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Abstract

In this thesis, we consider the stochastic Cahn–Hilliard–Cook and (mass conserving) Allen–
Cahn equation in the physically relevant space dimensions. Both of these equations serve as
phenomenological model for the phase separation and subsequent coarsening of a two-component
mixture. In our studies, we focus on the almost final stage of the evolution, when after an initial
spinodal decomposition or nucleation the mixture is well-separated, and the dynamics is given
by the motion of an interface on a metastable slow manifold. In the one-dimensional setting, the
slow manifold is parametrized by the zeros of a profile having a finite number of transitions from
one pure phase into the other. In higher space dimensions for very late stages of separation,
the transition between phases occurs in a small neighborhood of an almost spherical interface.
Here, the metastable manifold consists of translations of a droplet state with a fixed size.

We derive the e�ective equation on the slow manifold via an orthogonal projection for a
relatively small noise and small atomistic interaction length. Thus, the underlying infinite-
dimensional system can be described to very high accuracy by a finite-dimensional stochastic
ordinary di�erential equation. We will see that the thermal fluctuations dominate the dynamics.
This is quite di�erent to the deterministic case, where at this stage the evolution is exponentially
slow in the atomistic interaction length.

We analyze the stochastic stability and show that solutions stay close to the slow manifold for
a very long time with high probability. Crucial for the stability analysis are spectral estimates
of the linearization around the energetically favorable states.
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CHAPTER 1

Introduction

1.1 The Cahn–Hilliard and Allen–Cahn equation
In this thesis, we study a specific class of reaction-di�usion equations (models A and B in the

theory of dynamics of critical phenomena, cf. [HH77]), which serve as phenomenological models
for phase separation and subsequent coarsening of a two-component mixture. The current state
of the mixture can be described by an order parameter u(t, x) depending on space and time
and taking its values in [≠1, 1]. The values u = ±1 correspond to the pure phases of the two
components, while a value u œ (≠1, 1) stands for mixtures of the two phases. Typical examples
are the phase transition in an ice-water system at zero temperature (Allen–Cahn) and the phase
separation of binary metal alloys (Cahn–Hilliard). In both scenarios, the sample prefers to be
in the pure phases ±1. In order to describe such physical systems, it is natural to take the
potential energy ⁄

F (u(x)) dx,

where F (·) denotes a symmetric double-well potential with the global minima attained at ±1.
A typical example is the quartic potential F (u) = 1

4
(u2≠1)2 (see Figure 1.1), but most properties

are independent of the particular choice of F .

Figure 1.1.: The potential F (u) = 1

4
(u2 ≠ 1)2

This description, however, is purely local, and to overcome the possibility of rough transitions
between pure phases, one needs to introduce a surface term

⁄
Á

2

2 |Òu(x)|2 dx.

The parameter Á > 0 is a small atomistic interaction length that describes the typical width of a
transition between two di�erent phases. Hence, our model is depicted by the energy landscape

1



2 1. Introduction

given by the Ginzburg–Landau–Wilson free energy functional

JÁ(u) =
⁄ A

Á
2

2 |Òu(x)|2 + F (u(x))
B

dx.

In order to derive an equation for the phase field parameter u, it is assumed that the underlying
system relaxes rapidly towards configurations that are energetically favorable for the potential JÁ,
and the dynamics is governed by a gradient flow structure, i.e.,

d

dt
u = ≠ˆJÁ(u)

ˆu
= Á

2�u ≠ F
Õ(u).

This corresponds to the L
2-gradient flow of the energy functional JÁ(u).

The two-component mixture described by this model is contained in a bounded Lipschitz
domain � µ Rd. Here, we allow for the physically relevant space dimensions d = 1 (referred to
as one-dimensional case) and d œ {2, 3} (the higher-dimensional cases). It is natural to assume
a no-flux condition, that is, at no time can mass leave or enter the domain. This leads to the
Allen–Cahn equation subjected to Neumann boundary conditions

Y
]

[
ˆt u(t, x) = Á

2�u(t, x) ≠ F
Õ(u(t, x)), x œ �, t > 0

ˆ÷ u(t, x) = 0, x œ ˆ�, t > 0.
(AC)

This equation was first introduced by Samuel M. Allen and John W. Cahn [AC79]. One key
feature of the Allen–Cahn equation is that the total mass in the system is not preserved, as one
has by Green’s identity

d

dt

⁄

�

u(t, x) dx = ≠
⁄

�

F
Õ(u(t, x)) dx.

To enforce mass conservation, one could add a correction and obtain the following non-local
version of the Allen–Cahn equation

Y
_]

_[

ˆt u(t, x) = Á
2�u(t, x) ≠ F

Õ(u(t, x)) + 1
|�|

⁄

�

F
Õ(u(t, x)) dx, x œ �, t > 0

ˆ÷ u(t, x) = 0, x œ ˆ�, t > 0.

(mAC)

Here, |�| denotes the area of the bounded domain � and the added mean value of the
function F

Õ(u) takes care of the mass constraint. Another way to guarantee mass conservation is
to choose a di�erent topology for which one considers the gradient flow of the Ginzburg–Landau
energy JÁ. In fact, choosing the space L

2
0
, the subspace of L

2 consisting of functions with mean
zero, leads to (mAC). If one takes the space H

≠1

0
, the subspace of the Sobolev space H

≠1 with
zero average, equipped with the inner product

Èu, vÍ
H

≠1
0

=
+
(≠�)≠1/2

u, (≠�)≠1/2
v

,
L2 ,

we arrive at the Cahn–Hilliard equation, which was postulated earlier in the 1950s by J. Cahn
and J. Hilliard [CH58, Cah59]

Y
]

[
ˆt u(t, x) = ≠�

!
Á

2�u(t, x) ≠ F
Õ(u(t, x))

"
, x œ �, t > 0

ˆ÷ u(t, x) = ˆ÷ �u(t, x) = 0, x œ ˆ�, t > 0.
(CH)

As mentioned, one striking di�erence between the Allen–Cahn equation and the Cahn–Hilliard
equation is that (CH) preserves the total mass

s
�

u(t, x) dx in the system, while this is not
true for (AC). A mathematical di�erence lies in the fact that the Cahn–Hilliard equation is a
fourth-order equation and thus does not allow for comparison principles, which are a useful tool
in the study of the Allen–Cahn equation. In this work, we do not rely on maximum principles,
and hence, the general results work for both equations.
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1.2 The concept of slow manifolds and heuristics
The theory of slow manifolds is an important tool in the study of dynamical systems. It gives

a practical method to reduce the degrees of freedom in a model and often results in considerable
simplifications. For example, in this thesis, we start with an infinite-dimensional stochastic
partial di�erential equation (SPDE) and end up with a finite-dimensional stochastic ordinary
di�erential equation (SDE) describing the motion of interfaces on a metastable manifold. In
some models of interest, there is a separation of time scales between some quantities that relax
very quickly to an essentially static value, while others change more slowly and can be sensitive
to perturbations. The term „slow manifold“ describes the space in which these slower quantities
vary after a possible fast initial transient has died out. This concept is similar to the theory of
center manifolds, but slow manifolds only provide an approximation.

Let us give a non-rigorous description on constructing a finite-dimensional slow manifold
for the Cahn–Hilliard and Allen–Cahn equation. Due to the gradient flow structure of these
equations, the preferable states of the dynamics are given by the minimizers of the energy
functional JÁ. First, we take a look at the one-dimensional case on the whole line R with Á scaled
out, i.e., in this case, the energy landscape is described by the functional

J(u) =
⁄

R

31
2u

Õ(x)2 + F (u(x))
4

dx.

Obviously, the pure phases u = ±1 are global minimizers, but—due to mass conservation
for (mAC) and (CH)—a non-homogeneous material never reaches this perfect configura-
tion. Thus, we search for minimizers under the constraint that there exists at least one
transition from ≠1 to +1. For this purpose, we demand that u is increasing and satisfies
limxæ±Œ u(x) = ±1. Using these boundary conditions and the monotonicity, one can then
write

J(u) =
⁄

R

31
2u

Õ(x)2 + F (u(x))
4

dx

= 1
2

⁄

R

3
u

Õ(x) ≠
Ò

2F (u(x))
4

2

+
Ò

2F (u(x))uÕ(x) dx Ø
⁄

1

≠1

Ò
2F (u) du =: c0.

In the case of the classical potential F (u) = 1

4
(u2 ≠ 1)2, we obtain c0 = 2

Ô
2

3
. This energy level

is attained if, and only if, u solves the first-order equation

u
Õ(x) ≠

Ò
2F (u(x)) = 0 ’x œ R, lim

xæ±Œ
u(x) = ±1. (1.1)

Since equation (1.1) and the energy J are invariant under translations, we can also assume that
the profile u is centered at u(0) = 0. If the potential F is su�ciently smooth, there exists a
unique solution u(x), x œ R, expressed implicitly by

x =
⁄

u(x)

0

1


2F (t)
dt.

For the quartic double-well potential, we obtain the solution u(x) = tanh(x/
Ô

2). Due to the
translation invariance of (1.1), we can define the one-parameter family of solutions {u

›}›œR,
where u

›(x) := u(x ≠ ›) is a translate of the normalized solution. By our construction,
the function u

› is an energetically favorable profile for the energy functional J that jumps
from ≠1 to +1 in a small neighborhood around the zero ›. One key feature of the profiles u

›

(and their derivatives) is that they converge exponentially fast to ±1 (and 0, respectively),
and thus, almost all the energy is concentrated near ›. Moreover, due to the symmetry of the
potential F , we observe that ≠u

› solves equation (1.1), but the transition goes from +1 to ≠1.



4 1. Introduction

Under the same constraint of having exactly one phase transition from ≠1 to +1, the minimizers
of the functional JÁ in the Á-dependent case are given by a rescaled version of the profiles u

›,
i.e.,

u
›

Á(x) = u

3
x ≠ ›

Á

4
.

With the exponential decay of u
›, we also see that the phase transition occurs in a vicinity

of › of width Á, and thus, the typical length of an interface is of order Á. In order to generate
profiles with a fixed number N of transitions from ≠1 to +1, and vice versa, that occur at
some zeros ›1, . . . , ›N , one can essentially sum up these energy minimizers with alternating sign
(see Figure 1.2). If the zeros are well separated, we expect these configurations to be almost
stationary as they solve the PDE up to exponentially small terms.

Figure 1.2.: A typical multi-kink profile with an approx. energy of 4 · c0

In the higher dimensional cases, we can think of the domain � being split into subdomains �+
Á

and �≠
Á , where an energetically optimal configuration is close to the pure phases u = +1 or u = ≠1

with boundaries Á-localized about an interface �Á(t) between �±
Á . For the Cahn–Hilliard equation,

as Á tends to zero, the front �Á(t) moves at least locally up to time-scales of order 1 according
to the geometric evolution law (cf. [Peg89, Sto96, ABC94])

v = b

5
dµ

d÷

6

�(t)

, (MS)

where
�µ = 0, x œ � \ �(t),
ˆµ

d÷
= 0, x œ ˆ�,

µ = ÁaK, x œ �(t).

Here, a and b are constants, K denotes the mean curvature of �(t) at x, [dµ

d÷
] is the jump of

the normal derivative dµ

d÷
across �(t), and v is the normal component of the velocity of �(t).

Equation (MS) is referred to as Mullins–Sekerka problem. For corresponding results on the
Allen–Cahn equation, we refer to [ESS92, DMS95] and the references therein. We observe that
a sphere, or more generally a surface consisting of a finite number of non-overlapping spheres
contained in �, is an equilibrium to the Mullins–Sekerka problem. This suggests that one should
investigate bounded radial solutions to the stationary problem

�u ≠ F
Õ(u) = 0, x œ Rd

. (1.2)
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In fact, if U(x) = U
ú(|x|) is such a function, then the shifted radial component Ufl(s) = U

ú(s+fl)
satisfies

U
ÕÕ
fl + d ≠ 1

fl + s
Ufl ≠ F

Õ(Ufl) = 0.

Therefore, as fl æ Œ, we can expect that Ufl tends to the one-dimensional heteroclinic given
by (1.1). Moreover, away from the interface, we expect that Ufl is close to one of the roots
of F

Õ. With a perturbation argument based on this observation, Nicholas D. Alikakos and
Giorgio Fusco [AF98] proved the existence of radial solutions to (1.2). For the rescaled problem,
this leads to a droplet like state u

›,fl
Á that jumps from somewhere near ≠1 to near 1 in a thin

layer of width Á around the sphere of radius fl and center ›.
So far, we have seen on a heuristic level that energetically favorable configurations can be

described by a finite-dimensional shape variable—the positions {›i}i=1,...,N of the kinks in the
one-dimensional setting, centers and radii (›i, fli)i=1,...,N of droplets in the higher dimensional
cases. It is fruitful to interpret these states as finite-dimensional (smooth) manifold. For a
set O µ RN of admissible parameters, we denote the corresponding profile by u

›, i.e., we
write

M =
Ó

u
› : › œ O

Ô
.

By the gradient flow structure of the Allen–Cahn and Cahn–Hilliard equation, solutions will be
drawn rapidly to a small neighborhood of the manifold M, and then the configuration remains
almost static. In the deterministic case, the kinks or droplets move exponentially slow in the
atomistic interaction length Á until two of them come too close and annihilate in a fast motion
(also known as Ostwald ripening). During this stage of the evolution, the total area, where
transitions between the pure phases occur, decreases, and thus the domain, where the solution
is constant, increases—thereby leading to a decay of energy. This phase of the dynamics is
referred to as coarsening.

In the final stage, there will be only one kink or one droplet left. Due to mass conservation,
the position of the last remaining kink or the size of the last droplet is fixed. Thus the one-
dimensional kink does not move. As almost all the energy is stored in the interfacial region, the
droplet moves slowly towards the boundary of the domain, where a semicircular shape can be
obtained and thus a shortening of the perimeter.

Throughout this thesis, we will focus on a fixed number of transition layers in the one-
dimensional case. Therefore, we study the dynamics locally in time, i.e., as long as the transition
layers are well separated. After a breakdown, the number of transition layers has decreased
(by two if they annihilate and by one if they hit the boundary), and one could restart the
analysis on a lower-dimensional slow manifold. In higher space dimensions, we concentrate on
the motion of a single droplet inside the domain and su�ciently far away from the boundary.
We do not study the „fast“ annihilation in this thesis.

1.3 The stochastic equations
In this thesis, we study the later stage of the evolution—after spinodal decomposition or

nucleation—when the two-component mixture is already well-separated, and domains of pure
phases have formed. To capture a more interesting behavior for the interface motion and
motivated by thermal fluctuations in the material, we introduce an additional noise term and
study its influence on the dynamics.

As described above, in the deterministic case, one observes a rapid phase separation followed
by a very slow dynamics on the slow manifold M. In the one-dimensional case, for instance, the
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(in Á) exponentially slow motion of the kinks was established both for the Allen–Cahn equation
by Carr and Pego [CP89, CP90] as well as for the Cahn–Hilliard equation by Bates and Xun
[BX94, BX95]. In the stochastic setting, however, the strong decay of energy will still lead to
a fast phase separation, but there is almost no influence of this energy on the slow manifold.
Hence, the thermal fluctuations—although tiny—do have an impact on the dynamics. The
kinks or droplets will move randomly and annihilate once they come too close. We will see that
the interface positions essentially behave like on M projected Brownian motions, which are
coupled through the mass constraint. In this sense, one expects that the additional noise term
significantly accelerates the coarsening procedure.

The stochastic forcing is given by the derivative of a Q-Wiener process. Throughout our
analysis, we will assume that the covariance operator Q is trace-class. The motivation of this
choice lies in the fact that the proofs of our main stability results rely heavily on su�cient
smoothness of the solutions and Itô formula. Therefore, we need the Wiener process to be
su�ciently smooth in space, too. We expect the results to remain valid for singular noise,
although the region of stochastic stability might decrease. We give an approach towards treating
rougher noise in Section 2.4.

1.4 Bibliographical notes
The deterministic Cahn–Hilliard equation was proposed by J. Cahn and J. Hilliard [CH58,

Cah59] as a simple model for the phase separation of a binary alloy at a fixed temperature. It
was extended first by H. Cook [Coo70] in the 1970s to incorporate thermal fluctuations in the
form of additive white noise. See also [Lan71]. Since then, there have been many developments,
and we give a brief overview of the literature. We refer to [CH58, Cah61, EZ86, Fif91, BF93] and
the references therein for a more physical description, the derivation, and further discussions.

The existence and uniqueness of solutions to the stochastic problem are well-understood. It
was first studied by Da Prato and Debussche in [DPD96], where the nonlinearity is given by a
polynomial of odd degree with positive leading term and the problem is posed on rectangular
domains. Here, the stochastic forcing is given by a space-time white noise. In [CW01], the
author proved the existence of solutions and its density. For a trace-class Wiener process, the
existence was analyzed in [EM91].

Our analysis focuses on the later stages of the evolution when the binary alloy is already
well-separated and domains of pure phases have formed. For an analysis of earlier stages, see, for
example, [Bat90, BF93, BMPW05, BGW10, BSW16]. In [BMPW05], for instance, the authors
showed that for a solution starting at a homogeneous state, the probability of staying near a
certain finite-dimensional space of patterns is high as long the solution stays within a certain
distance of the homogeneous state.

Bates and Xun [BX94, BX95] o�ered a detailed analysis of the slow evolution of patterns for
the one-dimensional Cahn–Hilliard equation. Building on the construction of a slow manifold
due to Carr and Pego [CP89], the authors proved the existence of metastable patterns and
analyzed the equations governing their motion. They studied the dynamics of an equilibrium
having finitely many transitions layers and showed that the kinks move exponentially slow in
the atomistic interaction length Á. In the stochastic case, the motion of kinks was studied
in [ABK12]. Relying on the same deterministic slow manifold as Bates and Xun, the authors
proved that with high probability solutions stay in a small tube around this manifold consisting
of muli-kink profiles. Opposed to the exponentially slow motion of the kinks in the deterministic
case, the stochastic terms dominate the dynamics.
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In the higher-dimensional cases, the interface is expected to move like a Hele–Shaw or Mullins–
Sekerka problem (see equation (MS)), where circular-shaped droplets are stable stationary
solutions for the dynamics. This was first suggested by formal analysis of Pego [Peg89] and
later supported rigorously in [ABC94, Sto96] in the sharp interface limit. In [ABK18], formal
derivation suggested a stochastic Hele–Shaw problem in the limit Á æ 0 for a noise strength
of order Á. There it was also shown that for small noise the dynamics is well approximated
by a deterministic Hele–Shaw problem. See also [BYZ19] for singular noise. The dynamics of
the interface in the sharp interface limit was also studied in [YZ19], but without obtaining an
equation on the interface. Only in the case of radial symmetric interfaces, one obtains the full
Hele–Shaw problem.

In [AF98, AFK04], the motion of a single spherical droplet or bubble for the deterministic
Cahn–Hilliard equation inside a smooth domain was analyzed, and it was shown that the droplet
moves (in Á) exponentially slow towards the closest point at the boundary. Via energy methods
and a careful analysis of the spectrum, in [ABF98], the authors established slow motion for
models described by the energy landscape JÁ. For a detailed analysis of the spectrum of the
linearized Cahn–Hilliard operator, see [AF94]. Otto and Rezniko� [OR07] also presented a
general framework for slow motion in systems given as a gradient flow.

The Allen–Cahn equation was first introduced by S. Allen and J. Cahn in [AC79]. As well as
the Cahn–Hilliard equation, it serves as a phenomenological model to describe phase separation
and essentially behaves in the same way, but without mass conservation.

The dynamics of the one-dimensional equation is well-understood. J. Carr and R. Pego [CP89,
CP90] provided a detailed analysis of the slow evolution of patterns of the singularly perturbed
Ginzburg-Landau equation. They proved the existence and persistence of metastable patterns
and analyzed the equations governing their exponentially slow motion. These metastable states
have been characterized in terms of the global unstable manifolds of equilibria. The idea of
the metastable manifold of multi-kink configurations due to Carr and Pego [CP89] led to many
further investigations. For a complete picture of the dynamics, including annihilation, we refer
to the nice work of X. Chen [Che04].

Heavily based on maximum principles, the first rigorous works on the stochastic problem can
be found in [Fun95, BDMP95]. Here, the sharp interface limit for a single-kink configuration is
studied. See also [BB98]. In [Sha00], the author proved for a su�ciently small noise strength the
convergence of solutions to the one-dimensional stochastic Allen–Cahn equation to the noise-free
problem. In recent years, the evolution of a multi-kink profile was analyzed; however, only the
invariant measure was considered [Web10, OWW14]. In [Web14], a martingale representation
for the interfaces was given, and the e�ect of annihilation was studied in more detail.

In the space dimensions two and three, the Allen–Cahn equation has also been treated in
the literature. As we mentioned earlier, in the higher-dimensional cases the interfaces form a
(d ≠ 1)-dimensional surface. For the deterministic equation, the motion of the fronts according
to a mean curvature flow in the sharp interface limit Á æ 0 was established in [Che92]. This
was extended by Funaki [Fun99] to the stochastic equation for a noise that is constant in space
and smoothened in time. The nonlocal version of the Allen–Cahn equation, i.e., the lack of
mass conservation is taken care of by a nonlocal term, was first studied in [RS92]. Here, the
authors analyzed the final stage of the evolution, where a single droplet moves to the boundary
of the domain. They established a stable set of solutions corresponding to small semicircular
droplets intersecting the boundary and moving towards a point of locally maximal curvature.
Further works in this regard are [ACF00, BJ14]. In the stochastic case, the motion of a single
boundary droplet was studied in [ABBK15].
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1.5 Organization of the thesis
In this work, we analyze the motion of interfaces for the stochastic Cahn–Hilliard and

Allen–Cahn equation in the relevant space dimensions d = 1 and d = 2, 3. The two- and
three-dimensional problem is referred to as higher-dimensional cases and the analysis can
be carried out almost analogously in these higher-dimensional cases. We focus on the later
stages of the evolution when the dynamics is in first approximation given by the motion on
a finite-dimensional metastable slow manifold. So far in the stochastic case, only the motion
of multi-kink configurations for the one-dimensional Cahn–Hilliard equation has been carried
out in [ABK12], and we extend the picture in this work to the stochastic Allen–Cahn equation
in the space dimensions d = 1, 2 and 3, as well as the stochastic Cahn–Hilliard equation in
the higher-dimensional cases. Building on preliminary works on the deterministic equations
for the construction of a slow manifold, we analyze the stochastic ODE governing the motion
of interfaces and show stability of the deterministic slow manifold for long times under small
stochastic perturbations.

In Chapter 2, we establish the mathematical framework of this thesis. For a general infinite-
dimensional stochastic system and some finite-dimensional slow manifold M, we first compute
the e�ective dynamics on M. Here, to make the computation feasible, we assume that an
Itô di�usion gives the motion on the slow manifold. Via orthogonal projection, we define the
so-called Fermi coordinates in a small neighborhood of M and use them to derive the e�ective
dynamics. In the second part, we analyze the stochastic stability of the slow manifold. Based on
a method introduced in [ABK12, ABBK15], we present a general guideline to achieve stochastic
stability. Crucial for our analysis are spectral properties of linearized operators. We need that
eigenfunctions not tangential to the manifold have negative eigenvalues uniformly bounded
away from zero.

The methods are applied to the stochastic Cahn–Hilliard equation in higher space dimensions
in Chapter 3. Here, we rely on the existence of a deterministic slow manifold that consists
of translations of a single-droplet state, which was constructed in [AF98]. We show that
su�ciently close to the manifold, the motion of the droplet’s center is approximately given
by the projection of the Wiener process onto the tangent space of the slow manifold. As the
dominating terms for the dynamics are not small in Á but in the radius of the bubble, we expect
that the motion is influenced by the mass. Stochastic stability is derived after an extensive
study of the linearization of the Cahn–Hilliard operator around a droplet state. Here, it is quite
useful that the H

≠1-bounds correspond to the L
2-theory of the linearized Allen–Cahn operator.

In more detail, we prove that a weighted H
1-distance of a solution to the slow manifold stays

small with high probability up to time scales that are polynomial in Á
≠1. We conclude the

analysis of the Cahn–Hilliard equation by extending the stability result to general nonlinearities
that have at most polynomial growth at infinity.

To complete the picture in higher space dimensions, we study the stochastic mass conserving
Allen–Cahn equation afterwards in Chapter 4. In our analysis, we can rely on the results from
Chapter 3 on the Cahn–Hilliard equation. In fact, we consider the same slow manifold of droplet
states. We state the exact stochastic equation for the droplet’s motion and analyze it thereafter
in terms of Á. Compared to the exponentially slow motion in the deterministic case, it comes as
no surprise that the additional noise dominates the dynamics and the motion of the droplet
behaves like a projected Wiener process. Moreover, we first prove stochastic stability in L

2

and then extend the stability result to H
1, which we need to control the nonlinearity in the

stochastic ODE governing the motion of the droplet’s center.
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Finally, Chapter 5 is devoted to the one-dimensional stochastic Allen–Cahn equation. We
treat the classical Allen–Cahn equation, as well as the nonlocal version, which preserves the
total mass. To construct a slow manifold of multi-kink configurations having N + 1 transitions
from ≠1 ¡ +1 (cf. Figure 1.2), we start with the profiles u

›
Á given by rescaled versions of the

heteroclinic (1.1). The key feature of these profiles is that they decay exponentially to ±1.
Also, all the derivatives converge exponentially fast to zero. With this observation, we can
essentially define a multi-kink configuration by summing up such profiles with an alternating
sign. Here, our construction of the slow manifold di�ers slightly from the construction in the
deterministic case due to Carr and Pego [CP89, CP90]. In their work, the alternating profiles
were carefully glued together via a cut-o� function. With that, the authors gained better control
of the exponentially small error, which is crucial since exponentially small terms dominate the
dynamics. In our stochastic case, however, the dynamics is dominated by the noise, and hence,
we do not need to take care of these exponentially small terms.

Due to mass conservation, the dimension of the slow manifold is reduced by one in the
nonlocal case. This phenomenon can also be observed on the level of the stochastic ODE
governing the motion of the kinks. While for the classical Allen–Cahn equation the kinks behave
like independent Brownian motions until they come too close and annihilate, the motion for the
mass conserving case is—as one would expect—coupled through the mass constraint.

With the method introduced in Chapter 2, we prove stability in L
2. In order to control the

nonlinear terms in the stochastic ODE, we extend the stability result to L
4. The advantage of

working only in Lebesgue spaces is that we do not need to assume additional spatial regularity
of the Wiener process. This is quite di�erent to the higher-dimensional cases. Ultimately, we
treat general nonlinearities given by polynomials of odd degree 2p ≠ 1 with positive leading
term. Here, we extend the stability result to L

2p.





CHAPTER 2

General setting & Metatheorems

In this chapter, we consider the mathematical framework of this thesis and develop toolboxes,
which will be used throughout this work. We assume that solutions to some (infinite-dimensional)
stochastic PDE are well approximated by some ansatz functions u

h, which are collected in a finite-
dimensional slow manifold M (Definition 2.1) parametrized by some shape variable h œ O µ RN .
Under a suitable coordinate frame (Fermi coordinates, Definition 2.2), we derive the e�ective
dynamics on M in Section 2.2, cf. Theorem 2.6. In Section 2.3, we are concerned with
establishing stochastic stability, i.e., our objective is to show that solutions stay close to the
slow manifold for very long times under small stochastic perturbations. The typical time scale
for stochastic stability should be much longer than the one we expect the shape variable h

to move. Motivated by [ABBK15, ABK12], we use Itô formula to estimate the di�erential of
the squared residual error Îu ≠ u

hÎ2. Crucial for the analysis are bounds on the linearization
at any ansatz function u

h œ M orthogonal to the tangent space of M and good control of
the nonlinear terms (Metatheorems 2–4). The main result on stochastic stability is presented
in Theorem 2.14. Since our method is decisively based on the application of Itô formula, we
have to assume that solutions to the stochastic PDE are su�ciently smooth, and thus, we
need the stochastic forcing to be su�ciently smooth, too. Throughout this work, we will hence
focus on trace-class Wiener processes. In the final Section 2.4, we remark on how to deal with
space-time white noise given by the derivative of a cylindrical Wiener process. We expect that
our method is still applicable, but the region of validity for the results on stochastic stability
might decrease.

2.1 Assumptions on SPDEs and slow manifolds
In the general setting of this chapter, we consider an infinite-dimensional stochastic system

in some Hilbert space H given by the following SPDE
du = AÁ(u) dt + dWÁ = LÁ

u dt + FÁ(u) dt + dWÁ. (2.1)
Here, AÁ denotes a nonlinear di�erential operator, which might depend on some parameter Á > 0.
We split AÁ into its linear part LÁ and remaining nonlinear terms FÁ. Moreover, let WÁ be
a QÁ-Wiener process in the underlying Hilbert space H, where QÁ is a symmetric operator
and (ek)kœN forms a complete H-orthonormal basis of eigenfunctions with corresponding eigen-
values –

2

k
, i.e., QÁek = –

2

k
ek. It is well known that WÁ is given as the following Fourier series,

cf. Da Prato and Zabzcyck [DPZ92b],
WÁ(t) =

ÿ

kœN
–k—k(t)ek(·)

for a family of independent R-valued standard Brownian motions {—k(t)}kœN. For the sake of
simplicity, we drop all dependencies on the parameter Á in the remainder (as already carried
out with –k and ek in the construction of the Wiener process).

11
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We assume that solutions to (2.1) are unique and define a su�ciently smooth stochastic
process in H. See, for instance, Appendix C for details on existence, uniqueness, and regularity
of solutions to the stochastic Cahn–Hilliard equation. Moreover, we assume that solutions to the
stochastic PDE (2.1) can be approximated via some ansatz functions u

h(t, x) := u(t, x; h) for
some time-dependent coordinate h œ RN indexing the position on the slow manifold. The justifi-
cation of this approximation can be inferred either from numerical simulations or known proper-
ties of the deterministic counterpart of (2.1), e.g., symmetry properties or given shape dynamics,
see [CG18]. We collect all ansatz functions u

h in a slow manifold M.

Definition 2.1 (Slow Manifold).
For some set O µ RN of admissible parameters, we define the slow manifold

M :=
Ó

u
h : h œ O

Ô
.

We assume that the map h ‘æ u
h defines a C

3-parametrization of M. We denote the j-th
partial derivative of u

h with respect to hj by u
h

j
; second and third derivatives, accordingly.

Furthermore, we suppose that M is non-degenerate and defines an N -dimensional manifold.

In order to derive the e�ective dynamics on the slow manifold, we introduce the concept of Fermi
coordinates in a small tubular neighborhood of M. This concept was first used in [CP89, Fun95].
If the solution u is su�ciently close to the slow manifold, we find a unique h̃ œ O such that
dist(u, M) = infhœO Îu ≠ u

hÎ = Îu ≠ u
h̃Î. Di�erentiating the map �(h) = 1

2
Îu ≠ u

hÎ2 with
respect to all variables hi, we also see that

Èu ≠ u
h̃
, u

h̃

i Í = 0 ’i = 1, . . . , N.

This can be interpreted as the vector v = u ≠ u
h̃ being orthogonal to the tangent space of M

in u
h̃. The Hessian matrix of the map �,

(H�(h))
i,j

= Èuh

i , u
h

j Í ≠ Èu ≠ u
h
, u

h

ijÍ,

is closely related to the first fundamental form P of the manifold M defined by Pij = Èuh

i
, u

h

j
Í.

Since the vectors u
h

i
, i = 1, . . . , N, form a basis of the tangent space TuhM, we can find

for any w œ TuhM a vector – = (–1, . . . , –N ) such that w =
q

–iu
h

i
. Thus we obtain

ÎwÎ2 =
Nÿ

i,j=1

–i–jÈuh

i , u
h

j Í = –
|
P–,

and therefore, the fundamental form P is positive definite. If the distance Îu≠u
hÎ is su�ciently

small, we see that the Hessian H�(h) is positive definite as well, and hence, � only obtains
minima close to the slow manifold M.

Definition 2.2 (Fermi coordinates).
Let u(t) be the unique solution to (2.1). We define the pair of coordinates (h(t), v(t)) œ O ◊ H
such that

u(t) = u
h(t) + v(t), Èuh(t)

i
, v(t)Í = 0 for i = 1, . . . , N, (2.2)

as Fermi coordinates or tubular coordinates of u(t).

For some fixed point u(t), minimizing the function � always leads to a pair (h(t), v(t)) satisfying
Definition 2.2 unless u

h(t) hits the boundary of M. In order to guarantee that the Fermi
coordinates h(t) and v(t) depend smoothly on t, we need to assure local uniqueness.
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Mu
h(t)

v(t)
u

h(t)

j

u(t) = v(t) + u
h(t)

Figure 2.1.: Splitting of the solution u into its tangential and orthogonal part

Therefore, we work in a su�ciently small tubular neighborhood of M such that the projec-
tion (2.2) is well-defined. For local uniqueness of the Fermi coordinates, we refer to Theorem 3.8
of [DH94]. This is a standard result in di�erential geometry.
Later in Subsection 2.2.2, we present another method to ensure that the Fermi coordinates are
locally well-defined. There we will see that—under Lipschitz conditions on the coe�cients—local
solutions to the stochastic ODE governing the motion of the shape variable h naturally lead to
tubular coordinates in a small neighborhood of M.

Remark 2.3 (Approximation of the tangent space).
In some applications, however, it is useful to approximate the tangent space TuhM by the
span of some functions E

h

k
for k œ {1, . . . , N} (see Definition 2.4). Due to slow motion, for

instance, the residual A(uh) is typically very small, and thus, by di�erentiating with respect
to hk, we expect that DA(uh)uh

k
is small as well. Therefore, the functions u

h

k
can be seen as good

approximations of the eigenfunctions corresponding to the small eigenvalues of DA(uh), the
linearization of A at the ansatz function u

h. In some applications, the exact eigenfunctions E
h

k

are known, and it is more convenient to work with them. For example, in the stability analysis,
we need that eigenvalues corresponding to eigenfunctions orthogonal to the tangent space are
negative and uniformly bounded away from zero. See Section 2.3 for more details. For this
reason, we define an approximation of the tangent space TuhM.

Definition 2.4 (Approximate tangent space).
For k œ {1, . . . , N}, the functions E

h

k
denote approximations of the tangent vectors u

h

k
œ TuhM.

We assume that they satisfy the following properties:

i) the map O – h ‘æ E
h

k
œ H is smooth (at least C

2). We denote the partial derivative of E
h

k

with respect to hj by E
h

k,j
, and second derivatives E

h

k,ij
, accordingly.

ii) the linear space spanned by the functions E
h
1
, . . . , E

h

N
is non-degenerate, that is,

dim span
Ó

E
h

i : i = 1, . . . , N

Ô
= N ’h œ O.

iii) the function E
h

k
serves as a good approximation of the function u

h

k
, where u

h is given by
Definition 2.1, i.e., the quantity ÎE

h

k
≠ u

h

k
Î is very small.

In this case, the pair (h(t), v(t)) œ O ◊ H such that

u(t) = u
h(t) + v(t), ÈEh(t)

k
, v(t)Í = 0 for k = 1, . . . , N (2.3)

will also be referred to as Fermi coordinates of u(t).
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In the remainder, we suppose that the shape variable h performs an N -dimensional di�usion
process given by

dh = b(h, v) dt + È‡(h, v), dW Í, (2.4)

for some vector field b : O ◊ H æ RN and some di�usion ‡ : O ◊ H æ HN (cf. Theorem 2.6
for the exact formulas). This assumption will make the computations in the following section
feasible. Later in Lemma 2.8, we justify this ansatz and comment on why it is not restrictive
for h being a di�usion process.

2.2 E�ective dynamics along the slow manifold
The main aim of this paragraph is to identify the drift term b : O æ RN and the di�u-

sion ‡ : O æ HN of the Itô di�usion (2.4), which might also depend on the normal component v,
such that u

h is a good approximation of the solution u, cf. (2.3) and (2.4). Since the following
calculation is based on the application of Itô formula, we will assume that the Wiener process
is trace-class, that is,

traceH(Q) =
ÿ

kœN
–

2

k =: ÷0 < Œ.

In the derivation of the e�ective dynamics, we rely on the approximation of the tangent space
given by Definition 2.4 and the general Fermi coordinates (2.3). See also Remark 2.3. The
adaption to the originally postulated Fermi coordinates of Definition 2.2 is straightforward. We
use the Itô formula to di�erentiate (2.3) with respect to t and obtain

du = dv +
Nÿ

j=1

u
h

j dhj + 1
2

Nÿ

i,j=1

u
h

ij dhi dhj .

Taking the inner product of this equation with the functions E
h

k
in the Hilbert space H yields

for any k = 1, . . . , N

ÈEh

k , duÍ = ÈEh

k , dvÍ +
Nÿ

j=1

ÈEh

k , u
h

j Í dhj + 1
2

Nÿ

i,j=1

ÈEh

k , u
h

ijÍ dhi dhj . (2.5)

Similarly, by multiplying equation (2.1) with E
h

k
, we obtain

ÈEh

k , duÍ = ÈEh

k , A(uh + v)Í dt + ÈEh

k , dW Í. (2.6)

In the following lemma, we deal with computing the product dhi dhj for a di�usion process h

satisfying (2.4). The proof is quite standard and, for example, can be found in [ABBK15]. For
the sake of completeness, we state the proof here in detail.

Lemma 2.5. Let h be given by the di�usion process (2.4). Then, for any i, j œ {1, . . . , N}, it
holds true that

dhi dhj = ÈQ‡i(h), ‡j(h)Í dt.

Proof. Since dW dt = 0 and dt dt = 0, it is su�cient to consider the term È‡i, dW ÍÈ‡j , dW Í.
Using the series expansion of W together with d—k(t) d—l(t) = ”kl dt, we obtain by Parceval’s
identity

È‡i, dW ÍÈ‡j , dW Í =
ÿ

k,lœN
–k –l È‡i, ekÍÈ‡j , elÍ d—k d—l

=
ÿ

kœN
–

2

kÈ‡i, ekÍÈ‡j , ekÍ dt = ÈQ‡i, ‡jÍ dt.
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As a next step, we combine equations (2.5) and (2.6) and utilize Lemma 2.5. This yields directly
that

Nÿ

j=1

ÈEh

k , u
h

j Í dhj = ≠ ÈEh

k , dvÍ ≠ 1
2

Nÿ

i,j=1

ÈEh

k , u
h

ijÍÈQ‡i, ‡jÍ dt

+ ÈEh

k , A(uh + v)Í dt + ÈEh

k , dW Í.

(2.7)

We need to eliminate the term involving the di�erential dv. We apply the Itô formula to the
orthogonality condition ÈEh

k
, vÍ = 0 and arrive at

ÈEh

k , dvÍ = ≠ ÈdE
h

k , vÍ ≠ ÈdE
h

k , dvÍ

= ≠
Nÿ

j=1

ÈEh

k,j , vÍ dhj ≠ 1
2

Nÿ

i,j=1

ÈEh

k,ij , vÍ dhi dhj

≠
Nÿ

j=1

ÈEh

k,j , dvÍ dhj ≠ 1
2

Nÿ

i,j=1

ÈEh

k,ij , dvÍ dhi dhj

= ≠
Nÿ

j=1

ÈEh

k,j , vÍ dhj ≠ 1
2

Nÿ

i,j=1

ÈEh

k,ij , vÍÈQ‡i, ‡jÍ dt ≠
Nÿ

j=1

ÈEh

k,j , dvÍ dhj .

(2.8)

Note that third-order di�erentials are always zero and were therefore neglected in the previous
calculation. We utilize now that dv = du ≠ du

h by definition of the Fermi coordinates (h, v),
and the fact that dW dt = 0 and dt dt = 0. We derive

≠
Nÿ

j=1

ÈEh

k,j , dvÍ dhj = ≠
Nÿ

j=1

ÈEh

k,j , duÍ dhj +
Nÿ

j=1

ÈEh

k,j , du
hÍ dhj

= ≠
Nÿ

j=1

ÈEh

k,j , Q‡jÍ dt +
Nÿ

i,j=1

ÈEh

k,j , u
h

i ÍÈQ‡i, ‡jÍ dt.

(2.9)

By plugging (2.9) into (2.8), we obtain

ÈEh

k , dvÍ = ≠
Nÿ

j=1

ÈEh

k,j , vÍ dhj +
Nÿ

i,j=1

5
ÈEh

k,j , u
h

i Í ≠ 1
2ÈEh

k,ij , vÍ
6

ÈQ‡i, ‡jÍ dt ≠
Nÿ

j=1

ÈEh

k,j , Q‡jÍ dt.

This implies together with (2.7)
Nÿ

j=1

Ë
ÈEh

k , u
h

j Í ≠ ÈEh

k,j , vÍ
È

dhj =
Nÿ

i,j=1

51
2ÈEh

k,ij , vÍ ≠ ÈEh

k,j , u
h

i Í ≠ 1
2ÈEh

k , u
h

ijÍ
6

ÈQ‡i, ‡jÍ dt

+
Nÿ

j=1

ÈEh

k,j , Q‡jÍ dt + ÈEh

k , A(uh + v)Í dt + ÈEh

k , dW Í.
(2.10)

With the intention of simplifying the notation for the following computations, we write the left-
hand side of (2.10) as A(h, v) · dh, where the matrix A(h, v) is given by

Akj(h, v) := ÈEh

k , u
h

j Í ≠ ÈEh

k,j , vÍ.

Moreover, in order to solve equation (2.10) for dh and thereby obtain the exact formula for the
ansatz (2.4), we need to assume that the matrix A(h, v) is invertible, which is an assumption
on the parametrization of the slow manifold M, the approximate tangent vectors E

h

k
, and the

smallness of v in H. For a later analysis of the stochastic ODE governing the motion of h,
it is also convenient to have estimates on the inverse matrix. We summarize this in our first
metatheorem.
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Definition & Metatheorem 1 (The matrix A(h, v) and invertibility).
We define the matrix A(h, v) œ RN◊N by

Akj(h, v) := ÈEh

k , u
h

j Í ≠ ÈEh

k,j , vÍ.

As long as the solution u to the stochastic PDE (2.1) lies in a small tubular neighborhood
of M, given by ÎvÎ being su�ciently small and u

h œ M, we assume that the matrix A(h, v) is
invertible. Along with the invertibility of A(h, v), we need estimates of the inverse A

≠1(h, v).

Plugging the di�usion process (2.4) into equation (2.10) yields directly that the di�usion term
‡ is given by

Nÿ

j=1

Akj(h, v) ‡j(h) = E
h

k .

For the drift term b we obtain
Nÿ

j=1

Akj(h, v)bj(h) =
Nÿ

i,j=1

51
2ÈEh

k,ij , vÍ ≠ ÈEh

k,j , u
h

i Í ≠ 1
2ÈEh

k , u
h

ijÍ
6

ÈQ‡i, ‡jÍ

+
Nÿ

j=1

ÈEh

k,j , Q‡jÍ + ÈEh

k , A(uh + v)Í.

Using the invertibility of A(h, v), we finally obtain expressions for b and ‡.
Theorem 2.6 (E�ective dynamics on M).
Suppose that the solution u to (2.1) can be decomposed into the Fermi coordinates (2.3) and
that h is given by the di�usion process (2.4). Then, under the assumptions of Metatheorem 1,
the drift b and di�usion ‡ are given by

‡r(h) =
Nÿ

i=1

Ari(h, v)≠1
E

h

i (2.11)

and

br(h) =
Nÿ

i=1

Ari(h, v)≠1ÈEh

i , A(uh + v)Í +
Nÿ

i=1

Ari(h, v)≠1
ÿ

j

ÈEh

i,j , Q‡jÍ

+
Nÿ

i,j,k=1

Ari(h, v)≠1

51
2ÈEh

i,jk, vÍ ≠ ÈEh

i,j , u
h

kÍ ≠ 1
2ÈEh

i , u
h

jkÍ
6

ÈQ‡j , ‡kÍ.
(2.12)

Remark 2.7. The first summand in (2.12) is the only term that would survive in the deter-
ministic case. All the other terms appear due to stochastic calculus. Therefore, as we will see
later, we need estimates of higher order derivatives that, in general, were not considered in the
literature treating the deterministic problems. The assumption of h being a di�usion process
was advantageous in the previous calculation since we could control the nonlinear terms dhi dhj

appearing due to Itô calculus (cf. Lemma 2.5).

The ansatz (2.4) combined with equations (2.11) and (2.12) gives the exact stochastic equation
for the motion along the manifold M. Based on the di�erent kind of models, it would be useful
to approximate this equation in terms of the parameter Á. This will be carried out in more detail
for the Cahn–Hilliard and Allen–Cahn equation in subsequent chapters. See also Section 2.2.3
for a comparison to the dynamics given by the projection onto the tangent space of the slow
manifold M.
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To complete the picture of the exact dynamics, we give the stochastic PDE for the „normal“
component v. Note that both b and ‡, as well as the matrix A, depend on v. Di�erentiating
v = u ≠ u

h leads with Itô calculus to

dv = du ≠ du
h = A(u) dt + dW ≠

Nÿ

j=1

u
h

j dhj ≠ 1
2

Nÿ

i,j=1

u
h

ij dhi dhj

= A(uh + v) dt + dW ≠
Nÿ

j=1

u
h

j dhj ≠ 1
2

Nÿ

i,j=1

u
h

ij ÈQ‡i, ‡jÍ dt.

(2.13)

2.2.1 Justification of di�usion

In the ansatz (2.4), we made the assumption that h is given by an N -dimensional di�usion
process

dh = b(h, v) dt + È‡(h, v), dW Í.

The following lemma shows that this ansatz is indeed justifiable.

Lemma 2.8 (Justification of di�usion).
Consider the pair of functions (h, v) as solutions to the system given by (2.13) and the
ansatz (2.4), where b and ‡ are given by (2.11) and (2.12). Furthermore, assume that Metathe-
orem 1 holds true, i.e., the matrix A(h, v) is invertible for all times, and that the initial
condition u(0) = u

h(0) + v(0) satisfies Èv(0), E
h(0)

k
Í = 0 for all k = 1, . . . , N .

Then, u = u
h + v solves (2.1) with ÈEh

k
, vÍ = 0 for k = 1, . . . , N .

Proof. In order to show that u = u
h + v solves (2.1), one basically reverses the calculation

of this section that lead to the definitions (2.11) and (2.12) of the coe�cients ‡ and b. The
orthogonality condition follows from dÈEh

k
, vÍ = 0 for all k œ {1, . . . , N} and the assumption

that Èv(0), E
h(0)

k
Í = 0. In more detail, we have

dÈEh

k , vÍ = ÈEh

k , dvÍ + ÈdE
h

k , vÍ + ÈdE
h

k , dvÍ
= ÈEh

k , dvÍ + ÈdE
h

k , vÍ + ÈdE
h

k , duÍ ≠ ÈdE
h

k , du
hÍ

= ÈA(u), E
h

k Í dt + ÈEh

k , dW Í +
ÿ

j

Ë
ÈEh

k,j , vÍ ≠ Èuh

j , E
h

k Í
È

dhj

+
ÿ

i,j

51
2ÈEh

k,ij , vÍ ≠ 1
2Èuh

ij , E
h

k Í ≠ ÈEh

k,j , u
h

i Í
6

ÈQ‡i, ‡jÍ dt +
ÿ

j

ÈEh

k,j , Q‡jÍ dt.

First of all, we extract the dW–terms and see that

E
h

k ≠
ÿ

j

Ë
Èuh

j , E
h

k Í ≠ ÈEh

k,j , vÍ
È

‡j = E
h

k ≠
ÿ

j

Akj‡j

(2.11)= 0.

Secondly, we consider the drift term:
ÿ

i,j

51
2ÈEh

k,ij , vÍ ≠ ÈEh

k,j , u
h

i Í ≠ 1
2Èuh

ij , E
h

k Í
6

ÈQ‡i, ‡jÍ +
ÿ

j

ÈEh

k,j , Q‡jÍ

+ ÈA(uh + v), E
h

k Í ≠
ÿ

j

Ë
Èuh

j , E
h

k Í ≠ ÈEh

k,j , vÍ
È

bj

(2.12)= 0.

This completes the proof that h is indeed a semimartingale.
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2.2.2 Local existence of the Fermi coordinates

We can use Lemma 2.8 to show that the Fermi coordinates from Definition 2.4 are well-defined.
For u being the unique solution to (2.1) and h œ O, we define

b̃(h) := b(h, u ≠ u
h) and ‡̃(h) := ‡(h, u ≠ u

h).

