotype Cases/Controls OR (95% CI) p-value

SELK rs9880056

TT 121/254 0.94 (0.81, 1.07) 0.34

TC/CC 123/236 0.89 (0.77, 1.02) 0.09

Pinteraction serum Se 0.46

SELK rs9880056

TT 121/255 0.89 (0.61, 1.28) 0.52

TC/CC 126/236 0.78 (0.54, 1.12) 0.17

Pinteraction serum SePP 0.63

SELK rs9880056

TT 122/256 0.93 (0.79, 1.10) 0.39

TC/CC 126/236 0.93 (0.79, 1.09) 0.36

Pinteraction serum GPx activity 0.97

TXNRD 2_1 rs9605030

CC 182/377 0.95 (0.85, 1.06) 0.39

CT/TT 62/113 0.86 (0.69, 1.08) 0.19

Pinteraction serum Se 0.18

TXNRD2_1 rs9605030

CC 184/376 0.87 (0.65, 1.16) 0.34

CT/TT 63/115 0.85 (0.49, 1.48) 0.57

Pinteraction serum SePP 0.9

TXNRD2_1 rs9605030

CC 184/377 0.92 (0.80, 1.05) 0.21

CT/TT 64/115 0.96 (0.77, 1.19) 0.72

Pinteraction serum GPx activity 0.44

TXNRD2_2 rs9605031

CC 127/272 0.99 (0.88, 1.12) 0.90

CT/TT 117/218 0.82 (0.69, 0.96) 0.02

Pinteraction serum Se 0.02

TXNRD2_2 rs9605031

CC 128/271 0.91 (0.66, 1.27) 0.58

CT/TT 119/220 0.75 (0.49, 1.14) 0.18

Pinteraction serum SePP 0.58

TXNRD2_2 rs9605031

CC 128/272 0.95 (0.81, 1.11) 0.52

CT/TT 120/220 0.93 (0.79, 1.10) 0.40

Pinteraction serum GPx activity 0.93

SBP2 rs3211684

GT/GG 29/56 0.97 (0.65, 1.44) 0.87

TT 215/434 0.92 (0.83, 1.02) 0.12

Pinteraction serum Se 0.65

SBP2 rs3211684

GT/GG 30/56 0.92 (0.32, 2.62) 0.87

TT 217/435 0.84 (0.64, 1.10) 0.20

Pinteraction serum SePP 0.51

SBP2 rs3211684

GT/GG 30/56 0.99 (0.64, 1.55) 0.971

TT 218/436 0.93 (0.83, 1.05) 0.27

Pinteraction serum GPx activity 0.66
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Table 3. Odds ratio and 95% confidence interval for association of polymorphisms in selected selenoproteins with prostate cancer
risk in strata of disease stage.

Advanced cases Localized disease High grade Low grade

Gene RS number Genotype OR(95%CI) p-value OR(95%CI) p-value OR(95%CI) p-value OR(95%CI) p-value

SELK rs9880056 TT 1 1 1 1

TC/CC 0.96 (0.54, 1.69) 0.89 1.26 (0.87, 1.84) 0.22 0.92 (0.55, 1.52) 0.73 1.28 (0.84, 1.95) 0.25

TTXNRD2_1 rs9605030 CC 1 1 1 1

CT/TT 1.4 (0.73, 2.69) 0.31 0.98 (0.64, 1.49) 0.91 1.19 (0.68, 2.08) 0.53 0.88 (0.53, 1.45) 0.61

TXNRD2_2 rs9605031 CC 1 1 1 1

CT/TT 1.09 (0.61, 1.95) 0.77 1.12 (0.78, 1.59) 0.54 0.97 (0.59, 1.58) 0.90 1.09 (0.71, 1.66) 0.69

SBP2 rs3211684 TT 1 1 1 1

GT/GG 1.07 (0.44, 2.64) 0.88 1.09 (0.64, 1.87) 0.7455 1.21 (0.52, 2.84) 0.66 0.92 (0.50, 1.70) 0.80

TXNRD1 rs7310505 CC 1 1 1 1

CA/AA 1.13 (0.63, 2.03) 0.69 1.13 (0.78, 1.63) 0.53 1.18 (0.71, 1.93) 0.52 0.9 (0.59, 1.39) 0.64

SEPS1 rs28665122 CC 1 1 1 1

CT/TT 0.93 (0.50, 1.76) 0.83 0.83 (0.54, 1.27) 0.39 0.57 (0.31, 1.06) 0.08 1.05 (0.66, 1.68) 0.84

OR, 95% confidence interval (CI) and P values were calculated for each SNP analysed using logistic regression and stratified according to disease stage. For each SNP,
ORs are presented with reference to the most frequent homozygous genotype.
doi:10.1371/journal.pone.0048709.t003

Table 2. Cont.

