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I.A Motivation	

There is a supposed conflict between economic objectives and the striving for a sustainable production 

of goods. Interestingly for certain strategic planning decisions, both objectives may even support each 

other to a certain degree. One of these planning problems is the design of an energy conversion system 

(ECS) which supplies a manufacturing company with the necessary energy for its production processes. 

The complementary support of economic and ecological objectives and the motivation to install an 

ECS can be explained by several observations. 

The first observation is that due to the global industrial development and strong worldwide population 

growth (Bazmi and Zahedi, 2011) the demand of energy has risen steadily in recent years (Al Moussawi 

et al., 2016). This leads to a growing scarcity of fossil fuels, which are used to meet the majority of 

energy demands (Erdinc and Uzunoglu, 2012; Bhattacharyya et al., 2017), and therefore, rising energy 

prices (Rager et al., 2015; Al Moussawi et al., 2016). This strong reliance on exhaustible non-renewable 

reserves, restrictions and failures of the established infrastructure, the global competitive situation, 

and geopolitical insecurities put increasing pressure on energy supply infrastructures (Bazmi and 

Zahedi, 2011). 

Second, the industrial sector is one of the main consumers of energy within the European Union (EU), 

and can be held accountable for almost 25% of the EU’s total energy consumption (Eurostat, 2019). 

Furthermore, a German study shows that in 2017 a total of 90% of industrial energy consumption was 

used for production processes. Thereof 68% are used for process heat and process cold, 22% for 

mechanical processes, and only 10% for other purposes such as room heating, lighting, or 

communication (Ziesing, 2018). Thus, this study identifies the production processes of manufacturing 

companies as the focal point for energy savings in industry. 

Third, due to their high energy consumption, social and political pressure on industries to operate more 

sustainably is growing. This pressure intensifies even further, as societal concern on the issue of 

increasing emissions of potentially climate-damaging greenhouse gases caused by combustion of fossil 

fuels (Ahmadi et al., 2015) progressively rises nowadays. But in contrast to society demanding change 

towards more sustainable industries, in most affluent societies the consumption and use of goods and 

products cannot easily be dispensed with. Therefore, the abandonment of production is no solution in 

order to comply with the demands of society to save energy.  

Summarizing these observations, manufacturing companies have an immense incentive to save energy 

during production processes for a sustainable production from an ecological, social, and political 

perspective and to spare costs from an economical perspective. The difficulty in saving energy during 

production processes is that energy is a non-substitutable and indispensable production factor (Gahm 

et al., C3; Rager, 2008; Gahm et al., 2016). Consequently, besides the energetic optimization of 
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production processes, the required amount of energy must be used as efficiently as possible. In 

addition, the industrial sector has the motivation for a strategically independent and efficient energy 

supply (Ghadimi et al., 2014).  

One auspiciously measure to secure energy supply and to increase the energy efficiency 

simultaneously, is the installation of on-site ECSs (cf., Campana et al., 2019; for other measures see 

Ganschinietz et al., C2). This measure saves the most energy, and thus is especially cost efficient, when 

the overall energy conversion efficiency is as high as technically possible (less dissipation of useful 

energy). Consequently, if the ECS is designed and integrated adequately to the specific application 

case, it may decrease total costs and increase energy efficiency at the same time (Behzadi et al., 2019). 

Besides an ecological, social, and political striving for high energy efficiency, an ECS’ “[…] appropriate 

sizing is one of the most important issues that results in having a cost-effective energy system” 

(Khiareddine et al., 2018). Concluding, an adequate design of ECS for manufacturing companies with a 

high energy efficiency is aspired by many parties and is therefore the subject of this doctoral 

dissertation.  

The adequate design of onsite ECS is a complex, planning problem specific, and strategic decision topic 

for every application case. However, especially for manufacturing companies this planning complexity 

increases even more due to the hierarchical interdependency between the energy supplying ECS and 

the energy demanding production system (PS). Because of this interdependency, the PS`s varying 

energy demand during production processes can immensely influence an ECS’s overall energy 

efficiency. Consequently, for an adequate design with high energy efficiency, this interdependency has 

to be considered during ECS design although it increases the problem complexity. This complexity has 

resulted in numerous publications on different specific planning problems within an unstructured 

research field. For these reasons and to identify and address unresolved topics of this research field, 

this doctoral dissertation comprises four contributions (C1-C4) which focus on the answer and 

clarification of the following research questions: 

§ RQ1: How can the research area of ECS design for manufacturing companies be structured and 

which planning factors are crucial for an adequate ECS design?  