As long as Îu ≠ u
hÎ is su�ciently small, we typically have that b̃ and ‡̃ are locally Lipschitz

continuous in h. In fact, by the explicit formulas of Theorem 2.6, we see that the functions b̃

and ‡̃ depend on various derivatives of the approximate tangent vectors E
h

i
and the ansatz

function u
h, the operator A, and the inverse of the matrix A(h, u ≠ u

h). If these quantities—
for Îu ≠ u

hÎ su�ciently small—depend smoothly on h, one can easily derive the Lipschitz
continuity of b̃ and ‡̃. For a detailed analysis, we refer to subsequent applications.

Using the Lipschitz continuity of the coe�cients, we then find a unique local solution to
the SDE (cf. Appendix Theorem B.12)

dh = b̃(h) dt + È‡̃(h), dW Í.

By defining v := u≠u
h, Lemma 2.8 implies that the pair (h, v) indeed defines tubular coordinates

in a small neighborhood of M.

Remark 2.9. Note that if the curvature of the manifold M is large, the orthogonal projection
onto M might result in a di�erent (non-continuous) curve h. With the method presented
here, we obtain a unique smooth curve that defines admissible Fermi coordinates but does not
necessarily minimize the distance to M.

2.2.3 Projection onto the slow manifold

We can interpret the e�ective dynamics given by Theorem 2.6 in terms of the projection
onto the slow manifold M. We denote the tangent space of M at w œ M by TwM. Moreover,
let Pw : H æ TwM be the projection of the Hilbert space H onto TwM, which is well-defined
as TwM is a finite-dimensional and thus closed subspace of H. For u being a solution to the
stochastic PDE

du = A(u) dt + dW = Lu dt + F(u) dt + dW,

we compare the e�ective equations derived in Theorem 2.6 with the flow on M generated by
the projection onto the slow manifold, that is,

dw = PwA(w) dt + Pw ¶ dW. (2.14)

To make the following computations easier, we represent the flow on M as a Stratonovich
SDE (cf. Appendix Remark B.11). In Definition 2.1, we assumed that the slow manifold M
can be described by a single smooth chart O – h̄ ‘æ u

h̄ œ M. Note that thereby the tangent
space T

uh̄M at u
h̄ is given by the span of the functions u

h̄

i
, the partial derivatives of u

h̄ with
respect to h̄i. Thus for z œ H, the projection onto T

uh̄M is given by P
uh̄z =

q
N

i=1
Èz, u

h̄

i
Í u

h̄

i
.

Writing the solution of (2.14) as w = u
h̄(t), we obtain

Nÿ

i=1

u
h̄

i ¶ dh̄i = dw =
Nÿ

i=1

ÈA(uh̄), u
h̄

i Í u
h̄

i dt +
Nÿ

i=1

Èuh̄

i , ¶ dW Í u
h̄

i .

We denote by S(h̄) the induced metric of M on O µ RN , i.e., S(h̄) := (Èuh̄

i
, u

h̄

j
Í)N◊N .

Note that the matrix S(h̄) is invertible, since the functions u
h̄

i
span the tangent space.
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Solving for dh̄, we find that

dh̄r =
Nÿ

j=1

S
≠1

rj
(h̄)ÈA(uh̄), u

h̄

j Í dt +
Nÿ

j=1

S
≠1

rj
(h̄)Èuh̄

j , ¶ dW Í. (2.15)

Equation (2.15) gives the exact dynamics of the projection onto the slow manifold M. Redoing
the derivation that led to the full e�ective dynamics given in Theorem 2.6 in the Stratonovich
sense, it is easily seen that we obtain a similar version of (2.15), which also depends on the
normal component v, namely

dhr =
Nÿ

j=1

A
≠1

rj
(h, v)ÈA(uh + v), u

h

j Í dt +
Nÿ

i=1

A
≠1

rj
(h, v)Èuh

j , ¶ dW Í. (2.16)

Here, the induced metric S(h) is replaced by the matrix A(h, v) = (Èuh

k
, u

h

j
Í ≠ Èuh

kj
, vÍ)N◊N .

Also, note that most of the terms appearing in the definition (2.12) of the drift term b arise
from Itô–Stratonovich corrections. To make the comparison between the full dynamics and the
exact projection more vivid, we stated the full dynamics (2.16) without any approximation of
the tangent space (cf. Remark 2.3). By setting the normal component v = 0 in equation (2.16),
we obtain exactly the projection (2.15) onto the slow manifold M. Hence, up to times where
the normal component v stays su�ciently small and the Fermi coordinates are uniquely defined,
we expect that the e�ective dynamics of the shape variable h is well approximated by the flow
on M generated by the projection onto the tangent space. In fact, by choosing an even smaller
time scale, we observe that (2.15) is dominated by the projection of the Wiener process onto
the slow manifold. See Sections 3.2.4 and 5.3 for details regarding the stochastic Cahn–Hilliard
and Allen–Cahn equation.

2.3 Stochastic stability
In the preceding section, we have seen that—for defining a coordinate system around M,

invertibility of the matrix A(h, v), deriving the exact equation on M, and so on—it is crucial that
the residual error Îv(t)Î stays small for very long times. Therefore, we deal with establishing
stochastic stability. Since we computed the stochastic equation for the shape variable h in
Theorem 2.6, we aim to show that the error of approximation v = u ≠ u

h stays small for
long times with high probability. Motivated by the stability analysis of the one-dimensional
Cahn–Hilliard and two-dimensional Allen–Cahn equation in [ABBK15, ABK12], we introduce a
useful method based on a stochastic di�erential inequality of the type

dÎvÎ2 Æ
Ë
KÁ ≠ aÁÎvÎ2

È
dt + ÈOH(ÎvÎ), dW Í (2.17)

for some Á-dependent constants aÁ, KÁ > 0. Recall that also the Wiener process W depends on
the small parameter Á. To be more precise, we will use the notation of (2.17) for the following
inequality in integral form:

Îv(t)Î2 + aÁ

⁄
t

0

Îv(s)Î2 ds Æ Îv(0)Î2 + KÁ t +
⁄

t

0

ÈOH(Îv(s)Î), dW (s)Í.

In the remainder of this section, we present a general guideline to establish such an inequality
and, once derived, show how to use (2.17) to prove stochastic stability (Theorem 2.14). Recall
that by (2.13), the stochastic PDE for the residual v = u≠u

h is given by

dv =
Ë
A(uh) + Ah

v + N h(v)
È

dt + dW ≠
Nÿ

j=1

u
h

j dhj ≠ 1
2

Nÿ

i,j=1

u
h

ijÈQ‡i, ‡jÍ dt. (2.18)
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Here, we expanded A(uh + v) via Taylor expansion into a residual term A(uh), the lineariza-
tion Ah at an ansatz function u

h œ M, and remaining nonlinear terms of higher order N h(v),
i.e.,

Ah
v := Lv + DF(uh)v and N h(v) := F(uh + v) ≠ F(uh) ≠ DF(uh)v,

where DF denotes the Fréchet derivative of F .
For the purpose of obtaining the inequality (2.17), let us start by giving a stochastic di�eren-

tial equation for ÎvÎ2 = Îu ≠ u
hÎ2. With Itô calculus, we observe that

dÎvÎ2 = 2Èv, dvÍ + Èdv, dvÍ.

Plugging (2.18) into this relation, we obtain

Èdv, dvÍ =
e

≠
Nÿ

j=1

u
h

j È‡j , dW Í + dW, ≠
Nÿ

j=1

u
h

j È‡j , dW Í + dW

f

= trace(Q) dt ≠ 2
Nÿ

i,j=1

Èuh

i , Q‡jÍ dt +
Nÿ

i,j=1

Èuh

i , u
h

j ÍÈQ‡i, ‡jÍ dt,

(2.19)

and

Èv, dvÍ =
Ë
ÈAh

v, vÍ + ÈN h(v), vÍ
È

dt + ÈA(uh), vÍ dt

≠
Nÿ

j=1

Èuh

j , vÍ dhj ≠ 1
2

Nÿ

i,j=1

Èuh

ij , vÍÈQ‡i, ‡jÍ dt + Èv, dW Í.
(2.20)

In our first metatheorem towards establishing stability, we deal with the main contribution
to the estimate (2.17), namely the linearization ÈAh

v, vÍ and the nonlinear part ÈN h(v), vÍ.
Essential for the following main estimate is a negative upper bound on the quadratic form
(Assumption 2.1) and good control of the nonlinearity (Assumption 2.2). Due to slow motion,
the residual term A(uh) is typically very small (Assumption 2.3).
After that, we will carry out ideas to control the remaining terms of Èdv, dvÍ (Metatheorem 3)
and Èv, dvÍ (Metatheorem 4).

Metatheorem 2 (Main estimate).
As long as ÎvÎ < RÁ for some su�ciently small RÁ > 0 and u

h œ M, there exist aÁ, CÁ > 0
such that

ÈA(uh + v), vÍ Æ ≠aÁÎvÎ2 + CÁ. (2.21)

Idea of the proof. We give an idea on how to derive this estimate (cf. Assumptions 2.1–2.3).
For more details, we refer to its application to our models in later chapters.
Recall that,

A(uh + v) = A(uh) + Ah
v + N h(v).

In the first step, we need to control the quadratic form ÈAh
v, vÍ for v orthogonal to the space

spanned by the functions E
h

i
for i œ {1, . . . , N}. Note that span{E

h

i
} is a good approximation

of the tangent space TuhM of M at u
h, and thus, we need a good negative upper bound to

show stability. Let us record this upper bound in the first Assumption 2.1.

Assumption 2.1 (Bound of the quadratic form).
For v ‹ span{E

h

i
: i = 1, . . . , N}, we find aÁ > 0 depending on Á such that

ÈAh
v, vÍ Æ ≠aÁÎvÎ2

. (2.22)
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In upcoming applications, the linearization Ah will often be a symmetric, selfadjoint operator
with compact resolvent. In this case, it is useful to know the eigenvalues of Ah

v = ≠⁄v and
its corresponding eigenspaces. If for instance, for v orthogonal to span{E

h

i
: i = 1, . . . , N},

the eigenvalues are bounded from below by some constant aÁ > 0, the estimate (2.22) would
follow automatically.

Many times though, we only know that the space spanned by the functions E
h

i
is close

to an eigenspace. Essentially, the functions E
h

i
are good approximations of u

h

i
spanning the

tangent space of M at u
h and typically, due to slow motion, A(uh) is exponentially small.

Thus, di�erentiating A(uh) with respect to hi, suggests that the quantity Ah
u

h

i
is exponentially

small as well. In this sense, we can think of u
h

i
being good approximations to the eigenspace

corresponding to very small eigenvalues, and hence the functions E
h

i
are good approximations

of that space as well (cf. Remark 2.3). The following lemma deals with bounding the quadratic
form in such scenarios.

Lemma 2.10. Let Ah be a symmetric operator and assume that for some normalized Â œ H
with ÎAh

ÂÎ = — there exists ⁄ > 0 such that for all v with v ‹ Â

ÈAh
v, vÍ Æ ≠⁄ÎvÎ2

.

Then, for w œ H with |Èw, ÂÍ| = ”ÎwÎ for some ” > 0, it holds true that

ÈAh
w, wÍ Æ ≠⁄ÎwÎ2 +

1
⁄”

2 + 2”— + ”
2
—

2
ÎwÎ2

.

Proof. Without loss of generality, let w œ H be normalized with Èw, ÂÍ = ” > 0.
By defining w̃ := w ≠ ”Â, one readily verifies that Èw̃, ÂÍ = 0. By assumption, we thus obtain
ÈAh

w̃, w̃Í Æ ≠⁄Îw̃Î2. Furthermore, we easily compute

Îw̃Î2 = Èw ≠ ”Â, w ≠ ”ÂÍ = ÎwÎ2 ≠ 2”Èw, ÂÍ + ”
2ÎÂÎ2 = 1 ≠ ”

2
.

Using the symmetry of Ah yields

ÈAh
w, wÍ = ÈAh

w̃, w̃Í + 2”Èw, Ah
ÂÍ + ”

2ÈAh
Â, ÂÍ

Æ ≠⁄Îw̃Î2 + 2”— + ”
2
— = ≠⁄ + ⁄”

2 + 2”— + ”
2
—.

After we have dealt with the linearization Ah, we need to control the nonlinearity N h(v). By
Assumption 2.1, we have a good negative term ≠aÁÎvÎ2 from the quadratic form. Depending
on the given linear operator Ah, we might as well be able to gain good terms from a brute-force
estimate of ÈAh

v, vÍ.
To make clear what is meant by a brute-force estimate, consider the following example:
In H = L

2, we consider the Laplace operator Ah = � with Neumann boundary conditions.
Integration by parts yields for the quadratic form

È�v, vÍH = ≠ÎÒvÎ2

L2 < 0,

which is potentially a good negative term for our analysis. In the general case, let us use the
notation

ÈAh
v, vÍ

„brute-force“

Æ ≠KAh(v) + CÁÎvÎ2
,

where we collect all „good“ estimates in a positive function KAh , which depends on the given
linear operator Ah. For more clarity, we refer to the stability sections of subsequent chapters.
In order to control the nonlinear term, our objective is to absorb as much as possible into the
negative terms ≠aÁÎvÎ2 and ≠KAh(v).
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Usually, as estimating ÈN h(v), vÍ (Sobolev embedding, Agmon’s inequality, interpolation in-
equalities, and so on) involves products of the good terms and the norm Î · Î itself, we need to
assume that ÎvÎ is su�ciently small. Assumption 2.2 summarizes our strategy.

Assumption 2.2 (Control of the nonlinearity).
We find Á-dependent constants RÁ, CÁ > 0 and 0 < ⁄ < 1 such that for ÎvÎ < RÁ and u

h œ M

ÈN h(v), vÍ Æ ⁄aÁÎvÎ2 + ⁄KAh(v) + CÁ.

In order to establish an estimate of the type (2.21), it remains to bound the residual term. As
we have mentioned before, due to slow motion and construction of the ansatz functions u

h, the
residual error A(uh) is typically very small.

Assumption 2.3 (The residual error).
For RÁ and CÁ as in Assumptions 2.1 and 2.2, we have for all h œ O and Á > 0 su�ciently
small

ÎA(uh)Î Æ CÁ

RÁ

,

and thus,
|ÈA(uh), vÍ| Æ CÁ

RÁ

ÎvÎ Æ CÁ.

By combining Assumptions 2.1, 2.2, and 2.3 we obtain the essential estimate from Metatheorem 2,
namely

ÈA(uh + v), vÍ = ÈA(uh), vÍ + ÈAh
v, vÍ + ÈN h(v), vÍ Æ ≠aÁÎvÎ2 + CÁ.

This completes the brief guideline on how to establish Metatheorem 2. For more details, we
refer to the stability sections of subsequent chapters.

It remains to bound the remaining terms of the stochastic di�erential dÎvÎ2. We begin with
the Itô correction Èdv, dvÍ, which due to (2.19) is given by

Èdv, dvÍ = trace(Q) dt ≠ 2
Nÿ

i,j=1

Èuh

i , Q‡jÍ dt +
Nÿ

i,j=1

Èuh

i , u
h

j ÍÈQ‡i, ‡jÍ dt.

As these terms arise from an Itô correction, the estimate will obviously depend on the given
noise strength ÷0. Note that for the induced norm of Q as an operator on H we always have
that (cf. Appendix Definition B.2 and the proof thereafter)

÷1 := ÎQÎL(H) Æ trace(Q) = ÷0.

Via the Cauchy–Schwarz inequality, it would be su�cient to have bounds on the gradient Òhu
h

with respect to the h-variables and the di�usion ‡ in order to control Èdv, dvÍ. Estimating the
gradient ÎÒhu

hÎ in terms of Á does not pose a problem, as we construct u
h explicitly. In (2.11),

we showed that ‡ depends on the normalized functions E
h

i
and the inverse of the matrix A(h, v).

Therefore, we need to establish bounds on ÎA
≠1Î (Metatheorem 1). The following metatheorem

deals with bounding the Itô correction term.

Metatheorem 3 (Control of Èdv, dvÍ).
For some AÁ > 0, which depends on the norms of Òhu

h and ‡, we have

|Èdv, dvÍ| Æ AÁ ÷0.
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As a next step, we estimate the remaining terms of Èv, dvÍ, which were not analyzed yet by
Metatheorems 2 and 3. These terms are by (2.20) and the ansatz (2.4)

Èv, du
hÍ + Èv, dW Í = ≠

Nÿ

j=1

Èuh

j , vÍ dhj ≠ 1
2

Nÿ

i,j=1

Èuh

ij , vÍÈQ‡i, ‡jÍ dt + Èv, dW Í

=
Nÿ

j=1

Èuh

j , vÍ bj(h, v) dt ≠ 1
2

Nÿ

i,j=1

Èuh

ij , vÍÈQ‡i, ‡jÍ dt +
e
v ≠

Nÿ

j=1

Èuh

j , vÍ‡j(h, v), dW

f
.

(2.23)

Out of these remaining terms, the second and third summand can be estimated easily, as they
only contain derivatives of u

h, the di�usion ‡, and the error of approximation v, which is
anyways assumed to be small. In order to control the first summand, we need to bound the drift
term b(h, v) appearing in the derivation of dh. Recall that by (2.12),

br(h, v) =
Nÿ

i=1

A
≠1

ri
ÈEh

i , A(uh + v)Í +
Nÿ

i=1

A
≠1

ri

Nÿ

j=1

ÈEh

i,j , Q‡jÍ

+
Nÿ

i,j,k=1

A
≠1

ri

51
2ÈEh

i,jk, vÍ ≠ ÈEh

i,j , u
h

kÍ ≠ 1
2ÈEh

i , u
h

jkÍ
6

ÈQ‡j , ‡kÍ.

Assumption 2.4 (The drift b).
We find K

b
Á > 0 depending on Á such that for ÎvÎ < RÁ and h œ O

Îb(h, v)Î Æ K
b

Á .

Remark 2.11. Depending on the given operator A, smallness of v in H might not be su�cient
to control ÈEh

i
, A(uh + v)Í appearing in the drift term b. To handle this term and hence have

the SDE (2.4) well-defined, we often need that v is additionally bounded in a suitably chosen
normed space. Thereby, we also have to show stochastic stability in that space. We give an
idea on how to deal with this at the end of this section. Moreover, if we choose our coordinate
system in such a way that E

h

i
= u

h

i
, i.e., we do not rely on approximations of the tangent space,

then we are not concerned in bounding the drift b, since the prefactor Èuh

i
, vÍ in (2.23) vanishes.

With a bound of the drift term b at hand, one can easily estimate the remainder of Èv, dvÍ. This
leads to the last metatheorem we have to formulate.

Metatheorem 4 (Remainder of Èv, dvÍ).
We find BÁ, cÁ > 0 such that for ÎvÎ < RÁ and u

h œ M

Èv, du
hÍ + Èv, dW Í Æ BÁ÷0 + ÈO(cÁÎvÎ), dW Í.

For the formulation of Metatheorem 4, we used the standard O-notation. As we frequently rely
on this notation throughout this work, we give the definition below.

Definition 2.12 (O-notation).

(i) We say that a scalar term f(Á) is O(g(Á)) if there exists a constant C > 0 and Á0 > 0
such that f(Á) Æ Cg(Á) for 0 < Á < Á0.

(ii) For a function f(Á) taking its values in a normed space (H, Î·ÎH), we write f(Á) = OH(g(Á))
if Îf(Á)ÎH = O(g(Á)).

(iii) Exponentially small terms will be denoted by O(exp) or OH(exp), respectively.
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Finally, we combine the estimates of Metatheorems 2–4 to obtain a stochastic di�erential
inequality of the type (2.17).

Theorem 2.13 (Stochastic di�erential inequality).
There exist Á–dependent constants aÁ, cÁ, RÁ > 0 and KÁ(÷0) depending on ÷0 such that
for ÎvÎ < RÁ and h œ O,

dÎvÎ2 Æ
Ë
KÁ(÷0) ≠ aÁÎvÎ2

È
dt + ÈO(cÁÎvÎ), dW Í.

Based on this estimate, we formulate the main theorem on stochastic stability. Here we follow
Section 3.2 of [ABBK15].

Theorem 2.14 (Stochastic Stability).
Define the stopping time

·
ú := inf

Ó
t œ [0, TÁ · ·0] : Îv(t)Î > RÁ

Ô
,

where the deterministic cut-o� TÁ satisfies TÁ = Á
≠M for any fixed large M > 0 and ·0 denotes

the exit time from O, the set of admissible parameters. Assume that for t Æ ·
ú

dÎv(t)Î2 Æ
Ë
KÁ(÷0) ≠ aÁÎv(t)Î2

È
dt + ÈO(cÁÎv(t)Î), dW Í, (2.24)

where the constants are given in Theorem 2.13. Furthermore, assume that for some Ÿ > 0
KÁ(÷0) + c

2
Á÷1

aÁR2
Á

= O(ÁŸ) and Îv(0)Î2
<

KÁ(÷0) + c
2
Á÷1

aÁ

.

Then, the probability P(·ú
< TÁ · ·0) is smaller than any power of Á, as Á tends to 0.

To demonstrate the interplay between all the constants appearing in Theorem 2.14, we state
the proof from [ABBK15] in full detail.

Proof. Integrating (2.24) yields for all t Æ ·
ú

Îv(t)Î2 + aÁ

⁄
t

0

Îv(s)Î2 ds Æ Îv(0)Î2 + KÁ(÷0)t +
⁄

t

0

ÈO(cÁÎvÎ), dW Í.

Since the stopping time ·
ú is deterministically bounded, we use that by the optional stop-

ping theorem for martingales stopped stochastic integrals still have mean zero (cf. Appendix
Theorem B.16). So we obtain

EÎv(·ú)Î2 + aÁ E
⁄

·
ú

0

Îv(s)Î2 ds Æ Îv(0)Î2 + KÁ(÷0) TÁ, (2.25)

where we utilized that ·
ú Æ TÁ by definition. We extend this to higher powers using Itô calculus.

We will denote all constants depending explicitly on p only by C. For p > 2 we derive

dÎvÎ2p = pÎvÎ2p≠2
dÎvÎ2 + 1

2p(p ≠ 1)ÎvÎ2p≠4
dÎvÎ2

dÎvÎ2

Æ pÎvÎ2p≠2
dÎvÎ2 + Cc

2

Á÷1ÎvÎ2p≠2
dt

Æ pÎvÎ2p≠2
Ë
KÁ(÷0) ≠ aÁÎvÎ2

È
dt + Cc

2

Á÷1ÎvÎ2p≠2
dt + pÎvÎ2p≠2ÈO(cÁÎvÎ), dW Í

= ≠paÁÎvÎ2p
dt + C

Ë
KÁ(÷0) + c

2

Á÷1

È
ÎvÎ2p≠2

dt + pÎvÎ2p≠2ÈO(cÁÎvÎ), dW Í,

where we used that dÎvÎ2
dÎvÎ2 Æ Cc

2
Á÷1ÎvÎ2 by (2.24) and Lemma 2.5.
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Hence, for all integers p > 2 provided t Æ ·
ú, we derive by integrating

Îv(t)Î2p + paÁ

⁄
t

0

Îv(s)Î2p ds

Æ Îv(0)Î2p + C

Ë
KÁ(÷0) + c

2

Á÷1

È ⁄
t

0

Îv(s)Î2p≠2 ds + p

⁄
t

0

ÈO(cÁÎvÎ2p≠1), dW Í.

Thus, by applying the optional stopping theorem to stochastic integrals, we obtain

EÎv(·ú)Î2p Æ Îv(0)Î2p + C

Ë
KÁ(÷0) + c

2

Á÷1

È
E

⁄
·

ú

0

Îv(s)Î2p≠2 ds (2.26)

and

aÁ

⁄
·

ú

0

Îv(s)Î2p ds Æ 1
p

Îv(0)Î2p + C

Ë
KÁ(÷0) + c

2

Á÷1

È
E

⁄
·

ú

0

Îv(s)Î2p≠2 ds. (2.27)

For a simpler notation, let us define

q = q(Á, ÷0, ÷1) := KÁ(÷0) + c
2
Á÷1

aÁ

.

Using that KÁ(÷0) Æ aÁq, we obtain inductively

1
p
EÎv(·ú)Î2p

(2.26)

Æ 1
p

Îv(0)Î2p + C

Ë
KÁ(÷0) + c

2

Á÷1

È
E

⁄
·

ú

0

Îv(s)Î2p≠2 ds

= 1
p

Îv(0)Î2p + CqaÁE
⁄

·
ú

0

Îv(s)Î2p≠2 ds

(2.27)

Æ 1
p

Îv(0)Î2p + Cq
1
p

Îv(0)Î2p≠2 + Cq
2
aÁE

⁄
·

ú

0

Îv(s)Î2p≠4 ds

Æ . . .

Æ Cq
p≠2Îv(0)Î4 + Cq

p≠1
aÁE

⁄
·

ú

0

Îv(s)Î2 ds

(2.25)

Æ Cq
p≠2Îv(0)Î4 + Cq

p≠1
Ë
Îv(0)Î2 + KÁTÁ

È
Æ Cq

p + CaÁq
p
TÁ.

Chebychev’s inequality finally yields

P(·ú
< TÁ · ·0) = P (Îv(·ú) Î Ø RÁ) Æ R

≠2p

Á EÎv(·ú)Î2p

Æ CR
≠2p

Á [qp + aq
p
TÁ] = C

3
q

R2
Á

4
p

+ CaÁ

3
q

R2
Á

4
p

TÁ.

Since by assumption q/R
2
Á = O(ÁŸ), the statement is proved by choosing p su�ciently large.

In upcoming applications, it is necessary to extend the stability result to other spaces in order
to show that the stochastic ODE governing the motion of the shape variable h is well-defined
(cf. Remark 2.11). Let us take a normed space (K, Î · ÎK) and assume that H is not continuously
embedded into K, .i.e., smallness in H does not imply smallness in K. In this scenario, we can
try to use that we already proved stochastic stability in H in Theorem 2.14, i.e., ÎvÎH stays
small for polynomial times in Á

≠1 with very high probability. Hence, if we apply the previous
method to estimate the stochastic di�erential dÎvÎ2

K, our estimates can depend on the H-norm
of v, which then can be bounded in terms of the radius RÁ given by Theorem 2.14. To be more
precise, define for some rÁ > 0 the stopping time

·K(rÁ) := inf
Ó

t œ [0, TÁ · ·0] : Îv(t)ÎH > RÁ or Îv(t)ÎK > rÁ

Ô
.
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Up to times t Æ ·K(rÁ), our objective is to establish a stochastic di�erential inequality of the
type

dÎvÎ2

K Æ
Ë
K̃Á(÷0, ÷K) ≠ ãÁ ÎvÎ2

K

È
dt + ÈO(c̃Á ÎvÎK), dW Í.

Then, we can essentially proceed in the same way as in Theorem 2.14 to show stochastic stability
in K. Note that the constants K̃Á, ãÁ, and c̃Á may now depend on the H-radius RÁ. Moreover,
since elements of K are typically more regular than those in H, we need to assume additional
regularity of solutions to the SPDE (2.1), and therefore, we also need to have a higher spatial
regularity of the Wiener process W . That is why the constant K̃Á depends not only on the
noise strength ÷0, but also on ÷K taking care of the additional regularity. For instance, if the
norm in K is given by Î · ÎK = ÎS1/2 · ÎH for some selfadjoint operator S, we naturally have to
assume that

÷K := trace(Q1/2SQ1/2) =
ÿ

kœN
–

2

kÎS1/2
ekÎ2

H < Œ.

For more details, we refer to the application to the stochastic Cahn–Hilliard and Allen–Cahn
equation in subsequent chapters.

2.4 Singular noise
The method introduced in Section 2.3 relied heavily on the Itô formula, and hence, we

needed to assume su�cient smoothness of the stochastic forcing. Although not part of the
upcoming applications to the stochastic Cahn–Hilliard and Allen–Cahn equation, we present
an approach towards treating rougher noise. For instance, we could drop the assumption that
the covariance operator Q is trace-class and consider a cylindrical Wiener process W , that
is, we allow for Q © I and consider space-time white noise. First, we define the stochastic
convolution WL by

WL(t) :=
⁄

t

0

e
≠(t≠s)L dWs.

In this definition, the family {e
tL}tØ0 denotes a C

0-semigroup generated by the linear op-
erator L (cf. Appendix B.2). Note that WL is the unique mild solution to the linear equa-
tion du = Lu + dW . In addition, under suitable assumptions on the semigroup, the stochastic
convolution enjoys good regularity properties (Lp-regularity, Hölder continuity, and so on).
Moreover, since W is su�ciently small in Á and L a stable operator, we expect that the stochastic
convolution WL remains small for large time scales. For more details on the topic of regularity,
we refer to [DPZ92a, DPL98].

In order to prove stochastic stability, we have to control the residual error v = u ≠ u
h,

where u
h œ M denote the ansatz functions in the slow manifold M. Due to the lack of regularity,

we cannot apply the Itô formula directly to v. Motivated by [DPD96, BYZ19], we consider
instead the di�erence Z := u ≠ u

h ≠ WL, which has better regularity properties and serves as
good approximation of v as WL is expected to be small. Combining the estimates of Z and the
stochastic convolution WL, one then obtains control of the residual term u ≠ u

h. One easily
computes that the process Z satisfies

ˆtZ = LZ + A(uh) + DF(uh) [Z + WL] + N (uh
, Z + WL) ≠ ˆtu

h

¥ LhZ + DF(uh)WL + N (uh
, Z + WL) ≠ ˆtu

h
.

For simplicity of presentation, we dropped the term A(uh) as it typically is very small due to
slow motion.
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Applying Itô’s formula yields
1
2dÎZÎ2 = ÈLhZ, ZÍ + ÈDF(uh)WL, ZÍ + ÈN (uh

, Z + WL), ZÍ ≠ Èdu
h
, ZÍ + 1

2ÈdZ, dZÍ.

Note that we need the Itô corrections due to u
h. The task at hand is to achieve a similar

stochastic di�erential inequality to the one of Theorem 2.13. For the first term involving the
linearized operator Lh we can rely on the spectral analysis (cf. Assumption 2.1). Note that we do
not have Z ‹ ThM, but since the stochastic convolution is typically small, the quadratic form is
manageable. For example, one could use Lemma 2.10 to establish the spectral estimate plus some
small error depending on WL. Similarly, using the smallness of the stochastic convolution and a
uniform bound on DF(uh), the second summand is feasible. Opposed to the previous setting in
Section 2.3, the nonlinearity N (uh

, Z + WL) does not only depend on the new variable Z, but
also on the stochastic convolution WL. Hence, we obtain additional terms that need a careful
analysis. Naturally, this will influence the radius for which we can prove stochastic stability.
Finally, one has to handle the term Èdu

h
, ZÍ and the Itô correction ÈdZ, dZÍ. Typically, these

do not pose a problem. For example, with Q © I we see that

|ÈdZ, dZÍ| = |Èdu
h
, du

hÍ| ≥ Î‡(h)Î2
dt,

where ‡ = A
≠1(h)Òu

h was defined in Theorem 2.6 Equation (2.11). Because of the special
structure of the covariance operator, some of the inner products can therefore be computed
explicitly.

Following the aforementioned steps, one could treat a more singular noise. We expect
that—compared to the smoother cases we study in subsequent chapters—a rougher noise will
decrease the region of validity for the results on stochastic stability.





CHAPTER 3

Motion of a single bubble for the stochastic Cahn–Hilliard equation

In this chapter, we apply the methods from the preceding general framework to the
stochastic Cahn–Hilliard equation (also known as Cahn–Hilliard–Cook equation) posed on
a bounded smooth domain � µ Rd, where we allow for the space dimensions d = 2 and d = 3:

I
ˆtu = ≠�(Á2�u ≠ F

Õ(u)) + Ẇ (x, t), x œ �,

ˆ÷u = ˆ÷ �u = 0, x œ ˆ�.
(CH)

The Cahn–Hilliard equation serves as phenomenological model for the phase separation and
subsequent coarsening of binary alloys. Proposed by John W. Cahn and John E. Hilliard
in [CH58, Cah59] at a fixed temperature, it was extended by H. Cook [Coo70] in order to
incorporate thermal fluctuations in the form of an additive noise. Here, Á > 0 is a small positive
parameter measuring the relative importance of surface energy compared to the bulk free
energy, and ˆ÷ denotes the exterior normal derivative to the boundary ˆ�. The potential F

is assumed smooth with two equal nondegenerate minima at u = ±1. A typical example is
F (u) = 1

4
(u2 ≠ 1)2. For simplicity, we focus on this example in many results. Section 3.3.1 is

devoted to a general class of potentials with at most polynomial growth at infinity.
The stochastic forcing is given by an additive white in time noise ˆtW . As our methods

rely on Itô’s formula, we assume that the Wiener process is su�ciently smooth in space, and
moreover, su�ciently small in Á, so that it does not destroy the typical patterns in the solutions.
The existence and uniqueness of solutions is well-studied (see for example [DPD96, CW01] and
Appendix C) and we always assume that, for a given initial condition, we have a unique solution.
In addition, as we assume the noise to be smooth in space, the solution is regular in space, too.

A key property of the deterministic Cahn–Hilliard equation is that it forms a gradient
flow in the H

≠1-topology with respect to the Ginzburg–Landau–Wilson energy functional

JÁ(u) =
⁄

�

A
Á

2

2 |Òv|2 + F (u)
B

dx. (3.1)

For that reason, one can expect that, for Á π 1, solutions to (CH) stay mostly near u = ≠1
and u = +1, the stable minima of F (u). Therefore, the typical initial condition evolves into
a layered function in space. Because of this, as soon as this initial stage is completed, we
can think of � being split into subdomains on which uÁ(·, t) takes approximately the constant
values ≠1 and 1, with boundaries Á-localized about an interface �Á(t). The interface is expected
to move according to a Hele–Shaw or Mullins–Sekerka problem, where circular shaped droplets
are stable stationary solutions of the dynamics.

In our results, we focus on the almost final stage, where the interface is already a single
spherical bubble or droplet inside the domain, and thus, the only possible dynamics is given by
the translation of the droplet, at least as long as the droplet stays away from the boundary.

An earlier version on results of this chapter was published in [BS20].

29
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Assumptions on spaces and noise

We fix the underlying space H
≠1(�) with scalar product È·, ·Í and norm Î · Î. The standard

scalar product in L
2(�) is denoted by (·, ·) or È·, ·ÍL2 . Moreover, we use Î · ÎŒ for the supremum

norm in C
0 or L

Œ. As the Cahn–Hilliard equation preserves the total mass, we also consider
the subspace H

≠1

0
(�) of the Sobolev space H

≠1(�) with zero average. Recall that the inner
product in H

≠1

0
(�) is given by

ÈÂ, ÏÍH≠1 =
e
(≠�)≠1/2

Â, (≠�)≠1/2
Ï

f

L2
,

where ≠� is the self-adjoint positive operator defined on L
2
0
(�) = {Ï œ L

2(�) :
s

�
Ï dx = 0} by

the negative Laplacian with Neumann boundary conditions. The stochastic forcing is given by an
additive white in time noise ˆtW , where W denotes a Q-Wiener process.

Definition 3.1 (The Wiener process).
Let W be a Q-Wiener process in the underlying Hilbert space H

≠1(�), Q a symmetric operator
and (ek)kœN an orthonormal basis with corresponding eigenvalues –

2

k
such that

Qek = –
2

kek and W (t) =
ÿ

kœN
–k—k(t)ek,

for a sequence of independent real-valued standard Brownian motions {—k(t)}
kœN, cf. Da Prato

and Zabzcyck [DPZ92b].

Although we dropped the index Á in the definition of the Wiener process W for the sake of
simplicity, we assume that W , and thus the covariance operator Q, depends on Á. As our
analysis relies heavily on the application of Itô’s formula, we have to assume that the Wiener
process W is su�ciently regular in space. Moreover, we need to guarantee mass conservation
of solutions to (CH). In the remainder of this chapter, we rely on the following regularity
assumptions of the Wiener process W .

Assumption 3.2 (Regularity of the Wiener process).
We assume that the process W takes its values in H

≠1

0
, that is, it satisfies

⁄

�

W (t, x) dx = 0 for all t Ø 0.

Furthermore, we suppose that for some constant c > 0

1) ÎQÎL(H≠1) < c”
2

Á and 2)
ÿ

kœN
–

2

kÎekÎ2

H1
Á

< c”
2

Á ,

where we need the technical condition ”Á < Á
7/2+3d/2. Here, Î · ÎH1

Á
is defined as

ÎeÎH1
Á

:=
3⁄

�

Á
2|Òe(x)|2 + e(x)2 dx

4
1/2

. (3.2)

Note that condition 2) also implies that

traceH≠1(Q) =
ÿ

kœN
–

2

k < c”
2

Á .

The first assumption on the norm of Q as an operator in H
≠1 implies that the strength of

the noise is bounded by O(”Á), while the second one assures additional spatial regularity of the
noise. Also, note that the weighted norm Î · ÎH1

Á
is equivalent to the standard H

1-norm with
Á-dependent constants.
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Later in Section 3.3.1, we extend our analysis to a more general class of nonlinearities. In the
three-dimensional case, we need to assume even more regularity of the Wiener process, namely,

3)
ÿ

kœN
–

2

kÎekÎ2

÷ < cfl
2

Á < Œ,

where we define for some ÷ > 0

ÎeÎ÷ :=
1
Á

÷Î�eÎ2

L2 + ÎeÎ2

H
≠1
0

2
1/2

.

The exact sizes of flÁ and ÷ will be fixed in Section 3.3.1.

Remark 3.3. We observe that W is a Q-Wiener process in L
2 if, and only if, W is a

(≠�)≠1/2Q(≠�)≠1/2-Wiener process in H
≠1. Since the eigenvalues of (≠�)≠1 behave asymp-

totically like k
≠2/d, it is easy to check that the condition of Q being trace-class in H

≠1 includes
space-time white noise in spatial dimension d = 1, but in our higher dimensional cases space-time
white noise is exactly the borderline regularity that we cannot treat.

3.1 The slow manifold
In this section, we collect some important results from the study of the deterministic Cahn–

Hilliard equation in higher space dimensions by N. Alikakos and G. Fusco [AF98], which we need
throughout this chapter. In our analysis, we rely on the same deterministic slow manifold Mfl

consisting of droplets with fixed radius fl > 0. The droplet state is given by almost stationary
solutions to (CH) (Proposition 3.4). Since the constructed bubble fails the equation or the
boundary conditions by an exponentially small term, we have to take care of this deficiency
with an exponentially small correction (Theorem 3.7). The slow manifold is then given in Defi-
nition 3.8. Afterwards in Section 3.1.2, we discuss the spectrum of the linearized Cahn–Hilliard
and Allen–Cahn operator, which is crucial for the stability analysis.

3.1.1 Construction of the droplet state

Supported by the works of Stoth [Sto96] and Alikakos, Bates & Chen [ABC94] on the
deterministic problem, the front �Á(t) separating the pure phases moves in the sharp interface
limit Á æ 0 according to the geometric evolution law

v = b

5
dµ

d÷

6

�(t)

, (MS)

where
�µ = 0, x œ � \ �(t),
ˆ÷µ = 0, x œ ˆ�,

µ = ÁaK, x œ �(t).

The problem (MS) is referred to as Mullins–Sekerka problem. Here, a and b are constants,
K denotes the mean curvature of �(t) at x, [dµ

d÷
] is the jump of the normal derivative dµ

d÷

across �(t), and v is the normal component of the velocity of �(t). It is easy to check that a
sphere, or more generally a surface consisting of a finite number of non-overlapping spheres
contained in �, is an equilibrium to the Mullins–Sekerka problem. This suggests that it is
fruitful to search for bounded radial stationary solutions to the Cahn–Hilliard equation on the
whole space Rd, i.e.,

≠�
Ë
Á

2�u ≠ F
Õ(u)

È
= 0, x œ Rd

.
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Due to Liouville’s theorem a function u œ C
2(Rd) is such a solution if, and only if, it is radial

and satisfies for some constant ‡ œ R

Á
2�u ≠ F

Õ(u) = ‡, x œ Rd
.

The following proposition concerns the existence of such radial solutions to the rescaled problem
�u≠F

Õ(u) = ‡. For a detailed proof, we refer to [AF98], Proposition 2.1.

Proposition 3.4 (The droplet, [AF98], Proposition 2.1).
There exist a number fl̄ > 0 and smooth functions ‡ : (fl̄, Œ) æ R, U

ú : [0, Œ) ◊ (fl̄, Œ) æ R,
such that ‡(fl) and u(x, fl) = U

ú(|x|, fl) satisfy for each fl œ (fl̄, Œ) the equation

�u(x, fl) ≠ F
Õ (u(x, fl)) = ‡(fl), x œ Rd

. (3.3)

Moreover, U
ú(r, fl) is increasing in r and

i) ‡(fl) = Cfl
≠1 + O(fl≠2),

ii) U
ú(fl, fl) = O(fl≠1),

iii) 1 + U
ú(0, fl) = O(fl≠1),

iv) lim
ræŒ

U
ú(r, fl) = –(fl), where –(fl) denotes the root near 1 of the equation F

Õ(u) + ‡(fl) = 0,

v) –(fl) ≠ U
ú(r, fl) = O(e≠‹(fl)(r≠fl)), r > fl, ‹(fl) := (F ÕÕ(–(fl)))1/2

,

and similar exponential estimates hold for the derivative of U
ú with respect to r.

A transformation to polar or spherical coordinates yields for the shifted radial component
U

fl(s) := U
ú(s + fl, fl) the ODE

Ü
fl + d ≠ 1

fl + s
U̇

fl ≠ F
Õ(Ufl) = ‡(fl), ≠fl < s < Œ. (3.4)

With Proposition 3.4 i), we observe that ‡(fl) tends to zero, as fl æ Œ. Together with the
properties ii), iii), and iv), we observe that U

fl converges for fl æ Œ to the unique bounded
solution to the heteroclinic ODE

Ü ≠ F
Õ(U) = 0, U(0) = 0, U(±Œ) = ±1.

Moreover, away from the interface we can expect U
fl to be close to one of the roots of F

Õ.
Essentially, the proof of Proposition 3.4 is a perturbation argument based on this observation.
Furthermore, we see that—provided we are su�ciently far away from the center of the bubble—
one can approximate the radial component U

ú in terms of the heteroclinic ODE connecting
the stable roots of F . For a detailed proof of this statement, we refer to Proposition 2.4
in [AF98].

Lemma 3.5 (Asymptotic expansion w.r.t. the heteroclinic, [AF98], Proposition 2.4).
Let U be the unique solution to U

ÕÕ ≠ F
Õ(U) = 0 subject to the boundary conditions U(0) = 0

and limsæ±Œ U(s) = ±1. Then, there exists a constant C > 0 such that

i) ‡
Õ(fl) = Cfl

≠2 + O(fl≠3)

ii) U
ú(r, fl) = U(r ≠ fl) + Cfl

≠1
V (r ≠ fl, fl) + O(fl≠2) for r ≠ fl Ø ≠Cfl

iii) U
ú
fl (r, fl) = ≠U

Õ(r ≠ fl) + Cfl
≠2

Vfl(r ≠ fl, fl) + O(fl≠3) for r ≠ fl Ø ≠Cfl,

where V is a bounded function and the subindex denotes di�erentiation with respect to fl.
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For a fixed radius fl > fl̄ > 0 of the droplets and a fixed minimal distance ” > 0 from the
boundary of the domain, we define for Á π 1 and › œ �fl+” := {› : d(›, ˆ�) > fl + ”} the rescaled
and translated droplet state u

› : � æ R by

u
›(x) = U

ú
A

|x ≠ ›|
Á

,
fl ≠ a

›

Á

B

, x œ �, (3.5)

where the number a
› is chosen to be zero at some fixed ›0 œ �fl+” and is determined for generic

› œ �fl+” by imposing that the mass of u
› is constant on �fl+”, i.e.,

⁄

�

u
› dx =

⁄

�

u
›0 dx ’› œ �fl+”. (3.6)

For example, we choose ›0 to be a point of maximal distance from the boundary ˆ�. We could
also fix a small mass and then determine the radius fl > 0 such that the droplet centered at ›0 has
exactly that mass. An argument based on Proposition 3.4 shows that a

› and its derivatives with
respect to ›i for i = 1, . . . , d are all exponentially small. It is only an exponentially small e�ect
of the boundary. For more details, we refer to Lemma 3.1 in [AF98].

Lemma 3.6 ([AF98], Lemma 3.1).
The number a

› is uniquely determined by the condition (3.6) and the assumption a
›0 = 0.

Moreover,
0 Æ a

›
< Ce

≠(‹Á/Á)d
›
, (3.7)

where d
› := d(›, ˆ�) ≠ fl and ‹Á := ‹(fl≠a

›

Á
), with ‹ defined in Proposition 3.4 v).

Similar exponential estimates hold for derivatives of a
› with respect to ›i, i = 1, . . . , d.

Note that by Proposition 3.4 i) the root near 1 of the equation F
Õ(u) ≠ ‡(fl≠a

›

Á
) = 0 is given

by 1 ≠ Á

fl≠a› F
ÕÕ(1)≠1 + O(Á2). Therefore, we have

‹
2

Á = F
ÕÕ

3
1 ≠ Á

fl ≠ a›
F

ÕÕ(1)≠1 + O(Á2)
4

= F
ÕÕ(1) + O(Á).

This shows that the estimate (3.7) indeed leads to an exponentially small correction term a
›.

In the remainder of this chapter, we will denote such exponentially small terms by O(exp)
(cf. Definition 2.12). In fact, we do not need the exact asymptotics of the exponentially small
terms, since our results are dominated by the noise strength ”Á, which is polynomial in Á. Clearly,
this is quite di�erent to the deterministic setting. In that case, the dynamics is given by the
exponentially slow motion of the droplet and hence, a more careful analysis of these terms is
needed.

By virtue of Proposition 3.4, the droplet state u
› is an almost stationary solution to the

Cahn–Hilliard equation in the sense that it fails to satisfy the equation, or the boundary
conditions, by terms which are exponentially small. Moreover, it jumps from somewhere near ≠1
to near +1 in a thin layer of size of order Á around the circle of radius fl and center ›.

In order to fix the Neumann boundary conditions, we introduce a small perturbation v
› such

that ũ
› := u

› +v
› satisfies the boundary conditions ˆ÷ũ

› = ˆ÷�ũ
› = 0. By virtue of Theorem 5.1

in [AF98], this can be done in such a way that L(u› + v
›) œ span{u

›

i
: i = 1, . . . , d}. We

can interpret this as the manifold consisting of the functions u
› + v

› for › œ �fl+” being an
approximate invariant manifold for the Cahn–Hilliard equation. In fact, we will collect all
translates of ũ

› in a slow manifold (Definition 3.8), but let us first state the aforementioned
result in the following theorem:
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Theorem 3.7 ([AF98], Theorem 5.1).
Assume that fl > 0 is such that �fl = {› œ � : d(›, ˆ�) > fl} is non-empty and let ” > 0 be a fixed
small number. Then, there is an Á0 > 0 such that for any 0 < Á < Á0 there exist C

1-functions

› ‘æ v
› œ C

4(�̄), › ‘æ c
› = (c›

1
, . . . , c

›

d
) œ Rd

defined in �fl+” and such that
s

�
v

› dx = 0, for which

(i) Îv
›ÎŒ = O(exp) and (ii) |c›| = O(exp).

Similar exponential estimates hold for the derivatives of v
› and c

› with respect to ›.
Moreover, the function ũ

› := u
› + v

› satisfies the boundary conditions in (CH) and

L(ũ›) =
dÿ

i=1

c
›

i
u

›

i
,

where L(Â) = ≠�(Á2�Â ≠ F
Õ(Â)) denotes the Cahn–Hilliard operator and u

›

i
the derivatives

of u
› with respect to ›i for i = 1, . . . , d.

Motivated by Theorem 3.7, we can finally define the slow manifold Mfl consisting of translates
of ũ

› = u
› + v

›.

Definition 3.8 (The slow manifold).
For a fixed radius fl > fl̄ > 0 of the droplets with fl̄ given by Proposition 3.4, and centers
in �fl+” = {› : d(›, ˆ�) > fl + ”} for some fixed small ” > 0, we define the slow manifold

Mfl :=
Ó

ũ
› := u

› + v
› : › œ �fl+”

Ô
,

where u
› denotes the droplet state defined by (3.5) and v

› the exponentially small perturbation
defined in Theorem 3.7.