Gene RS number Genotype Cases/Controls OR (95% CI) p-value

TXNRD1 rs7310505

CC 146/310 0.88 (0.78, 1.00) 0.04

CA/AA 98/180 1.03 (0.87, 1.22) 0.72

Pinteraction serum Se 0.06

TXNRD1 rs7310505

CC 149/310 0.84 (0.61, 1.14) 0.26

CA/AA 98/181 0.98 (0.62, 1.57) 0.95

Pinteraction serum SePP 0.47

TXNRD1 rs7310505

CC 149/310 0.89 (0.77, 1.04) 0.15

CA/AA 99/182 1 (0.84, 1.19) 0.97

Pinteraction serum GPx activity 0.16

SEPS1 rs28665122

CC 188/363 0.95 (0.85, 1.06) 0.33

CT/TT 56/127 0.86 (0.68, 1.08) 0.19

Pinteraction serum Se 0.11

SEPS1 rs28665122

CC 191/365 0.87 (0.66, 1.17) 0.36

CT/TT 56/126 0.73 (0.41, 1.29) 0.27

Pinteraction serum SePP 0.3

SEPS1 rs28665122

CC 192/365 0.97 (0.85, 1.11) 0.64

CT/TT 56/127 0.8 (0.61, 1.05) 0.11

Pinteraction serum GPx activity 0.2

OR, 95% confidence interval (CI) and P values were calculated for each SNP analysed using logistic regression. OR adjusted for age group, family history of prostate
cancer, participation in PSA testing, smoking status, and vigorous physical activity. Pinteraction = P value of test for interaction between genotype and serum selenium
concentration per 10 mg/l, serum SePP concentration (mg/l) or serum GPx3 activity per 100 U/l.
doi:10.1371/journal.pone.0048709.t002

Selenoproteins, SNPs and Prostate Cancer

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e48709



Table 4. Odds ratio and 95% confidence interval for association of markers of Se status and polymorphisms in selenoprotein
genes with advanced and high-grade prostate c cancer in the EPIC-Heidelberg nested case-control study.

Advanced stage Localised disease High grade Low grade

Gene RS number Genotype OR (95%CI)
p-
value OR (95%CI)

p-
value OR (95%CI)

p-
value OR (95%CI)

p-
value

SELK rs9880056

rs9880056 TT 0.94 (0.72, 1.23) 0.64 0.93 (0.78, 1.10) 0.39 1 (0.80, 1.24) 1.00 0.9 (0.75, 1.10) 0.31

rs9880056 TC/CC 0.67 (0.50, 0.89) 0.01 0.97 (0.81, 1.16) 0.76 0.76 (0.61, 0.94) 0.01 1.03 (0.82, 1.29) 0.80

Pinteraction serum Se 0.09 0.91 0.05 0.42

SELK rs9880056

rs9880056 TT 0.78 (0.38, 1.62) 0.51 0.87 (0.55, 1.37) 0.55 1.2 (0.68, 2.11) 0.53 0.65 (0.38, 1.10) 0.11

rs9880056 TC/CC 0.39 (0.16, 0.91) 0.03 0.95 (0.61, 1.46) 0.80 0.47 (0.26, 0.87) 0.02 1.11 (0.67, 1.85) 0.69

Pinteraction serum SePP 0.16 0.71 0.01 0.07

SELK rs9880056

rs9880056 TT 0.78 (0.52, 1.16) 0.22 0.96 (0.80, 1.15) 0.64 1.02 (0.73, 1.43) 0.91 0.84 (0.67, 1.06) 0.14

rs9880056 TC/CC 0.85 (0.59, 1.21) 0.36 0.94 (0.78, 1.13) 0.48 0.79 (0.61, 1.02) 0.08 0.98 (0.75, 1.27) 0.87