§ RQ2: Which individual planning problems of ECS design have been addressed thus far or reveal 

a deficiency in research? 

§ RQ3: How can different complex and individual planning problems of ECS design be addressed 

to increase energy efficiency? 

§ RQ4: How do the most important planning factors influence ECS design and ECS energy 

efficiency for manufacturing company? 

§ RQ5: How can the concept of hierarchical planning be incorporated during ECS design? 
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This doctoral dissertation is structured as follows: First an introductory section provides the theoretical 

foundation by outlining characteristics and hierarchical interdependencies of ECS design for 

manufacturing companies. Next, the raised research questions RQ1 to RQ5, are subsequently 

addressed by a total of four scientific publications in section II. Closing, a summarizing discussion of 

the contributions` added value, and an outlook on opportunities for future research is given in section 

III. 

I.B Organizational	and	technical	background	of	energy	
conversion	system	planning	

This section explains the application of energy in manufacturing companies, the relationship between 

the energy demanding PS and the energy providing ECS, as well as the concept of hierarchical planning 

in general and in the context of ECS design. 

I.B.1 Energy	provision	and	application	in	manufacturing	companies	

Energy is a non-substitutable production factor and plays a special role in manufacturing companies 

because it is essential for almost every production process. In general, production processes are 

executed by the production units (PUs) of a PS (manual processing by workers is excluded in this 

context). To that, the PUs are used to fulfill the tasks defined by working plans of the production orders 

representing the product(s) to be produced. Hereby, a small amount of the energy demand of a 

manufacturing company’s PS is caused by peripheral equipment used to put PUs in a condition to 

perform the actual production process. However, production processes themselves demand the 

largest share of the overall energy demand of a PS. 

Due to the importance of energy in manufacturing companies, Figure I.B-1 depicts the energy supply 

and energy application in manufacturing companies and is based on the findings of Denz (2015) and 

Gahm et al. (2016). 
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Figure I.B-1: Energy supply and application in manufacturing companies 

In Figure I.B-1 the arrows depict the transport of energy by energy sources (also called energy carriers). 

The external energy supply can be based on primary energy sources (PES) like solar energy, or 

secondary energy sources (SES) like electric power. As soon as the ownership of energy sources is 

transferred to a manufacturing company, they are referred to as final energy sources (FES). These FES 

can either be used directly by the production units of the production system, as in case A, or they have 

to be transformed to fitting applicable energy sources first, as in case B. In case B the FES are 

transformed by an on-site energy conversion system into the desired applied energy sources (AES), 

which in turn can be used by the PUs. In the latter setting, a strong relation between the ECS and the 

PS exists, since the PS demands the AES that the ECS has to provide. 

The specific amount and type of AES (e.g., heat or electrical power) required by the PUs primarily 

depends on the actual production processes. The production process in turn is essentially determined 

by the desired product and its production volume. This means that the AES demand for most 

production processes can be determined in advance. In consequence, the information on AES demands 

is already available before production is carried out and therefore, the information can be used to 

increase energy efficiency in manufacturing companies by different measures (e.g., by energy-efficient 

scheduling or ECS planning). A more detailed analysis of energy application in manufacturing 

companies can be found in Dietmair and Verl (2009), Avram and Xirouchakis (2011), Duflou et al. 

(2012), and Li et al. (2014). 

Based on this very general discussion of energy application in manufacturing companies, a more 

detailed analysis of the relationship between AES demand of the PS and AES supply offered by the ECS 

is carried out in the following. 
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I.B.2 On	the	relationship	between	production	system	and	energy	
conversion	system	

In manufacturing companies, a PS consists of one or more PUs, which are available for production 

process execution (assuming that the production system is already determined). As soon as a task of a 

production process is scheduled on a PU, the actual AES demand per time unit can be determined. 