By smoothness of the functions u
› and v

›, the map › ‘æ ũ
› defines a C

3-parametrization of the
slow manifold Mfl. For i, j œ {1, . . . , d}, we denote the partial derivatives of ũ

› with respect to
the variable ›j by ũ

›

j
:= ˆ›j ũ

›, and second derivatives ũ
›

ij
:= ˆ›iˆ›j ũ

›, accordingly. Moreover, the
matrix (Èũ›

i
, ũ

›

j
Í)i,j is invertible (cf. Theorem 3.6 in [AFK04]). See also the proof of Lemma 3.14.

Thus, Mfl defines a nondegenerate d-dimensional manifold.

3.1.2 Spectral estimates for the linearized operators

An essential point (cf. Assumption 2.1) in deriving stochastic stability is the spectral
properties of the linearized Cahn–Hilliard operator in H

≠1. We consider the linearization at
any droplet state in our slow manifold, and it is crucial that eigenfunctions not tangential
to the manifold have negative eigenvalues uniformly bounded away from zero, while all other
eigenvalues have eigenfunctions tangential to the manifold. The main spectral result is given
in Theorem 3.9 and we comment on the derivation of the eigenfunctions corresponding to the
exponentially small eigenvalues afterwards. Essentially, up to an exponentially small error, these
eigenfunctions stem from the translation of the droplet and we will use them to approximate
the tangent space of Mfl and define the Fermi coordinates.

Besides, we will see that the spectrum of the linearized mass conserving Allen–Cahn
operator plays an important role in the analysis. Here, we give the main spectral result
in Theorem 3.12.
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The Cahn–Hilliard operator on H
≠1

0
(�)

For ũ
› œ Mfl, we study the linearized Cahn–Hilliard operator

L› = ≠�
1
Á

2� ≠ F
ÕÕ(ũ›)

2

as an operator on H
≠1

0
(�) in more detail. The droplet is stable for the dynamics and hence, the

exponentially small eigenvalues of L› stem (up to an exponentially small error) from translations
of the droplet. Crucial for the stability analysis (see Section 3.3) is the spectral gap, which
as we will see depends on the space dimension d. For its consequences on the stability results
see Remark 3.10. The spectrum of L› was analyzed in [AF94] and we cite the full result
below.

Theorem 3.9 (The linearized Cahn–Hilliard operator, [AF94]).
Let d œ {2, 3} and ũ

› œ Mfl.

(i) The operator L› can be extended to a self-adjoint operator on H
≠1

0
.

Moreover, ≠L› is bounded from below.

(ii) Let ⁄
›

1
Æ ⁄

›

2
Æ ⁄

›

3
Æ . . . be the eigenvalues of

Y
_]

_[

L›
Â = ≠�

1
Á

2�Â ≠ F
ÕÕ(ũ›)Â

2
= ≠⁄Â, x œ �,

ˆÂ

ˆ÷
= ˆ�Â

ˆ÷
= 0, x œ ˆ�.

Then, there exist Á0 > 0 and a constant C > 0 such that for 0 < Á < Á0 the following
estimates hold true:

|⁄›

d
| = O(exp) and ⁄

›

d+1
Ø CÁ

d≠1
.

(iii) In the d-dimensional subspace U
› corresponding to the exponentially small eigenvalues

⁄
›

1
, . . . , ⁄

›

d
, there is an H

≠1-orthonormal basis Â
›

1
, . . . , Â

›

d
such that

Â
›

i
=

dÿ

j=1

a
›

ij

ũ
›

j

Îũ
›

j
Î

+ O(exp), i = 1, . . . , d, (3.8)

where the matrix (a›

ij
) is non-singular and a smooth function of ›. Moreover, Â

›

i
is a

smooth function of › and

ÎÂ
›

i,j
Î = O(Á≠1), i, j = 1, . . . , d, (3.9)

where Â
›

i,j
denotes the derivative of Â

›

i
with respect to ›j.

Remark 3.10 (Dependence on the space dimension).
Thus far, the spectral gap in Theorem 3.9(ii) depends decisively on the space dimension d. This
heavily influences our analysis of stochastic stability, and any improvement in this result will
yield a better region of stability in the three-dimensional setting. Basically, the smaller spectral
gap will weaken the estimate of Metatheorem 2 and, due to the Sobolev embeddings used for the
proof, reduce the maximal radius RÁ of the tubular neighborhood around the slow manifold that
we can treat. This directly influences the main stability result of Theorem 2.14 and will only
allow for a smaller noise strength. In fact, we have seen the dependence of the noise strength on
the space dimension d already in Assumption 3.2, where we assumed that ”Á < Á

7/2+3d/2. For
the exact interplay between the spectral gap and stochastic stability, we refer to Section 3.3.
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As we will need the statement in more detail later, we comment briefly on the proof of (iii).
The main ingredient is the following theorem.

Theorem 3.11 ([HS84]).
Let A be a self-adjoint operator on a Hilbert space H, I a compact interval in R, and {Â1, . . . , ÂN }
linearly independent normalized elements in D(A). Additionally, suppose that

(i) For some Á
Õ
> 0 and µj œ I, j = 1, . . . , N, we have

AÂj = µjÂj + rj with ÎrjÎ < Á
Õ
.

(ii) There is a number a > 0 such that I is a-isolated in the spectrum of A, i.e.,

(‡(A) \ I) fl (I + (≠a, a)) = ÿ.

Then, we obtain

d̄(E, F ) := sup
ÏœE,ÎÏÎ=1

d(Ï, F ) Æ
Ô

NÁ
Õ

a
Ô

⁄min

,

where
E = span{Â1, . . . , ÂN },

F = closed subspace associated to the eigenvalues in ‡(A) fl I,

⁄min = smallest eigenvalue of the matrix (ÈÂi, ÂjÍ)
i,j=1,...,N

.

For the application to the linearized Cahn–Hilliard operator, we set

E := span
I

ũ
›

1

Îũ
›

1
Î

, . . . ,
ũ

›

d

Îũ
›

d
Î

J

and I :=
Ë
≠Ce

≠c/Á
, Ce

≠c/Á
È

,

for some constants c, C > 0 fitting with the estimate of the exponentially small eigenvalues in
Theorem 3.9(ii). Also, note that the functions ũ

›

i
are linearly independent, since the matrix

Èũ›

i
, ũ

›

j
Íi,j=1,...,d is invertible (cf. [AFK04], Theorem 3.6).

Obviously, we have ‡(A) fl I = {⁄
›

1
, . . . , ⁄

›

d
} and, as according to Theorem 3.9(ii) the spectral

gap is of order Á
d≠1, the interval I is Á

d-isolated in the spectrum of the linearized Cahn–Hilliard
operator. Furthermore, we have by Theorem 3.7

L›
ũ

›

j

Îũ
›

j
Î

= 1
Îũ

›

j
Î

Q

a
dÿ

i=1

ˆc
›

j

ˆ›i

u
›

j
+ c

›

j
u

›

ij

R

b = O(exp).

Since the matrix (Èũ›

i
, ũ

›

j
Í) approaches a non-singular limit as Á tends to zero, we also obtain

that the smallest eigenvalue is uniformly bounded away from zero. For i œ {1, . . . , d}, let Â
›

i
be

the eigenvector associated to the eigenvalue ⁄
›

i
and define F := span{Â

›

1
, . . . , Â

›

d
}. With that,

Theorem 3.11 is finally applicable and yields

d̄(E, F ) := sup
ÏœE,ÎÏÎ=1

d(Ï, F ) = O(exp).

Hence, by definition of the distance d̄, we have for some – œ Rd

ũ
›

j

Îũ
›

j
Î

=
dÿ

k=1

–k Â
›

k
+ O(exp), j = 1, . . . , d.
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By taking the inner product with the orthonormal basis Â
›

i
, we can solve for the coe�cients –k

and obtain directly that

ũ
›

j

Îũ
›

j
Î

=
dÿ

k=1

ÈÂ›

k
,

ũ
›

j

Îũ
›

j
Î

Í Â
›

k
+ O(exp). (3.10)

Provided that Á > 0 and the radius fl of the droplet are su�ciently small, the matrix B(›) defined
by Bij(›) = ÈÂ›

i
, ũ

›

j
Í is invertible. In more detail, relation (3.10) together with the orthonormal

basis {Â
›

i
}i=1,...,d implies (ignoring exponentially small terms)

Èũ›

i
, ũ

›

j
Í =

e dÿ

k=1

Bki(›) Â
›

k
,

dÿ

¸=1

B¸j(›) Â
›

¸

f
=

dÿ

k,¸=1

Bki(›)B¸j(›)ÈÂ›

k
, Â

›

¸
Í =

1
B

T · B

2

ij
. (3.11)

Therefore, invertibility of B is equivalent to the invertibility of the matrix defined by Èũ›

i
, ũ

›

j
Í,

which is crucial for the non-degeneracy of the slow manifold Mfl (see also Lemma 3.14).
Thus, we have Â

›

i
œ E + O(exp) as

Â
›

i
=

dÿ

j=1

Îũ
›

j
ÎB

≠T

ij
(›)

ũ
›

j

Îũ
›

j
Î

+ O(exp), i = 1, . . . , d. (3.12)

The mass conserving Allen–Cahn operator on L2
0(�)

By defining the projection Pu := u ≠ |�|≠1
s

�
u dx onto L

2
0
(�) = {f œ L

2(�) :
s

�
f(x) dx = 0},

we obtain for v œ H
≠1

0

ÈL›
v, vÍ

H
≠1
0

= ÈÁ2�v ≠ F
ÕÕ(ũ›)v, PvÍL2 = ÈP[Á2�v ≠ F

ÕÕ(ũ›)v], vÍL2

= ÈÁ2�v ≠ F
ÕÕ(ũ›)v + 1

|�|

⁄

�

F
ÕÕ(ũ›)v dx, vÍL2 := ÈA›

v, vÍL2 .

Therefore, it is fruitful to study the eigenvalue problem for the mass conserving Allen–Cahn
equation on L

2(�) linearized at the droplet state ũ
› œ Mfl

Y
_]

_[

A›
Â = Á

2�Â ≠ F
ÕÕ(ũ›)Â + 1

|�|

⁄

�

F
ÕÕ(ũ›)Â = ≠µÂ, x œ �,

ˆ÷ Â = 0, x œ ˆ�.

(3.13)

The main spectral result concerning the eigenvalue problem (3.13) is the following theorem. This
result can be found in [ABF98], with ũ

› replaced by u
›. Since the di�erence ũ

› ≠ u
› is exponen-

tially small, the theorem follows from an easy perturbation argument.

Theorem 3.12 (The linearized Allen–Cahn operator, [ABF98], Proposition 2.2).
Let ũ

› œ Mfl and µ
›

1
Æ µ

›

2
Æ . . . be the eigenvalues of (3.13). Then, there exist Á0 > 0 and a

constant C > 0 such that for 0 < Á < Á0

µ
›

1
, . . . , µ

›

d
= O(exp) and µ

›

d+1
> CÁ

2
.

The d-dimensional space W
› spanned by the eigenfunctions corresponding to the exponen-

tially small eigenvalues µ
›

1
, . . . , µ

›

d
can be represented by W

› = span{w
›

1
, . . . , w

›

d
}, where the

normalized eigenfunctions w
›

i
are estimated by

...w
›

i
≠ ũ

›

i

Îũ
›

i
Î

... = O(exp).
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3.2 Motion along the slow manifold
In this section, we follow the general approach presented in Section 2.2 and give the e�ective

equation on the slow manifold Mfl. Afterwards, we analyze the ODE governing the motion of the
droplet’s center in terms of Á being small. We show that the droplet moves in first approximation
according to the projection of the Wiener process onto the slow manifold (cf. Section 2.2.3).
Moreover, since the dominating terms for the dynamics are not small in Á but in the inverse
radius fl

≠1, we expect that the size of the bubble influences the speed of motion, i.e., smaller
droplets move faster.

3.2.1 The new coordinate system

In order to derive the e�ective dynamics, we first have to introduce a coordinate system in a
small tubular neighborhood of the slow manifold Mfl (Fermi coordinates, see Definition 2.2).
A minor technical di�culty is that the eigenfunctions Â

›

1
, . . . , Â

›

d
of the linearization L› do not

span the tangent space at a given point ũ
› on the slow manifold. But, as the di�erence to

the true tangent space spanned by the partial derivatives ũ
›

1
, . . . , ũ

›

d
is exponentially small, we

can use them as an approximate tangent space to project onto the manifold (cf. Remark 2.3).
The following proposition (see [AF98], Proposition 7.1) concerns the existence of a small tubular
neighborhood in H

≠1 of radius O(Á1+) around Mfl, where the projection is well defined.
We do not give a proof, as we do not need the statement in this generality. The uniqueness of
the Fermi coordinates can also be inferred from the local existence of the system governing the
motion of the droplet’s center › (cf. Section 2.2.2).

Proposition 3.13 (Fermi coordinates, [AF98], Proposition 7.1).
Let ũ

›, Mfl, and �fl be as in Theorem 3.7. Then, for ÷ > 1, the condition

inf
›œ�fl+2”

Îu ≠ ũ
›Î < Á

÷
, (3.14)

implies the existence of unique › œ �fl+” and v œ H
≠1

0
such that

u = ũ
› + v, Èv, Â

›

i
Í = 0 ’i = 1, . . . , d, (3.15)

where the eigenfunctions Â
›

1
, . . . , Â

›

d
are given by Theorem 3.9 (iii). Moreover, the map u ‘æ (›, v)

defined by (3.15) is smooth together with its inverse.

Let u(t) be a solution of (CH). We call the coordinates (›(t), v(t)) defined in Proposition 3.13
the Fermi coordinates of u(t) (cf. Definition 2.2).

3.2.2 The exact stochastic equation for the droplet’s motion

With the new coordinate frame at hand, we are now equipped with all necessary tools to give
the exact stochastic equation on the slow manifold Mfl. Following the guideline from Chapter 2,
we first have to show that the matrix A(›, v) œ Rd◊d from Definition & Metatheorem 1 is
invertible, as long as ÎvÎ stays su�ciently small. Then, the e�ective dynamics was established
in Theorem 2.6 and we can rely on these formulas for the drift and di�usion. Note that in the
computation of the e�ective dynamics we rely on an approximation of the tangent space Tũ›Mfl

by the exact eigenfunctions Â
›

i
(cf. Remark 2.3). While this is not crucial for the stochastic

ODE and its approximation in terms of Á, it helps with the stability analysis in Section 3.3, as
we can apply the spectral estimates directly.
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Lemma 3.14 (Invertibility of the matrix A).
For ũ

› œ Mfl and Â
›

i
, i = 1, . . . , d, given by Theorem 3.9(iii), consider the matrix A(›, v) œ Rd◊d

defined by
Akj(›, v) = Bkj ≠ Rkj(v) := ÈÂ›

k
, ũ

›

j
Í ≠ Èv, Â

›

k,j
Í.

Then, as long as ÎvÎ Æ CÁ
1+Ÿ for some 0 < Á < Á0 and some small Ÿ > 0, the matrix A(›, v) is

invertible. Moreover, for fl < 1 and some C0 > 0, its inverse A
≠1(›, v) is given by

A
≠1

kj
(›, v) = C

≠1

0
fl

≠d/2 Id + O(fld/2≠1).

Proof. By [AFK04, Theorem 3.6], we have for a specific constant C0 > 0 that

Èũ›

i
, ũ

›

j
Í = C

2

0fl
d

”ij + O(fl2d≠1) + O(Áfl
≠1) + O(exp). (3.16)

Therefore, Èũ›

i
, ũ

›

j
Í defines for small fl an almost diagonal, invertible matrix of order O(1) in Á.

Moreover, we see that Îũ
›

i
Î2 = C

2
0
fl

d + O(fl2d≠1). In (3.11), we proved the relation

Èũ›

i
, ũ

›

j
Í =

1
B

T · B

2

ij
+ O(exp), (3.17)

such that invertibility of B can be derived from the invertibility of the matrix (Èũ›

i
, ũ

›

j
Í)i,j .

On the other hand, the assumption on ÎvÎ and ÎÂi,jÎ = O(Á≠1) yields

Èv, Â
›

i,j
Í Æ CÎvÎÎÂ

›

i,j
Î Æ CÁ

Ÿ
.

From this, we see directly that A(›, v) is invertible for Á su�ciently small.
Using the relations (3.16) and (3.17), we obtain B = C0fl

d/2 Id +O(fl3d/2≠1). Let us now consider
the decomposition A(›, v) = C0fl

d/2(Id ≠ E), where Id denotes the identity matrix and E is a
small perturbation thereof of order O(fld≠1). Then, one has by Taylor expansion (or geometric
series)

A(›, v)≠1 = C
≠1

0
fl

≠d/2(Id ≠ E)≠1 = C
≠1

0
fl

≠d/2
ÿ

kœN
E

k

= C
≠1

0
fl

≠d/2(Id + E + O(fl2d≠2)) = C
≠1

0
fl

≠d/2 Id + O(fld/2≠1).

With this estimate, the lemma is proved.

Provided the matrix A is invertible, we gave the equation of the full dynamics in Theorem 2.6.
Under the assumption that › performs a d-dimensional di�usion process

d› = b(›, v) dt + È‡(›, v), dW Í, (3.18)

the drift term b : Rd ◊ H
≠1(�) æ Rd and the di�usion ‡ : Rd ◊ H

≠1(�) æ (H≠1(�))d are then
given by the expressions

‡r(›, v) =
dÿ

i=1

A
≠1

ri
(›)Â›

i
(3.19)

and

br(›, v) =
dÿ

i=1

A
≠1

ri
(›)ÈL(v + ũ

›), Â
›

i
Í +

dÿ

i=1

A
≠1

ri
(›)

ÿ

j

ÈQÂ
›

i,j
, ‡

›

j
Í

+
dÿ

i,j,k=1

A
≠1

ri
(›)

Ë
1

2
Èv, Â

›

i,jk
Í ≠ ÈÂ›

j,k
, ũ

›

i
Í ≠ 1

2
ÈÂ›

k
, ũ

›

ij
Í
È

ÈQ‡
›

i
, ‡

›

j
Í.

(3.20)

Note that we justified this ansatz in Lemma 2.8.
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3.2.3 Bounds on the SDE

In the present section, we give bounds on the SDE governing the motion of the droplet’s
center ›, which we need later in Section 3.3 to show stochastic stability. Recall that in
Assumption 3.2 we defined a weighted H

1-norm Î · ÎH1
Á

by

ÎvÎH1
Á

=
3⁄

�

Á
2|Òv|2 + v

2 dx

4
1/2

. (3.21)

Obviously, this norm is equivalent to the usual H
1-norm with Á-dependent constants and we

always have that
ÎvÎL2 Æ ÎvÎH1

Á
and ÎÒvÎL2 Æ Á

≠1ÎvÎH1
Á
.

Moreover, by the Poincaré inequality we obtain for the H
≠1-norm

ÎvÎH≠1 Æ ÎvÎL2 Æ ÎvÎH1
Á
.

For the purpose of defining tubular coordinates (Proposition 3.13) and invertibility of the
matrix A(›, v) (Lemma 3.14), we needed an H

≠1-radius of order O(Á1+Ÿ) for some Ÿ > 0. Since
it is not su�cient to control the nonlinear terms in the drift term b only by means of the
H

≠1-norm, we work in a small tubular neighborhood of Mfl defined by ÎvÎH1
Á

being su�ciently
small. By virtue of the above mentioned Poincaré inequality, an H

1
Á -radius of order O(Á1+Ÿ)

su�ces to have the coordinate frame, and thus the SDE, well-defined.

Definition 3.15. For some small Ÿ > 0, we define a tubular neighborhood of the slow
manifold Mfl by

� :=
Ó

ũ
› + v : › œ �fl+”, ÎvÎH1

Á
< Á

1+Ÿ
Ô

.

As long as ũ
› + v lies in �—i.e., as long as the coordinate system (3.15) is well-defined—we

give bounds on the stochastic ODE. Later, when we analyze the SDE in more detail, we will
use an even smaller tubular neighborhood, where solutions stay inside for a very long time. Let
us start with estimating the di�usion term ‡(›, v).

Lemma 3.16. Let ũ
› + v œ � and r œ {1, . . . , d}. We obtain

‡r(›, v) = C
≠1

0
fl

≠d/2
Â

›

r + OH≠1(fld/2≠1),

where C0 > 0 is the constant from Lemma 3.14.

Proof. By (3.19), we have

‡r(›, v) =
dÿ

i=1

A
≠1

ri
(›)Â›

i
.

The claim follows directly from the estimate of the inverse A
≠1 in Lemma 3.14, and the

eigenfunctions Â
›

i
being normalized in H

≠1

0
(�).

To complete the estimates on the stochastic ODE, it remains to bound the drift term b(›, v)
defined by (3.20). Note that only here we need to assume smallness in H

1
Á in order to handle

the nonlinear terms.

Lemma 3.17. Let ũ
› + v œ �. We obtain

|b(›, v)| = O(Á2≠d/2+3Ÿ + Á
≠1

”
2

Á).
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Proof. Via Taylor expansion we obtain

ÈL(v + ũ
›), Â

›

i
Í = ÈL(ũ›), Â

›

i
Í + ÈL›

v, Â
›

i
Í + ÈN ›(v), Â

›

i
Í,

where N ›(v) collects the remaining nonlinear terms and is given by N ›(v) = �(3ũ
›
v

2 + v
3).

By Theorem 3.9, we have ÎL(ũ›)ÎŒ = O(exp) and ÈL›
v, Â

›

i
Í = 0, as L›

v ‹ Â
›

i
due to invariance

of the operator L›. Using that ũ
› is uniformly bounded and ÎÂ

›

i
ÎŒ = O(Á≠1) (see the estimates

in Lemma 3.33), Nirenberg’s inequality implies for the nonlinear terms

|ÈN ›(v), Â
›

i
Í| =

---
⁄

�

(3ũ
›
v

2 + v
3)Â›

i
dx

---

Æ CÁ
≠1

Ë
ÎvÎ2

L2 + ÎvÎ3

L3

È

Æ CÁ
≠1

Ë
ÎvÎ2

H1
Á

+ ÎvÎ3≠d/2

L2 ÎÒvÎd/2

L2

È

Æ CÁ
≠1

Ë
ÎvÎ2

H1
Á

+ Á
≠d/2ÎvÎ3

H1
Á

È
Æ CÁ

2≠d/2+3Ÿ
,

(3.22)

where we interpolated the L
3-norm between L

2 and H
1.

As a next step, we analyze the terms in (3.20) that appear due to Itô calculus and thus depend
on the noise strength ”Á. We utilize that ÎÂ

›

i,j
Î = O(Á≠1) by (3.9) and the bound on ‡ from

Lemma 3.16, i.e., Î‡Î = O(1) in Á. This yields via the Cauchy-Schwarz inequality

|ÈQÂ
›

i,j
, ‡jÍ| Æ ÎQÎL(H≠1)ÎÂ

›

i,j
ÎH≠1Î‡jÎH≠1 Æ c”

2

ÁÁ
≠1

.

For the remaining terms, we use that ÎÂ
›

i,jk
Î = O(Á≠3/2), Îũ

›

i
Î = O(1), and Îũ

›

ij
Î = O(Á≠1/2).

Heuristically, the H
≠1-norm eliminates one derivative and, for example, the H

≠1-norm of second
derivatives of ũ

› behaves like first derivatives in L
2. Since Ò›ũ

› is O(Á≠1) on a set of order Á,
one then obtains that Îũ

›

ij
Î = O(Á≠1/2). For the detailed proof we refer to Lemma 3.34. Using

these estimates yields

|Èv, Â
›

i,jk
Í| Æ ÎvÎH1

Á
ÎÂ

›

i,jk
Î Æ cÁ

≠1/2+Ÿ
, |ÈÂ›

j,k
, ũ

›

i
Í| Æ cÁ

≠1
, and |ÈÂ›

k
, ũ

›

ij
Í| Æ cÁ

≠1/2
.

Note that by Lemma 3.16 and Assumption 3.2 on the noise strength ÈQ‡i, ‡jÍ Æ C”
2
Á . By

Lemma 3.14, the matrix A
≠1 is bounded by a constant and thus the claim is verified.

3.2.4 Approximate stochastic ODE for the droplet’s motion

We investigate the stochastic ODE for the droplet’s motion in more detail. We show that
the dynamics of the center › is in first approximation given by the projection of the Wiener
process onto Mfl (Theorem 3.19). Moreover, we will see that smaller droplets move faster
than larger ones (Remark 3.21). We observe that, under the assumptions of Lemma 3.17 and
the postulated noise strength ”Á < Á

7/2+3d/2, the deterministic term
q

A≠1

ri
ÈL(ũ› + v), Â

›

i
Í is

dominating the dynamics. Therefore, we will adept the H
1
Á -radius for the analysis of the SDE.

For this purpose, we define a neighborhood of the manifold Mfl by

�Õ :=
Ó

ũ
› + v : › œ �fl+”, ÎvÎH1

Á
< Á

≠1/2≠d/2
”Á

Ô
. (3.23)

Note that by Assumption 3.2 we have �Õ µ � and thus the coordinate system (3.15) is well-
defined in �Õ. While � is the set where the SDE is well-defined, �Õ is a smaller neighborhood
of Mfl from which with high probability solutions do not exit for long times unless the droplet
reaches the boundary of � (see Section 3.3). First, let us proof that (up to a small error)
the motion of the droplet’s center › is given by the projection of the Wiener process onto the
tangent space of Mfl at ũ

› (cf. Section 2.2.3).
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Lemma 3.18. As long as ũ
› + v œ �Õ, we have

d›r =
dÿ

i=1

S
≠1

ri
Èũ›

i
, ¶ dW Í + OH≠1(Á≠2≠d

”
2

Á) dt + ÈOH≠1(Á≠3/2≠d/2
”Á), ¶ dW Í,

where the matrix S is given by Sij = Èũ›

i
, ũ

›

j
Í.

Proof. By redoing the computation of Section 2.2 that led to the explicit formula for the e�ective
dynamics in Theorem 2.6 in the Stratonovich sense, and thereby leaving out Itô correction
terms, we obtain

d›r =
dÿ

i=1

A
≠1

ri
ÈL(ũ› + v), Â

›

i
Í dt +

dÿ

i=1

A
≠1

ri
ÈÂ›

i
, ¶ dW Í.

By using the bound (3.22) from the proof of Lemma 3.17, we immediately derive
dÿ

i=1

A
≠1

ri
ÈL(ũ› + v), Â

›

i
Í Æ CÁ

≠1
Ë
ÎvÎ2

H1
Á

+ Á
≠d/2ÎvÎ3

H1
Á

È
Æ CÁ

≠2≠d
”

2

Á ,

and hence

d›r = OH≠1(Á≠2≠d
”

2

Á) dt +
dÿ

i=1

A
≠1

ri
ÈÂ›

i
, ¶ dW Í.

For shorthand notation, we define the vectors Â
› := (Â›

1
, . . . , Â

›

d
) and ˆ›ũ

› := (ũ›

1
, . . . , ũ

›

d
).

With that definition, the matrix S is then given by Èˆ›ũ
›
, ˆ›ũ

›Í. Moreover, using the notation
of Lemma 3.14, we denote the matrix consisting of all inner products of Â

› and ˆ›ũ
› by

B = ÈÂ›
, ˆ›ũ

›Í, and the small perturbation R(v) thereof by R(v) = Èˆ›Â
›
, vÍ. By definition, we

have A = B ≠ R(v). Also, note that in �Õ we have |R(v)| = O(Á≠3/2≠d/2
”Á). With Lemma 3.14

we derive
A

≠1 = B
≠1 + O

1
|B≠1

R(v)B≠1|
2

= B
≠1 + O(Á≠3/2≠d/2

”Á).

Moreover, the relations (3.11) and (3.12) together imply

B
≠1

Â
› = B

≠1
B

≠T
ˆ›ũ

› + O(exp) = (BT
B)≠1

ˆ›ũ
› + O(exp) = S

≠1
ˆ›ũ

› + O(exp).

We use Lemma 3.18 to show that the expected distance between the exact solution ›(t) and the
projection h(t) of the Wiener process W onto Mfl stays small up to times of order O(Á2+d+¸

”
≠2
Á )

for some ¸ > 0. After we formulated and proved the approximation result, we will see that we
have to choose ¸ > 2 + d to obtain a reasonable error estimate. This time scale does not quite
correspond to the times when the droplet reaches the boundary. Basically, any improvement
of the stability region increases the time scales we can treat. Also, note that the projection
h(t) of the Wiener process onto Mfl is given by the Stratonovich SDE (cf. Section 2.2.3)

dhr =
dÿ

i=1

Sri(h)≠1Èũh

i , ¶ dW Í, where Sri(h) = Èũh

r , ũ
h

i Í. (3.24)

Theorem 3.19. Let ›(t) be the solution to (3.18) and h(t) the projection of the Wiener
process W onto the tangent space T

ũh(t)Mfl given by (3.24). Then, for any ¸ > 0 there exists a
constant C > 0 such that

E sup
0Æt<Á2+d+¸”

≠2
Á ··

|›(t) ≠ h(t)| Æ CÁ
¸ + CÁ

≠1/2+¸/2
”Á,

where · denotes the first exit time from �Õ.
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To prove the approximation result, we first have to show that the map h ‘æ
q

i
Sri(h)≠1

ũ
h

i
is

Lipschitz continuous. Also, we compute the Lipschitz constant explicitly.

Lemma 3.20. Let h, h̄ œ �fl+”. Then, we have for any r œ {1, . . . , d}
dÿ

i=1

ÎSri(h)≠1
ũ

h

i ≠ Sri(h̄)≠1
ũ

h̄

i Î Æ cÁ
≠1/2|h ≠ h̄|.

Proof. We compute ˆhk
Sri(h) = Èũh

rk
, ũ

h

i
Í + Èũh

r , ũ
h

ik
Í and thus, using the estimates Îũ

›

i
Î = O(1)

and Îũ
›

rk
Î = O(Á≠1/2) from Lemma 3.34, we obtain |DhS(h)| = O(Á≠1/2). This shows that the

derivative of the inverse can be estimated by

|DhS
≠1(h)| = |S≠1(DhS)S≠1| = O(Á≠1/2),

where we utilized that S
≠1 = Cfl

≠d

Ë
I + O(fld≠1)

È
by (3.16). Therefore, with the estimates

from Lemma 3.34 we obtain
ˆ

ˆhk

1
Sri(h)≠1

ũ
h

i

2
= ˆSri(h)≠1

ˆhk

ũ
h

i + Sri(h)≠1
ũ

h

ik = O(Á≠1/2).

The claim follows now directly by utilizing that

Sri(h)≠1
ũ

h

i ≠ Sri(h̄)≠1
ũ

h̄

i =
⁄

1

0

Dh

3
Sri(h̄ + s(h ≠ h̄))≠1

ũ
h̄+s(h≠h̄)

i

4
(h ≠ h̄) ds.

Proof of Theorem 3.19. Let ›, h œ �fl+” and r œ {1, . . . , d}. For simplicity of presentation, we
define the maps

“r(h) := S
≠1

ri
(h)ũh

i and �(›, h) := “r(›) ≠ “r(h).

By Lemma 3.18, we obtain for t Æ ·

›r(t) ≠ hr(t) Æ cÁ
≠2≠d

”
2

Á t +
⁄

t

0

È�(›, h) + O(Á≠3/2≠d/2
”Á), ¶ dW Í.

For the application of the Burkholder–Davis–Gundy inequality, we need the martingale property
of the stochastic integral. Hence, we transform the Stratonovich integral into an Itô integral.
We write
⁄

t

0

È�(›, h) + O(Á≠3/2≠d/2
”Á), ¶ dW Í =

⁄
t

0

I(›) ≠ I(h) ds +
⁄

t

0

È�(›, h) + O(Á≠3/2≠d/2
”Á), dW Í,

where I collects all Itô-Stratonovich correction terms. By the definition (3.20) of the drift
term b, one easily verifies that these are given by

I(›) =
dÿ

i,j,k=1

A
≠1

ri

51
2Èv, Â

›

i,jk
Í ≠ ÈÂ›

j,k
, ũ

›

i
Í ≠ 1

2ÈÂ›

k
, ũ

›

ij
Í
6

ÈQ‡
›

i
, ‡

›

j
Í +

dÿ

i,j=1

A
≠1

ri
ÈQÂ

›

i,j
, ‡

›

j
Í.

In this expression, all terms depending on v arise from the Itô correction of the O(Á≠3/2≠d/2
”Á)-

term. Moreover, since the correction I(›) contains exactly the terms of the drift b without the
critical term

q
i
A

≠1

ri
ÈL(v + ũ

›
, Â

›

i
Í, which needed a careful analysis of the nonlinear terms, we

can use the estimate of Lemma 3.17 and obtain |I(›)| = O(Á≠1
”

2
Á) uniformly in ›.

So far, this shows

E sup
0ÆtÆT ··

|›r(t)≠hr(t)| Æ CÁ
≠2≠d

”
2

Á T +E sup
0ÆtÆT ··

---
⁄

t

0

È�(›, h)+O(Á≠3/2≠d/2
”Á), dW Í

---. (3.25)
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By Burkholder’s inequality (cf. Appendix Theorem B.14) and the Lipschitz continuity of “ from
Lemma 3.20 with Lipschitz constant of order Á

≠1/2, we estimate the martingale term as follows:

E sup
0ÆtÆT ··

---
⁄

t

0

È�(›, h) + O(Á≠3/2≠d/2
”Á), dW Í

---

Æ CE
C⁄

T ··

0

e
�(›, h) + O(Á≠3/2≠d/2

”Á), Q
1
�(›, h) + O(Á≠3/2≠d/2

”Á)
2 f

ds

D
1/2

Æ CE
C⁄

T ··

0

Á
≠1

”
2

Á |›(s) ≠ h(s)|2 + Á
≠2≠d/2

”
3

Á |›(s) ≠ h(s)| + Á
≠3≠d

”
4

Á ds

D
1/2

Æ CE
C⁄

T ··

0

Á
≠1

”
2

Á |›(s) ≠ h(s)|2 + Á
≠3≠d

”
4

Á ds

D
1/2

Æ CÁ
≠1/2

”ÁT
1/2 E sup

0ÆtÆT ··

|›(s) ≠ h(s)| + CÁ
≠3/2≠d/2

”
2

ÁT
1/2

Æ cÁ
1/2+d/2+¸/2 E sup

0ÆtÆT ··

|›(s) ≠ h(s)| + CÁ
≠1/2+¸/2

”Á.

In the last step, we utilized that T < cÁ
2+d+¸

”
≠2
Á for some su�ciently small c > 0. Combined

with (3.25), this yields

E sup
0ÆtÆT ··

|›r(t) ≠ hr(t)| Æ CÁ
≠2≠d

”
2

Á T + CÁ
≠1/2+¸/2

”Á Æ CÁ
¸ + CÁ

≠1/2+¸/2
”Á.

According to Theorem 3.19, the motion of the droplet’s center › is up to times of order Á
2+d+¸

”
≠2
Á

governed by the projection of the Wiener process W onto the slow manifold Mfl, where the error—
for a su�ciently large noise strength—can be estimated by Á

¸. Let us briefly explain which choices
of ¸ lead to a meaningful error estimate. Again by the Burkholder–Davis–Gundy inequality, we
obtain for h being the projection defined by (3.24)

E sup
0 Æ t Æ Á2+d+¸”

≠2
Á

|h(t)| ≥ Á
1+d/2+¸/2

.

In order to achieve a reasonable error estimate in Theorem 3.19, we need Á
¸

< Á
1+d/2+¸/2, or

equivalently ¸ > 2 + d. Hence, the proper time scale in Theorem 3.19 is Á
4+2d

”
≠2
Á and the

droplet is expected to move by the order of Á
2+d. Clearly, this is quite far away from the

time scale on which the droplet reaches the boundary of the domain �. On a heuristic level,
this corresponds to a time scale of order O(”≠2

Á ), since the process h has to cover a distance
of O(1). This deficiency is based on the dominating deterministic term stemming from the
estimate of Lemma 3.17. While this bound decisively relies on the smallness of v in H

1
Á , are the

terms of the projected dynamics in (3.24) independent of v and—in the case of a space-time
white noise—essentially constant in time. Hence, any improvement of the stability region will
decrease the influence of the dominating deterministic term and thereby increase the time scale
where the dynamics is well approximated by the projection of the Wiener process onto the slow
manifold Mfl.

Remark 3.21. We have seen that the droplet’s motion is approximated by the projection onto
the slow manifold Mfl. Let us discuss the matrix S

≠1 and its consequences for the dynamics in
more detail. By (3.16), for a su�ciently small radius fl the matrix S

≠1 is almost diagonal in fl

and we have
S

≠1 = C
≠2

0
fl

≠d
Ë
Id + O(fld≠1)

È
.
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With Îˆ›ũ
›Î = C0fl

d/2 + O(fld≠1/2) and the approximation result of Theorem 3.19, we thus
obtain that the motion of the droplet’s center is in first approximation given by

d›(t) ¥ ÈOH≠1(fl≠d/2), ¶ dW Í.

By Lemma 3.18, we observe that all error terms are small in Á. Therefore, as long as v stays
su�ciently small, we expect that smaller droplets move faster.

3.3 Stochastic Stability
In this paragraph, we show that solutions stay close to the slow manifold Mfl in H

1
Á for very

long times. Here, it is convenient to work in the weighted Sobolev space H
1
Á , as it can be linked

to the linearized Cahn–Hilliard operator (cf. Lemma 3.22). Moreover, it allows us to handle
the nonlinear terms. In our stability analysis, we follow the method from the works of Bates
and Xun (cf. [BX94, BX95]) for the one-dimensional deterministic Cahn–Hilliard equation very
closely. This method was also adapted to discuss stability of fronts in the one-dimensional
stochastic version in [ABK12]. For ũ

› œ Mfl, we define the functional

AÁ(v) :=
⁄

�

Á
2|Òv|2 + f

Õ(ũ›)v2 dx = È≠L›
v, vÍ

H
≠1
0

. (3.26)

The following lemma deals with establishing an important estimate between the functional AÁ

and the H
1
Á -norm defined earlier in (3.21). The proof heavily relies on the spectral gaps of

Theorems 3.9 and 3.12. Especially, any improvement of the spectral gap for the Cahn–Hilliard
operator in three space dimensions will improve the following lemma and thereby the stability
region of our main stability result in Theorem 3.23.

Lemma 3.22. Suppose that › œ �fl+” and v ‹ Â
›

i
for i = 1, . . . , d, where the eigenfunctions Â

›

i

are given by Theorem 3.9 (iii). Then, for some constants c1, c2 > 0 independent of Á, it holds
true that

ÎvÎ2

H1
Á

≠ O(exp) Æ c1Á
≠2AÁ(v) Æ c2Á

≠(d+1)ÎL›
vÎ2

H≠1 .

Proof. By Theorem 3.12 we have

AÁ(v) = È≠L›
v, vÍ

H
≠1
0

= È≠A›
v, vÍL2 > CÁ

2ÎvÎ2

L2 + O(exp),

where A› denotes the linearized Allen–Cahn operator. Here, the exponentially small term arises
from the fact that ÎÂ

›

i
≠ wiÎL2 = O(exp) for i œ {1, . . . , d}, where wi are the eigenfunctions

of A› corresponding to the d exponentially small eigenvalues. Applying Lemma 2.10 shows that
we have to introduce the O(exp)-term.
Let “ œ (0, 1). Using that v is orthogonal to constants, we obtain

AÁ(v) > C(1 ≠ “)Á2ÎvÎ2

L2 + O(exp) + “È≠A›
v, vÍL2

Ø C(1 ≠ “)Á2ÎvÎ2

L2 + O(exp) + “Á
2ÎÒvÎ2

L2 ≠ “Îf
Õ(ũ›)ÎŒÎvÎ2

L2 .

In this inequality, we choose “ = cÁ
2 for some su�ciently small constant c > 0. This choice

immediately yields that AÁ(v) > cÁ
2ÎvÎ2

H1
Á

+ O(exp).
It remains to show that

AÁ(v) Æ cÁ
1≠dÎL›

vÎ2

H≠1 .

We complete {Â
›

1
, . . . , Â

›

d
} to an orthonormal H

≠1-basis of eigenfunctions of the operator ≠L›,
i.e., ≠L›

Â
›

i
= ⁄iÂ

›

i
. Note that Theorem 3.9 implies ⁄d+1 > aÁ

d≠1 for some constant a > 0.
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As v ‹ Â
›

i
for i = 1, . . . , d, we have v =

qŒ
k=d+1

–kÂ
›

k
for some –k œ R and thus compute

AÁ(v) = È≠L›
v, vÍ

H
≠1
0

=
K

ÿ

kØd+1

–k⁄kÂ
›

k
,

ÿ

kØd+1

–kÂ
›

k

L

=
ÿ

kØd+1

–
2

k⁄k Æ 1
⁄d+1

ÿ

kØd+1

–
2

k⁄
2

k = 1
⁄d+1

ÎL›
vÎ2

H≠1 Æ 1
a

Á
1≠dÎL›

vÎ2

H≠1 .

We can now formulate the main stability result.

Theorem 3.23 (H1
Á -Stability).

Define the stopping time

·
ú := inf

Ó
t œ [0, TÁ] : ›(t) /œ �fl+” or AÁ(v(t)) > ”

2≠Ÿ

Á Á
1≠d

Ô

with a deterministic cut-o� TÁ = Á
≠q for any large q > 0. We set ·

ú = TÁ if none of the conditions
are fulfilled for all times t œ [0, TÁ]. Furthermore, assume that the initial condition v(0) satisfies
for some constant c > 0

AÁ(v(0)) < c”
2

Á .

Then, for any ¸ > 0 there exists C¸ > 0 such that

P
1
AÁ(v(·ú)) > ”

2≠Ÿ

Á Á
1≠d

2
< C¸Á

¸
.

Therefore, the probability that the solution exits the tube �Õ without the droplet reaching the
boundary of � before time TÁ is smaller than any power of Á.

Proof. In the proof, we follow Section 3.6 of [ABK12] and the general framework and proof
of Theorem 2.14 closely. We bound powers of AÁ(v) and, based on an induction argument,
estimate the expectation EAÁ(v(·ú))p for arbitrary large integers p. To close the argument, we
use Chebyshev’s inequality.
First, we derive with Itô calculus

dAÁ(v) = dÈ≠L›
v, vÍ = 2È≠L›

v, dvÍ + È≠L›
dv, dvÍ + dR, (3.27)

with

dR =
⁄

�

v
2
f

ÕÕ(ũ›)dũ
› dx + 1

2

⁄

�

v
2
f

ÕÕÕ(ũ›)(dũ
›)2 dx +

⁄

�

2vf
ÕÕ(ũ›)dv dũ

› dx. (3.28)

The terms in R appear as AÁ(v) depends on › via f
Õ(ũ›). For the equation of the normal

component v recall (2.13), with L(ũ›) =
q

c
›

j
u

›

j
= O(exp) by Theorem 3.7,

dv =
1 ÿ

j

c
›

j
u

›

j
+ L›

v + N (ũ›
, v)

2
dt + dW ≠

ÿ

j

ũ
›

j
d›j ≠ 1

2
ÿ

i,j

ũ
›

ij
ÈQ‡

›

j
, ‡

›

i
Í dt. (3.29)

Plugging this into (3.28) we obtain

dR =
ÿ

j

⁄

�

v
2
f

ÕÕ(ũ›)ũ›

j
dx bj(›) dt +

ÿ

j

⁄

�

v
2
f

ÕÕ(ũ›)ũ›

j
dx È‡j , dW Í

+
ÿ

i,j

1
2

⁄

�

v
2
f

ÕÕÕ(ũ›)ũ›

j
ũ

›

i
dx ÈQ‡i, ‡jÍ dt +

ÿ

i,j

⁄

�

v
2
f

ÕÕ(ũ›)ũ›

ij
dxÈQ‡i, ‡jÍ dt

+ 2
ÿ

i,j

⁄

�

vf
ÕÕ(ũ›)ũ›

i
ũ

›

j
dx ÈQ‡i, ‡jÍ dt + 2

ÿ

i

⁄

�

vf
ÕÕ(ũ›)ũ›

i
Q‡j dx dt.
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To control the term dR, we use the estimates Îũ
›

j
ÎŒ = O(Á≠1), Îũ

›

ij
ÎŒ = O(Á≠2),

and Îũ
›

j
ÎL2 = O(Á≠1/2), which we prove later in Lemma 3.33. Moreover, as ũ

› is uniformly
bounded, we can bound the nonlinearity f and its derivatives uniformly by a constant. By the
estimates of Lemma 3.17, the drift term b is estimated by

|b(›)| = O
1
Á

≠1
”

2

Á + Á
≠1

Ë
ÎvÎ2

H1
Á

+ Á
≠d/2ÎvÎ3

H1
Á

È2
.

Also, note that by definition ÎvÎL2 Æ ÎvÎH1
Á
. We obtain

dR = O
1
(Á≠2ÎvÎ2

H1
Á

+ +Á
≠2ÎvÎH1

Á
)”2

Á + Á
≠2ÎvÎ3

H1
Á

+ Á
≠1≠d/2ÎvÎ5

H1
Á

2
dt + ÈIR, dW Í,

where IR is defined by
IR :=

ÿ

j

⁄

�

v
2
f

ÕÕ(ũ›)ũ›

j
dx ‡j .

With Lemma 3.22 and AÁ(v(t)) < ”
2
ÁÁ

1≠d for t Æ ·
ú, we obtain

Á
≠2ÎvÎ2

H1
Á
”

2

Á + Á
≠2ÎvÎ3

H1
Á

+ Á
≠1≠d/2ÎvÎ5

H1
Á

+ Á
≠2ÎvÎH1

Á
”

2

Á + Á
≠3/2ÎvÎH1

Á
”

2

Á

Æ C”
2

Á

1
Á

≠4AÁ(v) + Á
≠3AÁ(v)1/2

2
+ CAÁ(v)

1
Á

≠5AÁ(v)1/2 + Á
≠6≠d/2AÁ(v)3/2

2

Æ C”
2

Á

1
Á

≠3≠d
”

2

Á + Á
≠7/2≠3d/2

”Á + Á
≠7/2≠3d

”
3

Á

2
.

We have ”Á < Á
7/2+3d/2 by Assumption 3.2 and thus the term in the bracket is bounded by O(1).

Therefore, for t Æ ·
ú

dR = O(”2

Á) dt + ÈIR, dW Í.

As a next step, we analyze the remaining terms in (3.27). With (3.29) we arrive at

dAÁ(v) ≠ dR = 2È≠L›
v, L(ũ› + v)Í dt ≠ 2

ÿ

j

È≠L›
v, ũ

›

j
Í bj(›) dt

≠
ÿ

i,j

È≠L›
v, ũ

›

ij
ÍÈQ‡i, ‡jÍ dt + traceH≠1(≠Q1/2L›Q1/2) dt

+
ÿ

i,j

È≠L›
ũ

›

i
, ũ

›

j
ÍÈQ‡i, ‡jÍ dt +

ÿ

i

È≠L›
ũ

›

i
, Q‡iÍ dt

+ 2È≠L›
v, dW Í + 2

ÿ

j

ÈL›
v, ũ

›

j
ÍÈ‡j , dW Í.

By Theorem 3.7, we have L(ũ›) =
q

i
ciu

›

i
, where the coe�cients ci and its derivatives ci,j

with respect to any ›j are all exponentially small. Di�erentiating L(ũ›) with respect to ›j

yields L›
ũ

›

j
=

q
i
ci,ju

›

i
+ ciu

›

ij
= O(exp). Since L› defines a self-adjoint operator on H

≠1

0
,

we obtain
È≠L›

v, ũ
›

i
Í = Èv, ≠L›[ũ›

i
]Í = O(exp)ÎvÎ

and by the same argument, the inner products È≠L›
ũ

›

i
, ũ

›

j
Í and È≠L›

ũ
›

i
, Q‡iÍ are exponentially

small as well. Therefore, most of the terms in (3.30) are exponentially small. Moreover, by
Cauchy–Schwarz and Young’s inequality together with the estimate Îũ

›

ij
Î = O(Á≠1/2) from

Lemma 3.33, we obtain

|È≠L›
v, ũ

›

ij
ÍÈQ‡i, ‡jÍ| Æ C”

2

ÁÁ
≠1/2ÎL›

vÎH≠1 Æ Á
≠1

”
2

ÁÎL›
vÎ2

H≠1 + C”
2

Á .