Pinteraction serum GPx activity 0.42 0.93 0.13 0.33

TXNRD2_1 rs9605030

rs9605030 CC 0.83 (0.68, 1.03) 0.09 1 (0.87, 1.14) 0.95 0.92 (0.77, 1.10) 0.37 0.97 (0.83, 1.13) 0.69

rs9605030 CT/TT 0.77 (0.41, 1.44) 0.41 0.9 (0.68, 1.18) 0.43 0.7 (0.45, 1.08) 0.10 1.08 (0.74, 1.57) 0.68

Pinteraction serum Se 0.76 0.22 0.05 0.49

TXNRD2_1 rs9605030

rs9605030 CC 0.53 (0.29, 0.95) 0.03 0.98 (0.69, 1.40) 0.93 0.74 (0.47, 1.18) 0.21 0.92 (0.62, 1.37) 0.69

rs9605030 CT/TT 0.56 (0.09, 3.66) 0.55 1.01 (0.52, 1.95) 0.99 0.95 (0.32, 2.76) 0.92 0.8 (0.31, 2.08) 0.65

Pinteraction serum SePP 0.44 0.86 0.74 0.84

TXNRD2_1 rs9605030

rs9605030 CC 0.76 (0.54, 1.07) 0.11 0.94 (0.81, 1.09) 0.43 0.86 (0.67, 1.10) 0.23 0.89 (0.74, 1.08) 0.24

rs9605030 CT/TT 0.85 (0.47, 1.55) 0.60 0.98 (0.76, 1.27) 0.89 0.94 (0.61, 1.44) 0.77 1.08 (0.77, 1.50) 0.66

Pinteraction serum GPx activity 0.29 0.81 0.54 0.27

TXNRD2_2 rs9605031

rs9605031 CC 0.87 (0.68, 1.10) 0.24 1.03 (0.89, 1.19) 0.70 0.94 (0.78, 1.14) 0.53 1 (0.84, 1.20) 0.96

rs9605031 CT/TT 0.72 (0.50, 1.04) 0.08 0.87 (0.71, 1.06) 0.17 0.73 (0.55, 0.97) 0.03 0.98 (0.76, 1.26) 0.85

Pinteraction serum Se 0.68 0.02 0.02 0.63

TXNRD2_2 rs9605031

rs9605031 CC 0.63 (0.32, 1.22) 0.17 0.97 (0.65, 1.44) 0.89 0.7 (0.42, 1.17) 0.17 0.98 (0.63, 1.53) 0.93

rs9605031 CT/TT 0.44 (0.15, 1.27) 0.13 0.96 (0.58, 1.58) 0.87 0.77 (0.38, 1.56) 0.46 0.85 (0.45, 1.60) 0.62

Pinteraction serum SePP 0.71 0.85 0.71 0.83

TXNRD2_2 rs9605031

rs9605031 CC 0.86 (0.58, 1.26) 0.44 0.95 (0.79, 1.14) 0.60 0.88 (0.67, 1.16) 0.38 0.9 (0.72, 1.12) 0.35

rs9605031 CT/TT 0.83 (0.54, 1.26) 0.38 0.96 (0.79, 1.17) 0.72 0.89 (0.66, 1.20) 0.45 0.97 (0.76, 1.23) 0.78

Pinteraction serum GPx activity 0.79 0.82 0.66 0.71

SBP2 rs3211684

SBP2 rs3211684 GT/GG – – – 1.01 (0.63, 1.62) 0.96 – – – 0.97 (0.84, 1.12) 0.66

SBP2 rs3211684 TT 0.84 (0.69, 1.02) 0.08 0.96 (0.85, 1.08) 0.50 0.89 (0.76, 1.04) 0.13 1.33 (0.67, 2.64) 0.42

Pinteraction serum Se 0.54 0.4 0.84 0.48

SBP2 rs3211684

SBP2 rs3211684 GT/GG – – – 1.18 (0.33, 4.21) 0.80 0.72 (0.04, 13.53) 0.83 0.91 (0.62, 1.33) 0.62

SBP2 rs3211684 TT 0.6 (0.34, 1.04) 0.07 0.94 (0.68, 1.29) 0.70 0.75 (0.49, 1.14) 0.18 0.45 (0.06, 3.39) 0.44