Furthermore, if several PUs require the same type of AES, a cumulated AES demand can be 

determined. This relationship is illustrated in Figure I.B-2 (cf., Rager et al. 2015):  

 
Figure I.B-2: Relationship between PS and cumulated AES demand to be supplied by the ECS 

An exemplary production schedule (Gantt-chart on the upper left) shows task executions on four PUs. 

Tasks with a light gray background indicate an AES demand of one unit, and tasks with a dark gray 

background indicate AES demands of two units. This production schedule leads to the cumulated AES 

demands depicted on the lower left of Figure I.B-2 and shows that the executed production scheduling 

for a PS determines and influences the resulting cumulated AES demands per time unit. For analysis, 

cumulated AES demands can be visualized by load duration curves (LDCs). Here, the cumulated AES 

demands are arranged in a descending order either in an absolute or relative load scale. It is common 

to visualize data of one year. An exemplary LDC is depicted on the right side of Figure I.B-2 (the marked 

bars visualize the relationship between cumulated AES demands and LDC). Summarizing, since the ECS 

has to provide the demanded AES, the PS planning and production scheduling has an immense 

influence on the ECS design. More information on the relationship between PSs and ECSs can be found 

for instance in Mignon and Hermia (1996), Herrmann and Thiede (2009), Agha et al. (2010), Zhang et 

al. (2013), Merkert et al. (2014), Moon and Park (2014), Denz (2015), or Gahm et al. (2016). 
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Given the structural issues defined by case B (see Figure I.B-1), the basic purpose of an on-site ECS is 

to convert PES and/or SES to provide a specific type of AES requested by the PUs of the PS. Usually, a 

manufacturing company operates one ECS1 to efficiently fulfill the cumulated AES demands of a 

specific type. For a most efficient AES supply, the ECS needs to operate at its nominal load (i.e., the 

load at which the ECS operates with maximum efficiency) for as long as possible. This is, because an 

operation at partial loads (i.e., any load different from the nominal load) leads to efficiency losses (cf., 

Aguilar et al. 2007, Kaikko and Backman 2007, Théry et al. 2012, Gibson et al. 2013, Pruitt et al. 2013, 

Denz 2015, Sun and Liu 2015, or Darrow et al. 2017). Consequently, assuming a manufacturing 

company’s AES demand would be constant over time, for the most efficient AES supply the ECS’s 

nominal load would be fitted to this constant demand. In reality, however, the AES demands of 

manufacturing companies are (usually) not constant over time, in fact they even vary strongly for each 

time unit, depending on the executed production schedule. This forces the ECS operation for most of 

the time to deviate from the nominal load for an accurate AES demand fulfillment, which leads to 

conversion inefficiencies. Consequently, the PS`s varying AES demands during production processes 

immensely influence an ECS’s overall energy efficiency negatively. Thus, the efficiency of the on-site 

ECS strongly depends on an adequate design with respect to the PS. 

I.B.3 Hierarchical	planning	of	energy	conversion	systems	for	
manufacturing	companies	

For an optimal design of an ECS for manufacturing companies, the ECS design and its operation and 

the design of the PS and its operation (with a corresponding production scheduling), need to be 

determined simultaneously. Since these individual planning decisions influence each other, the 

resulting optimization problem is quite complex.  

For exactly those cases, where a simultaneous solving of all occurring planning problems within a total 

model is hardly practicable and a pure successive planning is not sufficient, the concept of hierarchical 

planning has been developed and can be traced back to Hax and Meal (1973), Bitran et al. (1981), 

Bitran and Tirupati (1993) and Schneeweiß (1995) amongst others. In hierarchical planning, the 

planning problem is split into individual, interlinked subtasks on the basis of factual criteria in order to 

reduce complexity. Hereby the interdependencies between the interlinked subtasks must be 

considered during problem splitting and the subsequent solving of the subtasks (Gahm, 2010). This 

process is called decomposition and hierarchical structuring. The concept of hierarchical planning in 

general is illustrated in Figure I.B-3 (cf., Schneeweiß, 1995). 