Next, we study the term

È≠L›
v, L(ũ› + v)Í = ≠ÎL›

vÎ2

H≠1 + O(exp)ÎL›
vÎH≠1 + È≠L›

v, N ›(v)Í.
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In order to control the nonlinearity, we interpolate the L
p-norms between L

2 and H
1 and obtain

by Nirenberg’s inequality

ÎN ›(v)ÎH≠1 = Î3ũ
›
v

2 + v
3ÎL2 Æ cÎvÎ2

L4 + ÎvÎ3

L6

Æ cÎvÎ2≠d/2

L2 ÎÒvÎd/2

L2 + cÎvÎ3≠d

L2 ÎÒvÎd

L2 Æ cÁ
≠d/2ÎvÎ2

H1
Á

+ cÁ
≠dÎvÎ3

H1
Á
.

Here, we used that by definition of the H
1
Á -norm ÎvÎL2 Æ ÎvÎH1

Á
and ÎÒvÎL2 Æ Á

≠1ÎvÎH1
Á
.

Thus, we obtain

È≠L›
v, L(ũ› + v)Í = ≠ÎL›

vÎ2

H≠1 + O(exp)ÎL›
vÎH≠1 + È≠L›

v, N ›(v)Í

Æ ≠2
3ÎL›

vÎ2

H≠1 + c

Ë
Á

≠d/2ÎvÎ2

H1
Á

+ Á
≠dÎvÎ3

H1
Á

È
ÎL›

vÎH≠1 + O(exp)

Æ ≠2
3ÎL›

vÎ2

H≠1 + c

Ë
Á

≠d≠1/2ÎvÎH1
Á

+ Á
≠3d/2≠1/2ÎvÎ2

H1
Á

È
ÎL›

vÎ2

H≠1 + O(exp).

In the last step, we utilized that by Lemma 3.22

ÎvÎ2

H1
Á

Æ c1Á
≠2AÁ(v) Æ c2Á

≠(1+d)ÎL›
vÎ2

H≠1 .

For t Æ ·
ú we have

Á
≠d≠1/2ÎvÎH1

Á
+ Á

≠3d/2≠1/2ÎvÎ2

H1
Á

Æ cÁ
≠d≠3/2AÁ(v)1/2 + cÁ

≠3d/2≠5/2AÁ(v)

Æ Á
≠d≠3/2

”Á + Á
≠3d/2≠5/2

”
2

Á Æ cÁ
2+d/2 + cÁ

9/2+3d/2

and therefore, we showed that

2È≠L›
v, L(ũ› + v)Í Æ ≠1

2ÎL›
vÎ2

H≠1 ≠ cÁ
d≠1AÁ(v) + O(exp). (3.30)

Here, we utilized that ÎL›
vÎ2

H≠1 Ø cÁ
d≠1AÁ(v) by Lemma 3.22. Finally, we have to bound the

trace of ≠Q1/2L›Q1/2. Using the uniform bound on f
Õ(ũ›), we obtain

trace(≠Q1/2L›Q1/2) =
ÿ

kœN
–

2

kÈ≠L›
ek, ekÍ =

ÿ

kœN
–

2

k

⁄

�

Á
2|Òek|2 + f

Õ(ũ›)e2

k dx

Æ C

ÿ

kœN
–

2

k

⁄

�

Á
2|Òek|2 + e

2

k dx = C

ÿ

kœN
–

2

kÎekÎ2

H1
Á

Æ C”
2

Á .

In the last inequality, we made use of the proposed regularity of the Wiener process W in
Assumption 3.2. Combining all the estimates yields

dAÁ(v) = C”
2

Á dt ≠
51

2ÎL›
vÎ2

H≠1 + cÁ
d≠1AÁ(v)

6
dt + ÈI, dW Í, (3.31)

where
I = ≠2L›

v + 2
ÿ

j

È≠L›
v, ũ

›

j
Í‡j + IR with IR = O(Á≠1ÎvÎ2

H1
Á
).

As before, we have È≠L›
v, ũ

›

j
Í‡j = O(exp) and therefore, we can bound I as follows:

ÈI, QIÍ = O(exp) + 4È≠L›
v, QIRÍ + 4ÈL›

v, QL›
vÍ + ÈIR, QIRÍ

Æ O(exp) + CÁ
≠1

”
2

ÁÎvÎ2

H1
Á
ÎL›

vÎH≠1 + C”
2

ÁÎL›
vÎ2

H≠1 + CÁ
≠2

”
2

ÁÎvÎ4

H1
Á

Æ O(exp) + C”
2

ÁÎL›
vÎ2

.

In the last step, we used that by Lemma 3.22 and the assumption ”Á < Á
7/2+3d/2 on the noise

strength

Á
≠2ÎvÎ4

H1
Á

Æ cÁ
≠6AÁ(v)2 Æ cÁ

≠7≠dAÁ(v)ÎL›
vÎ2 Æ cÁ

≠8≠2d
”

2

ÁÎL›
vÎ2

< Á
d≠1ÎL›

vÎ2
.
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We can now bound powers of AÁ(v). With Itô calculus we obtain for any p Ø 2
1
p

dAÁ(v)p = AÁ(v)p≠1
dAÁ(v) + p ≠ 1

2 AÁ(v)p≠2(dAÁ(v))2

Æ C”
2

ÁAÁ(v)p≠1
dt ≠ 1

2ÎL›
vÎ2

H≠1AÁ(v)p≠1
dt ≠ aÁ

d≠1AÁ(v)p
dt

+ AÁ(v)p≠1ÈI, dW Í + p ≠ 1
2 AÁ(v)p≠2ÈI, QIÍ dt.

Taking integrals up to the stopping time ·
ú Æ TÁ and using that the expectation of a stopped

stochastic integral is zero since the stopping time is deterministically bounded, we obtain for
any p Ø 2

1
p
EAÁ(v(·ú))p + 1

2E
⁄

·
ú

0

AÁ(v)p≠1ÎL›
vÎ2

H≠1 dt + aÁ
d≠1E

⁄
·

ú

0

AÁ(v)p dt

Æ 1
p

AÁ(v(0))p + C”
2

Á E
⁄

·
ú

0

AÁ(v)p≠1 dt

+ O(exp)E
⁄

·
ú

0

AÁ(v)p≠2 dt + C”
2

ÁE
⁄

·
ú

0

AÁ(v)p≠2ÎL›
vÎ2

H≠1 dt.

Inductively, we see that
1
p
EAÁ(v(·ú))p + 1

2E
⁄

·
ú

0

AÁ(v)p≠1ÎL›
vÎ2

H≠1 dt + aÁ
d≠1E

⁄
·

ú

0

AÁ(v)p dt

Æ
pÿ

i=2

1
”

2

ÁÁ
1≠d

2
p≠i

AÁ(v(0))i + C

1
”

2

ÁÁ
1≠d

2
p≠1

C

E
⁄

·
ú

0

ÎL›
vÎ2

H≠1 dt + E
⁄

·
ú

0

AÁ(v) dt

D

.

We utilize now that by (3.31)

EAÁ(v(·ú)) + 1
2E

⁄
·

ú

0

ÎL›
vÎ2 dt + aÁ

d≠1E
⁄

·
ú

0

AÁ(v) dt Æ AÁ(v(0)) + C”
2

ÁTÁ

and obtain
1
p
EAÁ(v(·ú))p + 1

2E
⁄

·
ú

0

AÁ(v)p≠1ÎL›
vÎ2

H≠1 dt + aÁ
d≠1E

⁄
·

ú

0

AÁ(v)p dt

Æ C

1
”

2

ÁÁ
1≠d

2
p

TÁ + C

pÿ

i=2

1
”

2

ÁÁ
1≠d

2
p≠i

AÁ(v(0))i +
1
”

2

ÁÁ
1≠d

2
p≠1

Á
1≠dAÁ(v(0))

Æ C

1
”

2

ÁÁ
1≠d

2
p

[1 + TÁ] .

In the last step, we have to assume that the initial condition is su�ciently close to the slow
manifold such that AÁ(v(0)) < ”

2
Á . So far, we have proved that for any p Ø 2

EAÁ(v(·ú))p Æ C

1
”

2

ÁÁ
1≠d

2
p

[1 + TÁ] .

Finally, we use this to show that the probability that v leaves the slow tube �Õ before a time
TÁ = Á

≠q (i.e., ·
ú = TÁ) is very small. With Chebyshev’s inequality we obtain

P(AÁ(v(·ú)) > ”
2≠Ÿ

Á Á
1≠d) Æ EAÁ(v(·ú))p

1
”

2≠Ÿ

Á Á
1≠d

2≠p

Æ C

A
”

2
ÁÁ

1≠d

”
2≠Ÿ
Á Á1≠d

B
p #

1 + Á
≠q

$

= C”
2Ÿp

Á

#
1 + Á

≠q
$
.

Now, choosing p large enough concludes the proof.



50 3. Motion of a single bubble for the stochastic Cahn–Hilliard equation

Remark 3.24. By Lemma 3.22, we compute that for t Æ ·
ú

Îv(t)Î2

H1
Á

Æ cÁ
≠2AÁ(v(t)) Æ cÁ

≠1≠d
”

2≠Ÿ

Á .

Hence, by the stability result of Theorem 3.23, we can guarantee that ũ
›(t) + v(t) stays in �Õ

(defined by (3.23)) for very long times unless the droplet hits the boundary. In that case, one
needs to introduce a new slow manifold to study the motion along the boundary. For the mass
conserving stochastic Allen–Cahn equation, the motion of almost semicircular droplets along
the boundary was analyzed in [ABBK15]. We expect a similar behavior for the Cahn–Hilliard
equation.

3.3.1 Extension to a general class of nonlinearites

In the preceding stability analysis, we treated for simplicity only the standard quartic
potential. The aim of this section is to extend the result to more general nonlinearities. Recall
that the critical nonlinear term is given by

N ›(v) = ≠�F
›(v) with F

›(v) := F
Õ(ũ›) ≠ F

Õ(ũ› + v) + F
ÕÕ(ũ›)v. (3.32)

In the sequel, we will always assume that the potential F is such that

|F ›(v)| Æ c

1
|v|2 + |v|p

2
for some p > 2. (3.33)

That is, it behaves quadratically for small values of v and has at most polynomial growth.
A typical example is F being a polynomial of degree p+1. Essential for controlling the stochastic
ODE governing the motion of a single droplet is a bound on ÈN ›(v), Â

›

i
Í (see Lemma 3.17 for

the quartic case). Under the assumption (3.33), we obtain

|ÈN ›(v), Â
›

i
Í| Æ ÎÂ

›

i
ÎL2ÎF

›(v)ÎL2 Æ cÁ
≠1/2

1
ÎvÎ2

L2p + ÎvÎp

L2p

2
, (3.34)

where we used Hölder’s inequality and ÎÂ
›

i
ÎL2 = O(Á≠1/2) by Lemma 3.33. Hence, we observe

that the nonlinear term is manageable, if we establish control of the normal component v in L
2p.

However, the fourth-order Cahn–Hilliard operator prohibits us from proving stochastic stability
directly in L

2p. To apply the method used in the proof of Theorem 3.23, it is desirable to
have the embedding H

1(�) Òæ L
2p(�) at hand. By Sobolev embedding, however, this depends

heavily on the space dimension d and the growth parameter p. We start with analyzing the
cases, where this embedding holds true. These are d = 2 and arbitrary p > 2, or d = 3 and
p Æ 3. Hence, it is the higher powers in the three-dimensional setting which need a more careful
analysis. For now, let us focus on the former case. Here, the statement of Theorem 3.23 still
remains valid.

Theorem 3.25 (Extension to general nonlinearities I).
Assume that (3.33) holds true with p œ (2, Œ) for d = 2, and p œ (2, 3] for d = 3. For AÁ(v)
defined by (3.26), consider the exit time

·
ú = inf

Ó
t œ [0, TÁ] : ›(t) /œ �fl+” or AÁ(v(t)) > ”

2≠Ÿ

Á Á
1≠d

Ô
.

Furthermore, assume that the initial condition v(0) satisfies for some constant c > 0

AÁ(v(0)) < c”
2

Á .

Then, for any ¸ > 0 there exists C¸ > 0 such that

P
1
AÁ(v(·ú)) > ”

2≠Ÿ

Á Á
1≠d

2
< C¸Á

¸
.
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Proof. First, we observe that Lemma 3.22 is not a�ected by the change to a general nonlinearity.
Moreover, most of the estimates in the proof of Theorem 3.23 remain valid. The di�erence lies
only in the terms involving the drift term b(›), since these depend on the nonlinearity N ›(v).
We define the parameter

◊ = ◊(p, d) := p ≠ 1
2p

d

and note that by the assumptions on (d, p) we always have 0 < ◊ Æ 1. The constant ◊ is chosen
in such a way that by the Gagliardo–Nirenberg interpolation inequality

ÎvÎL2p Æ CÎvÎ1≠◊

L2 ÎÒvÎ◊

L2 .

Together with (3.34), this furnishes the estimate

|ÈN ›(v), Â
›

i
Í| Æ cÁ

≠1/2
Ë
ÎvÎ2(1≠◊)

L2 ÎÒvÎ2◊

L2 + ÎvÎp(1≠◊)

L2 ÎÒvÎp◊

L2

È

Æ cÁ
≠1/2

Ë
Á

≠2◊ÎvÎ2

H1
Á

+ Á
≠p◊ÎvÎp

H1
Á

È
,

where we utilized ÎÒvÎL2 Æ Á
≠1ÎvÎH1

Á
by definition of the norm in H

1
Á . With the estimates

from Lemma 3.17 this shows

|b(›)| = O
1
Á

≠1
”

2

Á + Á
≠1/2

Ë
Á

≠2◊ÎvÎ2

H1
Á

+ Á
≠p◊ÎvÎp

H1
Á

È2
.

The bound on b was used twice in the proof of Theorem 3.23. First, we needed to control the
term

T1 :=
ÿ

j

⁄

�

v
2
f

ÕÕ(ũ›)ũ›

j
dx bj(›).

For t Æ ·
ú, we have by Lemma 3.22 the estimate ÎvÎH1

Á
Æ cÁ

≠1A1/2

Á (v) Æ Á
≠1/2≠d/2

”
1≠Ÿ/2

Á and
hence,

|T1| Æ cÁ
≠1ÎvÎ2

L2 |b| Æ cÁ
≠2

”
2

ÁÎvÎ2

H1
Á

+ cÁ
≠2◊≠3/2ÎvÎ4

H1
Á

+ cÁ
≠p◊≠3/2ÎvÎp+2

H1
Á

Æ c”
2

Á

Ë
Á

≠3≠d
”

2≠Ÿ

Á + Á
≠2◊≠7/2≠2d

”
2≠2Ÿ

Á + Á
≠p(◊+1/2+d/2)≠5/2≠d

”
p≠Ÿ(p+2)/2

Á

È
.

Under the assumption ”Á < Á
7/2+3d/2, the bracket is bounded by O(1). For the first two

summands this can be verified readily, for the third term we obtain (ignoring the small term
in Ÿ)

Á
≠p(◊+1/2+d/2)≠5/2≠d

”
p

Á Æ Á
p(3+d≠◊)≠5/2≠d = Á

(p≠2)(3+d≠◊)+7/2+d≠2◊
.

Clearly, since p > 2 and d ≠ 2◊ Ø 0, this term is smaller than 1. In consequence, we established
|T1| = O(”2

Á), which fits exactly in the proof of Theorem 3.23.
The second and last term involving the nonlinearity is È≠L›

v, N ›(v)Í. Here, we obtain by
interpolating L

4 and L
2p between L

2 and H
1
Á

|È≠L›
v, N ›(v)Í| Æ ÎL›

vÎH≠1ÎF
›(v)ÎL2 Æ cÎL›

vÎH≠1

Ë
ÎvÎ2

L4 + ÎvÎp

L2p

È

Æ cÎL›
vÎH≠1

Ë
ÎvÎ2≠d/2

L2 ÎÒvÎd/2

L2 + ÎvÎp(1≠◊)≠d/2

L2 ÎÒvÎp◊+d/2

L2

È

Æ cÎL›
vÎH≠1

Ë
Á

≠d/2ÎvÎ2

H1
Á

+ Á
≠p◊≠d/2ÎvÎp

H1
Á

È

Æ cÎL›
vÎ2

H≠1

Ë
Á

≠d≠1/2ÎvÎH1
Á

+ Á
≠p◊≠d≠1/2ÎvÎp≠1

H1
Á

È
.

In the last step, we utilized that by Lemma 3.22

ÎvÎ2

H1
Á

≠ O(exp) Æ cÁ
≠2AÁ(v) Æ c

2a
Á

≠(d+1)ÎL›
vÎ2

H≠1 .

With help of the same estimate, we can bound the term in the bracket for t Æ ·
ú.
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Similarly to the term T1, it is easily verified that it is bounded by a positive power of Á and
thus we can establish the same estimate as in (3.30), namely

2È≠L›
v, L(ũ› + v)Í Æ ≠1

2ÎL›
vÎ2

H≠1 ≠ aÁ
d≠1AÁ(v) + O(exp).

Hence, we are in the setting of the proof of Theorem 3.23 and can follow it verbatim.

Finally, we treat the remaining cases that are not covered by Theorem 3.25. In the three-
dimensional setting, we have for any p an embedding H

2(�) Òæ L
p(�) and thus, it is su�cient to

prove stochastic stability in H
2. However, the bounds on the linearized Cahn–Hilliard operator

in H
2 are not su�cient to show stability. Therefore, we have to introduce a weighted space

to assure good spectral properties. For this purpose, we endow the space H
2(�) with the

norm
ÎÏÎ2

÷
:= Á

÷Î�ÏÎ2

L2 + ÎÏÎ2

H
≠1
0

.

The corresponding inner product will be denoted by È·, ·Í÷. Here, ÷ > 0 is a constant which
will be fixed later. Note that in Theorem 3.9 we established the spectral properties of the
linearization in H

≠1

0
and thus, it is a natural choice to consider this space. For establishing

stochastic stability, we follow the method introduced in Section 2.3. First, we have to bound
the stochastic di�erential (cf. Theorem 2.13)

dÎvÎ2

÷ = 2Èv, dvÍ÷ + Èdv, dvÍ÷.

The following lemma deals with bounding the quadratic form ÈL›
v, vÍ÷ for v being orthogonal

to the exact eigenfunctions Â
›

i
corresponding to the d = 3 exponentially small eigenvalues of the

linearized Cahn–Hilliard operator L›
v = ≠Á

2�2
v + �f

Õ(ũ›)v (cf. Theorem 3.9). Recall that the
spectral gap in the three-dimensional case is only of order Á

2, as opposed to Á in the case d = 2.
Any improvement here will of course improve the following results.

Lemma 3.26. Let d = 3, ÷ Ø 8, and v ‹H≠1 span{Â
›

1
, Â

›

2
, Â

›

3
}, where Â

›

i
denote the eigenfunc-

tions associated to the exponentially small eigenvalues from Theorem 3.9. Then, we obtain

ÈL›
v, vÍ÷ Æ ≠1

4Á
2+÷Î�2

vÎ2

L2 ≠ cÁ
2ÎvÎ2

H≠1 ≠ cÁ
2ÎvÎ2

L2 ≠ cÁ
4ÎÒvÎ2

L2 .

Proof. Let “1, “2, “3 Ø 0 with
q

i
“i = 1. First, we notice that

ÈL›
v, vÍH≠1 = ÈÁ2�v ≠ f

Õ(ũ›)v, vÍL2 Æ ≠Á
2ÎÒvÎ2

L2 + cÎvÎ2

L2 ,

where we performed integration by parts and used that ũ
› is uniformly bounded.

By the main spectral estimates from Theorems 3.9 and 3.12, we derive

ÈL›
v, vÍH≠1 Æ ≠c“1Á

2ÎvÎ2

H≠1 ≠ c“2Á
2ÎvÎ2

L2 ≠ “3Á
2ÎÒvÎ2

L2 + c“3ÎvÎ2

L2

Æ ≠cÁ
2ÎvÎ2

H≠1 ≠ cÁ
2ÎvÎ2

L2 ≠ cÁ
4ÎÒvÎ2

L2 ,
(3.35)

where we fixed “3 ¥ Á
2 and “1, “2 = 1/2 ≠ O(Á2) accordingly, and absorbed the positive L

2-term
into its negative counterpart. We use these negative terms to control the H

2 inner product

Á
÷È�2

v, ≠Á
2�2

v + �f
Õ(ũ›)vÍ = ≠Á

2+÷Î�2
vÎ2

L2 + Á
÷

⁄

�

�2
v �f

Õ(ũ›)v dx.

Expanding the Laplacian of f
Õ(ũ›)v yields

�f
Õ(ũ›)v = 2f

ÕÕ(ũ›)Òũ
›Òv + f

Õ(ũ›)�v +
Ë
f

ÕÕÕ(ũ›)|Òũ
›|2 + f

ÕÕ(ũ›)�ũ
›
È

v.
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For the term linear in Òv we obtain

Á
÷

⁄

�

�2
v f

ÕÕ(ũ›)ÒuÒv dx Æ cÁ
÷≠1Î�2

vÎL2ÎÒvÎL2 Æ 1
4Á

2+÷Î�2
vÎ2

L2 + cÁ
÷≠4ÎÒvÎ2

L2 ,

where we utilized Young‘s inequality and ÎÒũ
›ÎŒ = O(Á≠1) by Lemma 3.33. For the term

involving �v we similarly find that

Á
÷

⁄

�

�2
v f

Õ(ũ›)�v dx Æ cÁ
÷Î�2

vÎ3/2

L2 ÎvÎ1/2

L2 Æ 1
4Á

2+÷Î�2
vÎ2

L2 + cÁ
÷≠6ÎvÎ2

L2 .

The last term is bounded by

Á
÷

⁄

�

�2
v

Ë
f

ÕÕÕ(ũ›)|Òũ
›|2 + f

ÕÕ(ũ›)�ũ
›
È

v dx Æ cÁ
÷≠2Î�2

vÎL2ÎvÎL2

Æ 1
4Á

2+÷Î�2
vÎ2

L2 + cÁ
÷≠6ÎvÎ2

L2 .

In order to absorb the preceding estimates into the good terms from inequality (3.35), we need
to assume that ÷ Ø 8.

As the next step, we bound the inner product with the nonlinearity N ›(v) = ≠�F
›(v)

defined by (3.32). For a su�ciently small radius in v with respect to the H
2-norm,

we can absorb the nonlinearity completely in the negative terms from the estimate of
Lemma 3.26.

Lemma 3.27. Let d = 3 and assume that Î�vÎL2 Æ cÁ
2. Then, it holds true that

ÈN ›(v), vÍ÷ Æ cÁ
2+÷Î�2

vÎ2

L2 + cÁ
÷≠2ÎvÎ2

L2 + cÁ
÷ÎÒvÎ2

L2 .

Proof. By assumption (3.33) and the Gagliardo–Nirenberg interpolation inequality, we obtain

ÈN ›(v), vÍH≠1 = ÈF ›(v), vÍL2 Æ c

Ë
ÎvÎ3

L3 + ÎvÎp+1

Lp+1

È
Æ c

Ë
Î�vÎL2 + Î�vÎp≠1

L2

È
ÎvÎ2

L2 .

In the study of the inner product È�2
v, N ›(v)ÍL2 , we will only treat the critical quadratic term

in more detail. The analysis of higher powers can be carried out analogously and does not
influence the result. For the sake of simplicity, we will also denote the prefactor of v

2, which is
a smooth and bounded function in the variable ũ

›, by g. With that, let us estimate the inner
product È�2

v, ≠�g(ũ›)v2Í÷. Expanding the Laplacian of g(ũ›)v2 yields

�g(ũ›)v2 =
Ë
g

ÕÕ(ũ›)|Òũ
›|2 + g

Õ(ũ›)�ũ
›
È

v
2 +

Ë
4g

Õ(ũ›)Òũ
› + 2g(ũ›)

È
vÒv + 2g(ũ›)|Òv|2

=: T1 + T2 + T3.

The first term can be estimated by

Á
÷

---ÈT1, �2
vÍ

--- Æ cÁ
÷≠2Î�2

vÎL2ÎvÎ2

L4 Æ cÁ
2+÷Î�2

vÎ2

L2 + cÁ
÷≠6ÎvÎ4

L4

Æ cÁ
2+÷Î�2

vÎ2

L2 + cÁ
÷≠6Î�vÎ2

L2ÎvÎ2

L2 .

Here, we used that by the Gagliardo–Nirenberg interpolation inequality ÎvÎL4 Æ ÎvÎ5/8

L2 Î�vÎ3/8

L2 .

For the second and third term, we obtain in a similar fashion

Á
÷

---ÈT2, �2
vÍ

--- Æ cÁ
÷≠1ÎvÎL4ÎÒvÎL4Î�2

vÎL2 Æ cÁ
2+÷Î�2

vÎ2

L2 + cÁ
÷≠4Î�vÎ2

L2ÎÎÒvÎ2

L2 ,

and
Á

÷

---ÈT3, �2
vÍ

--- Æ cÁ
÷ÎÒvÎ2

L4Î�2
vÎL2 Æ cÁ

÷Î�vÎL2Î�2
vÎ2

L2 .
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By combining the estimates from Lemmata 3.26 and 3.27, we achieved the main estimate for
proving stochastic stability (compare to Metatheorem 2).

Corollary 3.28. Let d = 3, ÷ Ø 8, and v ‹H≠1 span{Â
›

1
, Â

›

2
, Â

›

3
} with ÎvÎ÷ Æ cÁ

2+÷/2.
Under these assumptions, we obtain

ÈL(ũ› + v), vÍ÷ Æ ≠cÁ
2ÎvÎ2

÷.

Proof. This is a direct consequence of the estimates in Lemmata 3.26 and 3.27, noting that
ÎvÎ÷ Æ cÁ

÷Î�2
vÎL2 by Poincaré’s inequality.

Following the guideline from Section 2.3, it remains to estimate the remainder of Èv, dvÍ÷

(Metatheorem 4) and the Itô correction Èdv, dvÍ÷ (Metatheorem 3). Since we are working in a
weighted H

2-space, we have to propose additional spatial regularity of the Wiener process W .
We assume in this case additionally that (cf. Assumption 3.2)

fl
2

Á
:= Á

÷ traceL2(Q1/2�2Q1/2) + traceH≠1(Q) =
ÿ

kœN
–

2

kÎekÎ2

÷ < Œ. (3.36)

Note that our final stability result will thus depend on flÁ.

Lemma 3.29. Under the assumptions of Corollary 3.28, we have

Èv, dũ
›Í÷ =

Ë
cÁ

2+÷Î�2
vÎL2 + cÁ

2ÎvÎ2

L2 + cÁ
÷≠5

fl
4

Á + cÁ
3/2+÷/2

fl
2

Á

È
dt

+ ÈOH≠1(Á÷≠5/2Î�vÎL2), dW ÍH≠1 .

Proof. By Itô’s formula and the exact stochastic ODE (3.18) governing the motion of the
droplet’s center of Section 3.2.2, we derive

Èv, dũ
›Í÷ =

ÿ

i

Èv, ũ
›

i
Í÷

Ë
bi(›, v) dt + È‡i(›, v), dW ÍH≠1

È
+

ÿ

i,j

Èv, ũ
›

ij
Í÷ÈQ‡i, ‡jÍH≠1 dt. (3.37)

We start with estimating the inner products in H
2(�). For the second summand in (3.37),

which does not involve the di�erential d›, we obtain

Á
÷|È�2

v, ũ
›

ij
ÍL2 ||ÈQ‡i, ‡jÍH≠1 | Æ cÁ

÷≠3/2
fl

2

ÁÎ�2
vÎL2 Æ cÁ

2+÷Î�2
vÎ2

L2 + cÁ
÷≠5

fl
4

Á,

where we used that Îũ
›

ij
ÎL2 = O(Á≠3/2) by Lemma 3.33 and ÎQÎL(H≠1) Æ fl

2
Á.

With Lemma 3.17 and the assumption (3.33) on F
›(v), we see that the drift term b(›, v) can

be bounded by

|b(›, v)| Æ cÁ
≠1

fl
2

Á + |ÈF ›(v), Â
›

i
ÍL2 | Æ cÁ

≠1
fl

2

Á + cÁ
≠1

1
ÎvÎ2

L2 + ÎvÎp

Lp

2
.

Hence, we derive

Á
÷|È�2

v, ũ
›

i
Í||b| Æ cÁ

÷≠3/2Î�2
vÎL2

Ë
fl

2

Á + ÎvÎ2

L2 + ÎvÎp

Lp

È

Æ cÁ
2+÷Î�2

vÎ2

L2 + cÁ
÷≠5

Ë
fl

4

Á + ÎvÎ4

L2 + ÎvÎ2p

Lp

È

Æ cÁ
2+÷Î�2

vÎ2

L2 + cÁ
÷≠5

fl
4

Á + cÁ
÷≠5

Ë
Î�vÎ2

L2 + Î�vÎ2p≠2

L2

È
ÎvÎ2

L2 .

In a similar fashion, the martingale term is estimated by

Á
÷È�v, �ũ

›ÍL2È‡i, dW ÍH≠1 = ÈOH≠1(Á÷≠5/2Î�vÎL2), dW ÍH≠1 .
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Finally, we turn to the inner products in H
≠1(�). By Theorems 3.9 and 3.11, the relative

distance of vectors in span{Â
›

1
, . . . , Â

›

d
} and span{ũ

›

1
, . . . , ũ

›

d
} is exponentially small. Therefore,

for some – œ R3,

Èũ›

i
, vÍH≠1 =

ÿ

j

–jÈÂ›

j
, vÍH≠1 + O(exp)Îũ

›

j
ÎH≠1ÎvÎH≠1 = O(exp).

Since this is the prefactor of the first summand in (3.37) and the drift b and di�usion ‡ are
uniformly bounded by a polynomial in Á

≠1, we immediately obtain

Èv, ũ
›

i
ÍH≠1

Ë
bi(›, v) dt + È‡i(›, v), dW ÍH≠1

È
= O(exp) dt + ÈO(exp), dW ÍH≠1 .

The second summand in (3.37) is estimated by

Èv, ũ
›

ij
ÍH≠1ÈQ‡i, ‡jÍH≠1 dt = O(Á≠1/2

fl
2

Á)ÎvÎH≠1 dt = O(Á3/2+÷/2
fl

2

Á) dt,

where we utilized that by assumption ÎvÎH≠1 Æ ÎvÎ÷ Æ cÁ
2+÷/2 together with Îu

›

ij
Î = O(Á≠1/2),

Î‡Î = O(1), and ÎQÎL(H≠1) Æ fl
2
Á.

Lemma 3.30. Let fl
2
Á be the noise strength defined by (3.36). We have

Èdv, dvÍ÷ = O(Á÷≠5/2
fl

2

Á) dt.

Proof. First, we obtain

Èdv, dvÍH≠1 = ÈdW, dW ÍH≠1 +
ÿ

i,j

Èũ›

i
, ũ

›

j
ÍH≠1 È‡i, Q‡jÍH≠1 dt ≠

ÿ

i,j

Èũ›

i
, Q‡jÍH≠1 dt

=
Ë
traceH≠1(Q) + O(ÎQÎL(H≠1))

È
dt = O(fl2

Á) dt.

Secondly, the H
2-term gives

Á
÷Èd�v, d�vÍL2 = Á

÷Èd�W, d�W ÍL2 + Á
÷

ÿ

i,j

È�ũ
›

i
, �ũ

›

j
ÍL2 È‡i, Q‡jÍH≠1 dt

≠ Á
÷

ÿ

i,j

È�ũ
›

i
, d�W ÍL2 È‡j , dW ÍH≠1

= O(Á÷≠5
”

2

Á + ”
2

Á + Á
2÷≠5

fl
2

Á) dt,

where we utilized that by series expansion of W =
q

–k—k(t)ek

Á
÷È�ũ

›

i
, d�W ÍL2 È‡j , dW ÍH≠1 = Á

÷
ÿ

kœN
–kÈ�ũ

›

i
, �ekÍL2 –kÈ‡j , ekÍH≠1 dt

Æ Á
÷
flÁÎ�ũ

›

i
ÎL2 flÁÎ‡jÎH≠1 dt Æ cÁ

÷≠5/2
fl

2

Á dt.

Finally, we estimated every single term for the stochastic di�erential dÎvÎ÷ and thereby furnished
the analogue of the main inequality of Theorem 2.13, namely

Theorem 3.31. Let d = 3, ÷ Ø 8, and v ‹H≠1 span{Â
›

1
, Â

›

2
, Â

›

3
}.

As long as ÎvÎ÷ < Á
2+÷/2, we have

dÎvÎ2

÷ =
Ë
≠cÁ

2ÎvÎ2

÷ + cÁ
÷≠5

fl
4

Á + cfl
2

Á

È
dt + ÈO(ÎvÎ÷), dW Í÷.

With that, we are in the setting of the main stability result of Theorem 2.14 and can prove that
the weighted H

2-norm of the distance to the slow manifold stays indeed small for very long
times with high probability.
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Theorem 3.32 (Extension to general nonlinearities II).
For ÷ Ø 8 define the stopping time

·
ú := inf

Ó
t œ [0, TÁ] : ›(t) /œ �fl+” or Îv(t)Î÷ > cÁ

2+÷/2
Ô

with TÁ = Á
≠N for any fixed large N > 0. For some 0 < ‹ < 1, suppose that

Îv(0)Î÷ < ‹Á
2+÷/2

.

Moreover, suppose that for some very small Ÿ > 0 the noise strength satisfies

flÁ < Á
3+÷/2+Ÿ

.

Then, the probability P(·ú
< TÁ) is smaller than any power of Á, as Á tends to zero.

Proof. We can apply the general result of Theorem 2.14. In fact, with KÁ = O(Á÷≠5
fl

4
Á + fl

2
Á),

aÁ = cÁ
2, and R

2
Á = cÁ

4+÷, we obtain
KÁ

aÁR2
Á

Æ cÁ
≠11

fl
4

Á + cÁ
≠6≠÷

fl
2

Á Æ cÁ
2Ÿ

.

3.4 Estimates
In this final section, we give all the estimates that were needed throughout the analysis of

the stochastic Cahn–Hilliard equation. Compared to the deterministic counterpart, we need to
bound higher order derivatives, which arise due to Itô calculus. We start with the estimates
with respect to the L

2- and L
Œ-norm.

Lemma 3.33. For i = 1, . . . , d, let Â
›

i
be the orthonormal basis from Theorem 3.9 and ũ

› the
bubble as constructed in Theorem 3.7. Further subindices will denote partial derivatives with
respect to ›. The following estimates hold true

Îũ
›

j
ÎL2 = O(Á≠1/2), ÎÂ

›

i
ÎL2 = O(Á≠1/2),

Îũ
›

ij
ÎL2 = O(Á≠3/2), and ÎÂ

›

i,j
ÎL2 = O(Á≠3/2).

Moreover, in L
Œ we find that

Îũ
›

j
ÎŒ = O(Á≠1), Îũ

›

ij
ÎŒ = O(Á≠2), and ÎÂ

›

j
ÎŒ = O(Á≠1).

Proof. First, we observe that by Theorem 3.7 it su�ces to analyze the partial derivatives of u
›,

since the correction term v
› and all its derivatives are exponentially small. By Lemmata 3.5

and 3.6 we have
ˆu

›

ˆ›i

= Á
≠1

ˆU
ú

ˆr

ˆr

ˆ›i

+ Á
≠2

ˆU
ú

ˆfl

ˆa
›

ˆ›i

=
5
Á

≠1
U

Õ
3

r ≠ fl

Á

4
+ O(1)

6
ˆr

ˆ›i

+ O(exp), (3.38)

where we defined r = |x ≠ ›| and utilized that the partial derivatives of a
› with respect to ›i

for i = 1, . . . , d are all exponentially small (cf. Lemma 3.6). We use the radial geometry of the
problem and the fact that U

Õ localizes around the boundary of the bubble. For some small ” > 0,
we consider the ring �” :=

Ó
x :

---|x ≠ ›| ≠ fl

--- Æ ”

Ô
. We compute

Á
≠2

⁄

�”

U
Õ
3

r ≠ fl

Á

4
2

3
ˆr

ˆ›i

42

dx Æ Á
≠2

⁄

�”

U
Õ
3

r ≠ fl

Á

4
2

dx

Æ CÁ
≠1

⁄

|÷|Æ”/Á

U
Õ(÷)2(Á÷ + fl)d≠1 d÷ Æ Cfl

d≠1
Á

≠1

⁄

R
U

Õ(÷)2 d÷ Æ CÁ
≠1

.
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On the set � \ �” we utilize |U Õ(÷)| Æ ce
≠c|÷| and derive

Á
≠2

⁄

�\�”

U
Õ
3

r ≠ fl

Á

4
2

3
ˆr

ˆ›i

42

dx Æ CÁ
≠2

e
≠c”/Á |� \ �”| = O(exp).

Combined with (3.38) this shows Îũ
›

j
ÎL2 = O(Á≠1/2) for any j œ {1, . . . , d}.

With help of the relation (3.38), we can also estimate the uniform norm of ũ
›

j
. Note that

the heteroclinic U is given as solution to U
ÕÕ ≠ F

Õ(U) = 0, which is equivalent to the equation
U

Õ =


2F (U). Hence, we obtain

Îu
›

i
ÎŒ = Á

≠1ÎU
ÕÎŒ + O(1) = Á

≠1 sup
xœ(≠1,1)

Ò
2F (x) + O(1).

Estimating the second order derivatives of ũ
› can be carried out analogously. By definition (3.8)

of the eigenfunction Â
›

i
, we see that

ÎÂ
›

i
ÎL2 Æ C

ÎÒũ
›ÎL2

ÎÒũ›Î Æ Cfl
≠d/2

Á
≠1/2

,

where we used the previous bound on the L
2-norm and that ÎÒũ

›Î = cfl
d/2 + O(fld≠1/2)

by [AFK04, Theorem 3.6]. Moreover, we compute
.....ˆj

ũ
›

k

Îũ
›

k
Î

.....
L2

=

......
≠

ũ
›

k
Èũ›

k
, ũ

›

kj
Í

Îũ
›

k
Î3

+
ũ

›

kj

Îũ
›

k
Î

......
L2

Æ
Îu

›

k
ÎL2Îu

›

kj
Î

Îu
›

k
Î2

+
Îu

›

kj
ÎL2

Îu
›

k
Î

Æ
Îu

›

k
ÎL2 + Îu

›

kj
ÎL2

Îu
›

k
Î

.

With the preceding estimates, it is readily verified that this term is of order O(Á≠3/2). Finally,
by the definition in Theorem 3.9 we derive

ÎÂ
›

i,j
ÎL2 Æ

ÿ

k

|ˆja
›

ki
|Îũ

›

k
ÎL2

Îũ
›

k
Î

+ O(Á≠3/2) Æ CÁ
≠1/2

ÿ

k

|ˆja
›

ki
| + O(Á≠3/2) = O(Á≠3/2), (3.39)

where we used that the matrix (a›

ki
) does depend smoothly on › and is non-singular. Since

Îũ
›

j
ÎŒ = O(Á≠1), the uniform bound of Â

›

i,j
is easily verified.

We conclude our analysis of the stochastic Cahn–Hilliard equation with giving all the necessary
bounds on derivatives of the droplet state ũ

› and the eigenfunctions Â
›

i
in H

≠1 that were used
throughout this chapter. Heuristically, the H

≠1-norm eliminates one derivative and it remains
to control the „antiderivate“ in L

2. Hence, we can rely on the estimates of Lemma 3.33 in the
following result.

Lemma 3.34. Under the same assumptions as in Lemma 3.33, we have

Îũ
›

j
Î = O(1), ÎÂ

›

i,j
Î = O(Á≠1),

Îũ
›

ij
Î = O(Á≠1/2), and ÎÂ

›

i,jk
Î = O(Á≠3/2).

Proof. First, we note that the bound ÎÂ
›

i,j
Î = O(Á≠1) was established in Theorem 6.1 in [AF98],

and secondly, Îũ
›

j
Î = cfl

d/2 + O(fld+1/2) holds true by Theorem 3.6 in [AFK04].
By a characterization of the dual space H

≠1 (cf. [Eva10, Section 5.9, Theorem 1]), we find
for g œ H

≠1 functions f1, . . . , fd œ L
2 such that

g = Ò · f = ˆf1

ˆx1

+ . . . + ˆfd

ˆxd

and ÎgÎ2 = inf
g=Ò·f

⁄

�

|f |2 dx.
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Using the relation ũ
›

i
= ˆxiu

› + O(exp) and choosing fj = ˆxiu
›, we have

Îũ
›

ij
Î2 = ÎˆjfjÎ2 + O(exp) Æ ÎfjÎ2

L2 + O(exp) = O(Á≠1),

where we utilized that ÎfjÎL2 = O(Á≠1/2) by Lemma 3.33. The same argument yields

ÎÂ
›

i,jk
Î Æ ÎÂ

›

i,j
ÎL2 Æ cÁ

≠3/2
.



CHAPTER 4

Droplet motion for the mass conserving stochastic Allen–Cahn equation

Mathematically closely related to the stochastic Cahn–Hilliard equation is the mass conserving
version of the stochastic Allen–Cahn equation

Y
___]

___[

ˆt u(x, t) = Á
2�u(x, t) ≠ f(u(x, t)) + 1

|�|

⁄

�

f(u(x, t)) dx + Ẇ (x, t), x œ �,

ˆ÷ u(x, t) = 0, x œ ˆ�,

u(x, 0) = u0(x), x œ �.

(SAC)

As in the previous chapter, we are again concerned with the higher dimensional cases and
hence, � µ Rd is a su�ciently smooth bounded domain of area |�|, where we allow for the
space dimensions d = 2 and d = 3. Moreover, f denotes the derivative of the smooth double
well potential F that we introduced in Chapter 3 for the Cahn–Hilliard equation. For simplicity,
we will only focus on the standard quartic potential F (u) = 1

4
(u2 ≠ 1)2, although most of the

results hold for a very general class of nonlinearities. Similarly to the extension to general
nonlinearites in Section 3.3.1 for the Cahn–Hilliard equation, only the precise formulation
of the stability result and the condition on the noise strength do change depending on the
growth of F at Œ. The stochastic forcing is given by an additive white in time noise ˆtW .
Similarly to Definition 3.1, W is given by a Q-Wiener process in the Hilbert space L

2(�),
i.e.,

Qek = –
2

kek and W (t) =
ÿ

kœN
–k—k(t)ek,

where (ek)kœN is an orthonormal basis with corresponding eigenvalues –
2

k
and {—k}kœN is a

family of independent real-valued standard Brownian motions. To guarantee that solutions
to (SAC) preserve the total mass, we have to assume that the Wiener process takes its values
in L

2
0
. Moreover, as our method is based on the application of Itô formula, we assume that W

is su�ciently smooth, that is, Q is trace-class. Throughout our analysis, we assume that the
Wiener process W enjoys the following regularity properties:

Assumption 4.1 (Regularity of the Wiener process).
The process W satisfies ⁄

�

W (t, x) dx = 0 for any t Ø 0.

Furthermore, we assume that

trace(Q) =
ÿ

kœN
–

2

k =: ÷0 < Œ and trace(≠Q1/2�Q1/2) =
ÿ

kœN
–

2

kÎÒekÎ2

L2 =: ÷2 < Œ.

Recall that for the induced L
2 operator norm of Q we always have that ÎQÎ Æ trace(Q) = ÷0.

Also, note that ek is normalized in L
2, but not in H

1.

59
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The deterministic Allen–Cahn equation forms a gradient flow with respect to the same energy
functional JÁ defined by (3.1) as the Cahn–Hilliard equation, but with respect to the L

2
0
-topology

as opposed to H
≠1. Therefore, we can expect a very similar behavior. In fact, in our analysis

we will rely on the same slow manifold of droplets.
The aim of this chapter is to analyze the motion of a single droplet for the mass conserving

stochastic Allen–Cahn equation in the interior of the set �. We can build on the analysis for the
Cahn–Hilliard equation. Moreover, in the stability analysis we will follow [ABBK15], where the
slow motion of a semicircular droplet along the boundary ˆ� was studied. In this article, the
two-dimensional case was analyzed, while in our analysis we will include a three-dimensional
domain.

4.1 The slow manifold Mfl

In this section, we briefly collect some results from Chapter 3 that will be used throughout
the remainder of our study of the Allen–Cahn equation. In the construction of a slow manifold,
we follow the analysis of Section 3.1 for the deterministic Cahn–Hilliard equation, which is based
on the work of Alikakos and Fusco [AF98]. In Proposition 3.4, we established for a fixed radius
fl > fl̄ > 0 the existence of a radial solution U

ú(|x|, fl) to the problem

�u ≠ f(u) = ‡(fl), x œ Rd
.

For a fixed small minimal distance ” > 0 of the droplets to the boundary ˆ�, let › be in the
set �fl+” = {› : d(›, ˆ�) > fl + ”}. Analogously to Definition (3.5), we define the rescaled and
translated function u

› : � æ R by

u
›(x) := U

ú
A

|x ≠ ›|
Á

,
fl ≠ a

›

Á

B

.

In this definition, we have to introduce a small correction term a
› in order to assure that

each droplet state u
› has exactly the same mass. Note that by Lemma 3.6 the correction a

›

and its derivatives with respect to ›i, i = 1, . . . , d, are all exponentially small. In the absence
of noise, the droplet state u

› is by construction an almost stationary solution to the Cahn–
Hilliard equation. Let us show that this also holds true for the mass conserving Allen–Cahn
equation.

Lemma 4.1 (Almost stationary solution to (SAC)).
Let › œ �fl+”. We obtain

Á
2�u

› ≠ f(u›) + 1
|�|

⁄

�

f(u›) dx = O(exp) in �, and ˆ÷u
› = O(exp) on ˆ�.

Proof. First, we observe that Proposition 3.4 implies ˆ÷u
› = O(exp).

By the definition of u
›, we immediately see that Á

2�u
› ≠ f(u›) = ‡(fl≠a

›

Á
). On the other hand,

we have by Green’s identity

1
|�|

⁄

�

f(u›) dx = 1
|�|

⁄

�

Á
2�u

› dx ≠ ‡

A
fl ≠ a

›

Á

B

= Á
2

|�|

⁄

ˆ�

ˆu
›

ˆ÷
dS ≠ ‡

A
fl ≠ a

›

Á

B

= ≠‡

A
fl ≠ a

›

Á

B

+ O(exp).

Hence, the droplet state u
› is up to exponentially small terms a stationary solution to (SAC).
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Further properties of the bubble u
› were collected in Proposition 3.4 and Lemma 3.5. By virtue

of Lemma 4.1, the droplet fails to satisfy the boundary condition of (SAC) by an exponentially
small term. In order to fix this, we have to add an exponentially small correction v

›. Here,
we rely on the same correction term v

› that was used to fix the boundary condition for the
Cahn–Hilliard equation in Theorem 3.7. In that case, the function ũ

› := u
› + v

› also satisfies
the boundary condition ˆ÷�ũ

› = 0, which is not necessary for our purpose. By a slight adaption
of the proof of Theorem 3.7 (see [AF98], Theorem 5.1 for details), we expect that one could
introduce a more fitting correction term. For convenience, we omit the technical details. Recall
that v

› and its derivatives with respect to › are all exponentially small (cf. Proposition 3.7).
Also, note that

s
�

v
›(x) dx = 0 and thus, the mass is not influenced.

Similarly to Definition 3.8, provided the distance of the droplet’s center › to the boundary
of � is at least fl + ” for some small ” > 0, we define the set of all translates of the droplet
ũ

› := u
› + v

› as the slow manifold Mfl.

Definition 4.2 (The slow manifold).
For a fixed radius fl > fl̄ > 0 and a minimal distance ” > 0 of the droplets to the boundary ˆ�,
we define the slow (C3-) manifold

Mfl :=
Ó

ũ
› := u

› + v
› : › œ �fl+”

Ô
.

Here, u
› denotes the droplet state constructed in Proposition 3.4 and v

› is an exponentially
small correction given by Theorem 3.7. For i, j œ {1, . . . , d}, we denote the partial derivatives by
ũ

›

i
= ˆ›i ũ

›, and ũ
›

ij
= ˆ›iˆ›j ũ

›, respectively. Also, note that Mfl is nondegenerate and defines a
d-dimensional manifold.