Pinteraction serum SePP 0.81 0.48 0.4 0.96

SBP2 rs3211684

SBP2 rs3211684 GT/GG – – – 0.96 (0.58, 1.60) 0.89 0.49 (0.13, 1.85) 0.29 0.92 (0.78, 1.09) 0.34

SBP2 rs3211684 TT 0.85 (0.64, 1.12) 0.24 0.95 (0.83, 1.08) 0.43 0.94 (0.77, 1.14) 0.51 1.02 (0.50, 2.05) 0.97
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combination of the SEPP1 and manganese superoxide dismutase

(SOD2) genes affects disease risk [18], that rs1050450 in GPX1

affects the influence of Se status on risk [13] and that variants in

SEP15 affect prostate cancer survival [17]. Increasingly, it is being

realised that it is important to take an overall biological pathway

approach to identify SNPs that show an association with a disease/

disorder (e.g. [23,24]). The present study used a two-phase

genotyping approach to assess the influence of interaction of Se

status and SNPs in genes across the selenium biological pathway

on prostate cancer risk. The study extended earlier work by

showing consistent significant interactions between serum markers

of Se status and TXNRD1, TXNRD2 and SELK genotype with

respect to risk of high-grade or advanced stage prostate cancer. As

we used tagging-SNPs it is difficult to evaluate the functionality of

these variants. Both TXNRD2 variants and the TXNRD1 variant

studied are intronic and therefore the functional basis for the

observed effects is unclear at present. In contrast, the SNP in SELK

is in the promoter region and thus may influence gene expression

through affecting promoter activity. A more detailed analysis of

the genetic regions, combined with functional assays, could help in

understanding the consequences of these SNPS or variants they

are tagging.

The study involved analysis of samples from the EPIC-

Heidelberg study and benefited from the availability of dietary

and lifestyle data. However, the relatively small number of

participants, particularly in the first phase of analysis, meant that

the study was underpowered. Together with the lack of correction

for multiple testing, this is a limitation that could lead to potential

false positives that could have occurred by chance. However the

strategy chosen here provides the opportunity to potentially

identify new candidate functional SNPs and highlights the

potential role of several selenoproteins in prostate function or

prostate cancer etiology. Additionally, this approach reinforces

previous observations [17] that the effects of some SNPs cannot be

seen when Se status markers are not taken into account.

TR1 and TR2 proteins have major roles in regulation of redox

signalling, whilst SelK has recently been reported to be an

endoplasmic reticulum protein that is thought to play a role in the

unfolded protein response and endoplasmic reticulum homeostasis

[26,27]. Both these biochemical processes are important in cell

responses to metabolic challenges and are thought to be important

in the control of cell proliferation and apoptosis. Therefore the

observed effects of these SNPs are likely to reflect alterations in the

ability of the prostate cells to respond to redox or inflammatory

Table 4. Cont.

Advanced stage Localised disease High grade Low grade

Gene RS number Genotype OR (95%CI)
p-
value OR (95%CI)

p-
value OR (95%CI)

p-
value OR (95%CI)

p-
value

Pinteraction serum GPx activity 0.92 0.42 0.06 0.23

TXNRD1 rs7310505

rs7310505 CC 0.72 (0.56, 0.93) 0.01 0.96 (0.83, 1.11) 0.58 0.83 (0.68, 1.02) 0.07 0.95 (0.80, 1.13) 0.57

rs7310505 CA/AA 0.99 (0.70, 1.40) 0.95 1.02 (0.83, 1.25) 0.83 0.95 (0.73, 1.23) 0.71 1.01 (0.79, 1.30) 0.91

Pinteraction serum Se 0.02 0.54 0.28 0.41

TXNRD1 rs7310505

rs7310505 CC 0.43 (0.21, 0.88) 0.02 1.05 (0.72, 1.52) 0.80 0.74 (0.44, 1.24) 0.25 0.92 (0.61, 1.40) 0.71

rs7310505 CA/AA 1.2 (0.41, 3.53) 0.74 0.83 (0.47, 1.47) 0.51 0.68 (0.32, 1.44) 0.31 0.98 (0.45, 2.11) 0.95