 
1 Note that also the operation of several ECS or the operation of an ECS consisting of several conversion units (CUs) is possible, 
but for a better understanding the following explanation assumes the operation of one ECS. 
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Figure I.B-3: Concept of hierarchical planning 

Figure I.B-3 consists of two exemplary hierarchical planning levels, namely the top-level and its 

subordinate base-level. Hereby, the top-level represents long-term decisions and determines the 

frame within which the decisions of the subordinate base-level have to be reached (Stadtler et al., 

2015). Consequently, the base-level represents short-term decisions which can be determined in 

dependency of the top-level decisions. A planning problem can be decomposed into an arbitrary 

number of decision levels (but at least two decisions levels, cf., Stadtler et al., 2015). This can be 

realized by the previous base-level becoming the top-level to a new subordinate decision level.  

During hierarchical planning, the hierarchical coordination between the decision levels is realized by 

vertical top-down and bottom-up influences (Schneeweiß, 1995). In Figure I.B-3 the hierarchical 

influences between individual planning sub-tasks are represented by arrows. Solid arrows depict actual 

top-down influences called instruction (IN), dotted arrows represent anticipated bottom-up 

feedforward influences called anticipation (AN), and dashed arrows stand for bottom-up feedback 

influences called reaction (RE). 

The procedure to find a feasible solution with the concept of hierarchical planning is as follows: The 

base-level provides its most relevant aspects or an aggregated version of itself to the top-level (AN). 

This information is used by the top-level to anticipate the base-level reaction for a proposed solution 

and thus, to make more appropriate suggestions. The proposed top-level solution (providing the frame 

in which decisions of the base-level have to be determined) is given to the base-level (IN) for an 

admissibility check and evaluation. Results from the base-level are afterwards returned to the top-

level via a bottom-up feedback (RE). In case the proposed solution is not feasible or suitable, the base-

level requests a recalculation of top-level decisions. Ultimately, if the negotiations between top-level 

and base-level determine a feasible solution, the results are implemented into the object-system to 
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appraise the solution. The object-system returns the evaluated final solution and can influence the 

top-level and base-level via an ex-post feedback. 

Regarding the anticipation of base-level reactions, different methods are possible. For instance, a 

simplified model of the base-level can be incorporated by simple rules, aggregation, assumptions, 

simulations, and/or simplified constraints. However, all these alternatives require the top-model to 

solve an additional aggregated version of the base-model during planning. For this reason, it is always 

a tradeoff between the degree of detail considered in the aggregated base-level or the reduction of 

complexity and the saving of computation time. Instead of considering a simplified version of the base-

level, other methods, which approximate the reaction of the base-level, offer the potential for a very 

high quality base-level anticipation with a relatively short computation time. This approximation can 

be particularly promising if the necessary information for anticipating base-level reactions has not 

been sufficiently explored thus far. To create these approximations of the base-level reactions, 

different methods, for instance machine learning techniques such as decision trees, support vector 

machines, and artificial neural networks, are possible. 

As stated above, with its high complexity, the design of an ECS for manufacturing companies is a 

suitable candidate for hierarchical planning. However, due to the strong relation between the PS and 

ECS, a direct application of hierarchical planning which “only” considers vertical influences is not 

sufficient. The vertical influences depict the relation between the ECS design and the ECS operation or 

the relation between the PS planning and the corresponding production scheduling. But for the 

relation between production scheduling and ECS operation the concept needs to be extended by 

horizontal influences. Figure I.B-4 illustrates these vertical and horizontal influences during the design 

of ECS based on the fundamentals of hierarchical planning.  
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Figure I.B-4 Hierarchical ECS design concept 

Here, the top-level decisions are the PS planning and the ECS design, whereas the base-level decisions 

are the production scheduling and the ECS operation. In addition to conventional hierarchical planning, 

the base-level decisions influence each other, and production scheduling depends on two superior top-

level decisions. 