To conclude our collection of important results, we consider the eigenvalue problem for the
mass conserving Allen–Cahn equation linearized at a droplet state ũ

› œ Mfl. Recall that it
is crucial for the stability analysis that eigenvalues associated to eigenvectors orthogonal to
the tangent space of Mfl are negative and uniformly bounded away from zero. Moreover, the
droplet is stable for the dynamics and the d exponentially small eigenvalues correspond to
translations of ũ

›. We gave the main spectral result already in Theorem 3.12, but repeat it
for completeness. Note that here the spectral gap is independent of the space dimension, as
opposed to the linearized Cahn–Hilliard operator in H

≠1.

Theorem 4.3 (The linearized Allen–Cahn operator, [ABF98], Proposition 2.2).
Let ũ

› œ Mfl and µ1 Æ µ2 Æ µ3 Æ . . . be the eigenvalues of
Y
_]

_[

L›
Ï = Á

2�Ï ≠ f
Õ(ũ›)Ï + 1

|�|

⁄

�

f
Õ(ũ›) Ï dx = ≠µÏ, x œ �,

ˆ÷ Ï = 0, x œ ˆ�.

There exists Á0 > 0 such that for 0 < Á < Á0

µ1, . . . , µd = O(exp) and µd+1 > CÁ
2
.

The d-dimensional space W
› spanned by the eigenfunctions corresponding to the exponen-

tially small eigenvalues can be represented by W
› = span

Ó
w

›

1
, . . . , w

›

d

Ô
and the normalized

eigenfunctions w
›

i
satisfy

......
w

›

i
≠ u

›

i...u
›

i

...

......
L2

= O(exp) ’i = 1, . . . d. (4.1)
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4.2 The stochastic ODE for the droplet’s motion
Here, we give the exact SDE on the slow manifold Mfl and analyze it in terms of Á > 0 being

small. Following Chapter 2, we first have to establish a coordinate system in a small tubular
neighborhood of Mfl (Definition 2.2), and then show the invertibility of the matrix A(›, v)
from Definition & Metatheorem 1. The next lemma deals with defining a pair of Fermi
coordinates in a tubular neighborhood of Mfl. The coordinate system does not rely on the
exact eigenfunctions w

›

i
given by Theorem 4.3, but on the exact tangent space of the slow

manifold Mfl (cf. Remark 2.3).

Lemma 4.4 (Fermi coordinates, [ABF98], Lemma 2.4).
Let a > 0 be a su�ciently small number. Then, the condition

inf
›œ�fl+2”

Îu ≠ ũ
›ÎL2 Æ aÁ

1/2

implies the existence of a unique › œ �fl+” such that

Îu ≠ ũ
›ÎL2 = inf

’œ�fl+”

Îu ≠ ũ
’ÎL2 .

Moreover, › is a smooth function of u and Èu ≠ ũ
›
, ũ

›

i
Í = 0 for i œ {1, . . . , d}.

We analyze the matrix A(›, v) from Definition & Metatheorem 1 and its inverse, which plays
an important role in the derivation of the stochastic ODE governing the droplet’s motion. In
our case, the matrix A(›, v) is defined by Akj = Èũ›

k
, ũ

›

j
Í ≠ Èũ›

kj
, vÍ.

Lemma 4.5 (Invertibility of the matrix A(›, v)).
Let ũ

› œ Mfl. Then, we obtain

Èũ›

k
, ũ

›

j
Í = X Á

≠1
”kj + O(1),

where X =
s
R U

Õ(y)2 dy for U being the heteroclinic defined in Lemma 3.5.
Moreover, as long as ÎvÎL2 < Á

k≠2 for some k > 5/2, the matrix A is invertible with

A(›, v)≠1 = X ≠1
Á Id + O(Ák≠3/2).

Proof. The estimate of the inner product Èũ›

k
, ũ

›

j
Í follows from the definition of u

›, Proposi-
tion 3.4(v), and the exponential estimates of v

› and its derivatives (see also Lemma 3.33 or the
proof of Lemma 4.8).
The analysis of the inverse matrix can be carried out similarly to the proof of Lemma 3.14 via an
argument involving the geometric series. In more detail, with the L

2-estimates of Lemma 3.33
we obtain |Èũ›

kj
, vÍ| Æ cÁ

≠3/2ÎvÎL2 and thus,

A = X Á
≠1

Ë
Id ≠ O(Á≠1/2ÎvÎ)

È
.

Since ÎvÎL2 < Á
k≠2 for k > 5/2, we can invert the matrix A and obtain

A
≠1 = X ≠1

Á

Ë
Id + O(Á≠1/2ÎvÎ)

È
= X ≠1

Á Id + O(Ák≠3/2).

Finally, we give the rigorous dynamics governing the motion of the droplet’s center ›. Recall
that by Theorem 2.6 and the justification in Lemma 2.8, the exact SDE in the new coordinate
frame for the droplet’s motion is given by the Itô di�usion

d› = b(›) dt + È‡(›), dW Í,
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with
‡r(›) =

ÿ

i

A
≠1

ri
ũ

›

i
(4.2)

and
br(›) =

ÿ

i

A
≠1

ri
Èũ›

i
, A(ũ› + v)Í +

ÿ

i

A
≠1

ri

ÿ

j

Èũ›

ij
, Q‡jÍ

+
ÿ

i,j,k

A
≠1

ri

51
2Èũ›

ijk
, vÍ ≠ Èũ›

ij
, ũ

›

k
Í ≠ 1

2Èũ›

i
, ũ

›

jk
Í
6

ÈQ‡j , ‡kÍ.
(4.3)

Analysis of the SDE

In order to analyze the SDE in terms of Á > 0 and to show stochastic stability later in
Section 4.3, we need to bound the di�usion (4.2) and the drift term (4.3). Since we cannot
control the cubic nonlinearity in L

2, we need to assume additional smallness in H
1. In the

following analysis, we consider the maximal radius such that the Fermi coordinates, and thus
the stochastic ODE, are well defined. In our main stability result (Theorem 4.20), we have to
consider a smaller neighborhood of the slow manifold.

Lemma 4.6. Assume that › œ �fl+” and ÎvÎL2 < Á
k≠2 for some k > 5/2. Then, we obtain

‡r(›) = X ≠1
Áu

›

r + OL2(Ák≠2).

Proof. This is a direct consequence of the definition (4.2) of ‡ and the bound on the inverse of
the matrix A in Lemma 4.5.

As a next step, let us split the di�usion process › into a purely deterministic part and remaining
terms A(›, v), which only arise due to the presence of noise. We write

d›r =
ÿ

i

A
≠1

ri
Èũ›

i
, A(ũ› + v)Í dt + dAr(›, v),

where Ar can be computed easily from the expressions (4.2) and (4.3). Also, note that most of
the terms in A(›, v) stem from Itô correction terms. The following lemma gives a bound on the
deterministic part. This is the only term where we need to work in H

1.

Lemma 4.7. Let › œ �fl+”. Moreover, for some k > 5/2 and fixed small Ÿ > 0 assume that
ÎvÎL2 < Á

k≠2 and ÎÒvÎL2 < Á
k≠4≠2Ÿ/d. We have

|ÈL(ũ› + v), ũ
›

i
Í| = O

1
Á

min{k≠5/2 , 3k≠7≠d≠Ÿ}
2

.

Proof. By Lemma 4.1, we have L(ũ›) = O(exp). For the nonlinear terms we obtain

ÈN ›(v), ũ
›

i
Í =

⁄

�

(3ũ
›
v

2 + v
3) ũ

›

i
dx Æ CÎũ

›

i
ÎŒ

Ë
ÎvÎ2

L2 + ÎvÎ3

L3

È

Æ CÁ
≠1

Ë
ÎvÎ2

L2 + ÎvÎ3≠d/2

L2 ÎÒvÎd/2

L2

È
Æ CÁ

2k≠5 + CÁ
3k≠7≠d≠Ÿ

,

where we utilized that Îũ
›

i
ÎŒ = O(Á≠1) by Lemma 3.33 and interpolated the L

3-norm between L
2

and H
1 via Nirenberg’s inequality. It remains to control the term involving the linearization

ÈL›
v, ũ

›

i
Í = Èv, L›[ũ›

i
]Í = Èv, Á

2�ũ
›

i
≠ f

Õ(ũ›)ũ›

i
Í

Æ Á
2Èv, �ũ

›

i
Í + CÎvÎL2Îũ

›

i
ÎL2 Æ CÁ

k≠5/2 + Á
k≠2Îũ

›

i
ÎL2 Æ CÁ

k≠5/2
.



64 4. Droplet motion for the mass conserving stochastic Allen–Cahn equation

Here, we used that L› defines a selfadjoint operator on L
2
0
(�) and that v is orthogonal to

constants. Moreover, we utilized �ũ
›

i
= �›u

›

i
+ O(exp) by definition of u

› and the exponential
bounds on the correction terms a

› and v
›. This shows that Î�ũ

›

i
ÎL2 = O(Á≠5/2) (see also

Lemma 3.33).

Before we analyze the terms in Ar, we establish a better estimate of the scalar product
Èˆ›ũ

›
, ˆ

2

›
ũ

›Í than with the Cauchy–Schwarz inequality, which would yield O(Á≠2). We show
that the inner product is even exponentially small.

Lemma 4.8. Let › œ �fl+” and i, j, k œ {1, . . . , d}. The following estimate holds true

|Èũ›

ij
, ũ

›

k
Í| = O(exp).

Proof. For simplicity of presentation, we present only the case d = 2 and i = j = k.
The other cases work essentially in the same way. One always ends up with the product of a
radial function with odd powers of sine and cosine. In spherical coordinates though, the number
of di�erent cases is tedious and we omit the details.

Since › lies in �fl+”, the ball Bfl+”/2(›) is completely contained in �. By Proposition 3.4(v),
we know that ũ

›

k
, ũ

›

kk
= O(exp) on � \ Bfl+”/2(›). Therefore, it remains to compute the inner

product on the ball Bfl+”/2(›). Recall that we defined u
›(x) = U

ú(r/Á, (fl ≠ a
›)/Á), where we

set r := |x ≠ ›|. Di�erentiating u
› with respect to ›k yields

u
›

k
(x) = Á

≠1
U

ú
1

A
r

Á
,
fl ≠ a

›

Á

B
ˆr

ˆ›k

+ O(exp),

where we utilized that the partial derivatives of the correction term a
› are exponentially small

(cf. Lemma 3.6). Similarly, we obtain for the second derivative

u
›

kk
(x) = Á

≠2
U

ú
11

A
r

Á
,
fl ≠ a

›

Á

B 3
ˆr

ˆ›k

42

+ Á
≠1

U
ú
1

A
r

Á
,
fl ≠ a

›

Á

B
ˆ

2
r

ˆ2›k

+ O(exp)

= Á
≠2

U
ú
11

A
r

Á
,
fl ≠ a

›

Á

B 3
ˆr

ˆ›k

42

≠ Á
≠1

U
ú
1

A
r

Á
,
fl ≠ a

›

Á

B
1
r

A

1 +
3

ˆr

ˆ›k

42
B

+ O(exp).

We define cs(Ï) = cos(Ï) for k = 1, and cs(Ï) = sin(Ï) for k = 2. By a transformation to polar
coordinates, we obtain

⁄

Bfl+”/2(›)

U
ú
1

A
r

Á
,
fl ≠ a

›

Á

B

U
ú
11

A
r

Á
,
fl ≠ a

›

Á

B 3
ˆr

ˆ›k

43

dx

=
⁄

2fi

0

⁄
fl+”/2
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,
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›

Á

B

U
ú
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A
r

Á
,
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›

Á

B

cs3(Ï) dr dÏ = 0,

since
s

2fi

0
cs3(Ï) dÏ = 0. Similarly, one computes

⁄

Bfl+”/2(›)

1
r

U
ú
1

A
r

Á
,
fl ≠ a

›

Á

B
2

A3
ˆr

ˆ›k

4
+
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ˆr

ˆ›k
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B

dx

=
⁄

2fi

0

⁄
fl+”/2

0

U
ú
1

A
r

Á
,
fl ≠ a

›

Á

B
2 1

cs(Ï) + cs3(Ï)
2

dr dÏ = 0.

Combined we derived

Èu›

kk
, u

›

k
ÍL2(�) = Èu›

kk
, u

›

k
ÍL2(�\Bfl+”/2(›)) + O(exp) = O(exp).



4.3. Stochastic Stability 65

Note that we neglected the correction term v
› in our calculations. Since v

› and all its derivatives
with respect to › are exponentially small, the e�ect of this additional term is hidden in the
O(exp)-term.

With this estimate at hand, we can finally analyze the term dAr(›, v). Here, it is su�cient to
control v in L

2, but since A collects all the terms stemming from stochastics, the estimate will
obviously depend on the noise strength ÷0 (cf. Assumption 4.1).

Lemma 4.9. Assume that › œ �fl+” and ÎvÎL2 < Á
k≠2 for k > 5/2. Then, we obtain

dAr(›, v) = X ≠2
Á

2Èũ›

rr, Qu
›

rÍ dt + O(Ák≠5/2
÷0) dt + ÈX ≠1

Á ũ
›

r + OL2(Ák≠3/2), dW Í.

Proof. With (4.2) and (4.3) we see that

dAr =
ÿ

i

A
≠1

ri

ÿ

j

Èũ›

ij
, Q‡jÍ dt +

ÿ

i,j,k

A
≠1

ri

51
2Èũ›

ijk
, vÍ ≠ Èũ›

ij
, ũ

›

k
Í ≠ 1

2Èũ›

i
, ũ

›

jk
Í
6

ÈQ‡j , ‡kÍ dt

+
ÿ

i

A
≠1

ri
Èũ›

i
, dW Í.

The claim follows now directly from the estimates of Lemmata 4.5, 4.6, and 4.8.

In order to approximate the full e�ective dynamics of the droplet’s center ›, we combine the
estimate of dAr with the estimate of Lemma 4.7

Theorem 4.10 (Approximation of the e�ective dynamics).
Let › œ �fl+”. As long as ÎvÎL2 < Á

k≠2 and ÎÒvÎL2 < Á
k≠4≠2Ÿ/d for some k > 5/2 and some

small Ÿ > 0, we have

d›r = X ≠2
Á

2Èũ›

rr, Qũ
›

rÍ dt + X ≠1
Á Èũ›

r, dW Í
+ O(Ák≠5/2

÷0 + Á
min{k≠1/2 , 3k≠5≠d≠Ÿ}) dt + ÈOL2(Ák≠3/2), dW Í,

where X =
s
R U

Õ(y)2 dy for U being the heteroclinic defined in Lemma 3.5.

Remark 4.11. Analogously to Lemma 3.18, we see that the motion of the droplet is in first
approximation given by the projection of the Wiener process onto the tangent space of Mfl

at ũ
›, plus a small error term dR given by Theorem 4.10, i.e., we obtain

d›r =
ÿ

i

S
≠1

ri
Èũ›

i
, ¶ dW Í + dR,

where the matrix S corresponds to the first fundamental form of the manifold Mfl and is given
by Sij = Èũ›

i
, ũ

›

j
Í.

4.3 Stochastic Stability
In this section, we investigate the stochastic stability with respect to various norms. Here,

we follow the method introduced in Section 2.3 very closely. In order to be able to define the
Fermi coordinates (cf. Lemma 4.4) and thus to establish the e�ective dynamics, we first need
to show that the L

2-norm of v stays su�ciently small for very long times. For controlling the
nonlinear terms in the stochastic ODE, we extend the stability result afterwards to the space H

1
Á ,

a weighted Sobolev space that was also used in [ABBK15] and already introduced in the stability
analysis for the stochastic Cahn–Hilliard equation in Section 3.3.
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4.3.1 Stability in L
2

Recall that the normal component v = u ≠ ũ
› satisfies by (2.13)

dv =
Ë
O(exp) + L›

v + N ›(v)
È

dt + dW ≠
ÿ

i

ũ
›

i
d›i ≠ 1

2
ÿ

i,j

ũ
›

ij
ÈQ‡i, ‡jÍ dt.

Using the spectral estimates of Theorem 4.3, we can bound the quadratic form orthogonal to the
tangent space of Mfl spanned by the derivatives ũ

›

i
(see Assumption 2.1).

Lemma 4.12. Suppose that v ‹ ũ
›

i
for i = 1, . . . , d. Then, we obtain

ÈL›
v, vÍ Æ ≠CÁ

2ÎvÎ2

L2 + O(exp).

Proof. The statement follows directly from the spectral estimates of Theorem 4.3 combined
with Theorem 2.10, since Èv, wiÍ = Èv, wi ≠ ũ

›
i

Îũ
›
i Î

Í = O(exp)ÎvÎ.

Recall (3.2), where for f œ H
1(�) we defined the weighted norm

ÎfÎH1
Á

:=
1
Á

2ÎÒfÎ2

L2 + ÎfÎ2

L2

2
1/2

. (4.4)

Note that H
1
Á is equivalent to the Sobolev space H

1 and we always have ÎfÎH1 Æ Á
≠1ÎfÎH1

Á
.

As long as ÎvÎL2 stays su�ciently small, we can give the main estimate for showing stability
(Metatheorem 2), namely a negative upper bound on ÈL(u› + v), vÍ. Compared to the analysis
of the stochastic ODE governing the droplet’s motion in Section 4.2, we have to work in a
smaller neighborhood of the slow manifold Mfl.

Theorem 4.13. As long as › œ �fl+” and ÎvÎL2 < Á
k≠2 for k > 4 + d/2, we obtain for some

constant c > 0
ÈL(ũ› + v), vÍ Æ ≠cÁ

2ÎvÎ2

L2 .

Proof. In the two-dimensional case, we follow [ABBK15, p.15]. First, we extend the estimate
of Lemma 4.12 to H

1
Á . For “ œ (0, 1), we obtain

ÈL›
v, vÍ Æ ≠“Á

2ÎÒvÎ2

L2 + “Îf
Õ(u›)ÎŒÎvÎ2

L2 ≠ C(1 ≠ “)Á2ÎvÎ2

L2 .

Note that the extra term vanishes as v is orthogonal to constants. We use now that f
Õ(u›) is

uniformly bounded and fix “ = Á
2. This yields

ÈL›
v, vÍ Æ ≠c0Á

2ÎvÎ2

H1
Á
.

For the nonlinear terms, we obtain via the Gagliardo–Nirenberg inequality

ÈN ›(v), vÍ Æ CÎvÎ3

L3 Æ CÎvÎH1ÎvÎ2

L2 Æ CÁ
≠1ÎvÎH1

Á
ÎvÎ2

L2 .

As long as ÎvÎL2 < cÁ
3, we have

ÈL(u› + v), vÍ Æ ≠CÁ
2ÎvÎ2

H1
Á

Æ ≠CÁ
2ÎvÎ2

L2 .

In the three-dimensional case, we obtain by Gagliardo–Nirenberg and Young’s inequality

ÈN ›(v), vÍ Æ CÎvÎL3 Æ CÎvÎ3/2

H1 ÎvÎ3/2

L2 Æ cÁ
2ÎvÎ2

H1
Á

+ cÁ
≠12ÎvÎ6

L2

Æ cÁ
2ÎvÎ2

H1
Á

+ cÁ
2ÎvÎ2

L2 Æ CÁ
2ÎvÎ2

H1
Á
,

where we used that by assumption ÎvÎL2 < cÁ
7/2.
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By Metatheorems 3 and 4, it remains to control the remaining terms for dÎvÎ2. These are
of order O(÷0): Lemmata 4.5 and 4.6 imply that Î‡ÎL2 = O(Á1/2). By using the estimates
of Lemma 3.33, we obtain with the Cauchy–Schwarz inequality

Èdv, dvÍ = trace(Q) dt +
ÿ

i,j

Èũ›

i
, ũ

›

j
ÍÈQ‡i, ‡jÍ dt ≠ 2

ÿ

i

Èũ›

i
, Q‡iÍ dt

Æ
1
÷0 + X Á

≠1
C÷1Á

1/2
Á

1/2 + CÁ
≠1/2

÷1Á
1/2

2
dt = O(÷0) dt.

and
1
2

ÿ

i,j

Èũ›

ij
, vÍÈQ‡i, ‡jÍ dt Æ CÁ

≠3/2ÎvÎ÷1Á
1/2

Á
1/2

dt Æ CÁ
k≠5/2

÷0 dt.

We summarize all the previous estimates in the following theorem, which is of the same type as
Theorem 2.13 in the general framework.

Theorem 4.14. As long as › œ �fl+” and ÎvÎL2 < cÁ
k≠2 for some k > 4 + d/2, we obtain

dÎvÎ2 Æ
Ë
≠CÁ

2ÎvÎ2

L2 + C÷0

È
dt + 2Èv, dW Í.

With this stochastic di�erential inequality at hand, we can finally show that solutions to the mass
conserving stochastic Allen–Cahn equation (SAC) stay close (in L

2) to the slow manifold Mfl

for very long times with high probability.

Theorem 4.15 (L2-stability).
Let d œ {2, 3} and k > 4 + d/2. For a solution u = ũ

› + v to (SAC) with › œ �fl+” and v ‹ ũ
›

j

for all j œ {1, . . . , d} consider the exit time

·
ú = inf

Ó
t œ [0, TÁ · ·0] : Îv(t)Î > Á

k≠2
Ô

,

with a deterministic cut-o� TÁ = Á
≠N for any fixed large N > 0 and ·0 the exit time from �fl+”.

Furthermore, suppose that for some 0 < ‹ < 1 and some Ÿ > 0 very small

Îv(0)Î Æ ‹Á
k≠2 and ÷0 Æ CÁ

2k≠2+Ÿ
.

Then, the probability P (·ú · ·0 < TÁ) is smaller than any power of Á, as Á tends to 0. And thus,
for very large time scales the solution stays close to the slow manifold Mfl with high probability.

Proof. The statement follows directly from Theorem 4.14 and the general stability result of
Theorem 2.14.

4.3.2 Stability in H
1

Á

We use the long-time stability in L
2 to extend the stability result to H

1
Á defined by (4.4). Since

Theorem 4.15 provides us with a good control of ÎvÎ, it remains to show that ÎÒvÎ stays small
for long times. For this purpose, we consider the following relation

dÎÒvÎ2 = 2ÈÒv, dÒvÍ + ÈÒdv, ÒdvÍ = ≠2È�v, dvÍ + ÈÒdv, ÒdvÍ,

where we integrated once by part as v satisfies Neumann boundary conditions. By series
expansion of W we obtain

ÈÒũ
›

i
, ÒdW ÍÈ‡i, dW Í =

ÿ

kœN
–

2

kÈÒũ
›

i
, ÒekÍÈ‡i, ekÍ dt Æ

ÿ

kœN
–kÎÒekÎ–kÎÒũ

›

i
ÎÎ‡iÎ dt

Æ ÷
1/2

2
÷

1/2

0
ÎÒũ

›

i
ÎÎ‡iÎ dt Æ C÷

1/2

2
÷

1/2

0
Á

≠3/2
Á

1/2
dt Æ C(Á≠2

÷0 + ÷2) dt.
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This yields

ÈÒdv, ÒdvÍ = ÈÒdW, ÒdW Í ≠ 2
ÿ

i

ÈÒũ
›

i
, ÒdW ÍÈ‡i, dW Í +

ÿ

i,j

ÈÒũ
›

i
, Òũ

›

j
ÍÈQ‡i, ‡jÍ dt

Æ
Ë
÷2 + C(Á≠2

÷0 + ÷2) + CÁ
≠3/2

Á
≠3/2

÷1Á
1/2

Á
1/2

È
dt = O(Á≠2

÷0 + ÷2) dt.

(4.5)

Next, we consider the term ≠È�v, dvÍ. With È�v, 1Í = 0 we obtain

≠È�v, dvÍ = ≠ È�v, Á
2�vÍ dt ≠ È�v, f(ũ›) ≠ f(ũ› + v)Í dt ≠ È�v, dW ≠

ÿ

i

ũ
›

i
È‡i, dW ÍÍ

+ È�v,

ÿ

i

ũ
›

i
bi(›) + 1

2

ÿ

i,j

ũ
›

ij
ÈQ‡i, ‡jÍ + O(exp)Í dt =: T1 + T2 + T3 + T4.

We easily see that T1 = ≠Á
2Î�vÎ2

dt, which is a good term for our analysis. For the martingale
term T3 we derive

T3 =
ÿ

i

È�v, ũ
›

i
ÍÈ‡i, dW Í ≠ È�v, dW Í = ≠

ÿ

i

ÈÒv, Òũ
›

i
ÍÈ‡i, dW Í + ÈÒv, dÒW Í

= ÈOL2(Á≠1ÎÒvÎ), dW Í + ÈOL2(ÎÒvÎ), dW Í.

The term T4 involves the drift term b(›), which by Theorem 4.10 can only be bounded up to a
stopping time.

Definition 4.16. For some given large deterministic TÁ > 0, small Ÿ > 0, and k > 4 + d/2 we
define the stopping time

·Á := inf
Ó

t œ [0, TÁ · ·0] : ÎvÎL2 > Á
k≠2 or ÎÒvÎL2 > Á

k≠4≠2Ÿ/d
Ô

.

Theorem 4.10 implies that up to the stopping time ·Á the drift term b is uniformly bounded
by sup0ÆtÆ·Á

|b(›)| Æ c÷0 + cÁ
k≠1/2. This yields for t Æ ·Á

T4 = O
1Ë

Á
≠1/2

÷0 + Á
k≠1

È
Î�vÎ

2
.

It remains to control the term T2 involving the nonlinearity. First, let us note that integration
by parts yields ÎÒvÎ2

L2 = ≠È�v, vÍ Æ Î�vÎL2ÎvÎL2 , and that ÎvÎH1 Æ cÎÒvÎL2 by Poincaré’s
inequality, since v has mean zero. Moreover, Nirenberg’s inequality gives

ÎvÎL4 Æ CÎvÎ1≠d/4

L2 ÎÒvÎd/4

L2 .

By using the L
2-bound from Theorem 4.15, we obtain for t Æ ·Á

T2 = È�v, ≠v + 3(ũ›)2
v + 3ũ

›
v

2 + v
3Í dt =

3
ÎÒvÎ2 ≠

⁄

�

Ò(3(ũ›)2
v + 3ũ

›
v

2 + v
3)Òũ

› dx

4
dt

=
3

ÎÒvÎ2 ≠
⁄

�

(3(ũ›)2 + 6ũ
›
v + 3v

2)|Òv|2 dx ≠
⁄

�

(6ũ
›
v + 3v

2)(Òũ
›Òv) dx

4
dt

Æ
1
ÎÒvÎ2 + cÁ

≠1ÎvÎ2

L4ÎÒvÎ + cÁ
≠1ÎvÎÎÒvÎ

2
dt

Æ
1
ÎÒvÎ2 + cÁ

≠1ÎvÎ2≠d/2ÎvÎd/2

H1 ÎÒvÎ + cÁ
≠1ÎvÎÎÒvÎ

2
dt

Æ
1
ÎÒvÎ2 + cÁ

≠1ÎvÎ2≠d/2ÎÒvÎ1+d/2 + cÁ
≠1ÎvÎÎÒvÎ

2
dt

Æ
1
ÎvÎÎ�vÎ + cÁ

≠1ÎvÎ5/2≠d/4Î�vÎ1/2+d/4 + cÁ
≠1ÎvÎ3/2Î�vÎ1/2

2
dt

Æ
31

2Á
2Î�vÎ2 + cÁ

≠2ÎvÎ2 + cÁ
≠ 12+2d

6≠d ÎvÎ
20≠2d

6≠d

4
dt

Æ
31

2Á
2Î�vÎ2 + cÁ

2k≠6 + cÁ
≠52+2d+20k≠2dk

6≠d

4
dt.
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We observe that ≠52+2d+20k≠2dk

6≠d
= 2k ≠ 6 + 42(k≠2)+d

6≠d
> 2k ≠ 6 and thus

T2 Æ
31

2Á
2Î�vÎ2 + cÁ

2k≠6

4
dt.

Combining the estimates of T1, . . . , T4 with (4.5), we derive

dÎÒvÎ2 = ≠ Á
2Î�vÎ2

dt + O(Á2k≠6 + Á
≠3

÷
2

0 + Á
≠2

÷0 + ÷2) dt

+ ÈO(Á≠1ÎÒvÎ), dW Í + ÈO(ÎÒvÎ), dW Í,
(4.6)

where we utilized Young’s inequality for T3. For the final step, we use that by an argu-
ment based on Poincaré’s inequality ÎÒvÎ Æ c0Î�vÎ, and derive the following estimate
of dÎÒvÎ2.

Lemma 4.17. If k > 4+d/2 and t Æ ·Á, with ·Á given by Definition 4.16, the following relation
holds true:

dÎÒvÎ2 + c0Á
2ÎÒvÎ2

dt = �Á dt + ÈZÁ, dW Í + È�Á, dÒW Í, (4.7)

where
�Á = O(Á2k≠6 + Á

≠3
÷

2

0 + Á
≠2

÷0 + ÷2) (4.8)

and
ÎZÁÎ2

L2 = O(Á≠2ÎÒvÎ2), Î�ÁÎ2

L2 = O(ÎÒvÎ2). (4.9)

For establishing long-time stability in H
1, we follow Section 3.4 of [ABBK15]. Under the

assumptions of Lemma 4.17, we estimate for any p > 2 the p-th moment of ÎÒvÎ2

L2 (see also
the proof of Theorem 2.14). By Itô calculus we obtain

dÎÒvÎ2p

L2 = pÎvÎ2p≠2

L2 dÎÒvÎ2

L2 + p(p ≠ 1)ÎÒvÎ2p≠4

L2

Ë
dÎÒvÎ2

L2

È
2

.

Let us briefly comment on the estimate of the Itô correction term. Relation (4.7) implies that
Ë
dÎÒvÎ2

L2

È
2

= ÈZÁ, QZÁÍ dt + È�Á, �Q�ÁÍ dt + 2ÈZÁ, dW ÍÈ�Á, dÒW Í, (4.10)

and by series expansion, we see that

ÈZÁ, dW ÍÈ�Á, dÒW Í =
ÿ

kœN
–

2

kÈZÁ, ekÍÈ�Á, ÒekÍ dt

Æ
ÿ

kœN
–

2

kÎekÎÎÒekÎÎZÁÎÎ�ÁÎ dt Æ ÎZÁÎÎ�ÁÎÔ
÷0÷2 Æ ÎZÁÎ2

÷0 + Î�ÁÎ2
÷2.

Therefore, by the Cauchy–Schwarz inequality, we derive
Ë
dÎÒvÎ2

L2

È
2

Æ C

Ë
ÎZÁÎ2

÷0 + Î�ÁÎ2
÷2

È
dt. (4.11)

By plugging (4.7), (4.11), and (4.9) into the relation (4.10), we derive the following lemma by
integrating.

Lemma 4.18. Under the assumptions of Lemma 4.17, the following estimate holds true for
any p > 1

EÎÒv(·Á)Î2p

L2 + cpÁ
2
Ap Æ ÎÒv(0)Î2p

L2 + C

Ë
�Á + Á

≠2
÷0 + ÷2

È
Ap≠1,

where the stopping time ·Á is given by Definition 4.16 and Ap is defined as

Ap := E
⁄

·Á

0

ÎÒv(s)Î2p

L2 ds.
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For the sake of simplicity, we define aÁ := CÁ
≠2

#
�Á + Á

≠2
÷0 + ÷2

$
and assume that the noise

strength is small enough such that aÁ < 1. Note that by the definition of �Á we thus also
need CÁ

2k≠8
< 1, which is true by assumption as k > 4 + d/2. Applying Lemma 4.18, we obtain

inductively

Ap Æ CÁ
≠2ÎÒv(0)Î2p

L2 + CaÁAp≠1 Æ CÁ
≠2ÎÒv(0)Î2p

L2 + CaÁÁ
≠2ÎÒv(0)Î2p≠2

L2 + a
2

ÁAp≠2

Æ . . . Æ CÁ
≠2

pÿ

i=2

a
p≠i

Á ÎÒv(0)Î2i

L2 + Ca
p≠1

Á A1.

Note that Lemma 4.17 implies for t Æ ·Á

E
⁄

t

0

ÎÒv(s)Î2

L2 ds Æ CÁ
≠2�ÁTÁ + Á

≠2ÎÒv(0)Î2

L2 Æ aÁTÁ + Á
≠2ÎÒv(0)Î2

L2 .

Therefore, if we assume that ÎÒv(0)Î2

L2 < aÁ, we derive for a constant C depending on p

Ap Æ CÁ
≠2

pÿ

i=1

a
p≠i

Á ÎÒv(0)Î2i

L2 + Ca
p

Á TÁ Æ C

Ë
Á

≠2 + TÁ

È
a

p

Á. (4.12)

Lemma 4.19. Let k > 4 + d/2 and ·Á be as defined in Definition 4.16. Also, assume that

�Á + Á
≠2

÷0 + ÷2 Æ CÁ
2k≠6 and ÎÒv(0)Î2

L2 Æ aÁ < 1.

Then, for any p > 1 it holds true that

EÎÒv(·Á)Î2p

L2 Æ CÁ
2

Ë
Á

≠2 + TÁ

È
a

p

Á.

Proof. Lemma 4.18 and (4.12) imply

EÎÒv(·Á)Î2p

L2 Æ ÎÒv(0)Î2p

L2 + C

Ë
�Á + Á

≠2
÷0 + ÷2

È
Ap≠1

= ÎÒv(0)Î2p

L2 + CÁ
2
aÁAp≠1

Æ ÎÒv(0)Î2p

L2 + CÁ
2
aÁ

Ë
Á

≠2 + TÁ

È
a

p≠1

Á

Æ Ca
p

Á + CÁ
2
TÁa

p

Á.

With the help of Lemma 4.19, we can finally prove stability.

Theorem 4.20 (H1-Stability).
For k > 4 + d/2 and some small Ÿ > 0, consider the exit time ·Á given by Definition 4.16, i.e.,

·Á = inf
Ó

t œ [0, TÁ · ·0] : Îv(t)ÎL2 > Á
k≠2 or ÎÒv(t)ÎL2 > Á

k≠4≠2Ÿ/d
Ô

,

where TÁ = Á
≠N for fixed large N > 0. Also, suppose that for some ‹ œ (0, 1)

Îv(0)ÎL2 Æ ‹Á
k≠2 and ÎÒv(0)ÎL2 Æ ‹Á

k≠4
.

In addition, assume for the squared noise strength that

÷0 Æ CÁ
2k≠2+Ÿ and ÷2 Æ CÁ

2k≠6+Ÿ
.

Then, the probability P(·Á < TÁ · ·0) is smaller than any power of Á, as Á tends to 0.

Proof. We have

P (·Á < TÁ · ·0) Æ P
1
Îv(·Á)ÎL2 > Á

k≠2
2

+ P
1
ÎÒv(·Á)ÎL2 > Á

k≠4≠2Ÿ/d
2

.
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With the L
2-result of Theorem 4.15, we find for any ¸ > 1 a constant C¸ > 0 such that

P
1
Îv(·Á)Î > Á

k≠2
2

Æ C¸Á
¸
.

Moreover, by Lemma 4.19 we derive with Chebychev’s inequality

P
1
ÎÒv(·Á)ÎL2 > Á

k≠4≠2Ÿ/d
2

Æ CÁ
≠2p(k≠4+2Ÿ/d) EÎÒv(·Á)Î2p

L2

Æ CÁ
≠2p(k≠4≠2Ÿ/d)

Á
2

Ë
Á

≠2 + TÁ

È
a

p

Á

= C

1
Á

≠2k+8+4Ÿ/d
aÁ

2
p

Ë
1 + Á

2
TÁ

È

= C

1
Á

≠2k+6+4Ÿ/d �Á

2
p

Ë
1 + Á

2
TÁ

È
.

With the definition (4.8) of �Á and the assumptions on the noise strength, we see that

Á
≠2k+6+4Ÿ/d �Á Æ CÁ

≠2k+6+4Ÿ/d(Á2k≠6 + Á
≠3

÷
2

0 + Á
≠2

÷0 + ÷2) Æ Á
4Ÿ/d

.

Now, choosing p large enough yields the result.

Due to the scaling of the radii in Theorem 4.20, we can finally rephrase the main stability result
in terms of the H

1
Á -norm, which is given by (4.4).

Corollary 4.21. Under the assumptions of Theorem 4.20 and for any su�ciently large C > ‹

and any N œ N, there exists a constant CN > 0 such that

P
1
Îv(t)ÎH1

Á
< CÁ

k≠3≠Ÿ ’t œ [0, Á
≠N ]

2
Ø 1 ≠ CN Á

N
.





CHAPTER 5

Multiple kinks for the Allen–Cahn equation in one space dimension

In this chapter, we study the stochastic Allen–Cahn equation (AC) together with its mass
conserving modification (mAC) posed on an one-dimensional domain and introduce an additive
spatially smooth and white in time noise ˆtW

Y
]

[
ˆtu = Á

2
uxx ≠ f(u) + ˆtW, 0 < x < 1, t > 0

ux = 0, x œ {0, 1}.
(AC)

Here, 0 < Á π 1 is a small parameter measuring the typical width of a phase transition,
and f = F

Õ is the derivative of a double well potential F . We assume that F œ C
3(R) is a

smooth, even potential satisfying

(S1) F (u) Ø 0 and F (u) = 0 if, and only if, u = ±1,

(S2) F
Õ has three zeros {0, ±1} and F

ÕÕ(0) < 0, F
ÕÕ(±1) > 0,

(S3) F is symmetric: F (u) = F (≠u) ’u Ø 0.

The standard example is F (u) = 1

4
(1 ≠ u

2)2 and thus f(u) = u
3 ≠ u. As before for the

simplicity of some arguments, we focus for the most part of this chapter on this standard quartic
potential, although the results remain valid for potentials satisfying the conditions (S1)–(S3). In
Section 5.6, we treat a more general class of nonlinearities given by polynomials of odd degree
with positive leading order term.

For the moment, let us assume that
s

1

0
Ẇ (t, x) dx = 0 for all t Ø 0, i.e., in a Fourier series

expansion there is no noise on the constant mode. In contrast to the Cahn–Hilliard equation,
(AC) does not preserve mass as

ˆt

⁄
1

0

u(t, x) dx = Á
2

⁄
1

0

uxx dx ≠
⁄

1

0

f(u) dx +
⁄

1

0

Ẇ (t, x) dx = ≠
⁄

1

0

f(u) dx.

Throughout our analysis, we will therefore separately consider the mass conserving Allen–Cahn
equation (mAC)

Y
_]

_[
ˆtu = Á

2
uxx ≠ f(u) +

⁄
1

0

f(u) dx + ˆtW, 0 < x < 1, t > 0

ux = 0, x œ {0, 1},

(mAC)

where we added the integral of f over the interval (0, 1) to guarantee the conservation of mass.
For the remainder of this chapter, we introduce the following notation. We denote the

standard inner product in L
2(0, 1) by È·, ·Í, i.e., Èf, gÍ =

s
1

0
f(x)g(x) dx, and the L

2-norm by Î ·Î.
Other scalar products and norms appearing in subsequent sections will be endowed with a
subindex. Moreover, we denote the Allen–Cahn operator by

L(Â) = Á
2
Âxx ≠ f(Â).

73
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As in our previous applications in higher space dimensions, we consider for a given ansatz function
u

h (defined later in Definition 5.5) the Taylor expansion of L around u
h

L(uh + Â) = L(uh) + Lh
Â + N h(Â),

where we define the linearization Lh of L at the ansatz function u
h and the remaining nonlinear

terms N h(v) by

Lh
Â := DL(uh)Â = Á

2
Âxx ≠ f

Õ(uh)Â and N h(Â) := f(uh) ≠ f(uh + Â) + f
Õ(uh)Â.

In the prototypical case of the quartic potential, this leads to Lh
Â = Á

2
Âxx + Â ≠ 3(uh)2

Â

and N h(Â) = ≠3u
h
Â

2 ≠ Â
3
.

In the case of the mass conserving Allen–Cahn equation, we have to assume that the Wiener
process W has mean zero. Furthermore, we need that solutions to both (AC) and (mAC) are
su�ciently smooth in space and hence, we need that the stochastic forcing ˆtW is su�ciently
smooth in space, too. In the remainder of this chapter, we will assume that W is given by a
Q-Wiener process satisfying the following regularity properties.

Assumption 5.1 (Regularity of the Wiener process W ).
Let W be a Q-Wiener process in the underlying Hilbert space L

2(�), Q a symmetric operator
and (ek)kœN an orthonormal basis with corresponding eigenvalues –

2

k
such that

Qek = –
2

kek and W (t) =
ÿ

kœN
–k—k(t)ek,

for a sequence of independent real-valued standard Brownian motions {—k(t)}
kœN.

We assume that the Q-Wiener process W satisfies

traceL2(Q) =
ÿ

kœN
–

2

k =: ÷0 < Œ.

Moreover, in the case of the mass conserving Allen–Cahn equation (mAC), we suppose that W

takes its values in L
2
0
(�), that is,

⁄
1

0

W (t, x) dx = 0 for all t Ø 0.

Note that our results will thus depend on the squared noise strength ÷0, which also depends on the
parameter Á > 0. The exact size of ÷0 will be fixed in subsequent sections.

5.1 Construction of the slow manifold
In this section, we construct the fundamental building block for our analysis, the slow

manifolds M and Mµ. Our construction of the slow manifolds is di�erent to [CP89], which is
the deterministic case. Opposed to this work, we do not introduce a cut-o� function to glue
together the profiles connecting the stable phases ±1. With this cut-o� function, the authors
took extra care of the exponentially small error away from the interface positions, which is
crucial as the motion of the kinks is dominated by exponentially small terms. In our stochastic
case, however, the (polynomial in Á) noise strength dominates and hence, we are not concerned
with these exponentially small terms. The main idea in our construction goes as follows:

We start with a stationary solution U to (AC) on the whole line R, centered at 0 and
connecting the stable phases ≠1 and +1 (Definition 5.2). Using the exponential decay of U

(Proposition 5.3), we introduce a rescaled version in the domain [0, 1] in order to construct
an ansatz function u

h, which jumps from ±1 to û1 in an O(Á)-neighborhood of the zeros hi

(Definition 5.5).
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Throughout our analysis, we fix the number N + 1 of transitions. The presented results hold
up to times, where the distance between two neighboring interfaces gets too small and we thus
cannot exclude the possibility of a collapse of two interfaces. This behavior of the stochastic
equation was not studied in full detail yet. In the deterministic case, we refer to the nice work
by X. Chen, [Che04]. For some ideas in the stochastic case, see the doctoral thesis of Weber
[Web14]. Essentially, after an annihilation the number of transitions is reduced to N ≠ 1 and
we can restart our analysis on a lower-dimensional slow manifold.

Definition 5.2 (The heteroclinic).
Let U be the unique, increasing solution to

U
ÕÕ ≠ f(U) = 0, U(0) = 0, lim

xæ±Œ
U(x) = ±1. (5.1)

In the prototypical case f(u) = u
3 ≠ u, we have the explicit solution U(x) = tanh( xÔ

2
).

The function U is the heteroclinic of the ODE connecting the stable points ≠1 and +1. For a
later discussion of the spectrum of the linearized Allen–Cahn operator, we need some relations
between the heteroclinic U and the potential F . We observe that if U is a solution to (5.1),
then

ˆx

A
U

2
x

2 ≠ F (U)
B

= Ux

!
Uxx ≠ F

Õ(U)
"

= 0.

From the boundary condition U(0) = 0, we conclude that solving equation (5.1) is equivalent
to solving the first-order ODE

Ux =
Ò

2F (U), U(0) = 0, lim
xæ±Œ

U(x) = ±1. (5.2)

By the assumptions on the potential F , we see that
Ô

F is C
1 and hence, the solution to (5.2)

is unique. Moreover, we observe that all derivatives of U can be expressed as a function of U .
For instance, we have U

ÕÕ = F
Õ(U), U

(3) = F
ÕÕ(U)


2F (U), and so on. Also note that, due

to the symmetry of F , the mirrored function ≠U solves the same di�erential equation, but
transits from U(≠Œ) = +1 to U(+Œ) = ≠1. For some fine properties of U , we refer to the
work of Carr and Pego [CP89], which is based on [CGS84]. Crucial for the construction of a
slow manifold (cf. Definition 5.8) is that the heteroclinic U together with its derivatives decay
exponentially fast. The following proposition can be shown via phase plane analysis. For a
proof we refer to [AFS96].

Proposition 5.3 (Exponential decay of U).
Let U(x), x œ R, be the heteroclinic defined by (5.1). There exist constants c, C > 0 such that
for x Ø 0

|1 û U(±x)| Æ Ce
≠cx

, |U Õ(±x)| Æ Cce
≠cx

, and |U ÕÕ(±x)| Æ Cc
2
e

≠cx
.

For › œ R, we define a translated and rescaled version of U by

U(x; ›, ±1) := ± U

3
x ≠ ›

Á

4
. (5.3)

One easily verifies that U(· ; ›, ±1) is a solution to the rescaled ODE Á
2

Uxx ≠ f(U) = 0,
centered at U(›; ›, ±1) = 0 and going from û1 to ±1. Due to the exponential decay of the
heteroclinic, the rescaled profile U(x ; ›, ±1) is exponentially close to the states ±1, if x is at
least O(Á1≠)-away from the zero ›.



76 5. Multiple kinks for the Allen–Cahn equation in one space dimension

Lemma 5.4. Let Ÿ > 0 and 0 < Á < Á0. Then, uniformly for x > › + Á
1≠Ÿ,

U(x; ›, ±1) = ±1 + O(exp)

and, uniformly for x < › ≠ Á
1≠Ÿ,

U(x; ›, ±1) = û1 + O(exp).

Similar exponential estimates hold for the derivatives of U(· ; ›, ±1).

Proof. By Proposition 5.3 and monotonicity of U , we obtain for x > › + Á
1≠Ÿ:

U(x; ›, +1) > U(Á≠Ÿ) Ø 1 ≠ C exp(≠cÁ
≠Ÿ).

The other cases work in the same way.

Motivated by this lemma, we can construct for h œ (0, 1)N+1 with h1 < h2 < . . . < hN+1

profiles u
h : [0, 1] æ R such that u

h jumps from ±1 to û1 in a small neighborhood around hi of
size O(Á). Locally around hi, we assume that

u
h(x) ¥ U(x ; hi, (≠1)i+1).

If the distance between two neighboring interfaces and the distance to the boundary is bounded
from below by Á

1≠Ÿ for some small Ÿ > 0, we assured in Lemma 5.4 that each profile U(x; hi, ±1)
reaches ±1 up to an exponentially small error. Thus, we can essentially define u

h as the sum of
profiles given by (5.3). This leads to the following definition.

Definition 5.5 (The profile u
h).

Fixing fl = Á
Ÿ for Ÿ > 0 very small, we define the set �fl of admissible interface positions in the

interval (0, 1) by

�fl :=
;

h œ RN+1 : 0 < h1 < . . . < hN+1 < 1, max
j=0....,N+1

|hj+1 ≠ hj | > Á/fl

<
,

where h0 := ≠h1 and hN+2 := 2 ≠ hN+1. For x œ (0, 1) and h œ �fl, we define

u
h(x) :=

N+1ÿ

j=1

U

1
x; hj , (≠1)j+1

2
+ —N (x),

where the normalization function —N (x) satisfies —N (x) = (≠1)
N ≠1

2
+ O(exp) (cf. Remark 5.6).

Note that the positions h0 and hN+2 were introduced to bound the distance of the interface
positions from the boundary 0 and 1. Moreover, it is straightforward to check that the set �fl is
convex.

Remark 5.6. Let us comment on why we needed to add the normalization term —N (x) in the
definition of u

h. Due to symmetry, we can assume that the multi-kink profile starts in the
phase u

h(0) = ≠1. Depending on the parity of the number of transitions, we have to add a
constant to assure this. As hj > Á/fl, we obtain by Lemma 5.4 in x = 0

N+1ÿ

j=1

U

1
0; hj , (≠1)j+1

2
=

N+1ÿ

j=1

(≠1)j + O(exp) = ≠1 + 1 ≠ (≠1)N

2 + O(exp).

Therefore, we have to add the correction 1

2
((≠1)N ≠1)+O(exp) to obtain u

h(0) = ≠1. Moreover,
we need to assure that u

h satisfies Neumann boundary conditions.
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Figure 5.1.: The profile u
h

By Lemma 5.4, the derivative of U(x; hj , ±1) is exponentially small at x œ {0, 1}. Hence, in
order to correct the boundary condition, we additionally have to add a function of order O(exp).