Pinteraction serum SePP 0.02 0.37 0.73 1.00

TXNRD1 rs7310505

rs7310505 CC 0.88 (0.64, 1.22) 0.45 0.9 (0.75, 1.08) 0.25 0.96 (0.73, 1.26) 0.76 0.84 (0.68, 1.04) 0.11

rs7310505 CA/AA 0.78 (0.47, 1.29) 0.34 1.03 (0.84, 1.26) 0.77 0.83 (0.60, 1.15) 0.26 1.11 (0.81, 1.52) 0.51

Pinteraction serum GPx activity 0.93 0.18 0.36 0.02

SEPS1 rs28665122

SEPS1 rs28665122 CC 0.86 (0.70, 1.05) 0.14 1.01 (0.89, 1.15) 0.90 0.9 (0.76, 1.06) 0.22 1 (0.86, 1.18) 0.97

SEPS1 rs28665122 CT/TT 1.09 (0.53, 2.24) 0.81 0.88 (0.68, 1.16) 0.37 0.76 (0.50, 1.17) 0.21 0.89 (0.65, 1.22) 0.48

Pinteraction serum Se 0.48 0.08 0.16 0.22

SEPS1 rs28665122

SEPS1 rs28665122 CC 0.62 (0.34, 1.11) 0.11 1.04 (0.73, 1.48) 0.81 0.8 (0.51, 1.26) 0.34 0.92 (0.61, 1.38) 0.69

SEPS1 rs28665122 CT/TT 1.24 (0.22, 7.17) 0.81 0.85 (0.43, 1.66) 0.63 0.46 (0.18, 1.21) 0.12 0.91 (0.40, 2.08) 0.82

Pinteraction serum SePP 0.94 0.14 0.32 0.78

SEPS1 rs28665122

SEPS1 rs28665122 CC 0.91 (0.67, 1.22) 0.52 0.99 (0.85, 1.15) 0.89 0.95 (0.75, 1.20) 0.68 0.91 (0.75, 1.10) 0.33

SEPS1 rs28665122 CT/TT 0.58 (0.26, 1.30) 0.19 0.88 (0.63, 1.23) 0.45 0.46 (0.24, 0.89) 0.02 0.98 (0.67, 1.44) 0.92

Pinteraction serum GPx activity 0.12 0.2 0.22 0.94

Logistic regression adjusted for matching factors (age and time of blood collection) and family history of prostate cancer, participation in PSA testing, smoking status,
and vigorous physical activity. Data was stratified according to disease stage. Pinteraction = P value of test for interaction between genotype and serum selenium
concentration per 10 mg/l, serum SePP concentration (mg/l) or serum GPx3 activity per 100 U/l.
doi:10.1371/journal.pone.0048709.t004
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challenges. Interestingly, TR1 has been identified as one of four

genes differentially expressed between androgen–dependent and

independent growth of prostate cancer in mice [28]. Over-

activation or dysfunction of thioredoxin reductases have been

proposed to be involved in cancer etiology and prostate tumour

progression [29,30,31]. As a result, thioredoxin reductases have

been identified as anti-cancer targets and small molecules

inhibitors of thioredoxin reductases (such as organoselenium

compounds) are currently used in the treatment of prostate cancer

[30,31]. The observation that SNPs in both TXNRD1 and

TXNRD2 genes are affecting prostate cancer risk supports the

proposed role of the corresponding proteins in prostate function

and/or tumour development. It would be interesting to determine

if genetic variations in these two genes affect individual response to

chemopreventive agents such as thioredoxin reductase inhibitors.

In addition, SelK has been proposed to play a role in the

regulation of Ca2+ flux [32] and changes in Ca2+ flux have been

suggested to be involved in the progression to hormone-insensitive

prostate cancer [33].

The association of SNPs in TXNRD1 and TXNRD2 with disease

risk was only observed in advanced stage or high grade cancers

and not in localized low-grade cases. This may reflect a role for

these selenoproteins in the progression of prostate cancers rather

that initiation, especially in view of the reported relationship

between thioredoxin reductase activity and tumour aggressiveness

[29]; alternatively, there may be different etiologies for the

localized, low grade and the advanced, high grade cancers with

different roles for the selenoproteins in the two disease situations.

We hypothesize that sub-optimal Se status and altered activity of

TR1, TR2 and SelK modify the ability of prostate cells to combat

oxidative and inflammatory challenges and so affect their growth

and tumour progression.