Assuming that all strategic, long-term decisions about the PS (e.g., production processes and 

equipment, production unit arrangement) are already made, the energetic characteristics of the PS 

and the corresponding operational, short-term production scheduling problems are defined in 

instruction 1 (IN-1). According to the planned PS, the production schedules can be calculated. As 

already stated above, these production schedules define the cumulated AES demands2 and thus, can 

influence the ECS design and ECS operation (cf., section I.B.2). Consequently, these resulting AES 

demands from production scheduling must be anticipated during ECS design (AN-2) and to estimate 

the corresponding ECS operation (AN-3). The ECS operation in turn is used as anticipated information 

(AN-4) during the top-level ECS design. Having the data of the anticipated production scheduling and 

ECS operation, the top-level proposes an ECS design to the base-level (IN-5 and IN-6). The proposed 

ECS design and its parameters (IN-6) are then integrated into production scheduling with energy-

 
2 The data basis for AES demands can be historical data from manufacturing execution or production scheduling, but also be 
a result of so called “simulative scheduling” that will be discussed in more detail in Gahm et al. (C3). 
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efficient scheduling approaches. These actual scheduling decisions (IN-7) together with the proposed 

ECS design parameters (IN-5) determine the operational behavior of the ECS. The actual ECS operation 

provides its reaction (RE-8) about the suitability and energy efficiency of the proposed ECS design and 

if necessary, requests a recalculation of the top-level decisions. 

After giving a short introduction on the application of energy, the interrelation of the PS and the ECS 

in manufacturing companies, as well as the hierarchical problem structure the research concept is 

introduced in the following. 

I.C Research	concept	and	contributions	

This section places the contributions compiled within this dissertation into the context of the research 

concept. In addition a short summary of each contribution and their answered research questions is 

provided. 

Figure I.C-1 illustrates the research concept and shows the contextual interrelations and mutual 

influences of the contributions by grey arrows. Furthermore, Figure I.C-1 assigns the addressed 

research questions (RQ1-RQ5) to each contribution (C1-C4). 

 
Figure I.C-1: Research concept and thematical classification of contributions 

To answer RQ1-RQ5 this doctoral dissertation comprises four contributions, including three (C1-C3) 

which focus directly on the design of ECS for manufacturing companies, whereas the fourth 

contribution (C4) addresses a new method for an approximative anticipation function in hierarchical 
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planning. This anticipation function, exemplary for nesting problems in manufacturing companies with 

machine learning, can be adapted and applied to the anticipation of base-level production scheduling 

and ECS operation during ECS design. To fully disclose not only the conducted research but also the 

opportunities for future research, the dotted arrows depict how the elaborated findings are applicable 

in the next research step (outlook).  

Regarding ECS design in manufacturing companies, it needs to be considered that their production 

processes cause (strongly) varying energy demands, which can have a major negative influence on the 

efficiency of an ECS. To design an ECS adequately, each design approach needs to be carefully fitted to 

the planning problem at hand. This, combined with the various design possibilities, and the high 

complexity of ECS design in general, leads to countless publications addressing specific ECS design 

problems. To identify and categorize these numerous publications Ganschinietz (C1) presents a 

concept-centric ECS design framework (ECSDF), which structures existing and upcoming publications 

about the design of on-site ECSs for manufacturing companies. The development of the framework 

follows recommendations of Webster and Watson (2002), Seuring and Müller (2008), Vom Brocke et 

al. (2009), and Gahm et al. (2016) to define the ECSDF in an iterative manner. The resulting ECSDF 

consists of eight main categories, 27 sub-categories, and 126 attributes, which represent aspects 

essential for a high quality ECS design for manufacturing companies. The developed ECSDF answers 

RQ13 by unifying and structuring the understanding of the planning factors crucial for ECS design. 

Furthermore, it enables a corresponding analysis of existing literature in this field.  

Consequently, in Ganschinietz et al. (C2) a structured literature review according to the ECSDF is 

conducted. For that purpose a search string-based literature search in the database Web of Science 

with a consecutive forward and backward search is performed. After reviewing over 600 publications, 

a total of 120 ECS design approaches are classified according to the ECSDF. These classified approaches 

form the base for an empirical analysis to gain insights about the existing state of the art as well as 

opportunities for further research topics. This analysis utilizes the results of RQ1 and answers question 

RQ24 as it displays which planning problems have been addressed and solved by the research 

community so far. As a result, the analysis identifies several opportunities for future research, for 

instance, the realistic modelling of partial load efficiencies, the consideration of ramp up constraints 

during ECS operation, and the development of a flexible design approach regarding the ECS type, FES 