Before we finally define the slow manifolds for the (mass conserving) Allen–Cahn equation (Defini-
tion 5.8), we collect some properties of the multi-kink configurations u

h.

Proposition 5.7 (Properties of u
h).

The function u
h is an almost stationary solution to (AC) in the sense that it fails the equation

by an exponentially small error, that is,

Á
2
u

h

xx ≠ f(uh) = O(exp), u
h

x(0) , u
h

x(1) = 0. (5.4)

For i, j œ {1, . . . , N + 1}, we denote the partial derivatives of u
h with respect to the h–variables

by u
h

i
= ˆhiu

h, u
h

ij
= ˆhiˆhj u

h, and third derivatives accordingly. We have

u
h

i (x) = U
Õ(x; hi, (≠1)i+1) + O(exp) = (≠1)i

Á
≠1

U
Õ
3

x ≠ hi

Á

4
+ O(exp). (5.5)

Furthermore, the following estimates hold true in L
2(0, 1):

Èuh

i , u
h

j Í = X Á
≠1

”ij + O(exp), Îu
h

ijÎ = O(Á≠3/2)”ij + O(exp),
Èuh

kk, u
h

kÍ = O(exp), and Îu
h

kkkÎ = O(Á≠5/2),

where X :=
s
R U

Õ(y)2 dy. In L
Œ(0, 1), we have

Îu
hÎŒ = O(1) and Îu

h

i ÎŒ = O(Á≠1).

Proof. By Lemma 5.4 we derive for |x ≠ hi| < Á/fl

u
h(x) = U(x ; hi, (≠1)i+1) +

ÿ

j ”=i

U(x ; hi, (≠1)j+1) + (≠1)
N ≠1

2
+ O(exp)

= U(x ; hi, (≠1)i+1) +
ÿ

j<i

(≠1)j+1 +
ÿ

j>i

(≠1)j + (≠1)
N ≠1

2
+ O(exp)

= U(x ; hi, (≠1)i+1) + 1 + (≠1)
i≠1

2
+ 1≠(≠1)

N

2
+ (≠1)

i+1≠1

2
+ (≠1)

N ≠1

2
+ O(exp)

= U(x ; hi, (≠1)i+1) + O(exp).
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As U(· ; hi, (≠1)i+1) solves Á
2
U

ÕÕ ≠ f(U) = 0, we verified (5.4) locally around each hi.
Lemma 5.4 implies that O(Á1≠)-away from the interface

u
h

xx = O(exp) and f(uh) = f(±1 + O(exp)) = O(exp).

Equation (5.5) follows directly from Definition 5.5, (5.3) and Lemma 5.4. By Lemma 5.4, we
also see that U

Õ(x ; hi, (≠1)i+1) is exponentially small for |x ≠ hi| > Á/fl and thus we obtain
Èuh

i
, u

h

j
Í = O(exp) for i ”= j. Moreover, the same argument implies that higher derivatives with

respect to di�erent positions hi and hj are exponentially small. The L
Œ-bounds follow directly

from the definition of u
h and (5.5). The L

2-norm of u
h

k
is given by

Îu
h

kÎ2 = Á
≠2

⁄
1

0

U
Õ
3

x ≠ hk

Á

42

dx + O(exp)

= Á
≠1

⁄
(1≠hk)/Á

≠hk/Á

U
Õ(y)2 dy + O(exp) = Á

≠1

⁄

R
U

Õ(y)2 dy + O(exp).

In the last step, we used that h œ �fl and |U(x)| Æ ce
≠c|x| by Proposition 5.3. Thus, we obtain

⁄ ≠hk/Á

≠Œ
U

Õ(y)2 dy Æ
⁄ ≠1/fl

≠Œ
U

Õ(y)2 dy Æ c

⁄ ≠1/fl

≠Œ
e

≠c|y| dy = O(exp),

and with the same argument
⁄ Œ

(1≠hk)/Á

U
Õ(y)2 dy = O(exp).

Analogously, the n-th derivative with respect to hk is then estimated by

Îˆ
n

hk
u

hÎ2 = Á
≠2n

⁄
1

0

U
(n)

3
x ≠ hk

Á

42

dx + O(exp)

= Á
≠2n+1

⁄

R
U

(n)(y)2 dy + O(exp) = O(Á≠2n+1).

The mixed term can be estimated as follows:

Èuh

kk, u
h

kÍ = Á
≠3

⁄
1

0

U
ÕÕ

3
x ≠ hk

Á

4
U

Õ
3

x ≠ hk

Á

4
dx + O(exp)

= Á
≠2

⁄
(1≠hk)/Á

≠hk/Á

U
ÕÕ(x)U Õ(x) dx + O(exp)

= 1
2Á

≠2

C

U
Õ
31 ≠ hk

Á

42

≠ U
Õ
3

≠hk

Á

42
D

+ O(exp) = O(exp).

We finally introduce approximate slow manifolds for the stochastic (mass conserving) Allen–
Cahn equation. The second manifold will play an important role in the study of the mass
conserving Allen–Cahn equation (mAC), while the first one will be used for the analysis of (AC)
without this constraint.

Definition 5.8 (Slow manifolds).
For �fl and u

h given by Definition 5.5, we define the approximate slow manifold by

M :=
Ó

u
h : h œ �fl

Ô
.

Fixing a mass µ œ (≠1, 1), we define the mass conserving approximate manifold by

Mµ :=
;

u
h œ M :

⁄
1

0

u
h(x) dx = µ

<
.
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Note that we have a global chart for M. Later, we will see that this also holds true for Mµ, as
it is the manifold M intersected by a vector space of codimension 1 (see Lemma 5.9).

We have to compute the tangent vectors for M and Mµ, since we need them later in
Definition 5.17 to define a coordinate system around the slow manifolds (see also Definition 2.2
in the general framework). We immediately see that the tangent space of the slow manifold M
at u

h with h œ �fl is given by

TuhM = span
Ó

u
h

i : i = 1 , . . . , N + 1
Ô

.

With Proposition 5.7 one checks readily that the tangent vectors u
h

i
have essentially (up

to an exponentially small error) disjoint support and therefore, TuhM is non-degenerate
and has full dimension N + 1. For the second manifold Mµ we will see in the following
lemma that, due to mass conservation, it is possible to reduce the parameter space �fl by one
dimension.

Lemma 5.9. There is a smooth map hN+1 : RN æ R such that

u
h œ Mµ ≈∆ h = (›, hN+1(›)) œ �fl with › := (h1, . . . , hN ).

Moreover, the partial derivatives of hN+1 with respect to hi, i = 1, . . . , N, are given by
ˆhN+1

ˆhi

= (≠1)N≠i + O(exp).

Proof. In the mass conserving case, the set of admissible positions in �fl is the zero set of the
smooth map �fl – h ‘æ

s
1

0
u

h(x) dx ≠ µ. Proposition 5.7 implies that

ˆhN+1

⁄
1

0

u
h(x) dx =

⁄
1

0

u
h

N+1(x) dx = O(exp) + (≠1)N+1
Á

≠1

⁄
1

0

U
Õ
3

x ≠ hN+1

Á

4
dx

= O(exp) + (≠1)N+1
Ë
U

1
1 ; hN+1, (≠1)N

2
≠ U

1
0 ; hN+1, (≠1)N

2È

= 2(≠1)N+1 + O(exp).

In the last step, we used that h lies in �fl and thus by Lemma 5.4

U

1
1 ; hN+1, (≠1)N

2
= 1 + O(exp) and U

1
0 ; hN+1, (≠1)N

2
= ≠1 + O(exp).

By the implicit function theorem, we can then write hN+1 as a smooth function of the first N

interface positions (h1, . . . , hN ). We compute

0 = ˆhiµ =
⁄

1

0

u
h

i dx + ˆhN+1

ˆhi

⁄
1

0

u
h

N+1 dx = 2(≠1)i + O(exp) + 2(≠1)N+1
ˆhN+1

ˆhi

,

and therefore, the partial derivative of hN+1 with respect to hi is given by
ˆhN+1

ˆhi

= (≠1)N≠i + O(exp).

Motivated by Lemma 5.9, we define

› := (›1, . . . , ›N ) = (h1, . . . , hN )

and consider hN+1 = hN+1(›) as a function of ›. We can then write

Mµ =
Ó

u
h : h œ Afl

Ô
with Afl :=

Ó
(›, hN+1(›)) œ �fl : › œ [0, 1]N

Ô
. (5.6)

In the sequel, we denote the elements of Mµ by u
›. As before, we denote the partial derivatives

of u
› with respect to ›i by u

›

i
, and higher derivatives accordingly.
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The tangent space of the mass conserving manifold Mµ at u
› is given by

Tu›Mµ = span
Ó

u
›

i
= u

h

i + (≠1)N≠i
u

h

N+1 + O(exp) : i = 1, . . . , N

Ô
.

Here, we used that by the chain rule and Lemma 5.9
ˆu

›

ˆ›i

= ˆu
h

ˆhi

+ ˆhN+1

ˆhi

· ˆu
h

ˆhN+1

= ˆu
h

ˆhi

+ (≠1)N≠i
ˆu

h

ˆhN+1

+ O(exp).

This is a linear combination of tangent vectors of M. Since the functions u
h

i
span an (N + 1)-

dimensional space and the transformation matrix converting these functions into {u
›

1
, . . . , u

›

N
}

has full rank N , we immediately obtain that the tangent space TuhMµ is non-degenerate as
well.

5.2 The linearized Allen–Cahn operator
Important for the stability of the slow manifolds are spectral estimates concerning the lineariza-
tion of the Allen–Cahn operator at a multi-kink configuration. In more detail, for v orthogonal
to the tangent space of M(µ), we aim to bound the quadratic form ÈLh

v, vÍ (compare to As-
sumption 2.1). First, we consider the singular Sturm–Liouville problem

Ly = y
ÕÕ ≠ f

Õ(U)y = ≠⁄y (5.7)

in L
2(R), where U is the heteroclinic solution defined by (5.1). Note that the ODE (5.1) directly

implies that U
Õ is an eigenfunction of L corresponding to the eigenvalue zero. As U

Õ
> 0, we

also know that zero must be the largest eigenvalue. The following description of the spectral
behavior of L orthogonal to U

Õ is taken from [OR07], Proposition 3.2.
Lemma 5.10 (Spectral gap of the Allen–Cahn operator, [OR07], Proposition 3.2).
There exists a constant ⁄0 > 0 such that if v œ H

1(R) satisfies

(i) v(0) = 0 or (ii)
⁄

R
v(s)U Õ(s) ds = 0,

then it holds true that

ÈLv, vÍL2(R) =
⁄

R

Ë
≠v

Õ(s)2 ≠ f
Õ(U(s))v(s)2

È
ds Æ ≠⁄0ÎvÎ2

L2(R)
.

In case of the toy problem f(u) = u
3 ≠ u, we have ⁄0 = 3/2 (cf. [AFS96]). After some

lengthy calculation, one can show that in this case U
Ô

U Õ serves as an eigenfunction of (5.7)
corresponding to the eigenvalue ≠⁄0. The eigenfunction U

Ô
U Õ has exactly one zero and

hence it corresponds to the second largest eigenvalue. As lim|x|æŒ(1 ≠ 3U
2) = ≠2, we also

know by a standard argument for Schrödinger operators that the essential spectrum lies in
the interval (≠Œ, ≠2]. For more details on the spectrum of Schrödinger operators, we refer
to [HS96]. The standard arguments for Sturm–Liouville problems can be found in [Wal98].

For the study of the spectral gap of the linearized Allen–Cahn operator in Theorem 5.14,
we need to ensure that the constant ⁄0 is bounded by the supremum of the function f

Õ over the
interval (≠1, 1).
Assumption 5.11.

Let ⁄0 be the constant from Lemma 5.10. We assume that ⁄0 < supxœ(≠1,1) f
Õ(x).

As mentioned, the function v = U
Ô

U Õ serves as an eigenfunction to the quartic potential F

corresponding to ⁄0 = 3/2 < 2 = supxœ(≠1,1) f
Õ(x). By evaluating the quadratic form ÈLv, vÍ in

the general case, one gets a su�cient condition for Assumption 5.11.



5.2. The linearized Allen–Cahn operator 81

Lemma 5.12. Let F be a smooth even double well satisfying the conditions (S1)-(S3). Moreover,
suppose that ⁄

1

≠1

3
2s

2
F

ÕÕ(s) + 1
8

s
2
F

Õ(s)2

F (s) ds <
2
3 sup

xœ(≠1,1)

F
ÕÕ(x).

Then, Assumption 5.11 holds true.

Proof. Let v := U
Ô

U , where U is defined by (5.1). With the relations U
ÕÕ(x) = F

Õ(U(x))
and U

Õ(x) =


2F (U(x)) (see the comment after Definition 5.3), one computes that
⁄

R
v

2

x + F
ÕÕ(U)v2 dx =

⁄

R
≠UF

ÕÕ(U)U Õ + F
ÕÕ(U)U2

U
Õ + U

2
F

Õ(U)2

8F (U) U
Õ dx

=
⁄

1

≠1

≠sF
ÕÕ(s) + F

ÕÕ(s)s2 + s
2
F

Õ(s)2

8F (s) ds =
⁄

1

≠1

3
2s

2
F

ÕÕ(s) + 1
8

s
2
F

Õ(s)2

F (s) ds.

(5.8)

In the last step, we utilized that the potential F , and thus F
ÕÕ, is a symmetric function.

Therefore, the integral of the antisymmetric function sF
ÕÕ(s) vanishes. Since v(0) = 0, we have

by Lemma 5.10
⁄

R
v

2

x + F
ÕÕ(U)v2 dx Ø ⁄0ÎvÎ2 = ⁄0

⁄

R
U

2
U

Õ dx = ⁄0

⁄
1

≠1

x
2 dx = 2

3⁄0. (5.9)

Combining (5.8) and (5.9) immediately yields the assertion of the lemma.

Instead of testing with the function U
Ô

U Õ, we can evaluate the eigenvalue problem (5.7) in
terms of general functions having exactly one zero at x = 0. If existent, we can compute
the second eigenvalue explicitly. This will provide us with a necessary condition for Assump-
tion 5.11.

Lemma 5.13. Assume that the eigenvalue problem (5.7) possesses a second eigenvalue ⁄0 > 0.
Then, ⁄0 is given by

⁄0 = 1
2f

Õ(±1) + 1
8 lim

xæ±1

f(x)2

F (x) .

In particular, Assumption 5.11 can only hold true if

lim
xæ±1

f(x)2

F (x) < 4f
Õ(±1).

Proof. Let v(x) be the eigenfunction associated to the eigenvalue ≠⁄0. Since we can always
assume that v attains its only zero at x = 0, we can represent v as v = g(U)

Ô
U Õ for some

smooth, nonnegative function g satisfying g(0) = 0. Plugging v into (5.7), we obtain

⁄0v = Lv = g
ÕÕ(U)(U Õ)5/2 + 2g

Õ(U)(U Õ)1/2
U

ÕÕ ≠ 1
4g(U)(U Õ)≠3/2(U ÕÕ)2

+ 1
2g(U)(U Õ)≠1/2

U
ÕÕÕ ≠ f

Õ(U)g(U)(U Õ)1/2
.

Multiplying this equation by (U Õ)≠1/2 yields

⁄0g(U) = g
ÕÕ(U)(U Õ)2 + 2g

Õ(U)U ÕÕ ≠ 1
4g(U)

3
U

ÕÕ

U Õ

42

+ 1
2g(U)U

ÕÕÕ

U Õ ≠ g(U)f Õ(U)

= 2g
ÕÕ(U)F (U) + 2g

Õ(U)f(U) ≠ 1
8g(U)f(U)2

F (U) ≠ 1
2g(U)f Õ(U).

(5.10)
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In the last step, we utilized the relations U
Õ =


2F (U), U

ÕÕ = f(U), and U
ÕÕÕ = f

Õ(U)U Õ.
By assumptions (S1) and (S2) on the potential F , we observe that F (±1) = f(±1) = 0. Hence,
in the limit x æ ±Œ, we derive from (5.10)

⁄0 g(±1) = ≠1
8g(±1) lim

xæ±1

f(x)2

F (x) ≠ 1
2g(±1)f Õ(±1).

Dividing by g(±1) ”= 0 concludes the proof.

With the spectral gap of Lemma 5.10 at hand, we consider the linearization of the Allen–Cahn
operator at a multi-kink state u

h œ M. The following theorem gives a bound on the quadratic
form orthogonal to the tangent space ThM. Essentially, up to exponentially small terms, the
support of the tangent vectors u

h

i
is concentrated in a small neighborhood of width Á around

the zero hi. Hence, it is su�cient to study the quadratic form locally around each hi. After
rescaling, we essentially arrive at the setting of Theorem 5.10 and the spectral gap of order
O(1) is transferred to our problem.

Theorem 5.14 (Spectral gap for (AC)).
Let u

h œ M and suppose that Assumption 5.11 holds true. Moreover, assume that v ‹ u
h

i
for

any i = 1, . . . , N + 1. Then, for ⁄0 given in Lemma 5.10, we have

ÈLh
v, vÍ Æ

3
≠1

2⁄0 + O(fl2)
4

ÎvÎ2
.

Proof. Since the minimal distance between the interfaces hi is bounded from below by Á/fl and
the heteroclinic solution U goes exponentially fast to ±1 (Proposition 5.3), we find 0 < ”Á <

1

2
Á/fl

such that u
h = ±1 + O(exp) on R := [0, 1] \

t
B”Á(hi). On the set R we have

ÈLh
v, vÍL2(R) = ≠Á

2

⁄

R
v

2

x ≠
⁄

R
f

Õ(±1)v2 + O(exp)ÎvÎ2

L2(R)

Æ ≠f
Õ(±1)ÎvÎ2

L2(R)
+ O(exp)ÎvÎ2

L2(R)
,

which is strictly negative as f
Õ(±1) > 0.

It remains to control the quadratic form on each B”Á(hi) and, without loss of generality, we
may shift it to hi = 0. Note that u

h(x) = U(x≠hi
Á

) + O(exp) on the set B”Á(hi) by Proposition 5.7.
Defining ṽ(x) := v(Áx), we obtain for hi = 0

ÈLh
v, vÍL2(B”Á ) = ≠Á

2

⁄
”Á

≠”Á

v
Õ(x)2 dx ≠

⁄
”Á

≠”Á

f
Õ(U(x

Á
))v(x)2 dx + O(exp)ÎvÎ2

L2(B”Á )

= Á

C

≠Á
2

⁄
”Á/Á

≠”Á/Á

v
Õ(Áy)2 dy ≠

⁄
”Á/Á

≠”Á/Á

f
Õ(U(y))v(Áy)2 dy

D

+ O(exp)ÎvÎ2

L2(B”Á )

= Á

C

≠
⁄

”Á/Á

≠”Á/Á

ṽ
Õ(y)2 dy ≠

⁄
”Á/Á

≠”Á/Á

f
Õ(U(y))ṽ(y)2 dy

D

+ O(exp)ÎvÎ2

L2(B”Á )

= ÁÈLṽ, ṽÍL2(B”Á/Á) + O(exp)ÎvÎ2

L2(B”Á )
. (5.11)

Here, L denotes the singular Sturm–Liouville operator defined by (5.7). After rescaling, we
essentially have to bound the quadratic form ÈLṽ, ṽÍ on the interval (≠”Á/Á, ”Á/Á) =: DÁ, which
is a set of length of order O(fl≠1) = O(Á≠Ÿ). To compare with the spectrum on the whole
line, we define a cut-o� function Ï œ C

Œ
c (DÁ) such that 0 Æ Ï Æ 1 and Ï © 1 on {f

Õ(U) < C}
for some ⁄0 < C < sup≠1<x<1 f

Õ(x). This is the only point where we need Assumption 5.11.
As |DÁ| = O(fl≠1), we can also assume that uniformly |Ïx| Æ Cfl and |Ïxx| Æ Cfl

2.
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We obtain

ÈLṽ,ṽÍL2(DÁ) = ≠
⁄

DÁ

ṽ
2

x ≠
⁄

DÁ

f
Õ(U) ṽ

2

= ≠
⁄

DÁ

ṽ
2

xÏ
2 ≠

⁄

DÁ

(1 ≠ Ï
2)ṽ2

x ≠
⁄

DÁ

Ï
2
f

Õ(U)ṽ2 ≠
⁄

DÁ

(1 ≠ Ï
2)f Õ(U)ṽ2

Æ ≠
⁄

DÁ

ṽ
2

xÏ
2 ≠

⁄

DÁ

Ï
2
f

Õ(U)ṽ2 ≠ C

⁄

DÁ

(1 ≠ Ï
2)ṽ2

= ≠
⁄

DÁ

((Ïṽ)x)2 +
⁄

DÁ

f
Õ(U)(Ïṽ)2 + 2

⁄

DÁ

ÏxṽxÏṽ +
⁄

DÁ

ṽ
2
Ï

2

x ≠ C

⁄

DÁ

(1 ≠ Ï
2)ṽ2

= ÈLÏṽ, ÏṽÍL2(R) ≠
⁄

DÁ

ṽ
2(ÏÏx)x +

⁄

DÁ

ṽ
2
Ï

2

x ≠ C

⁄

DÁ

(1 ≠ Ï
2)ṽ2

Æ ≠1
2⁄0

⁄

DÁ

Ï
2
ṽ

2 ≠
⁄

DÁ

ṽ
2(ÏÏx)x +

⁄

DÁ

ṽ
2
Ï

2

x ≠ C

⁄

DÁ

(1 ≠ Ï
2)ṽ2 + O(exp)

Æ
3

≠1
2⁄0 + O(fl2)

4 ⁄

DÁ

ṽ
2 ≠ (C ≠ ⁄0)

⁄

DÁ

(1 ≠ Ï
2)ṽ2 + O(exp)

Æ
3

≠1
2⁄0 + O(fl2)

4
ÎṽÎ2

L2(DÁ)
+ O(exp). (5.12)

Note that the exponentially small terms arise from the fact that Ïṽ is not exactly orthogonal
to U

Õ, but the error is exponentially small as
⁄

DÁ

(Ïṽ) · U
Õ =

⁄

DÁ

ṽU
Õ ≠

⁄

DÁ

(1 ≠ Ï)ṽU
Õ

= Á
≠1

⁄
”Á

≠”Á

v(x)U Õ(x/Á) ≠
⁄

DÁ

(1 ≠ Ï)ṽU
Õ = O(exp) + O(exp)

⁄

DÁ

(1 ≠ Ï)ṽ.

Thus, by Lemma 2.10 we have

ÈLÏṽ, ÏṽÍ = ≠
⁄

DÁ

((Ïṽ)x)2 +
⁄

DÁ

f
Õ(U)(Ïṽ)2 Æ ≠1

2⁄0

⁄

DÁ

Ï
2
ṽ

2 + O(exp).

Now, we observe that

ÎṽÎ2

L2(DÁ)
=

⁄

DÁ

v(Áx)2 dx = Á
≠1

⁄

B”Á

v(y)2 dy = Á
≠1ÎvÎ2

L2(B”Á )
,

and therefore, combining (5.11) and (5.12) yields

ÈLh
v, vÍL2(B”Á ) = ÁÈLṽ, ṽÍL2(B”Á/Á) + O(exp)ÎvÎ2

L2(B”Á )

Æ Á

3
≠1

2⁄0 + O(fl2)
4

ÎṽÎ2

L2(DÁ)
+ O(exp)ÎvÎ2

L2(B”Á )

=
3

≠1
2⁄0 + O(fl2)

4
ÎvÎ2

L2(B”Á )
+ O(exp)ÎvÎ2

L2(B”Á )
.

As a next step, we analyze the spectral gap in the mass conserving case. For this purpose, we
denote by P be the projection of L

2 onto the linear subspace L
2
0

= {f œ L
2 :

s
1

0
f(x) dx = 0}.

Motivated by
ÈPLh

Pv, vÍL2 = ÈLh
Pv, PvÍL2 = ÈLh

v, vÍ
L

2
0

for v œ L
2

0,

we observe that it is su�cient to consider the same operator Lh as for the classical Allen–Cahn
equation, but restricted to the subspace L

2
0

of L
2 containing functions with mean zero. This

constraint leads to a subspace of codimension 1,

L
2

0 =
Ó

v œ L
2 : Èv, 1Í = 0

Ô
= 1‹ = PL

2
,
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and therefore, we need to control the quadratic form on this subspace. First, we will formulate
the problem in general and only after that consider the special case for the mass conserving
Allen–Cahn equation. The following theorem deals with establishing a spectral gap on a subspace
of codimension 1. We show that, under a suitable angle condition, the Rayleigh quotient can be
bounded from above. This yields a bound on the spectral gap.

Theorem 5.15 (Spectral gap on subspaces).
Consider a self-adjoint operator L on a Hilbert space H with an orthonormal basis of eigenfunc-
tions Lfk = ⁄kfk and assume that

” Ø ⁄1, . . . , ⁄N+1 Ø ≠” > ≠⁄ Ø ⁄N+2 Ø . . . (5.13)

for some 0 < ” < ⁄. For u œ H, we define

u
‹ :=

Ó
f œ H : Èf, uÍ = 0

Ô
and Fu := 1

ÈfN+1, uÍ

Nÿ

i=1

Èfi, uÍfi + fN+1.

Then,

i) there exists an N -dimensional subspace U of u
‹ such that

|ÈLh, hÍ| Æ ”ÎhÎ2 ’h œ U .

ii) the condition |cos <)(Fu, u)| Ø


”/⁄ implies that for h ‹ u, f1, . . . , fN+1

ÈLh, hÍ
ÎhÎ2

Æ
” ≠ ⁄ cos2

<)(Fu, u)
cos2 <)(Fu, u) + 1 .

Proof. First, we construct an N -dimensional subspace corresponding to the small eigenvalues
in the interval [≠”, ”]. For i = 1, . . . , N define

gi := fi + cifN+1 with ci := ≠ Èfi, uÍ
ÈfN+1, uÍ . (5.14)

Obviously, we have g1, . . . , gN œ span{f1, . . . , fN+1} and g1, . . . , gN ‹ u by the definition of the
constant ci. It is also straightforward to check that the functions gi span an N -dimensional
space. This yields directly

≠”ÎhÎ2 Æ ÈLh, hÍ Æ ”ÎhÎ2 for h œ span{g1, . . . , gN } =: U .

Define V := span{g1, . . . , gN }‹ fl u
‹ = span{u, g1, . . . , gN }‹

. For h œ V we can then write

h =
N+1ÿ

i=1

–ifi + r, with r ‹ fi ’i = 1, . . . , N + 1. (5.15)

We have r, h ‹ gj for any j = 1, . . . , N and thereby
N+1ÿ

i=1

–i Èfi, gjÍ = 0. (5.16)

With (5.14) and fi ‹ fj for i ”= j, we easily compute that

Èfi, gjÍi,j =

Q

ccccca

1 0 · · · 0 c1

0 . . . ... 0
...

...
... . . . 0

...
0 · · · · · · 1 cN

R

dddddb
œ RN◊(N+1)

.
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The kernel of this matrix is one-dimensional and spanned by a vector — œ RN+1 with —i = ≠ci

for 1 Æ i Æ N and —N+1 = 1. By (5.16), – lies in the kernel and we can rewrite (5.15) as

h = “

N+1ÿ

i=1

—ifi + r = “ · Fu + r, “ œ R.

Since h œ V µ u
‹, we have 0 = Èh, uÍ = “ÈFu, uÍ + Èr, uÍ. This implies immediately that

“
2 = Èr, uÍ2

ÈFu, uÍ2
Æ ÎrÎ2ÎuÎ2

ÈFu, uÍ2
.

Thus, we compute

ÈLh, hÍ
ÎhÎ2

=
q

N+1

j=1
–

2

j
ÈLfj , fjÍ + ÈLr, rÍ

“2ÎFuÎ2 + ÎrÎ2
Æ

”
q

–
2

j
≠ ⁄ÎrÎ2

“2ÎFuÎ2 + ÎrÎ2

Æ
”“

2
q

—
2

j
≠ ⁄ÎrÎ2

“2ÎFuÎ2 + ÎrÎ2
=

”“
2ÎFuÎ2 ≠ ⁄ÎrÎ2

“2ÎFuÎ2 + ÎrÎ2
Æ

A

”
ÎuÎ2ÎFuÎ2

ÈFu, uÍ2
≠ ⁄

B

ÎrÎ2

“2ÎFuÎ2 + ÎrÎ2
.

(5.17)

At this point, we need the angle condition

cos <)(Fu, u) =
ÈFu, uÍ

ÎFuÎÎuÎ Ø
Ò

”/⁄

to guarantee that the numerator is negative. Under this assumption, we can continue estimat-
ing (5.17) and derive

ÈLh, hÍ
ÎhÎ2

Æ
”

ÎuÎ2ÎFuÎ2

ÈFu, uÍ2
≠ ⁄

ÎuÎ2ÎFuÎ2

ÈFu, uÍ2
+ 1

=
” ≠ ⁄ cos2

<)(Fu, u)
1 + cos2 <)(Fu, u) .

Finally, we can apply Theorem 5.15 to analyze the spectrum of the linearized mass conserving
Allen–Cahn operator. Recall that it is crucial to have a good negative upper bound of the
quadratic form orthogonal to the tangent space. We show that in this case the spectral gap is
of order Á. This is quite di�erent to the spectral gap for the Allen–Cahn equation (AC) without
the mass constraint, which by Theorem 5.14 is of order O(1).

Theorem 5.16 (Spectral gap for (mAC)).
Let v œ L

2
0
(0, 1) with v ‹ u

›

i
for i = 1, . . . , N . Then, we have

ÈL›
v, vÍ Æ (≠⁄0Á + O(exp)) ÎvÎ2

,

where ⁄0 is the same constant as in Theorem 5.14.

Proof. In the notation of Theorem 5.15, we take u = 1 œ L
2(0, 1) such that L

2
0

= span{u}‹,
and fi = u

h

i
. Furthermore, we compute

Èfi, 1Í =
⁄

1

0

u
h

i (x) dx = O(exp) +
⁄

1

0

U
Õ(x ; hi, (≠1)i+1) dx = 2(≠1)i + O(exp).

With Fu defined as before in Theorem 5.15, this yields

ÈFu, uÍ = 1
ÈfN+1, 1Í

N+1ÿ

j=1

Èfj , 1Í2 = 2(N + 1)(≠1)N+1 + O(exp).
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We have ÎfiÎ = O(Á≠1/2) by Proposition 5.7 and thus ÎFuÎ = (N + 1) · O(Á≠1/2). Combined we
obtain

cos <)(Fu, u) = O(Á1/2).

By Proposition 5.7, we have L(uh) = O(exp). Di�erentiating with respect to hi yields
Lh

u
h

i
= O(exp) and hence, the first N + 1 eigenvalues are exponentially small. This shows

that we can choose ” = O(exp). Plugging this observation into Theorem 5.15 yields

ÈL›
v, vÍ

ÎvÎ2
Æ ” ≠ ⁄0Á

1 + Á
Æ ≠⁄0Á + O(exp).

For the classical Allen–Cahn equation we established a spectral gap of order 1, whereas due to
mass conservation the gap shrinks to O(Á) for (mAC). As we will see later in Theorems 5.42
and 5.44, this heavily influences the maximal radius and noise strength that we can treat in our
stability analysis.

5.3 Analysis of the stochastic ODE
In this section, we give the stochastic ODEs governing the motion of the kinks for both cases.
We show that for the non-massconserving Allen–Cahn equation the N + 1 interfaces move—up
to the time scale where a collision is likely to occur—independently according to Brownian
motions projected onto the slow manifold. This is quite di�erent to the mass-conserving case
where (as one would expect) the dynamics is coupled through the mass constraint.

Before we analyze the stochastic ODEs for the interface motion, we have to introduce the
new coordinate frame (Fermi coordinates, see Definition 2.2), in which we derive the di�erential
equations for the shape variable h and the normal component v. Due to Theorems 5.14 and 5.16,
we established good control of the quadratic form orthogonal to the tangent space ThM,
or T›Mµ, respectively. Therefore, we do not need any approximations thereof. This leads to
the following definition of the Fermi coordinates.

Definition 5.17 (Fermi coordinates).
Let u(t) be the solution to (AC). For a fixed time t > 0, we define the pair of coordinates
(h(t), v(t)) œ �fl ◊ L

2(0, 1) such that

u(t) = u
h(t) + v(t), v(t) ‹ Th(t)M,

as the Fermi coordinates of u(t).
In case of the mass conserving equation (mAC), the definition works analogously. One only has
to replace the set of admissible interface positions �fl by the set Afl (given by (5.6)) and the
slow manifold M by its mass conserving counterpart Mµ.

Later in Lemma 5.19 and Remark 5.20, we show that su�ciently close to the manifold M(µ)

the Fermi coordinates are well-defined. For now, we assume that t is su�ciently small such that
the coordinate system is well-defined. We start with deriving the e�ective equations for h and v.
In Chapter 2.2, we computed that h is a di�usion process given by

dh = b(h, v) dt + È‡(h, v), dW Í, (5.18)

where (cf. (2.11) and (2.12))
‡r(h, v) =

ÿ

i

A
≠1

ri
u

h

i (5.19)
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and
br(h, v) =

ÿ

i

A
≠1

ri
Èuh

i , L(uh + v)Í +
ÿ

i

A
≠1

ri

ÿ

j

Èuh

ij , Q‡jÍ

+
ÿ

i,j,k

A
≠1

ri

51
2Èuh

ijk, vÍ ≠ Èuh

ij , u
h

kÍ ≠ 1
2Èuh

i , u
h

jkÍ
6

ÈQ‡j , ‡kÍ.
(5.20)

Note that, for the sake of simplicity, we expressed everything with respect to the coordinate h,
although we introduced the coordinate › for the mass conserving equation. An essential point in
the computation of the SDE is the invertibility of the matrix A (cf. Definition and Metatheorem 1)
given by

Akj(h, v) = Èuh

k , u
h

j Í ≠ Èuh

kj , vÍ.

5.3.1 Analysis of the stochastic ODE for (AC)

We start with the non-massconserving case. Here, we will see that A and its inverse are—up to
exponentially small terms in ÎvÎ—diagonal matrices.

Lemma 5.18. For h œ �fl consider the matrix A œ R(N+1)◊(N+1) defined by

Akj := Èuh

k , u
h

j Í ≠ Èuh

kj , vÍ.

We obtain
Akj =

Ë
X Á

≠1 + O(Á≠3/2)ÎvÎ
È

”kj + O(exp)ÎvÎ.

Moreover, as long as ÎvÎ < cÁ
1/2+m for some m > 0, the inverse A

≠1 is given by

A
≠1 =

Ë
X ≠1

Á + O(Á1+m)
È

IN+1 + O(exp),

where X is the constant given in Proposition 5.7.

Proof. We obtain Èuh

k
, u

h

j
Í = X Á

≠1
”kj + O(exp) and Îu

h

kj
Î = O(Á≠3/2)”kj + O(exp) by Pro-

position 5.7. Thus, the bound on Akj follows directly by applying the Cauchy–Schwarz inequality.
Using geometric series, this yields for ÎvÎ su�ciently small

A
≠1 =

Ë
X Á

≠1 + O(Á≠3/2)ÎvÎ
È≠1

IN+1 + O(exp)

= X ≠1
Á

Ë
1 + O(Á≠1/2)ÎvÎ

È≠1

IN+1 + O(exp)

=
Ë
X ≠1

Á + O(Á1+m)
È

IN+1 + O(exp).

Before we continue analyzing the stochastic ODE, let us first show that the coordinate frame
around M given by Definition 5.17 is well-defined. We prove that, as long as the matrix A is
invertible, i.e., ÎvÎ < Á

1/2+m, and the nonlinearity is bounded, i.e., v œ L
4, the coe�cients b

and ‡ defined by (5.20) and (5.19) are Lipschitz continuous with respect to h. Note that we
will only compute the Lipschitz constant for ‡ explicitly, as we need it for the analysis of the
stochastic ODE.

Lemma 5.19 (Lipschitz continuity of b and ‡).
Let h, h̄ œ �fl. If v œ L

4(0, 1) with ÎvÎL2 < Á
1/2+m for some m > 0, there exist constants C > 0

and CÁ > 0 (depending on Á and ÎvÎL4) such that

Î‡(h, v) ≠ ‡(h̄, v)Î Æ CÁ
≠1/2|h ≠ h̄| and Îb(h, v) ≠ b(h̄, v)Î Æ CÁ|h ≠ h̄|. (5.21)
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Proof. Note that in the following computation the pair (h, v) does not denote the Fermi
coordinate defined in Definition 5.17 and therefore, v does not depend on h. We start with
estimating the derivative of the inverse A

≠1(h, v). By construction of u
h, the matrix A(h, v) is

smooth in h and we compute

ˆhk
Aij =

ˆ(Èuh

i
, u

h

j
Í ≠ Èuh

ij
, vÍ)

ˆhk

= Èuh

ik, u
h

j Í + Èuh

i , u
h

jkÍ ≠ Èuh

ijk, vÍ,

which by Proposition 5.7 is exponentially small unless i = j = k. In the latter case, we have

ˆhk
Akk = 2Èuh

kk, u
h

kÍ ≠ Èuh

kkk, vÍ = O(exp) + O(Á≠5/2ÎvÎ).

By virtue of DhA
≠1 = ≠A

≠1(DhA)A≠1 and A
≠1 = O(Á) (cf. Lemma 5.18), this yields

DhA
≠1 = O(Á≠1/2ÎvÎ) = O(Ám).

Recall that ‡(h, v) = A
≠1 · ˆhu

h. Di�erentiating with respect to h yields

Dh‡ = DhA
≠1

ˆhu
h + A

≠1
ˆ

2

hu
h

and thus, by the previous bound on DhA
≠1 and Proposition 5.7, ÎDh‡(h, v)Î = O(Á≠1/2).

Since the set �fl of admissible interface positions is convex, we have

‡(h, v) ≠ ‡(h̄, v) =
⁄

1

0

Dh‡(h̄ + s(h ≠ h̄), v) ds

and with that we easily obtain (5.21).
In order to derive the Lipschitz continuity of b, one can analogously verify that b(h, v) is

di�erentiable with respect to h and the derivative is bounded. Note that only here we need the
condition v œ L

4 to control the nonlinearity ÈN h(v), vÍ appearing in the definition (5.20) of b.
The careful analysis of the Lipschitz constant can be carried out after some lengthy calculation.
We omit the details here.

Remark 5.20. We can use the Lipschitz continuity of the coe�cients to show that the Fermi
coordinates given by Definition 5.17 are locally well defined (see Section 2.2.2). Let u be the
unique solution to (AC). Since the multi-kink profiles u

h define smooth functions in h, we
see that by Lemma 5.19 the maps h ‘æ b(h, u ≠ u

h) and h ‘æ ‡(h, u ≠ u
h) are locally Lipschitz

continuous. Thus, we find—as long as h(t) lies in �fl and u ≠ u
h is su�ciently small—a unique

solution h(t) to (5.18) with v replaced by u≠u
h. Defining v(t) = u(t) ≠ u

h(t) leads to a uniquely
defined pair (h, v) that satisfies the Definition 5.17 of the Fermi coordinates. We refer to
Lemma 2.8 for the general proof.

As the matrix A and its inverse are (up to exponentially small terms) diagonal matrices, we can
show that the stochastic ODE in the non-massconserving case essentially decouples fully. We
split equation (5.18) into its deterministic part and a remainder A, where we collect all terms
depending on stochastics, i.e., we write

dhr =
ÿ

i

A
≠1

ri
Èuh

i , L(uh + v)Í dt + dA(r)
, (5.22)

where by (5.19) and (5.20)
ÿ

j

Akj dA(j) =
ÿ

j

Èuh

kj , Q‡jÍ dt +
ÿ

i,j

51
2Èuh

ijk, vÍ ≠ Èuh

kj , u
h

i Í ≠ 1
2Èuh

k , u
h

ijÍ
6

ÈQ‡i, ‡jÍ dt

+ Èuh

k , dW Í.
(5.23)
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The following lemma deals with estimating the process A in terms of Á. We see that—up to lower
order terms—the k-th component of A does only depend on the derivatives with respect to hk

and hence it decouples. Moreover, its dominating term is of order O(÷0).

Lemma 5.21. As long as Îv(t)Î < Á
1/2+m for some m > 0, we have

dA(k) = A
≠2

kk
Èuh

kk, Qu
h

kÍ dt + A
≠1

kk
Èuh

k , dW Í + O(Ám
÷0) dt + ÈOL2(Á1/2+m), dW Í.

Moreover, the dominating term can be estimated by

A
≠2

kk
Èuh

kk, Qu
h

kÍ dt + A
≠1

kk
Èuh

k , dW Í = O(÷0) dt + ÈOL2(Á1/2), dW Í.

Proof. Lemma 5.18 and (5.19) imply directly that

‡r(h, v) =
Ë
X ≠1

Á + O(Á1+m)
È

u
h

r + O(exp).

With Îu
h
r Î = O(Á≠1/2) (cf. Proposition 5.7), this yields Î‡rÎ = O(Á1/2). The Cauchy–Schwarz

inequality implies for the remaining terms of (5.23)

|Èuh

kj , Q‡jÍ| Æ Îu
h

kjÎ ÎQÎ Î‡jÎ Æ CÁ
≠3/2

÷0Á
1/2 = CÁ

≠1
÷0

and
|Èuh

ijk, vÍÈQ‡i, ‡jÍ| Æ CÁ
≠5/2ÎvÎ÷0Á

1/2
Á

1/2 = CÁ
≠3/2

÷0 ÎvÎ.

Moreover by Proposition 5.7, the terms involving inner products of first and second derivatives
of u

h are exponentially small. Plugging these estimates into (5.23) yields
ÿ

j

Akj dA(j) = Èuh

kk, Q‡kÍ dt + Èuh

k , dW Í + O(Á≠1+m
÷0) + O(exp).

By using Lemma 5.18, we obtain

dA(k) = A
≠1

kk

Ë
Èuh

kk, Q‡kÍ dt + Èuh

k + O(exp), dW Í + O(Á≠1+m
÷0) dt + O(exp) dt

È

= A
≠2

kk
Èuh

kk, Qu
h

kÍ dt + A
≠1

kk
Èuh

k + O(exp), dW Í + O(Ám
÷0) dt + O(exp) dt.

As a next step, we investigate the deterministic part. As we cannot control the nonlinear-
ity in terms of the L

2-norm, we additionally assume smallness of v in L
4. In the stability

result of Section 5.5, the maximal L
4-radius that we can treat is of order Á

1/4+m/2≠Ÿ for
small Ÿ > 0.

Lemma 5.22. Let m > 0 and Ÿ > 0 be very small. For h œ �fl and v ‹ u
h

i
, i = 1, . . . , N + 1,

assume that ÎvÎ < Á
1/2+m and ÎvÎL4 < Á

1/4+m/2≠Ÿ. Then, we have
ÿ

i

A
≠1

ri
Èuh

i , L(uh + v)Í Æ CÁ
2m+1≠2Ÿ

.

Proof. Expanding L yields L(uh +v) = L(uh)+Lh
v +N h(v). We observe that L(uh) = O(exp)

by Proposition 5.7. Di�erentiating with respect to hi yields Lh
u

h

i
= O(exp) and hence,

ÈLh
v, u

h

i
Í = Èv, Lh[uh

i
]Í = O(exp), since Lh is self-adjoint. The remaining nonlinear term is

estimated by
ÈN h(v), u

h

i Í =
⁄

1

0

3u
h
u

h

i v
2 ≠ u

h

i v
3 dx Æ CÁ

≠1
Ë
ÎvÎ2 + ÎvÎ3

L3

È

Æ CÁ
≠1

Ë
ÎvÎ2 + ÎvÎÎvÎ2

L4

È
Æ CÁ

2m≠2Ÿ
,

where we interpolated the L
3-term by Hölder’s inequality. Applying Lemma 5.18 concludes the

proof.
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We can finally show that, up to times of order O(Á÷
≠1

0
), the motion of the kinks is approximately

given by the projection of the Wiener process onto the slow manifold M (see Section 2.2.3),
that is, for k = 1, . . . , N + 1

dh̃k = 1
Îu

h̃

k
Î2

Èuh̃

k , ¶ dW Í. (5.24)

At times of order O(Á÷
≠1

0
) the droplet is expected to move by the magnitude of Á and hence,

we treat the relevant time scale in our analysis, since we have to assure that the distance
between two kinks is at least Á (cf. Remark 5.24). For a su�ciently large noise strength, the
stochastic e�ects dominate the dynamics and hence, as expected, the approximation by the
purely stochastic process is better for a larger noise strength ÷0. In our main stability result (see
Theorem 5.42) the maximal strength we can treat is of order Á

1+2m.

Theorem 5.23 (Approximation of the exact dynamics).
Let h(t) be a solution to (5.18) and h̃(t) be a solution to (5.24). For m > 0 and small Ÿ > 0,
define the stopping time

· := inf
Ó

t Ø 0 : h(t) /œ �fl or ÎvÎ > Á
1/2+m or ÎvÎL4 > Á

1/4+m/2≠Ÿ
Ô

.

Then, for T < cÁ÷
≠1

0
· · , we obtain

E sup
0ÆtÆT

|h(t) ≠ h̃(t)| Æ CÁ + CÁ
2m+2≠2Ÿ

÷
≠1

0
.

Proof. For notational convenience, we define for h, h̃ œ �fl the maps

“r(h) := u
h
r

Îuh
r Î2

and �(h, h̃) := “r(h) ≠ “r(h̃).

By (5.18), (5.19), and Lemma 5.18, we derive for t Æ T

hr(t) ≠ h̃r(t) Æ
⁄

t

0

br(s) + Ir(h̃(s)) ds +
⁄

t

0

È�(h, h̃) + O(Á1+m)uh

r , dW Í.

Here, I(h̃) collects all the terms that appear after a conversion of the Stratonovich SDE (5.24)
into an Itô SDE. This is important, as we need the stochastic integral to be a martingale. These
Itô-Stratonovich correction terms are essentially identical to the terms in (5.20), where we set
v = 0 and replace the matrix A(h̃, v) by Skj(h̃) = A(h̃, 0) = Èuh̃

k
, u

h̃

j
Í. In more detail, one easily

computes that

Ir(h̃) =
ÿ

i

S
≠1

ri

ÿ

j

Èuh

ij , Q‡j(h̃, 0)Í +
ÿ

i,j,k

S
≠1

ri

5
≠Èuh

ij , u
h

kÍ ≠ 1
2Èuh

i , u
h

jkÍ
6

ÈQ‡j(h̃, 0), ‡k(h̃, 0)Í

= S
≠2

rr Èuh̃

rr, Qu
h̃

r Í + O(exp) = O(÷0).

Here, we utilized that Sri = Èuh̃
r , u

h̃

i
Í = X ≠1

Á”ri + O(exp) by Proposition 5.7 and, as v = 0,
‡r(h̃, 0) =

q
S

≠1

ri
u

h̃

i
= S

≠1
rr u

h̃
r + O(exp). Moreover, the inner product of first derivatives with

second derivatives of u
h is exponentially small due to Proposition 5.7.

In Lemmata 5.21 and 5.22, we established an L
Œ-bound for b up to the stopping time · , namely,

sup
0ÆtÆ·

|b| Æ c(÷0 + Á
2m+1≠2Ÿ)

Combining this with the bound of the Ito-Stratonovich correction term I yields

E sup
0ÆtÆT

|hr(t) ≠ h̃r(t)| Æ c(÷0 + Á
2m+1≠2Ÿ)T + E sup

0ÆtÆT

---
⁄

t

0

È�(h, h̃) + O(Á1+m)uh

r , dW Í
---.
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By Burkholder’s inequality and Lipschitz continuity of “ with Lipschitz constant of order O(Á≠1/2)
(cf. Lemma 5.19), the martingale term is estimated by

E sup
0ÆtÆT

---
⁄

t

0

È�(h, h̃) + O(Á1+m)uh

r , dW Í
---

Æ CE
C⁄

T

0

È�(h, h̃) + O(Á1+m) u
h

r , Q(�(h, h̃) + O(Á1+m) u
h

r )Í ds

D
1/2

= CE
C⁄

T

0

È�(h, h̃), Q�(h, h̃)Í + O(Á1+m)ÈQu
h

r , �(h, h̃)Í + O(Á2+2m)Èuh

r , Qu
h

r Í
D

1/2

Æ CE
C⁄

T

0

÷0Î�(h, h̃)Î2 + Á
1/2+m

÷0Î�(h, h̃)Î + Á
1+2m

÷0

D
1/2

Æ CE
C⁄

T

0

÷0Î�(h, h̃)Î2 + Á
1+2m

÷0

D
1/2

Æ CE
C⁄

T

0

÷0Á
≠1Îh(s) ≠ h̃(s)Î2 ds + Á

1+2m
÷0T

D
1/2

Æ C÷
1/2

0
Á

≠1/2
T

1/2 E sup
0ÆtÆT

Îh(t) ≠ h̃(t)Î2 + CÁ
1/2+m

÷
1/2

0
T

1/2
.