Selenoprotein expression in response to Se supplementation has

been found to vary between individuals and some of these effects

have been attributed to genetic polymorphisms in selenoproteins

[34,35,36]. Synthesis of different selenoproteins responds differ-

entially to sub-optimal Se intake [15,37,38] and since the

protective effects of Se are thought to occur through selenoprotein

biosynthesis one would expect potential genetic effects on prostate

cancer risk to be modulated by Se status and vice versa. Since Se

content of most foods depends on their geographical source Se

intake is difficult to assess [1], but Se status can be assessed by

measurement of blood biomarkers such as serum Se, plasma GPx

or plasma SePP. SePP has been reported to be a better marker of

status over a wider range of intake [12] than GPx3 but a recent

systematic review concluded that more information is needed to

evaluate their strengths and weaknesses as biomarkers of Se status

[11]. Therefore, in this study we measured three markers of Se

status and analysed them independently. There were significant

interactions between Se status and TXNRD1, TXNRD2 and SELK

genotype with respect to high-grade or advanced stage prostate

cancer, so emphasising the importance of the combination of Se

intake and genotype in determining prostate cancer risk. Our

observations that effects of Se-related SNPs on prostate cancer risk

were observed only in combination with Se status provide a likely

explanation of why gene variants in selenoprotein genes have not

been identified as risk factors in a recent genome-wide association

study [25].

The lack of significant association of genotype for single SNPs in

SEPP1 or SEP15 on prostate cancer risk is consistent with earlier

reports that also found no association of specific SNPs in these

genes with prostate cancer risk [17,18]. However, in a nested case

control study [17] variants in SEP15 were observed to be

associated with prostate cancer mortality. In the present study

we were unable to assess effects on mortality.

Large-scale Se supplementation trials in the USA have given

contradictory outcomes with regards to evidence for a relationship

between lower Se intake and increased risk of prostate cancer

[5,6]. This has been attributed to various factors, including higher

baseline Se status in the SELECT study compared with the

Nutritional Prevention of Cancer Trial [6]. The present study was

carried out on European subjects in whom, on the basis of

comparison of earlier populations [2], the mean Se status would be

expected to be lower than in a US population. Indeed, as reported

earlier [13] the mean plasma Se in control subjects within this

study (87.7 mg/l) was lower than the baseline plasma Se in the

recent SELECT trial [6]. In addition, there is evidence for familial

associations of prostate cancer [39] and so it is also possible that

the association between Se status and prostate cancer disease

development may be modified by genetic variation in selenopro-

teins. Such genetic effects have been suggested to contribute to the

differences in the outcomes of the Se supplementation trials [40].

In conclusion, this study shows a significant interaction between

serum markers of Se status and TXNRD1, TXNRD2 and SELK

genotype with respect to high-grade or advanced stage prostate

cancer. This complements a study of the same cohort that focused

on a small number of functional selenoprotein SNPs [13]. The

earlier data showed that genotype for rs1050450 in GPX1 modified

association of serum Se concentration with prostate cancer risk

[13]. It also indicated that there was an association of borderline

statistical between genotype for rs7579 in SEPP1 and prostate

cancer risk [13]. Thus overall, the data from this EPIC-Heidelberg

nested case-control study indicate that together Se status and

GPX1, SEPP1, TXNRD1, TXNRD2, and SELK genotype signifi-

cantly alter risk of high-grade or advanced stage prostate cancer in

a population with suboptimal Se intake. Future studies should not

only address functional effects of these variants in prostate tissue

and but also focus on the larger studies needed to investigate the

complex interplay of polymorphisms in different selenoproteins

and Se status in prostate cancer development. This work also

illustrates that approaches that take multiple SNPs within a

metabolic pathway into account are particularly relevant to the

study of SNP-nutrient interactions in relation to the risk for a

complex disease as they take into consideration the different

components of a biological pathway and nutritional biomarkers;

indeed pathway enrichment methods to analyse data from

genome-wide association studies have been developed [24].

Supporting Information

Table S1 Pathway-wise genotyping for SNPs in selenoprotein

and related genes in control and prostate cancer patients from the
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genotyping across the whole pathway; the SNPs analysed and

the corresponding genes are shown in the two left columns.

Genotyping was carried out on 94 advanced cases and 94 control.

Statistical evaluation of main effects of genetic variants on prostate

cancer risk was carried out using either co-dominant and

dominant models and data stratified for case set.
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