With the assumption T < cÁ÷
≠1

0
, this implies

E sup
0ÆtÆT

|h(t) ≠ h̃(t)| Æ C
(÷0 + Á

2m+1≠2Ÿ)T + Á
1/2+m

÷
1/2

0
T

1/2

1 ≠ ÷
1/2

0
Á≠1/2T 1/2

Æ CÁ + CÁ
2m+2≠2Ÿ

÷
≠1

0
.

Remark 5.24. In the definition of admissible parameters �fl, we had to assume that the distance
between two interfaces is bounded from below by O(Á1≠). Since Eh(Á÷

≠1

0
) = h(0) + O(Á),

the interface positions h(t) might have moved by order Á and thus, a collision of two interfaces
can occur, which we cannot treat in our analysis. Therefore, up to the relevant time, the motion
of the kinks behaves approximately like a Wiener process projected onto the slow manifold.
After a breakdown of two interfaces, we can restart our analysis on a lower-dimensional slow
manifold, where the number of kinks is reduced by two.

5.3.2 Analysis of the stochastic ODE for (mAC)

To conclude our study of the kink motion, we analyze the mass conserving Allen–Cahn equa-
tion. Recall that in this case, due to mass conservation, we reduced the parameter space �fl

via hN+1 = hN+1(›) by one dimension and therefore obtain by chain rule and Lemma 5.9

u
›

k
= u

h

k + (≠1)N≠k
u

h

N+1 + O(exp). (5.25)

Remark 5.25. Analogously to Remark 5.20, we can verify that the Fermi coordinates (›, v)
around Mµ are locally well-defined (cf. Definition 5.17). The crucial point is that the maps
› ‘æ b(›, u ≠ u

›) and › ‘æ ‡(›, u ≠ u
›) are su�ciently smooth. In Lemma 5.19, we proved

the local Lipschitz continuity of the corresponding maps in the non-massconserving case. In
fact, let us show that these maps are even smoother. By the expressions in (4.2) and (4.3),
‡ and b depend on › via various derivatives of u

› (up to the third order). Note that also the
matrix A only depends on derivatives of u

›. Hence, if the profiles u
› are su�ciently smooth, the

smoothness is directly inherited to the coe�cients of the stochastic ODE and we then obtain a
unique local solution to d› = b(›, u ≠ u

›) dt + È‡(›, u ≠ u
›), dW Í.



92 5. Multiple kinks for the Allen–Cahn equation in one space dimension

In our construction of the slow manifold, we summed up rescaled and translated solutions to
the ODE U

ÕÕ ≠ F
Õ(U) = 0, which is equivalent to solving

U
Õ ≠

Ò
2F (U) = 0.

In the toy case F (u) = 1

4
(u2 ≠ 1)2, one obtains the solution tanh( xÔ

2
), which is of course

C
Œ-smooth. Later in Section 5.6, we consider potentials F that are given by polynomials.

Due to the smoothness of F in that case, we can also conclude that the heteroclinic U is C
Œ.

Thereby, we see that the multi-kink configuration u
› is su�ciently smooth with respect to ›,

which shows that the aforementioned maps are at least C
1-functions. For details on how to

obtain the well-definedness of the Fermi coordinates, we refer to Remark 5.20 and Section 2.2.2.

Just like in the analysis of (AC), we first show the invertibiliy of the matrix A. To start with, we
consider the submatrix Skj = Èu›

k
, u

›

j
Í, which does not depend on v. Due to the coupling through

the mass constraint, the matrix S and its inverse are no longer diagonal. As we will see, this has
an impact on the stochastic ODE governing the motion of the kinks.

Lemma 5.26. For u
› œ Mµ and j, k œ {1, . . . , N} we have

Skj = Èu›

k
, u

›

j
Í = X Á

≠1
Ë
”kj + (≠1)k+j

È
+ O(exp),

where X is the constant given in Proposition 5.7.

Proof. With Proposition 5.7 and the chain rule (5.25), we compute

Èu›

k
, u

›

j
Í = Èuh

k + (≠1)N≠k
u

h

N+1, u
h

j + (≠1)N≠j
u

h

N+1Í

= Îu
h

kÎ2
”jk + (≠1)k+jÎu

h

N+1Î2 + O(exp) = X Á
≠1

Ë
”kj + (≠1)k+j

È
+ O(exp).

With the structure of the matrix at hand, we can easily invert S.

Lemma 5.27. Let u
› œ Mµ. The matrix S is invertible with

S
≠1

kj
= Á/X

5
”kj + 1

N + 1(≠1)k+j+1

6
+ O(exp).

Proof. We have (ignoring exponentially small terms)
Nÿ

j=1

SkjS
≠1

jl
=

Nÿ

j=1

Ë
”kj + (≠1)k+j

È 5
”jl + 1

N + 1(≠1)j+l+1

6

= ”jl + 1
N + 1(≠1)k+l+1 + (≠1)k+l + N

N + 1(≠1)k+l+1 = ”kl.

Finally, we show that—as long as ÎvÎ stays su�ciently small—the full matrix A(›, v) given
by Definition 1 is invertible. With that, the coe�cients of the Itô di�usion (5.18) (with h

replaced by ›) are well-defined and we can continue to study the dynamics of kinks for the mass
conserving Allen–Cahn equation in more detail.

Lemma 5.28. Consider the matrix Akj(›, v) = Skj ≠Èu›

kj
, vÍ, where S is given by Lemma 5.26.

Then, as long as ÎvÎ < Á
1/2+m for some m > 0, A is invertible with

A
≠1 = S

≠1 + O(Ám+1).
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Proof. For a small perturbation S(v), given by Skj(v) = Èu›

kj
, vÍ, of the matrix S we compute

via geometric series

A
≠1 = [S ≠ S(v)]≠1 =

Ë
IN ≠ S

≠1
S(v)

È≠1

S
≠1

=
ÿ

jœN

Ë
S

≠1
S(v)

È
j

S
≠1 = S

≠1 +
Œÿ

j=1

Ë
S

≠1
S(v)

È
j

S
≠1 = S

≠1 + O(Ám+1),

where we used that S(v) = O(Á≠3/2ÎvÎ) and the sum converges for ÎvÎ < Á
1/2+m.

We continue with estimating the deterministic part of (5.18). Similarly to Lemma 5.22, we
have to assume smallness of the normal component v in L

2 and L
4 to control the nonlinearity.

In the following lemma, we consider the radii for which we show stochastic stability later in
Sections 5.4 and 5.5.

Lemma 5.29. Let m > 0, › œ Afl, and v ‹ u
›

i
for i = 1, . . . , N . Also, assume that ÎvÎ < Á

3/2+m

and ÎvÎL4 < Á
3/4+m/2≠Ÿ. Then, we obtain

Èu›

i
, L(u› + v)Í Æ CÁ

2+2m≠2Ÿ
.

Proof. We follow the proof of Lemma 5.22. Only for the nonlinearity we have to take the
di�erent radii into account. By Hölder’s inequality we obtain

ÈN ›(v), u
›

i
Í Æ CÁ

≠1
Ë
ÎvÎ2 + ÎvÎ3

L3

È
Æ CÁ

≠1
Ë
ÎvÎ2 + ÎvÎÎvÎ2

L4

È
Æ CÁ

2+2m≠2Ÿ
.

In order to analyze the SDE governing the motion of kinks, it is more convenient to rewrite (5.18)
in the Stratonovich sense. By leaving out Itô corrections, Lemmata 5.27 and 5.28 imply

d›r =
ÿ

i

A
≠1

ri
ÈL(u› + v), u

›

i
Í dt +

ÿ

i

A
≠1

ri
Èu›

i
, ¶ dW Í

=
ÿ

i

S
≠1

ri
ÈL(u› + v), u

›

i
Í dt +

ÿ

i

S
≠1

ri
Èu›

i
, ¶ dW Í + O(Á4+3m) dt + ÈOL2(Á5/2+m), ¶ dW Í

= X ≠1
Á ÈL(u› + v), u

›

rÍ dt + X ≠1
Á Èu›

r, ¶ dW Í

+ (≠1)r
Á

X (N + 1) ÈL(u› + v),
Nÿ

i=1

(≠1)i+1
u

›

i
Í dt + (≠1)r

Á

X (N + 1)È
Nÿ

i=1

(≠1)i+1
u

›

i
, ¶ dW Í

+ O(Á4+3m) dt + ÈOL2(Á5/2+m), ¶ dW Í.

The first two summands (depending only on u
›
r) are similar to the non-massconserving case,

but—due to the mass constraint—we obtain additional terms, which do not only depend on
the position ›r but rather on all positions (›1, . . . , ›N ). To give a better understanding of this
equation—especially of the additional terms—let us express it in the original h-coordinates.
Recall that by chain rule u

›

i
= u

h

i
+ (≠1)N≠i

u
h

N+1
+ O(exp). Thus we compute (ignoring

exponentially small terms)

u
›

r + (≠1)r

N + 1

Nÿ

i=1

(≠1)i+1
u

›

i
= u

h

r + (≠1)N≠r
u

h

N+1 + (≠1)r+N+1
N

N + 1 u
h

N+1 + (≠1)r

N + 1

Nÿ

i=1

(≠1)i+1
u

h

i

= u
h

r + (≠1)r
u

h

N+1

C
(≠1)N+1

N

N + 1 ≠ (≠1)N+1

D

+ (≠1)r

N + 1

Nÿ

i=1

(≠1)i+1
u

h

i

= u
h

r + (≠1)r

N + 1(≠1)N
u

h

N+1 + (≠1)r

N + 1

Nÿ

i=1

(≠1)i+1
u

h

i = u
h

r + (≠1)r

N + 1

N+1ÿ

i=1

(≠1)i+1
u

h

i . (5.26)
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Plugging this into the Stratonovich SDE yields

d›r = Îu
h

r Î≠2 ÈL(uh + v), u
h

r Í dt + Îu
h

r Î≠2 Èuh

r , ¶ dW Í

+ (≠1)r

(N + 1)

N+1ÿ

i=1

(≠1)i+1

5
Îu

h

i Î≠2ÈL(uh + v), u
h

i Í + (≠1)r

(N + 1)Îu
h

i Î≠2Èuh

i , ¶ dW Í
6

+ O(Á4+3m) dt + ÈOL2(Á5/2+m), ¶ dW Í.

We observe that all the terms appearing in this formula are up to an exponentially small error
the right-hand side of the equation for dh (see (5.22) and (5.23) with A(h, v) a diagonal matrix).
Thus, we have

d›r ¥ dhr + (≠1)r

(N + 1)

N+1ÿ

i=1

(≠1)i+1
dhi. (5.27)

Therefore, the kink motion for the mass conserving Allen–Cahn equation is approximately
given by the independent motion of the position hr, which is moving according to the non-
massconserving case, plus a weighted motion of all interface positions (h1, . . . , hN+1) that
guarantees the conservation of mass.

Remark 5.30. In Theorem 5.23, we proved that up to times of order Á÷
≠1

0
the interface

positions h(t) behave approximately like the projection of the Wiener process onto the slow
manifold M. Using that dhr ¥ Îu

h
r Î≠2Èuh

r , ¶ dW Í and plugging this into (5.27), we obtain
heuristically

d›r ¥
ÿ

i

S
≠1

ri
Èu›

i
, ¶ dW Í, (5.28)

where we essentially used the identity (5.26). Since the matrix S is given by Sri = Èu›
r, u

›

i
Í,

we expect that also the dynamics for the mass conserving Allen–Cahn equation behaves
approximately like the projection of the Wiener process onto Mµ. Analogously to Theorem 5.23,
we could make this rigorous and estimate the error for a given time scale. Opposed to the
previous analysis of (AC), we cannot quite reach a good error estimate up the relevant time
scale of order O(Á÷

≠1

0
), which corresponds to the time that a kink is likely to move by the

order of Á (see Remark 5.24). Basically, this deficiency stems from the worse spectral gap in
Theorem 5.16, which leads to a smaller maximal noise strength that we can treat in our stability
analysis. See Theorem 5.44, where we can allow only for ÷0 Æ Á

4+2m≠Ÿ, and Theorem 2.14
for the interplay between the spectral gap and the noise strength. For a reasonable result, we
need that the error, which is linear in the time scale TÁ, is smaller than the magnitude of the
process ›, which grows like T

1/2

Á . Note that we encountered this problem also in the analysis
of the Cahn–Hilliard equation in higher space dimension (cf. Theorem 3.19 and the comment
thereafter). In the case of the mass-conserving Allen–Cahn equation, we expect the following
result to hold true but omit the details.

Conjecture 5.31. Let ›(t) be the solution to (5.18) with b and ‡ given by (5.20) and (5.19)
and h replaced by ›. Furthermore, let ›̄(t) be the projection of the Wiener process W onto the
mass conserving manifold Mµ given by (5.28). For m > 0 and small Ÿ > 0, define the exit time

· := inf
Ó

t Ø 0 : › /œ Afl or Îv(t)Î > Á
3/2+m or Îv(t)ÎL4 > Á

3/4+m/2≠Ÿ
Ô

Then, for TÁ Æ cÁ÷
≠1

0
· · , we obtain

E sup
0ÆtÆTÁ

|›(t) ≠ ›̄(t)| Æ c

Ë
÷0 + Á

3+2m≠2Ÿ
È

TÁ.
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Remark 5.32. In the proof of the analogous result in Theorem 5.23, it was crucial to explicitly
know the Lipschitz constant of the map › ‘æ ‡(›, v) provided v is su�ciently small. In
establishing the Lipschitz continuity (Lemma 5.19), we relied on the convexity of the set of
admissible interface positions. While this is straightforward for the set �fl, this is not quite true
in the mass conserving case, where the set of admissible positions is given by

Afl :=
Ó

(›, hN+1(›)) œ �fl : › œ [0, 1]N
Ô

.

By Lemma 5.9, hN+1 is explicitly given by

hN+1(h1, . . . , hN ) =
Nÿ

i=1

(≠1)N≠i
hi + c(µ) + O(exp),

where we have to introduce a constant c(µ) depending only on the mass µ. With this expression,
one readily computes that hN+1(›+⁄(›≠›̄)) = hN+1(›)+⁄hN+1(›≠›̄)+O(exp) for any ›, ›̄ œ RN

and ⁄ œ (0, 1). Combined with the convexity of �fl, this shows that the set Afl is not exactly
convex, but the error is exponentially small. We obtain the following result:

h, h̄ œ Afl =∆ ⁄h + (1 ≠ ⁄)h̄ œ A2fl ’⁄ œ (0, 1).

With this property at hand, we expect to gain the Lipschitz constant in the mass conserving
case. For some of the technical details, see the proof of Lemma 5.19.

5.4 Stability in L
2

We discuss stochastic stability in L
2, both for (AC) and (mAC). In our analysis, we follow the

guideline of Section 2.3 very closely. Note that this is not su�cient for the analysis of the SDE,
where we additionally assumed that v is small in L

4. Hence, we extend the stability result to
L

4 afterwards in Section 5.5. Recall that the motion orthogonal to the slow manifold is given
by (see (2.13))

dv =
Ë
L(uh) + Lh

v + N h(v)
È

dt + dW ≠
ÿ

j

u
h

j dhj ≠ 1
2

ÿ

i,j

u
h

ijÈQ‡i, ‡jÍ dt.

Our aim is first to establish a bound of dÎvÎ2 = 2Èv, dvÍ + Èdv, dvÍ of the same type as in
Theorem 2.13, and then apply the main stability result of Theorem 2.14.

5.4.1 L
2-Stability for (AC)

We start with the analysis of (AC) without mass conservation. Crucial for establishing stochastic
stability is the following theorem, which relies on the spectral gap derived in Theorem 5.14. As
long as the L

2-norm of the normal component v stays su�ciently small, the nonlinear term
does not destroy the spectral estimate.

Theorem 5.33. Let u
h œ M and v ‹ u

h

i
, i = 1, . . . , N + 1. Assume that ÎvÎ < Á

1/2+m for
some m > 0. Then, for ⁄0 the constant given in the spectral bound of Theorem 5.14, we obtain

ÈLh
v + N h(v), vÍ Æ ≠1

2⁄0 ÎvÎ2
.

Proof. Let v ‹ u
h

i
’i = 1, . . . , N + 1. By the main spectral result of Theorem 5.14, we have

ÈLh
v, vÍ Æ ≠⁄0ÎvÎ2

.
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Therefore, for “1, “2 > 0 with “1 + “2 = 1, we compute

ÈLh
v, vÍ Æ ≠“1⁄0ÎvÎ2 + “2Á

2

⁄
1

0

vxx v dx + “2

⁄
1

0

f
Õ(uh)v2 dx

Æ ≠“1⁄0ÎvÎ2 ≠ Á
2
“2ÎvxÎ2 + “2Îf

Õ(uh)ÎLŒÎvÎ2
.

(5.29)

By Gagliardo–Nirenberg and Young‘s inequality we obtain

ÈN h(v), vÍ =
⁄

1

0

3(uh)2
v

3 ≠ v
4 Æ 3ÎvÎ3

L3 Æ CÎvxÎ1/2ÎvÎ5/2

Æ Á
2
“2ÎvxÎ2 + CÁ

≠2/3
“

≠1/3

2
ÎvÎ4/3ÎvÎ2

,

(5.30)

where we interpolated the L
3-norm between H

1 and L
2. Combining (5.29) and (5.30) yields

ÈLh
v + N h(v), vÍ Æ ≠“1⁄0ÎvÎ2 +

Ë
“2Îf

Õ(uh)ÎLŒ + CÁ
≠2/3

“
≠1/3

2
ÎvÎ4/3

È
ÎvÎ2

=
Ë
≠⁄0 + “2⁄0 + “2Îf

Õ(uh)ÎLŒ + CÁ
≠2/3

“
≠1/3

2
ÎvÎ4/3

È
ÎvÎ2

.

Fixing “2 = Á
m, we obtain for ÎvÎ < Á

1/2+m

ÈLh
v + N h(v), vÍ Æ

Ë
≠⁄0 + Á

m
1
⁄0 + Îf

Õ(uh)ÎŒ
2

+ CÁ
m

È
ÎvÎ2

.

As a next step, we need to analyze the remaining terms of dÎvÎ2. We show that, provided ÎvÎ
is su�ciently small, they are of order O(÷0).

Lemma 5.34. Under the same assumptions as in Theorem 5.33, we obtain

ÈL(uh), vÍ dt ≠ 1
2

ÿ

i,j

Èuh

ij , vÍÈQ‡i, ‡jÍ dt + Èdv, dvÍ = O(÷0) dt.

Proof. We have L(uh) = O(exp) and, as ÎvÎ < Á
1/2+m,

Èuh

ij , vÍÈQ‡i, ‡jÍ Æ cÁ
≠3/2ÎvÎ÷0Á

1/2
Á

1/2 = O(Ám
÷0).

For the Itô correction term Èdv, dvÍ we see that

Èdv, dvÍ = ÷0 dt +
ÿ

i,j

Ë
Èuh

i , u
h

j Í ≠ 2ÈQu
h

j , ‡jÍ
È

dt = O(÷0) dt.

Here, we utilized that Îu
h

i
Î = O(Á≠1/2), Îu

h

ij
Î = O(Á≠3/2) (Proposition 5.7), and Î‡iÎ = O(Á1/2)

(Lemma 5.21).

Combining the estimates of Theorem 5.33 and Lemma 5.34, we fully estimated the stochastic
di�erential dÎvÎ2. This provides us with the following result, which is essential for proving
stability in L

2 (see Theorem 2.13).

Corollary 5.35. Let u
h œ M. If v ‹ u

h

i
for i = 1, . . . , N +1 and ÎvÎ < Á

1/2+m for some m > 0,
we obtain

dÎvÎ2 Æ
5
≠1

2⁄0ÎvÎ2 + O(÷0)
6

dt + 2Èv, dW Í.

We can finally show that the L
2-norm of v stays small for very long times under small stochastic

perturbations. Since the following stability results can only hold as long as h(t) œ �fl, we define
the first exit time from the open set �fl by

·0 :=
Ó

t Ø 0 : h(t) /œ �fl

Ô
. (5.31)
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Note that we have seen in Remark 5.24 that at times of order O(Á÷
≠1

0
) the interface po-

sitions are likely to move by the magnitude of Á and thus exit the set of admissible posi-
tions �fl. This suggests that—if stability holds— the exit time ·0 is with high probability of
order O(Á÷

≠1

0
).

Theorem 5.36 (L2-Stability for (AC)).
For m > 0 define the stopping time

·
ú := inf

Ó
t œ [0, TÁ · ·0] : Îv(t)Î > Á

1/2+m
Ô

,

where the deterministic cut-o� satisfies TÁ = Á
≠M for fixed large M > 0 and ·0 is given by

(5.31). Also, assume that for some ‹ œ (0, 1)

Îv(0)Î Æ ‹Á
1/2+m and ÷0 Æ Á

1+2m
.

Then, the probability P(·ú
< TÁ · ·0) is smaller than any power of Á, as Á tends to zero.

Proof. The statement follows directly by combining the estimate of Corollary 5.35 with the
general stability result of Theorem 2.14.

5.4.2 L
2-Stability for (mAC)

As a next step, we study the L
2-stability for the mass conserving Allen–Cahn equation. For the

most part, we can rely on the results of the preceding section. The main di�erence lies in the
fact that the spectral gap is only of order O(Á) opposed to an O(1)-gap in the previous case.
For that reason, we need to adept the proofs slightly.

Theorem 5.37. Let u
› œ Mµ and v ‹ u

›

i
, i = 1, . . . , N . Then, as long as ÎvÎ < Á

3/2+m for
some m > 0, we have

ÈL›
v + N ›(v), vÍ Æ ≠1

2Á⁄0 ÎvÎ2
,

with ⁄0 independent of Á given by Theorem 5.14.

Proof. We can follow the proof of Theorem 5.33 closely, but have to take into account that by
Theorem 5.16 the spectral gap is of order O(Á). Moreover, the additional term in the equation
vanishes, as v is orthogonal to constants. Therefore, using the adapted version of (5.29) and
the same interpolation as in (5.30), we derive

ÈL›
v + N ›(v), vÍ Æ

Ë
≠⁄0Á + “2⁄0Á + “2Îf

Õ(uh)ÎLŒ + CÁ
≠2/3

“
≠1/3

2
ÎvÎ4/3

È
ÎvÎ2

.

In order to absorb the term involving the L
Œ-bound of the derivative of f into the negative

term of order O(Á), we choose “2 <
1

4Îf Õ(uh)ÎLŒ Á. This choice implies for the last term

CÁ
≠2/3

“
≠1/3

2
ÎvÎ4/3

<
1
4⁄0Á ≈∆ ÎvÎ < cÁ

3/2

for some su�ciently small constant c > 0. Hence, as long as ÎvÎ < Á
3/2+m for some m > 0, we

obtain
ÈL›

v + N ›(v), vÍ Æ ≠1
2Á⁄0ÎvÎ2

.

In the same way as in Lemma 5.34 (just exchange h with › and use the same estimates), we
see that the remaining terms can be bounded by O(÷0). This leads to the following estimate
for dÎvÎ2.
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Corollary 5.38. Let u
› œ Mµ. If v ‹ u

›

i
, i = 1, . . . , N, and ÎvÎ < Á

3/2+m for some m > 0,
we have

dÎvÎ2 Æ
5
≠1

2⁄0ÁÎvÎ2 + O(÷0)
6

dt + 2Èv, dW Í.

With Corollary 5.38 at hand, we can establish a stability result in the mass conserving
case. Due to the worse spectral gap, the maximal noise strength that we can treat gets
smaller.

Theorem 5.39 (L2-Stability for (mAC)).
For m > 0 define the stopping time

·
ú := inf

Ó
t œ [0, TÁ · ·0] : Îv(t)Î > Á

3/2+m
Ô

,

where TÁ = Á
≠M for fixed large M > 0 and ·0 denotes the first exit time from Afl. Also, assume

that for some ‹ œ (0, 1)

Îv(0)Î Æ ‹Á
3/2+m and ÷0 Æ Á

4+2m
.

Then, the probability P(·ú
< TÁ · ·0) is smaller than any power of Á, as Á tends to zero.

Proof. Once again, the assertion follows directly by combining the estimate of Corollary 5.38
with the general stability result of Theorem 2.14.

5.5 Stability in L
4

For controlling the stochastic ODE of the interface positions, we need to establish bounds
on the nonlinear term

ÈN h(v), u
h

i Í =
⁄

1

0

1
3u

h
v

2 ≠ v
3
2

u
h

i dx.

Since smallness in L
2 is not su�cient, we will prove that the L

4-norm of v stays small for very
long times with high probability. In our analysis, we rely on the results of the preceding section.
There, we established stochastic stability in L

2 and hence, all constants which appear in the
following computations may depend on ÎvÎL2 which—provided the assumptions of Theorem 5.36
hold true—is smaller than Á

1/2+m for polynomial times in Á
≠1.

5.5.1 L
4-Stability for (AC)

We begin with the classical Allen–Cahn equation (AC) without mass conservation. By the Itô
formula we have

1
4dÎvÎ4

L4 = Èv3
, dvÍ + 3

⁄
1

0

v
2(dv)2 dx.

Again, recall that by (2.13)

dv =
Ë
L(uh) + Lh

v + N h(v)
È

dt + dW ≠
ÿ

j

u
h

j dhj ≠ 1
2

ÿ

i,j

u
h

ijÈQ‡i, ‡jÍ dt.

First, let us estimate the Itô correction term
s

1

0
v

2(dv)2 dx.

Lemma 5.40. Let h œ �fl. We obtain
⁄

1

0

v
2(dv)2 dx = O(÷0)ÎvÎ2

dt.
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Proof. Using the relation for dv we see that

trace(Q)
⁄

1

0

v
2

dx ≠ 2
ÿ

j

⁄
1

0

v
2Èuh

j , Q‡jÍ dx dt +
ÿ

i,j

⁄
1

0

v
2Èuh

i , u
h

j ÍÈQ‡i, ‡jÍ dx dt

Æ ÷0ÎvÎ2
dt + cÁ

≠1/2
Á

1/2
÷0ÎvÎ2

dt + cÁ
≠1

Á
1/2

÷0Á
1/2ÎvÎ2

dt = O(÷0)ÎvÎ2
dt,

where we utilized the estimates of Proposition 5.7 for the derivatives of u
h together with the

bound on the di�usion ‡ by Lemma 5.21.

As a next step, we study the critical term Èv3
, dvÍ. Note that we focus for simplicity only on the

toy problem f(u) = u
3 ≠u. Later in Section 5.6, we extend our analysis to general nonlinearities

given by polynomials of odd degree. Expanding dv yields

Èv3
, dvÍ = ÈL(uh), v

3Í dt + Á
2

⁄
1

0

v
3
vxx dx dt +

⁄
1

0

1
1 ≠ 3(uh)2

2
v

4 dx dt

≠
⁄

1

0

3u
h
v

5 dx dt ≠
⁄

1

0

v
6 dx dt + Èv3

, dW Í ≠ Èv3
, du

hÍ

= ≠ 3Á
2

⁄
1

0

v
2
v

2

x dx dt ≠ ÎvÎ6

L6 dt + ÈL(uh), v
3Í dt +

⁄
1

0

1
1 ≠ 3(uh)2

2
v

4 dx dt

≠
⁄

1

0

3u
h
v

5 dx dt + Èv3
, dW Í ≠ Èv3

, du
hÍ.

We see that the good (negative) terms for our analysis are given by ≠ÎvÎ6

L6 and, due to
integration by parts,

Á
2

⁄
1

0

v
3
vxx dx = ≠3Á

2

⁄
1

0

v
2
v

2

x dx = ≠3
4Á

2

⁄
1

0

((v2)x)2 dx = ≠3
4Á

2Î(v2)xÎ2
.

Our strategy is to absorb as much as possible of the remaining terms into these negative ones,
while also using that we can control the L

2-norm by the preceding stability result. We begin
with analyzing the dominant term. Since u

h is uniformly bounded, we obtain by interpolating
the L

4-norm between the good terms
⁄

1

0

1
1 ≠ 3(uh)2

2
v

4 dx Æ CÎvÎ4

L4 Æ CÎv
2ÎLŒ

⁄
1

0

v
2 dx

Agmon

Æ CÎvÎ2Îv
2Î1/2

H1 Îv
2Î1/2

Young

Æ 1
8Á

2Îv
2Î2

H1 + cÁ
≠2/3ÎvÎ8/3ÎvÎ4/3

L4

Hölder

Æ 1
8Á

2Îv
2Î2

H1 + cÁ
≠2/3ÎvÎ3ÎvÎL6

Young

Æ 1
8Á

2Îv
2Î2

H1 + 1
4ÎvÎ6

L6 + cÁ
≠4/5ÎvÎ18/5

.

(5.32)

Similarly, we estimate the L
5-term

⁄
1

0

3u
h
v

5 Æ 3ÎvÎ5

L5 Æ cÎvÎ3

L3Îv
2ÎLŒ

Agmon

Æ cÎvÎ3

L3Îv
2Î1/2

H1 Îv
2Î1/2

Young

Æ 1
8Á

2Îv
2Î2

H1 + cÁ
≠2/3ÎvÎ4

L3Îv
2Î2/3

= 1
8Á

2Îv
2Î2

H1 + cÁ
≠2/3ÎvÎ4

L3ÎvÎ4/3

L4

Hölder

Æ 1
8Á

2Îv
2Î2

H1 + cÁ
≠2/3ÎvÎ7/3ÎvÎ3

L6

Young

Æ 1
8Á

2Îv
2Î2

H1 + 1
4ÎvÎ6

L6 + cÁ
≠4/3ÎvÎ14/3

.

(5.33)
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Combining the previous estimates we derived so far

Èv3
, dvÍ Æ ≠ 1

2Á
2Îv

2Î2

H1 dt ≠ 1
2ÎvÎ6

L6 dt +
Ë
cÁ

≠4/5ÎvÎ18/5 + cÁ
≠16/7ÎvÎ66/7

È
dt

+ Èv3
, dW Í ≠ Èv3

, du
hÍ.

Note that we used L(uh) = O(exp) and thus ÈL(uh), v
3Í Æ O(exp) + O(exp)ÎvÎ6

L6 by Hölder’s
inequality. Finally, we estimate Èv3

, du
hÍ given by

Èv3
, du

hÍ =
ÿ

j

Èv3
, u

h

j Í dhj + 1
2

ÿ

i,j

Èv3
, u

h

ijÍÈQ‡i, ‡jÍ dt.

For the second summand we have
Èv3

, u
h

ijÍÈQ‡i, ‡jÍ Æ Îv
2ÎLŒÎvÎÁ

≠3/2
÷0Á

1/2
Á

1/2

Agmon

Æ Îv
2Î1/2

H1 Îv
2Î1/2ÎvÎÁ

≠1/2
÷0

Young

Æ 1
8Á

2Îv
2Î2

H1 + cÁ
≠2/3

÷
4/3

0
ÎvÎ4/3ÎvÎ4/3

L4

Hölder

Æ 1
8Á

2Îv
2Î2

H1 + cÁ
≠2/3

÷
4/3

0
ÎvÎ5/3ÎvÎL6

Young

Æ 1
4Á

2Îv
2Î2

H1 + 1
8ÎvÎ6

L6 + cÁ
≠4/5

÷
8/5

0
ÎvÎ2

.

(5.34)

In addition to the specified inequalities, we used that Îu
h

ij
Î = O(Á≠3/2) by Proposition 5.7

and Î‡Î = O(Á1/2) by Lemma 5.21.
We conclude by analyzing the term involving the stochastic di�erential dh. Recall that by (5.18)
dhj = bj(h, v) dt + È‡j(h, v), dW Í, where b and ‡ are given by (5.20) and (5.19), respectively.
The di�usion term of Èv3

, u
h

j
Í dhj can be estimated as follows:

Èv3
, u

h

j ÍÈ‡j , dW Í = ÈO(Îu
h

j ÎLŒÎ‡jÎÎvÎ3

L3), dW Í
= ÈO(Á≠1/2ÎvÎ3

L3), dW Í
= ÈO(Á≠1/2ÎvÎÎvÎ2

L4), dW Í.

Estimating the drift of Èv3
, u

h

j
Í dhj is trickier, as we have to bound b as well. We have seen in

Lemmata 5.21 and 5.22 that we can bound b up to a stopping time. As long as Îv(t)Î < Á
1/2+m

for some m > 0, we obtain

|bj | = O(÷0) + O(Á) |ÈN h(v), u
h

j Í|,

where the inner product involving the nonlinearity can be estimated by

ÈN h(v), u
h

j Í =
⁄

1

0

1
3u

h
v

2 ≠ v
3
2

u
h

i dx

Æ Îu
hÎLŒÎu

h

j ÎLŒÎvÎ2 + Îu
h

j ÎLŒÎvÎ3

L3

Æ cÁ
≠1ÎvÎ2 + cÁ

≠1ÎvÎÎvÎ2

L4 .

This yields |bj | Æ O(÷0) + cÎvÎ2 + cÎvÎÎvÎ2

L4 , and we obtain

|Èv3
, u

h

j Í||bj | Æ cÁ
≠1

÷0ÎvÎ3

L3 + cÁ
≠1/2ÎvÎ2ÎvÎ3

L6 + cÁ
≠1/2ÎvÎÎvÎ2

L4ÎvÎ3

L6

Hölder

Æ cÁ
≠1

÷0ÎvÎ3/2ÎvÎ3/2

L6 + cÁ
≠1/2ÎvÎ2ÎvÎ3

L6 + cÁ
≠1/2ÎvÎ3/2ÎvÎ9/2

L6

Young

Æ 1
8ÎvÎ6

L6 + cÁ
≠4/3

÷
4/3

0
ÎvÎ2 + cÁ

≠1ÎvÎ4 + cÁ
≠2ÎvÎ6

.

(5.35)
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Finally, we estimated every term of dÎvÎ4

L4 . Thus far, our estimates depend on the L
2-norm

of v. Under the assumptions of Theorem 5.36, i.e., a small noise strength ÷0 and a suitable
initial condition v(0), we can bound ÎvÎL2 by an Á-dependent constant for long time scales. In
more detail, we obtain the following result.

Theorem 5.41. As long as ÎvÎ Æ Á
1/2+m and ÷0 Æ Á

1+2m for some m > 0, we have
1
4dÎvÎ4

L4 Æ
5
≠1

2ÎvÎ4

L4 + cÁ
2m+1

6
dt + ÈO(ÁmÎvÎ2

L4 + ÎvÎ3

L4), dW Í.

Proof. For the proof, one essentially follows the preceding estimates and uses that by Hölder’s
inequality

ÎvÎ4

L4 Æ ÎvÎÎvÎ3

L6 Æ 1
2ÎvÎ2 + 1

2ÎvÎ6

L6 Æ 1
2ÎvÎ6

L6 + cÁ
1+2m

.

Moreover, let us denote by KÁ(ÎvÎ) all terms appearing in the previous estimates of the stochastic
di�erential dÎvÎ4

L4 , which only depend on ÎvÎ. By Lemma 5.40 and the estimates (5.32), (5.33),
(5.34), and (5.35), these terms are given by

KÁ(ÎvÎ) = C

1
Á

≠4/5ÎvÎ8/5 + Á
≠4/3ÎvÎ8/3 + Á

≠1ÎvÎ2 + Á
≠2ÎvÎ4

2
ÎvÎ2

+
1
÷0 + Á

≠4/5
÷

2

0 + Á
≠4/3

÷
4/3

0

2
ÎvÎ2

.

By the assumptions on ÷0 and ÎvÎ, one easily computes that KÁ(ÎvÎ) Æ Á
8m/5ÎvÎ2 Æ Á

1+2m.
Note that the dominating term in KÁ(ÎvÎ) is arising from estimate (5.32).

With this inequality at hand, we can apply the main stability theorem 2.14 of Chapter 2. Bear
in mind that in the derivation of Theorem 5.41 we presented only one technique and thus, we
cannot guarantee the optimality of the radii.

Theorem 5.42 (L4-Stability for (AC)).
For m > 0 and small Ÿ > 0, consider the stopping time

·
ú = inf

Ó
t œ [0, TÁ · ·0] : Îv(t)Î > Á

1/2+m or Îv(t)ÎL4 > Á
1/4+m/2≠Ÿ

Ô
,

where TÁ = Á
≠M for any fixed large M > 0 and ·0 denotes the first exit time from �fl.

Also, assume that for some ‹ œ (0, 1)

Îv(0)Î Æ ‹Á
1/2+m and Îv(0)ÎL4 Æ ‹Á

1/4+m/2≠Ÿ

and that for the squared noise strength

÷0 Æ Á
1+2m

.

Then, the probability P(·ú
< TÁ · ·0) is smaller than any power of Á, as Á tends to zero.

Proof. The estimate of the di�usion term in Theorem 5.41 does not quite fit in the setting of
the general stability result of Theorem 2.14. For this term, we obtain up to the stopping time ·

ú

Á
mÎvÎ2

L4 + ÎvÎ3

L4 Æ cÁ
min{m , 1/4+m/2≠Ÿ}ÎvÎ2

L4 .

By setting x(t) = Îv(t)Î2

L4 and utilizing this estimate together with Theorem 5.41, one then
obtains

dx(t)2 Æ
Ë
KÁ(÷0) ≠ aÁx(t)2

È
dt + ÈO(cÁx(t)), dW Í,



102 5. Multiple kinks for the Allen–Cahn equation in one space dimension

where aÁ = 1

2
, KÁ(÷0) = O(Á2m+1), and cÁ = O(Ámin{m , 1/4+m/2≠Ÿ}).

With this stochastic di�erential inequality, we are back in the setting of Theorem 2.14. Note
that we now have to adept the radius due to the substitution. For the result with respect to x

we have to consider R
2
Á, where RÁ = Á

1/4+m/2≠Ÿ is the given L
4-radius in the definition of ·

ú.
With that, one readily verifies that

KÁ(÷0) + c
2
Á÷1

aÁR4
Á

= O(Á4Ÿ).

So far, this shows that P(Îv(·ú)ÎL4 > Á
1/4+m/2≠Ÿ) is smaller than any power of Á. By the

L
2-result of Theorem 5.36 and the basic inequality

P (·Á < TÁ · ·0) Æ P
1
Îv(·Á)Î > Á

1/2+m
2

+ P
1
Îv(·ú)ÎL4 > Á

1/4+m/2≠Ÿ
2

,

the proof is complete.

5.5.2 L
4-Stability for (mAC)

We conclude this section with establishing stochastic L
4-stability in the mass conserving

case (mAC). As usual, we start with an analogy to the stochastic di�erential inequality in
Theorem 5.41. Due to the di�erent radius RÁ and the noise strength ÷0 of the L

2-stability result
of Theorem 5.39, we have to adept the Á-dependent constants.

Corollary 5.43. As long as ÎvÎ Æ Á
3/2+m and ÷0 Æ Á

4+2m for some m > 0, we have
1
4dÎvÎ4

L4 Æ
5
≠1

2ÎvÎ4

L4 + cÁ
3+2m

6
dt + ÈO(Á1+mÎvÎ2

L4 + ÎvÎ3

L4), dW Í.

Proof. The derivation leading to Theorem 5.41 does not change in the mass conserving case,
since all quantities can be estimated in the same way. One easily verifies that the dominating
term in KÁ(ÎvÎ) remains the same and thus

KÁ(ÎvÎ) < cÁ
≠4/5ÎvÎ18/5

< cÁ
8/5+8m/5ÎvÎ2

< ÎvÎ2
.

With the estimate from Corollary 5.43, we can again rely on the general theorem 2.14 to derive
stochastic stability.

Theorem 5.44 (L4-Stability for (mAC)).
For m > 0 and small Ÿ > 0, consider the stopping time

·
ú = inf

Ó
t œ [0, TÁ · ·0] : Îv(t)Î > Á

3/2+m or Îv(t)ÎL4 > Á
3/4+m/2≠Ÿ

Ô
,

where TÁ = Á
≠M for fixed large M > 0 and ·0 denotes the first exit time from the set of

admissible positions Afl. Also, assume that for some ‹ œ (0, 1)

Îv(0)Î Æ ‹Á
3/2+m and Îv(0)ÎL4 Æ ‹Á

3/4+m/2≠Ÿ

and that the squared noise strength satisfies ÷0 Æ Á
4+2m

.

Then, the probability P(·ú
< TÁ · ·0) is smaller than any power of Á, as Á tends to zero.

Proof. Here, we can essentially follow the proof of Theorem 5.42. Using the adapted versions of
the constants, one then also obtains KÁ(÷0)+c

2
Á÷1

aÁR4
Á

= O(Á4Ÿ). The statement follows now from the
corresponding L

2-result in Theorem 5.39.
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5.6 Extension to general nonlinearites
In the preceding stability analysis, we assumed that f is the derivative of the standard

quartic double-well potential F (u) = 1

4
(u2 ≠ 1)2. As the construction of the slow manifold and

the spectral analysis apply for a broader class of nonlinearities, we extend the results. In this
section, we assume that the nonlinearity f = F

Õ is given by a polynomial of odd degree with
positive leading coe�cient, that is,

f(x) = a2p≠1x
2p≠1 +

2p≠2ÿ

k=1

akx
k for p œ N, a2p≠1 > 0, and a1, . . . , a2p≠2 œ R. (5.36)

Crucial for the analysis and well-definedness of the stochastic ODE governing the interface
motion are bounds on the nonlinearity

N h(v) = f(uh) ≠ f(uh + v) + f
Õ(uh)v = ≠a2p≠1v

2p≠1 +
2p≠2ÿ

k=2

ckv
k
. (5.37)

Obviously, we can find a positive constant C such that pointwise

|N h(v)| Æ C

1
|v|2p + |v|2

2
.

Hence, in order to control N h(v) in L
1, it is su�cient to control the L

2p-norm of v. Note
that for our argument it is important that we have an even power (see Subsections 5.5.1
and 5.5.2). Let us first show that the L

2-stability result of Theorem 5.39 still holds true for this
class of nonlinearities. Essential for our technique of proof was the estimate of Theorem 5.33,
namely

ÈLh
v + N h(v), vÍ Æ ≠1

2⁄0ÎvÎ2
,

for some ⁄0 > 0 and v orthogonal to the tangent space of M at u
h. In the proof of this

bound, we needed the estimate ÈN h(v), vÍ Æ CÎvÎ3

L3 . Note that this is the only term, which is
influenced by the change of the nonlinearity. Let us briefly show that this still holds true in the
general case and thus the L

2-result of Theorem 5.39 remains valid.
Lemma 5.45. Let f be the odd polynomial given by (5.36) and N h(v) the nonlinearity defined
by (5.37). Then, we have

ÈN h(v), vÍ Æ CÎvÎ3

L3 .

Proof. By (5.37) we find c1, . . . , c2p≠3 œ R such that

N h(v) = ≠a2p≠1v
2p≠1 +

Q

a
2p≠3ÿ

k=1

ckv
k

R

b v.

Let C > 0 be such that
---

2p≠3ÿ

k=1

ckv
k

--- Æ 1
2a2p≠1v

2p≠2 + C|v|.

Then, we obtain

ÈN h(v), vÍ =
⁄

1

0

≠a2p≠1v
2p +

Q

a
2p≠3ÿ

k=1

ckv
k

R

b v
2 dx Æ

⁄
1

0

≠1
2a2p≠1v

2p + C|v|3 dx Æ CÎvÎ3

L3 .

Therewith, we are in the setting of the preceding section and can follow the proof that first led
to the inequality for dÎvÎ2 of Corollary 5.35, and then to the L

2-stability result of Theorem 5.39.
Hence, the following result is furnished in the general case.
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Corollary 5.46 (L2-Stability for general nonlinearities).
For m > 0 define the stopping time

·
ú = inf

Ó
t œ [0, TÁ · ·0] : Îv(t)Î > Á

1/2+m
Ô

,

where TÁ = Á
≠M for fixed large M > 0 and ·0 denotes the first exit time from �fl defined

in (5.31). Also, assume that for some ‹ œ (0, 1)

Îv(0)Î Æ ‹Á
1/2+m and ÷0 Æ Á

1+2m
.

Then, the probability P(·ú
< TÁ · ·0) is smaller than any power of Á, as Á tends to zero.

Similarly to the analysis of the quartic potential, we use the long-time stability in L
2 to extend

the stability result to L
2p. Recall that by Theorem 5.39 our optimal radius with respect to the

L
2-norm is given by RÁ = Á

1/2+m for a squared noise strength of order O(Á1+2m). We have seen
in Theorem 5.42 that the radius in the L

4-setting scales like R
1/2

Á , while we can rely on the same
noise strength ÷0. In the general case, we expect that the optimal L

2p-radius should behave
like R

1/p

Á . Essential for deriving stochastic stability in L
2p is the following theorem. Here, we

will assume p Ø 3, since we already proved the result in L
2 and L

4.

Theorem 5.47. Let p Ø 3. Furthermore, assume that ÷0 Æ Á
1+2m and ÎvÎL2 Æ Á

1/2+m for
some m > 0. Then, we obtain for a constant cp > 0 depending only on p

dÎvÎ2p

L2p Æ cp

5
≠1

2ÎvÎ2p

L2p ≠ 1
2ÎvÎ4p≠2

L4p≠2 ≠ Á
2Î(vp)xÎ2 + ÎvÎ2

6
dt + ÈÂ, dW Í,

where
ÎÂÎ2

L2 Æ c

1
ÁÎv

pÎ2

H1 + Á
≠1ÎvÎ4p≠2

L4p≠2 + Á
≠1ÎvÎ2

2
ÎvÎ2p

L2p .

Proof. Here, we follow the method that led to Theorem 5.41 very closely. By Itô formula we
obtain

1
2p

dÎvÎ2p

L2p = Èv2p≠1
, dvÍ + (2p ≠ 1)

⁄
1

0

v
2p≠2(dv)2 dx.

Similarly to Lemma 5.40, we see that
⁄

1

0

v
2p≠2(dv)2 dx Æ C÷0ÎvÎ2p≠2

L2p≠2 Æ C÷0ÎvÎ
p

p≠1 ÎvÎ
(2p≠1)(p≠2)

p≠1
L4p≠2 Æ cÎvÎ4p≠2

L4p≠2 + c÷
2≠2/p

0
ÎvÎ2

,

where we used Hölder’s inequality to interpolate the L
2p≠2-norm. Also note that by assump-

tion ÷
2≠2/p

0
< 1. We continue with the critical terms. By expansion of dv we have

Èv2p≠1
, dvÍ = Á

2

⁄
1

0

v
2p≠1

vxx dx dt + Èv2p≠1
, f(uh) ≠ f(uh + v)Í dt

≠ Èv2p≠1
, L(uh)Í dt ≠ Èv2p≠1

, du
hÍ + Èv2p≠1

, dW Í.

Integration by parts yields for the first term

Á
2

⁄
1

0

v
2p≠1

vxx = ≠(2p ≠ 1)Á2

⁄
1

0

v
2p≠2

v
2

x = ≠2p ≠ 1
p2

Á
2

⁄
1

0

((vp)x)2 = ≠2p ≠ 1
p2

Á
2Î(vp)xÎ2

,

which is a good term for our analysis. We choose c > 0 such that

f(uh) ≠ f(uh + v) Æ ≠a2p≠1v
2p≠1 + cv.

We obtain
Èv2p≠1

, f(uh) ≠ f(uh + v)Í Æ ≠a2p≠1ÎvÎ4p≠2

L4p≠2 + cÎvÎ2p

L2p .
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Hence, this estimate furnished another good negative L
4p≠2-term. We estimate the L

2p-term
further and absorb as much as possible into the negative terms. By Agmon’s and Young’s
inequality we derive

ÎvÎ2p

L2p Æ
⁄

1

0

Îv
pÎŒ|v|p dx Æ Îv

pÎ1/2

H1 ÎvÎp/2

L2pÎvÎp

Lp Æ cÁ
2Îv

pÎ2

H1 + cÁ
≠2/3ÎvÎ2p/3

L2p ÎvÎ4p/3

Lp .

We interpolate the Lebesgue spaces between L
2 and L

4p≠2. With Hölder’s inequality we obtain

ÎvÎ2p/3

L2p Æ ÎvÎ1/3

L2 ÎvÎ(2p≠1)/3

L4p≠2 and ÎvÎ4p/3

Lp Æ ÎvÎ
2
3

3p≠2
p≠1

L2 ÎvÎ
2
3

(p≠2)(2p≠1)
p≠1

L4p≠2 .

Combining the interpolation estimates and using Young’s inequality yields

cÁ
≠2/3ÎvÎ2p/3

L2p ÎvÎ4p/3

Lp Æ cÁ
≠2/3ÎvÎ

7p≠5
3p≠3
L2 ÎvÎ

(2p≠1)(3p≠5)
3p≠3

L4p≠2

Æ cÎvÎ4p≠2

L4p≠2 + cÁ
≠4

p≠1
3p≠1 ÎvÎ

2
7p≠5
3p≠1

L2 = cÎvÎ4p≠2

L4p≠2 + cÁ
≠4

p≠1
3p≠1 ÎvÎ

8
p≠1

3p≠1
L2 ÎvÎ2

L2 .

We observe that by the assumption on ÎvÎL2 we always have Á
≠4

p≠1
3p≠1 ÎvÎ

8
p≠1

3p≠1
L2 < Á

8m
p≠1

3p≠1 < 1.

So far, we have shown that

Á
2

⁄
1

0

v
2p≠1

vxx dx + Èv2p≠1
, f(uh) ≠ f(uh + v)Í Æ ≠CÁ

2Î(vp)xÎ2 ≠ CÎvÎ4p≠2

L4p≠2 + CÎvÎ2
.

By Proposition 5.7 we see that L(uh) = O(exp) and thus

Èv2p≠1
, L(uh)Í = O(exp)ÎvÎ4p≠2

L4p≠2 + O(exp).

Next, we control the term Èv2p≠1
, du

hÍ given by
ÿ

j

Èv2p≠1
, u

h

j Í dhj + 1
2

ÿ

i,j

Èv2p≠1
, u

h

ijÍÈQ‡i, ‡jÍ dt.

For the second term, we obtain

|Èv2p≠1
, u

h

ijÍÈQ‡i, ‡jÍ| Æ cÁ
≠1/2

÷0ÎvÎ2p≠1

L4p≠2 Æ cÁ
≠1/2

÷0Îv
pÎŒÎvÎp≠1

L2p≠2

Æ cÁ
≠1/2

÷0Îv
pÎ1/2

H1 ÎvÎp/2

L2pÎvÎp≠1

L2p≠2

Æ cÁ
2Îv

pÎ2

H1 + cÁ
≠2/3

÷
4/3

0
ÎvÎ2p/3

L2p ÎvÎ4
p≠1

3
L2p≠2

Æ cÁ
2Îv

pÎ2

H1 + cÁ
≠2/3

÷
4/3

0
ÎvÎ

3p≠1
3p≠3
L2 ÎvÎ

(2p≠1)(3p≠5)
3p≠3

L4p≠2

Æ cÁ
2Îv

pÎ2

H1 + cÎvÎ4p≠2

L4p≠2 + cÁ
≠4

p≠1
3p≠1 ÷

8
p≠1

3p≠1
0

ÎvÎ2
.

(5.38)

Here, the prefactor of the L
2-norm is smaller than 1 as ÷0 < Á

1+2m.
We have established in Lemmata 5.21 and 5.22 that, as long as ÎvÎ < Á

1/2+m, the drift term b

of dh is bounded by
|b| = O(÷0) + O(Á)|ÈN h(v), u

h

j Í|.

Since N h(v) is a polynomial in v of degree 2p ≠ 1 with uniformly bounded coe�cients, we find
a constant C > 0 such that |N h(v)| Æ C(|v|2p≠1 + 1) and therefore

|b| Æ C÷0 + CÁ
1/2ÎvÎ2p≠1

L4p≠2 + CÁ
1/2

.

This leads to the following estimate

|Èv2p≠1
, u

h

j Í||bj | Æ C(÷0Á
≠1/2 + 1)ÎvÎ2p≠1

L4p≠2 + CÁ
≠1/2ÎvÎ2p≠1

L2p≠1ÎvÎ2p≠1

L4p≠2 .

The first summand on the right-hand side can be treated identical to (5.38).
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For the second one, we obtain via Hölder’s and Young’s inequality

CÁ
≠1/2ÎvÎ2p≠1

L2p≠1ÎvÎ2p≠1

L4p≠2 Æ CÁ
≠1/2ÎvÎ

2p≠1
2p≠2 ÎvÎ

(2p≠1)(4p≠5)
2p≠2

L4p≠2

Æ cÎvÎ4p≠2

L4p≠2 + cÁ
≠2(p≠1)ÎvÎ2(2p≠1) = cÎvÎ4p≠2

L4p≠2 + cÁ
≠2(p≠1)ÎvÎ4(p≠1)ÎvÎ2

.

And once again, by assumption the prefactor of the L
2-term is smaller than 1.

Let us summarize all the estimates we achieved so far. For a constant Cp depending only on p,
we proved that

dÎvÎ2p

L2p Æ Cp

Ë
≠ÎvÎ4p≠2

L4p≠2 ≠ Á
2Î(vp)xÎ2 + ÎvÎ2

L2

È
dt + Èv2p≠1 + Èv2p≠1

, u
h

j Í‡, dW Í

Æ Cp

Ë
≠1

2
ÎvÎ2p

L2p ≠ 1

2
ÎvÎ4p≠2

L4p≠2 ≠ Á
2Î(vp)xÎ2 + ÎvÎ2

L2

È
dt + Èv2p≠1 + Èv2p≠1

, u
h

j Í‡, dW Í.

In the last step, we utilized that by Hölder’s and Young’s inequality

ÎvÎ2p

L2p Æ ÎvÎL2ÎvÎ2p≠1

L4p≠2 Æ 1

2
ÎvÎ2

L2 + 1

2
ÎvÎ4p≠2

L4p≠2 .

It remains to control the di�usion

Âj = v
2p≠1 + Èv2p≠1

, u
h

j Í‡j .

We have

ÎÂjÎ2

L2 = ÎvÎ4p≠2

L4p≠2 + 2Èv2p≠1
, u

h

j ÍÈv2p≠1
, ‡jÍ + Èv2p≠1

, u
h

j Í2Î‡jÎ2

L2

Æ CÎvÎ4p≠2

L4p≠2 Æ CÎv
pÎ2

ŒÎvÎ2p≠2

L2p≠2

Æ CÎv
pÎH1ÎvÎp

L2pÎvÎ2p≠2

L2p≠2

Æ C

A

Îv
pÎH1ÎvÎ

p(p≠3)
p≠1

L2p ÎvÎ
2

p≠1

B

ÎvÎ2p

L2p

Æ C

A

Îv
pÎH1ÎvÎ

(2p≠1)(p≠3)
2(p≠1)

L4p≠2 ÎvÎ
p+1

2(p≠1)

B

ÎvÎ2p

L2p

Æ
A

cÁÎv
pÎ2

H1 + Á
≠1ÎvÎ

(2p≠1)(p≠3)
p≠1

L4p≠2 ÎvÎ
p+1
p≠1

B

ÎvÎ2p

L2p

Æ
1
cÁÎv

pÎ2

H1 + Á
≠1ÎvÎ4p≠2

L4p≠2 + Á
≠1ÎvÎ2

2
ÎvÎ2p

L2p .

This concludes the proof.

With help of Theorem 5.47, we can prove the long-time stability for general nonlinearities.
The following theorem verifies that the maximal radius in L

2p is indeed given by R
1/p

Á , where
RÁ denotes the L

2-radius. This leads to a generalization of the result we obtained in Theo-
rem 5.42.

Theorem 5.48 (L2p-stability for general nonlinearities).
For m > 0, small Ÿ > 0, and p Ø 3, consider the stopping time

·
ú = inf

Ó
t œ [0, TÁ · ·0] : Îv(t)Î > Á

1/2+m or Îv(t)ÎL2p > Á
1/2p+m/p≠Ÿ

Ô
, (5.39)

where TÁ = Á
≠M for fixed large M > 0. Moreover, assume that for some ‹ œ (0, 1)

Îv(0)Î Æ ‹Á
1/2+m and Îv(0)ÎL2p Æ ‹Á

1/2p+m/p≠Ÿ
,

and that for the squared noise strength ÷0 Æ Á
1+2m

.

Then, the probability P(·ú
< TÁ · ·0) is smaller than any power of Á, as Á tends to zero.
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Proof. The estimate of the di�usion term Â in Theorem 5.47 does not quite fit in the setting
of Theorem 2.14. In order to apply this theorem, we have to bound positive powers of ÎvÎ2p

L2p .
In the sequel, we will use C for a positive constant depending only on p and q. For q > 2 we
obtain

dÎvÎ2pq

L2p = 2pqÎvÎ2p(q≠1)

L2p dÎvÎ2p

L2p + 4p
2
q(q ≠ 1)ÎvÎ2p(q≠2)

L2p

Ë
dÎvÎ2p

L2p

È
2

Æ CÎvÎ2p(q≠1)

L2p

Ë
≠1

2
ÎvÎ2p

L2p ≠ 1

2
ÎvÎ4p≠2

L4p≠2 ≠ Á
2Î(vp)xÎ2 + ÎvÎ2

È
dt

+ C÷0ÎvÎ2p(q≠2)

L2p ÎÂÎ2
dt + CÎvÎ2p(q≠1)

L2p ÈÂ, dW Í.

(5.40)

By the estimate of Â we have for t Æ ·
ú

÷0ÎvÎ2p(q≠2)

L2p ÎÂÎ2 Æ C÷0ÎvÎ2p(q≠1)

L2p

1
ÁÎv

pÎ2

H1 + Á
≠1ÎvÎ4p≠2

L4p≠2 + Á
≠1ÎvÎ2

2

Æ CÁ
2mÎvÎ2p(q≠1)

L2p

1
Á

2Îv
pÎ2

H1 + ÎvÎ4p≠2

L4p≠2 + ÎvÎ2
2

.

All those terms are by a magnitude of Á
2m smaller than their counterparts in (5.40). This yields

dÎvÎ2pq

L2p Æ ≠CÎvÎ2pq

L2p dt + CÎvÎ2

L2ÎvÎ2p(q≠1)

L2p dt + CÎvÎ2p(q≠1)

L2p ÈÂ, dW Í

Æ ≠CÎvÎ2pq

L2p dt + CÁ
1+2mÎvÎ2p(q≠1)

L2p dt + CÎvÎ2p(q≠1)

L2p ÈÂ, dW Í.

From here, we can follow the proof of Theorem 2.14. Inductively we obtain with – = Á
1+2m

EÎv(·ú)Î2pq

L2p Æ C–
q [1 + TÁ] .

By assumption on the L
2p-radius RÁ, we have –/R

p
Á = O(ÁŸ) and the argument can be closed

via Chebyshev’s inequality.

Remark 5.49. In the analysis of the stochastic ODE governing the motion of kinks, we had to
control the L

2p-norm only in Lemma 5.22 when we dealt with bounding the full operator L(uh+v).
Let ·

ú be the stopping time defined by (5.39). For t Æ ·
ú we obtain

ÈN h(v), vÍ Æ CÁ
≠1ÎN h(v)ÎL1 Æ CÁ

≠1
Ë
ÎvÎ2p

L2p + ÎvÎ2

L2

È
Æ Á

1+2m≠2Ÿ
.

This is—as one would expect by the scaling of the radius—exactly the same estimate as in
Lemma 5.22. Hence, the analysis of the stochastic ODE remains una�ected by the more general
nonlinearity f .

So far, we studied the general case for the stochastic Allen–Cahn equation. The mass conserving
version can be treated in a similar fashion. The scaling between the L

2-radius RÁ and the
radius with respect to the L

2p-norm follows the same rule as before. Therefore, we expect the
following result to hold true, but omit the details here.

Conjecture 5.50 (L4-Stability for (mAC)).
For m > 0 consider the stopping time

·
ú = inf

Ó
t œ [0, TÁ · ·0] : Îv(t)Î > Á

3/2+m or Îv(t)ÎL2p > Á
3/2p+m/p≠Ÿ

Ô
,

where TÁ = Á
≠M for fixed large M > 0. Suppose that for some ‹ œ (0, 1)

Îv(0)Î Æ ‹Á
3/2+m

, Îv(0)ÎL4 Æ ‹Á
3/2p+m/p≠Ÿ

, and ÷0 Æ Á
4+2m

.

Then, the probability P(·ú
< TÁ · ·0) is smaller than any power of Á, as Á tends to zero.





APPENDIX A

Basic tools

This chapter is a brief collection of estimates from basic calculus, PDE theory, and functional
analysis that were frequently used throughout this thesis. These can be found for example
in [Bre11, Eva10]. For a collection of basic tools and inequalities from stochastic analysis, see
the following chapter, Appendix B.

We start with one of the basic tools from calculus, namely Young’s inequality for prod-
ucts. It can be used to prove Hölder’s inequality. In our work, it is widely used to es-
timate products of di�erent norms by the sum of the same terms with adequately scaled
powers.

Theorem A.1 (Young’s inequality).
If a, b Ø 0 and p, q > 0 such that 1

p
+ 1

q
= 1, then

ab Æ a
p

p
+ b

q

q
.

Proof. The map x ‘æ exp(x) is convex and consequently,

ab = exp
1

1

p
log(ap) + 1

q
log(bq)

2
Æ 1

p
exp (log(ap)) + 1

q
exp (log(bq)) = a

p

p
+ b

q

q
.

If we set a := (Áp)1/p
a and b := (Áp)≠1/p

b, we obtain a scaled version of Young’s inequal-
ity, also called „Young’s inequality with Á“, which allows us to weight the factors di�er-
ently.

Corollary A.2 (Young’s inequality with Á).
If a, b Ø 0, Á > 0, and p, q > 0 such that 1

p
+ 1

q
= 1, then

ab Æ Áa
p + (pÁ)1≠q

q
b

q
.

In the following theorems, we state some important tools from the theory of Sobolev spaces.
One of the fundamental inequalities is the Poincaré inequality.

Theorem A.3 (Poincaré inequality).
Let � be a bounded, connected and open subset of Rd with C

1-boundary and p œ [1, Œ).
There exists a constant C = C(d, p, �) > 0 such that for every f œ W

1,p(�)
...f ≠ 1

|�|

⁄

�

f(x) dx

...
Lp(�)

Æ CÎÒfÎLp(�).

Proof. For a proof see [Eva10] Theorem 1 in Section 5.8.
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A prominent role in our study play inclusions between di�erent Sobolev spaces. Given the
space W

k,p(�) of (weakly) di�erentiable functions, whose first k weak derivatives are in L
p, the

Sobolev embedding theorem is concerned with the question on when there exist continuous
inclusions W

k,p µ W
l,q.

Theorem A.4 (Sobolev embedding).
Let � µ Rd be a bounded Lipschitz domain. Suppose that k > ¸ and 1 Æ p < q < Œ are such
that 1

p
≠ k

d
= 1

q
≠ ¸

d
.

Then, we have the continuous embedding W
k,p(�) µ W

l,q(�). In the special case k = 1 and ¸ = 0,
this yields W

1,p(�) µ L
p

ú(�), where p
ú is the Sobolev conjugate of p given by p

ú = dp/(d ≠ p).

Proof. The special case k = 1, ¸ = 0 is a direct consequence of the Sobolev–Nirenberg–Gagliardo
inequality. For the general case see [Eva10], Chapter 5.6, Theorem 6.

Next is the Gagliardo–Nirenberg interpolation inequality, which interpolates the L
p-norm of a

weak derivative.

Theorem A.5 (Gagliardo–Nirenberg interpolation inequality).
Let � µ Rd be a bounded Lipschitz domain and 1 Æ q, r Æ Œ and m œ N be such that for j œ N
and j/m Æ – Æ 1

1
p

= j

d
+

31
r

≠ m

d

4
– + 1 ≠ –

q
.

There exists a constant C > 0 such that for u œ W
m,r(�) fl L

q(�)

ÎD
j
uÎLp(�) Æ CÎuÎ1≠–

Lq(�)
ÎuÎ–

W m,r(�)
.

Proof. The statement was originally proved by L. Nirenberg [Nir59, p.125]. Some applications
can be found in [Bre11].

An important special case of this estimate is Ladyzhenskaya’s inequality, which is concerned with
bounding the L

4-norm of a function in terms of the L
2- and H

1-norm.

Corollary A.6 (Ladyzhenskaya’s inequality).
For d œ {2, 3} let � µ Rd be a bounded Lipschitz domain and u œ H

1
0
(�). There exists a

constant C > 0 such that for d = 2

ÎuÎL4 Æ CÎuÎ1/2

L2 ÎuÎ1/2

H1 .

In the three-dimensional case, one obtains

ÎuÎL4 Æ CÎuÎ1/4

L2 ÎuÎ3/4

H1 .

Agmon’s inequality is concerned with controlling the uniform norm of a Sobolev function by
means of the Sobolev spaces H

s. For a proof, we refer to the original work of S. Agmon [Agm10,
Lemma 13.2].

Theorem A.7 (Agmon’s inequality).
Let � µ Rd and s1 <

d

2
< s2. If 0 < ◊ < 1 and d

2
= ◊s1 + (1 ≠ ◊)s2, we have for any u œ H

s2(�)

ÎuÎLŒ(�) Æ CÎuÎ◊

Hs1 (�)
ÎuÎ1≠◊

Hs2 (�)
.
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The final results concern fractional Sobolev spaces W
s,p(�) (see [DNPV12] for an overview).

For � µ Rd, 0 < s < 1 and 1 Æ p < Œ we define

W
s,p(�) :=

;
u œ L

p(�) : |u(x) ≠ u(y)|
|x ≠ y|d/p+s

œ L
p(� ◊ �)

<
,

endowed with the norm

ÎuÎW s,p(�) :=
3

ÎuÎLp(�) +
⁄

�

⁄

�

|u(x) ≠ u(y)|p
|x ≠ y|d+sp

dx dy

41/p

.

Similarly to the classical Sobolev spaces, we have the following interpolation inequality for
fractional Sobolev spaces.

Theorem A.8 (Interpolation inequality).
Let 0 < s1 < s2 < 1 and 1 < p0, p1 < Œ. Moreover, let 0 < ◊ < 1 be such that

s = ◊s1 + (1 ≠ ◊)s2 and 1
p

= ◊

p1

+ 1 ≠ ◊

p2

Then we have W
s,p(�) µ W

s0,p0(�) fl W
s1,p1(�) and

ÎuÎW s,p Æ CÎuÎ◊

W s1,p1 ÎuÎ1≠◊

W s2,p2

We conclude this chapter with a result on fractional embedding. The fractional Sobolev
space W

s,p(�) is continuously embedded into L
q(�) for any q œ [p, p

ú], where p
ú = dp

d≠sp
is the

fractional critical exponent.

Theorem A.9 (Fractional embedding).
Let � µ Rd be an open set of class C

0,1 with bounded boundary. Let s œ (0, 1) and p œ [1, Œ)
such that sp < d. Then, there exists a positive constant C = C(d, p, s, �) such that for any
u œ W

s,p(�) and any q œ [p, p
ú]

ÎuÎLq(�) Æ CÎuÎW s,p(�),

where p
ú = dp/(d ≠ sp) is the fractional critical exponent. If, in addition, the set � is bounded,

then the space W
s,p(�) is continuously embedded into L

q(�) for any q œ [1, p
ú].





APPENDIX B

Preliminaries from stochastic analysis

We collect some important definitions and theorems from stochastic analysis. In the first part,
we give the definitions of a Q-Wiener process and stochastic integration. Thereafter, we discuss
semigroups and stochastic di�erential equations. Under Lipschitz conditions we state a result on
existence and uniqueness of solutions. Throughout these sections, we mainly follow [DPZ92b].
The final part is devoted to some inequalities from stochastic analysis.

B.1 Q-Wiener processes and stochastic integration
Throughout this section, H and K denote separable Hilbert spaces, L(H, K) the space

of all bounded linear operators from H to K, and HS(H, K) all Hilbert–Schmidt operators
from H to K. Moreover, we fix an abstract probability space (�, F ,P) together with a
filtration {Ft}tœ[0,T ].

Definition B.1 (Q-Wiener process).
We call an H-valued stochastic process {W (t)}tØ0 a Q-Wiener process, if

• W (0) = 0 (P-almost sure),

• W has P-almost sure continuous trajectories,

• The increments of W are independent, i.e., the random variables

W (t1) , W (t2) ≠ W (t1) , . . . , W (tn) ≠ W (tn≠1)

are independent for any choice n œ N and 0 Æ t1 Æ t2 Æ . . . Æ tn,

• The increments are Gaussian with W (t) ≠ W (s) ≥ N (0, (t ≠ s)Q) for all 0 Æ s Æ t.

Crucial for our analysis are covariance operators that are of trace-class.

Definition B.2 (Trace-class operators).
A non-negative operator Q œ L(H) is of trace-class, if for an orthonormal basis {ek}kœN of H

trace(Q) =
ÿ

kœN
ÈQek, ekÍH < Œ.

Let u œ H with ÎuÎ = 1. By completing u to an orthonormal basis of H we see that
ÈQu, uÍ Æ trace(Q) and thus we always have ÎQÎL(H) = supuœH,ÎuÎ=1ÈQu, uÍ Æ trace(Q).
Also, note that every trace-class operator is compact and therefore, by the spectral theorem
for compact operators, there exists a basis of eigenfunctions {ek}kœN and eigenvalues –

2

k
,

i.e., Qek = –
2

k
ek.
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Theorem B.3 (Series expansion).
Let Q be a trace-class operator with orthonormal basis of eigenfunctions {ek}kœN and eigen-
values {–

2

k
}kœN. If W is a Q-Wiener process, then it is given by the series expansion

W (t) =
ÿ

kœN
–k—k(t)ek

for a family {—k}kœN of independent real-valued standard Brownian motions.

We continue with the definition of the stochastic integral with respect to a Q-Wiener process
for a broad class of stochastic processes. We start with defining the integral for elementary
processes and then, extend it via completion and localization to a more general class of stochastic
processes.

Definition B.4 (Elementary Processes).
We call a stochastic process �(t), t œ [0, T ] elementary if there exist 0 = t0 < . . . < tn = T, n œ N
and Ftk≠1-measurable random variables �k : � æ L(H, K) such that for any t œ [0, T ]

�(t) =
nÿ

k=1

�k‰(tk≠1,tk)(t).

In the sequel, we denote the space L
2([0, T ]◊�, HS(Q1/2(H), K)) by LT .

Definition B.5 (Stochastic integral for elementary processes).
Let � œ LT be an elementary process. We define the K-valued stochastic integral

⁄
T

0

�(s) dW (s) :=
nÿ

k=1

�k (W (tk) ≠ W (tk≠1)) .

Via Itô isometry, the map induced by the stochastic integral is (for elementary processes) an
isometry between the spaces LT and L

2(�, K).

Proposition B.6 (Itô isometry).
If � œ LT is an elementary process, then

E
...

⁄
T

0

�(s) dW (s)
...

2

K
= E

A⁄
T

0

Î�(s) ¶ Q1/2Î2

HS ds

B

.

We extend the stochastic integral via approximation by elementary processes to a broader class
of stochastic processes. If X is a predictable process in LT , then there exists a sequence of
elementary processes {Xn}nœN such that Xn æ X in LT . Hence, the stochastic integral can be
defined on the subset N 2

w(0, T ) µ LT of predictable processes, i.e.,

N 2

w(0, T ) =
Ó

� : [0, T ] ◊ � æ HS(Q1/2(H), K) : � œ LT and � is predictable
Ô

.

Via localization the stochastic integral can be extended further to the linear space Nw(0, T )
given by

Nw(0, T ) =
;

� : [0, T ] ◊ � æ HS(Q1/2(H), K) : � is predictable

and P
A⁄

T

0

Î�(s) ¶ Q1/2Î2

HS ds < Œ
B

= 1
<

.
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An important role in the study of stochastic di�erential equations plays Itô’s formula. We
give conditions on a function F : [0, T ] ◊ K æ R under which F (t, X(t)) has a stochastic
di�erential provided that X has a stochastic di�erential. The extension to Rn-valued functions
is straightforward and omitted.

Theorem B.7 (Itô formula).
Let Q be a symmetric non-negative trace-class operator on a separable Hilbert space H and
{W (t)}tœ[0,T ] a Q-Wiener process on a filtered probability space (�, F , {Ft}tœ[0,T ],P). Assume
that a stochastic process X(t), 0 Æ t Æ T , is given by

X(t) = X(0) +
⁄

t

0

�(s) ds +
⁄

t

0

�(s) dW (s),

where X(0) is a F0-measurable K-valued random variable, �(s) is a K-valued Fs-measurable
process with ⁄

T

0

Î�(s)ÎK ds < Œ P-almost sure,

and � œ Nw(0, T ). Furthermore, assume that a function F : [0, T ] ◊ K æ R is such that F

is continuous and its Fréchet derivatives Ft, Fx, Fxx are continuous and bounded on bounded
subsets of [0, T ] ◊ K. Then, the following Itô formula holds true P-almost sure for all t œ [0, T ]

F (t, X(t)) = F (0, X(0)) +
⁄

t

0

ÈFx(s, X(s)), �(s) dW (s)ÍK

+
⁄

t

0

Ft(s, X(s)) + ÈFx(s, X(s)), �(s)ÍK ds

+ 1
2

⁄
t

0

trace
1
Fxx(s, X(s))(�(s)Q1/2)(�(s)Q1/2)ú

2
ds.

B.2 Semigroups and stochastic PDEs
Here, we give the definition of a mild solution to a stochastic PDE. First, we recall some

basic definitions from semigroup theory. For more details we refer to [BB67, Paz83, Yos80].

Definition B.8 (C0-semigroup).
A family S(t) œ L(K), t Ø 0, of bounded linear operators is called C0-semigroup if

• S(0) = I

• S(t + s) = S(t)S(s) ’t, s Ø 0

• limtæ0+ S(t)x = x ’x œ K

Definition B.9 (Infinitesimal generator of a semigroup).
Let S(t) be a C0-semigroup. The linear operator A with domain

D(A) =
;

x œ K : lim
tæ0+

S(t)x ≠ x

t
exists

<

defined by

Ax = lim
tæ0+

S(t)x ≠ x

t

is called infinitesimal generator of the semigroup S(t).
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We can now give a meaning to the stochastic PDE
Y
]

[
dX(t) = (AX(t) + F (t, X(t))) dt + B(t, X(t)) dW (t)
X(0) = X0.

(B.1)

Here, A : D(A) µ K ‘æ K is the generator of a C0-semigroup, W (t) denotes a Q-Wiener process,
and the initial condition X0 is assumed to be an F0-measurable K-valued random variable. The
coe�cients F and B are in general given by nonlinear maps

F : � ◊ [0, T ] ◊ C([0, T ], K) ‘æ K and B : � ◊ [0, T ] ◊ C([0, T ], K) ‘æ HS(Q1/2(H), K).

Definition B.10 (Mild solution).
A stochastic process X(t) on a filtered probability space (�, F , {F}tœ[0,T ],P) and adapted to
the filtration {F}tœ[0,T ] is called a mild solution to (B.1), if

P
A⁄

T

0

ÎX(t)ÎK dt < Œ
B

= 1,

P(
A⁄

T

0

ÎF (t, X(t))ÎK + ÎB(t, X(t))Î2

HS(Q1/2(H),K)
dt < Œ

B

= 1,

and for all t Æ T (P-almost sure)

X(t) = S(t)X0 +
⁄

t

0

S(t ≠ s)F (s, X(s)) ds +
⁄

t

0

S(t ≠ s)B(s, X(s)) dW (s).

Remark B.11 (Conversion into a Stratonovich integral).
By Itô formula (Theorem B.7), the chain rule does not hold true for stochastic di�erentials.
One way to overcome this problem is to define the stochastic integral in a di�erent way, namely
the Stratonovich integral. Let X(t) be a mild solution of (B.1) and � : [0, T ] ◊ K æ L(H, K) a
su�ciently smooth operator. Then, one can make sense of the following definition:

⁄
t

0

�(s, X(s)) ¶ dW :=
⁄

t

0

�(s, X(s)) dW + 1
2

⁄
t

0

trace(Q D2�(s, X(s)) B(s, X(s)) ds.

For a more detailed prescription and exact conditions we refer to [TN04]. Basically, the Itô
correction term is absorbed into the definition of the Stratonovich integral. The price one has
to pay though is that the Stratonovich integral no longer is a martingale.

Under certain measurability and Lipschitz conditions on the coe�cients F and B, one can show
that there exists a unique solution to (B.1). We assume that the following conditions hold
true:

(S1) F and B are jointly measurable, and for every 0 Æ t Æ T they are measurable with
respect to the product field Ft ¢ Gt on � ◊ C([0, T ], K), where Gt is a ‡-field generated by
cylinders with basis over [0, t].

(S2) There exists a constant c > 0 such that for all x œ C([0, T ], K)

ÎF (Ê, t, x)ÎK + ÎB(Ê, t, x)Î
HS(Q1/2(H),K)

Æ c

A

1 + sup
0ÆtÆT

Îx(t)ÎK

B

.

(S3) For all x, y œ C([0, T ], K) there exists a constant C > 0 such that

ÎF (Ê, t, x) ≠ F (Ê, t, y)ÎK + ÎB(Ê, t, x) ≠ B(Ê, t, y)Î
HS(Q1/2(H),K)

Æ C sup
0ÆsÆT

Îx(s) ≠ y(s)ÎK.
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Theorem B.12 (Existence and uniqueness).
Let F and B satisfy (S1)-(S3). Then (B.1) has an unique continuous mild solution. Moreover,
if EÎX0Î2p

K < Œ for some p > 1, then the solution X(t) satisfies

E sup
0ÆsÆT

ÎX(s)Î2p

K < Œ.

In the case p = 1, we have to assume that S(t) is a pseudo-contraction semigroup, that is,
a semigroup such that for some – Ø 0 we have ÎS(t)ÎL(K) Æ exp(–t) for any t Ø 0.

B.3 Basic tools from stochastic analysis
We close this brief review of stochastic analysis with some basic tools that were used

throughout this work.

Theorem B.13 (Chebyshev’s inequality, [Tch67]).
Let (�, F ,P) be a probability space and X : � æ R+

0
a random variable. Then, for any R > 0

and 0 < p < Œ
P(X Ø R) Æ E[Xp]

Rp
.

Proof.

E[Xp] =
⁄

�

X
p dP Ø

⁄

{Ê:X(Ê)ØR}
X

p dP Ø
⁄

{Ê:X(Ê)ØR}
R

p dP = R
p P(X Ø R).

The following theorem introduces the Burkholder–Davis–Gundy inequality, which deals with
bounding the expectation of the supremum of a local martingale up to a stopping time. Note
that the stochastic integral defined in Section B.1 is a (local) martingale. We take care of this
special case in Corollary B.15, where the constant is explicitly given. We denote the quadratic
variation of a stochastic process {X(t)}tœ[0,T ] by [X]t, that is,

[X]t = lim
ÎP Îæ0

nÿ

k=1

(X(tk) ≠ X(tk≠1))2
,

where ÎPÎ is the mesh size over partitions of the interval [0, t]. The following inequality was
first proved in [BDG72].

Theorem B.14 (Burkholder–Davis–Gundy inequality).
Let X be a local martingale with X0 = 0 and · an F-stopping time. Then, for any 1 Æ p < Œ,
there exist positive constants cp, Cp such that the following inequality holds

cpE
Ë
[X]p/2

·

È
Æ E

A

sup
sÆ·

|Xs|
B

p

Æ CpE
Ë
[X]p/2

·

È
.

Corollary B.15 (Burkholder–Davis–Gundy for stochastic integrals).
For p Ø 1 and �(t) œ HS(Q1/2(H), K), t œ [0, T ], we have

E sup
0ÆsÆT

...
⁄

s

0

�(s) dW (s)
...

2p

K
Æ CpE

A⁄
T

0

Î�(s) ¶ Q1/2Î2

HS ds

B
p

,

where the constant Cp is explicitly given by Cp = (p(2p ≠ 1))p
1

2p

2p≠1

2
2p

2

.
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Finally, we state Doob’s optional sampling theorem in a for the purpose of this work abbreviated
version. Basically, properties of martingales generalize to stopping times. For a proof we refer
to [Kle06].

Theorem B.16 (Doob’s optional stopping theorem).
Let {Xt}tØ0 be a martingale with respect to the filtration {Ft}tØ0. Suppose that · is a stopping
time such that there exists a positive integer N with ·(Ê) Æ N for all Ê œ �. Then, X· is
integrable, and satisfies

EX· = EX0.



APPENDIX C

Existence, uniqueness and regularity of solutions to the stochastic

Cahn–Hilliard equation

This chapter is devoted to establishing existence, uniqueness and regularity of solutions to
the stochastic Cahn–Hilliard and Allen–Cahn equation in the relevant space dimensions. Here,
we will only treat the stochastic Cahn–Hilliard equation in the three-dimensional case, but the
adaption to other space dimensions or the Allen–Cahn equation is straightforward. Moreover,
for simplicity, the parameter Á > 0 is scaled out and thus we consider Á = 1. We state some
results from [DPD96]. For more details on the stochastic Cahn–Hilliard equation, we refer
to [CW01, EM91] and for a general overview to [DPZ96, DPZ92b, GP93, Zab89].

Let us start by introducing some notation. For a smooth bounded domain � µ R3 we
consider L

2(�) with the standard norm Î · Î and inner product È·, ·Í. The subspace of functions
with mean zero is denoted by

L
2

0(�) =
;

u œ L
2(�) : m(u) := 1

|�|

⁄

�

u(x) dx = 0
<

.

For u œ L
2(�), the projection onto L

2
0
(�) is denoted by ū := u ≠ m(u). On L

2
0
(�) we define the

linear unbounded operator A by

Au = ≠�u, u œ D(A) =
;

u œ H
2(�) : ˆu

ˆ÷
= 0

<
.

The operator A is self-adjoint, positive and has a compact resolvent. Furthermore, there
exists an orthonormal basis in L

2(�) of eigenfunctions {ek}kœN with corresponding eigen-
values

0 = ⁄0 < ⁄1 Æ ⁄2 Æ . . . Æ ⁄k æ Œ.

Also, note that the function e0 is constant and equal to |�|≠1/2. For s œ R and u =
q

j
–jej ,

we define the fractional power A
s/2 by

A
s/2

u :=
ÿ

jœN
⁄

s/2

j
–jej

with domain Hs := D(As/2) = {u =
q

jœN –jej :
q

jœN ⁄
s

j
–

2

j
< Œ}. We endow Hs with the

seminorm and semiscalar product

|u|s := ÎA
s/2

uÎ, (u, v)s := ÈAs/2
u, A

s/2
vÍ

and the norm
ÎuÎs :=

1
|u|2s + m(u)2

2
1/2

.

In this setting, the stochastic Cahn–Hilliard equation is then given by

du =
Ë
≠A

2
u ≠ Af(u)

È
dt + dW, u(0) = u0. (CH)
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For simplicity of presentation, we will always assume that f(u) = u
3≠u in the sequel. In [DPD96],

polynomials of odd degree with positive leading coe�cient were treated. Moreover, W denotes
a Q-Wiener process and is given by the series expansion

W (t) =
ÿ

kœN
–k—k(t)fk,

where {fk}kœN forms an orthonormal basis of eigenfunctions of Q, i.e., Qfk = –
2

k
fk, and {—k}kœN

is a family of independent real-valued standard Brownian motions. Define the stochastic
convolution

WA(t) :=
⁄

t

0

e
≠(t≠s)A

2 dW (s),

which is the unique solution to the linear problem
Y
]

[
du + A

2
u dt = dW,

u(0) = 0.

Note that, in the case of a cylindrical Wiener process, WA has an –-Hölder continuous version
for any exponent – œ [0, 1/8). For a smoother noise, i.e., trace(A1≠”Q) < Œ for some ” > 0,
ÒWA has an –-Hölder continuous version for any exponent – œ [0, ”/4).

If u(t) is a solution to (CH), one easily obtains that v(t) = u(t) ≠ WA(t) is a solution to
Y
]

[

dv

dt
+ A

2
v + Af(v + WA) = 0,

v(0) = u0.
(C.1)

First, let us show that solutions to (C.1), or equivalently (CH), are unique. Crucial for
establishing uniqueness is the di�erentiability of the H≠1-norm. Lemma 2.1 in [DPD96] gives a
criteria for achieving that. A proof of an easier version can be found for example in [Eva10,
Section 5.9, Theorem 3].

Lemma C.1. Let u œ L
2([0, T ]; H≠1) fl L

4([0, T ] ◊ �) be such that

A
≠1

ˆtū = w1 + w2 with w1 œ L
2([0, T ]; H≠1) and w2 œ L

4/3([0, T ] ◊ �).

If the map t ‘æ m(u(t)) is continuous, then u œ C([0, T ]; H≠1) and ˆt|u|2≠1
= 2Èū, A

≠1
ˆtūÍ.

With the help of this lemma, one can finally prove uniqueness of solutions to (C.1). The main
idea is to apply Gronwall’s lemma to the di�erence of two solutions.

Theorem C.2. Let u0 œ H≠1. Then, there exists at most one solution to (CH) that lies
in L

2([0, T ]; H1) fl L
4([0, T ] ◊ �).

Proof. Let u, v œ L
2([0, T ]; H1) fl L

4([0, T ] ◊ �) be solutions to (C.1) and define z := u ≠ v.
Then, z solves Y

]

[
ˆt z + A

2
z + Af(u + WA) ≠ Af(v + WA) = 0,

z(0) = u0 ≠ v0 = 0.

Note that the conservation of mass obviously implies that m(z(t)) = 0 for all t Ø 0. More-
over, Az œ L

2([0, T ]; H≠1) and, by the regularity of WA and f being a cubic polynomial,
f(u + WA) ≠ f(v + WA) œ L

4/3([0, T ] ◊ �). Hence, Lemma C.1 is applicable and yields

ˆt|z|2≠1 = 2Èz, A
≠1

ˆtzÍ = ≠2|z|21 + 2Èf(v + WA) ≠ 2f(v + z + WA), zÍ.
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For the last term we obtain via Hölder’s inequality

Èf(v + WA) ≠ f(v + z + WA), zÍ = ÎzÎ2

L2 ≠ ÎzÎ4

L4 ≠
⁄

�

z
2(v + WA)2 + z

3(v + WA) dx

Æ ÎzÎ2

L2 ≠ 1
2ÎzÎ4

L4 ≠ 1
2

⁄

�

z
2(v + WA)2 dx.

We now use ÎzÎ2

L2 Æ |z|≠1|z|1 Æ 1

2
|z|2≠1

+ 1

2
|z|2

1
and derive

ˆt|z|2≠1 Æ ≠2|z|21 + 2ÎzÎ2

L2 Æ |z|2≠1.

Applying Gronwall’s lemma yields |z|2≠1
= 0, and thus uniqueness.

As a next step, we investigate the existence of solutions. Under certain regularity assumptions
on the Q-Wiener process W and the initial condition u0, the solution of (C.1) is constructed via
Galerkin approximation. For this purpose, we denote for m œ N the orthogonal projection on
span{e0, . . . , em} by Pm and set vm := Pmv and W

m

A
:= PmWA. The Galerkin approximation

of (C.1) is then given by
Y
]

[
ˆt vm + A

2
vm + PmAf(vm + W

m

A
) = 0,

vm(0) = Pmu0.
(C.2)

We state the first result on existence for a cylindrical Wiener process, that is Q © I, and an
initial value in H≠1 (cf. [DPD96], Section 2.1). Note that it is clear that Theorem C.3 still holds
true if we replace the cylindrical Wiener process by smoother noise.

Theorem C.3. Assume that Q © I and u0 is F0-measurable with values in H≠1. Then, there
exists a unique solution u(t) of the Cahn–Hilliard equation (CH) with u œ C([0, T ]; H≠1).

Proof. By taking the semiscalar product of (C.2) with vm, we obtain
1
2ˆt|vm|2≠1 + |vm|21 + ÈPmf(vm + W

m

A ), v̄mÍ = 0. (C.3)

Since the projection Pm is selfadjoint, the last term is given by

ÈPmf(vm + W
m

A ), v̄mÍ = Èf(vm + W
m

A ), vm + W
m

A Í ≠ Èf(vm + W
m

A ), m(vm) + W
m

A Í.

In our toy case f(x) = x
3 ≠ x, we have for all x œ R

x · f(x) Ø 1
2

1
x

4 ≠ 1
2

and |f(x)| Æ 2(|x|3 + 1).

This implies that

Èf(vm + W
m

A ), vm + W
m

A Í Ø 1
2Îvm + W

m

A Î4

L4 ≠ 1
2 |�|,

and, by Hölder’s and Young’s inequality,

Èf(vm + W
m

A ), m(vm) + W
m

A Í

Æ 2
⁄

�

|vm + W
m

A |3 (|m(vm) + |W m

A |) dx + 2
⁄

�

(|m(vm)| + |W m

A |) dx

Æ 2Îvm + W
m

A Î3

L4

1
|�|1/4|m(vm)| + ÎW

m

A ÎL4

2
+ 2|�||m(vm)| + 2|�|3/4ÎW

m

A ÎL4

Æ 1
4Îvm + W

m

A Î4

L4 + c

1
|m(vm)|4 + ÎW

m

A Î4

L4 + 1
2

.
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Plugging these two estimates into (C.3) yields
1
2ˆt|vm|2≠1 + |vm|21 + 1

4Îvm + W
m

A Î4

L4 Æ c

1
|m(vm)|4 + ÎW

m

A Î4

L4 + 1
2

. (C.4)

We observe that m(vm(t)) = m(Pmu0) = m(u0) for all t Ø 0. Moreover, by the Hölder regularity
of the stochastic convolution WA, we see that ÎW

m

A
ÎL4 is uniformly bounded. Hence, we

conclude that the right-hand side of (C.4) is uniformly bounded and thus the sequence (vm)mœN
is bounded in L

Œ([0, T ]; H≠1), L
2([0, T ]; H1), and L

4([0, T ] ◊ �). This implies that

Avm œ L
2([0, T ]; H≠1) and f(vm + W

m

A ) œ L
4/3([0, T ] ◊ �).

The spaces L
2([0, T ]; H≠1) and L

4/3([0, T ] ◊ �) are both embedded into L
4/3([0, T ]; H≠2) and

therefore, we derive that ˆtvm = ≠A
2
vm ≠ PmAf(vm + W

m

A
) lies in L

4/3([0, T ]; H≠4). By a
classical compactness argument (cf. [Aub63]), it can be inferred that (vm) has a subsequence,
which is strongly convergent in L

2([0, T ]; H0) to a function v œ L
2([0, T ]; H1) fl L

4([0, T ] ◊ �).
This shows that

A
≠1

ˆtv œ L
2([0, T ]; H≠1) + L

4([0, T ] ◊ �),

and by Lemma C.1 we conclude that v is continuous with values in H≠1. Since we already know
that solutions to (CH) are unique, the whole sequence (vm)mœN converges to v.

In our applications, we typically need more regularity of solutions to (CH). To establish that,
we automatically have to assume that the noise is even smoother, namely trace(AQ) < Œ. Note
that this condition also implies that the covariance operator Q is of trace-class. We define the
functional J(u) by

J(u) :=
⁄

�

31
2 |Òv|2 + F (u)

4
dx,

where F denotes the primitive of f vanishing at zero. It is well known that J(u) is a Lyapunov
functional for the deterministic Cahn–Hilliard equation, i.e., d

dt
J(u(t)) Æ 0 for a solution u(t).

In Section 2.3 of [DPD96], this was extended to the stochastic case. Therewith, one can prove
H1-regularity of solutions provided the initial value lies in H1.

Theorem C.4. Suppose that trace(AQ) < Œ. Furthermore, assume that u0 œ H1 is
F0-measurable and EJ(u0) < Œ. Then, u œ C([0, T ]; H1) and

EJ(u(t)) Æ e
trace(Q)t

1
EJ(u(0)) + trace(AQ)≠1trace(Q) + C

2
.

Proof. For um defined by um := vm + W
m

A
we have

dum + A
2
um + PmAf(um) = Pm dW, um(0) = Pmu0,

where PmW (t) =
q

m

k=0
–k—k(t)fk. Applying Itô formula yields

dJ(um) = ÈJu(um), PmdW Í + ÈJu(um), ≠A
2
um ≠ PmAf(um)Í dt + 1

2
trace(Juu(um)PmQ) dt,

(C.5)

where Ju and Juu denote derivatives of the functional J . We have Ju(um) = Aum + f(um) and
therefore

ÈJu(um), ≠A
2
um ≠ PmAf(um)Í = ≠|Aum + f(um)|21. (C.6)

For the second derivative one computes Juu(um) = A + f
Õ(um) and thus

trace(Juu(um)PmQ) = trace(APmQ) +
mÿ

k=0

–
2

k

⁄

�

f
Õ(um)f2

k dx.
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The eigenfunctions fk can be expressed as a product of sines and cosines times a constant, which
only depends on |�|. Therefore, we find a constant c such that ÎfkÎLŒ Æ c. Hence we obtain

---
⁄

�

f
Õ(um)f2

k dx

--- Æ c
2

⁄

�

|f Õ(um)| dx Æ 3c
2

⁄

�

|um|2 dx + c
2

Æ C

⁄

�

|um|4 dx + C Æ C

⁄

�

F (um) dx + C Æ J(um) + C.

Here we used that |f Õ(x)| Æ 3x
2 + 1 and F (x) Ø ax

4 ≠ b for some positive constants a, b. So far
we have shown that

trace(Juu(um)PmQ) Æ trace(APmQ) + trace(PmQ)(J(um) + C). (C.7)

Relations (C.5), (C.6), and (C.7) together with EÈJu(um), Pm dW Í = 0 now imply
d

dt
EJ(um) = EÈJu(um), ≠A

2
um ≠ PmAf(um)Í + 1

2trace(Juu(um)PmQ)

Æ trace(APmQ) + trace(PmQ)(EJ(um) + C)
Æ trace(Q)EJ(um) + trace(AQ) + C trace(Q).

Applying Gronwall’s inequality yields

EJ(um(t)) Æ e
trace(Q)t

1
EJ(um(0)) + trace(AQ)≠1trace(Q) + C

2
.

If EJ(u0) < Œ, the claim is verified via lower semicontinuity.

Remark C.5 (Local existence).
The preceding results provided us with a global solution to the stochastic Cahn–Hilliard equation.
For the purpose of our work though, local solutions are su�cient. Let us—on a heuristic level—
show that for an initial value u0 œ H2 we find a positive time t0 > 0 such that the solution
lies in L

Œ([0, t0], H2). We expect that it is possible to show global existence, but the technical
details are rather delicate. Also, note that it is straightforward to extend this local result to
fractional Sobolev spaces of higher order. Similarly to the proof of Theorem C.3 we obtain

1
2ˆt|v|22 + |v|24 + ÈA2

v, Af(v + WA)Í = 0. (C.8)

Critical for bounding the inner product is the term ÈA2
v, Av

3Í. Integration by parts yields

ÈA2
v, Av

3Í = 3
⁄

�

v
2
AvA

2
v dx ≠ 6

⁄

�

v|Òv|2A
2
v dx

= ≠3
⁄

�

v
2|ÒAv|2 dx + 6

⁄

�

vÒv(ÒAv)Av dx ≠ 6
⁄

�

v|Òv|2A
2
v dx

Æ ≠3
2

⁄

�

v
2|ÒAv|2 dx + c

⁄

�

|Òv|2|Av|2 dx ≠ 6
⁄

�

v|Òv|2A
2
v dx

Æ c|v|22 ÎÒvÎ2

Œ + 1
4 |v|24 + |v|20 ÎÒvÎ4

Œ Æ c|v|62 + 1
2 |v|24.

In (C.8), we set x(t) = |v(t)|2
2
. With the bound on the crucial term, this provides us with an

estimate of the type
x

Õ(t) Æ C (x(t)p + 1)

for some constant p > 0. Hence, by a comparison principle, we find a positive time t0 > 0
(depending on p) such that solutions of (C.8) persist at least up to the time t0 and satisfy

sup
tœ[0,t0]

|v(t)|2 Æ C.
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