 
3 RQ1: How can the research area of ECS design for manufacturing companies be structured and which planning factors are 
crucial for an adequate ECS design? 
4 RQ2: Which individual planning problems of ECS design have been addressed thus far or reveal a deficiency in research? 
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supply, and AES types. By doing so, Ganschinietz et al. (C2) disclose the motivation behind research 

questions RQ35 and RQ46 

On the basis of Ganschinietz (C1), Ganschinietz et al. (C2), and the elaborated importance of increasing 

the energy efficiency of ECS (cf., section I.A), Gahm et al. (C3) propose a flexible and robust ECS design 

approach with the objective to increase energy efficiency. They propose an ECS comprising of two 

complementary conversion units with different characteristics to provide AES for the energy 

demanding PS as efficiently as possible. To incorporate hierarchical interdependencies of the PS (and 

production scheduling) with the ECS design (and ECS operation), simulative scheduling is used to 

anticipate prospective AES demands during the top-level decision on the ECS design. For a more 

realistic anticipation of the prospective ECS operation, a non-linear modelling of the efficiency 

characteristics of CUs is utilized. To solve the planning problem, a highly efficient heuristic and a mixed-

integer non-linear program is proposed. This flexible approach is independent of specific AES and FES 

types and not specified on a specific ECS type. One more aspect, which differentiates this flexible 

approach from existing literature, is the experimental analysis of energy efficiency influencing factors. 

This experimental analysis investigates different types of companies, scheduling objectives, CU 

parameters, and different part-load efficiency modelling approaches (piecewise-linear vs. non-linear) 

and their influence on the energy efficiency. Thus, besides research question RQ3, this contribution 

answers RQ4 by investigating the influence of different scheduling objectives, technical CU 

parameters, and part-load efficiency modelling approaches on the ECS design. Moreover, it addresses 

RQ57 by incorporating the concepts of hierarchical planning by the anticipation of different production 

scheduling objectives and aspects of the ECS operation during the decisions of the top-level ECS design. 

One further aspect for future research identified by Ganschinietz et al. (C2) is the insufficient technical 

analysis of operational characteristics of CUs. Especially characteristics resembling CU state transitions, 

load transitions, and the related conversion efficiencies are not yet sufficiently researched8. 

Consequently, these characteristics are difficult to consider during top-level decisions, since they are 

either too complex to be modelled mathematically or cannot be modelled due to the lack of 

information. Only Shamsi et al. (2019) and Gahm et al. (C3) consider ramping constraints9 at all, 

however in an aggregated and simplified way. Thus, to be able to consider the negative influences of 

these transitions on the additionally needed amount of final energy sources, they need to be either 

defined (e.g., by physical experiments or observations) or approximated. The advantage of the 

approximation is that the exact behavior does not have to be calculated, which can reduce necessary 

 
5 RQ3: How can different complex and individual planning problems of ECS design be addressed to increase energy efficiency? 
6 RQ4: How do the most important planning factors influence ECS design and ECS energy efficiency for manufacturing 
company? 
7 RQ5: How can the concept of hierarchical planning be incorporated during ECS design? 
8 For a detailed definition of these operational characteristics cf., Ganschinietz (C1). 
9 Ramping constraints are one of the possibilites to modell the compliance to restricted load transitions. 
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computation time and the dependency on the exact definition of physical behavior. One possible 

approach to approximate these influences is the application of machine learning techniques (for 

instance decision trees, support vector machines, and artificial neural networks). This approximation 

of base-level reactions can not only be applicable in ECS design, but also in other hierarchical planning 

problems. For this reason, Gahm et al. (C4) investigate the suitability of machine learning techniques 

for the approximation of base-level reactions on an interlaced production planning and production 

scheduling problem. More precisely, the approximation technique is defined and applied on a serial-

batch scheduling problem with a subordinate complex nesting problem. Hereby, the top-level 

scheduling decision comprises batching of jobs (i.e., the grouping of small items to be cut out of a large 

object), allocation of these batches to machines, and sequencing. To verify the feasibility of a batch 

(subordinate base-level decision), the solving of the corresponding complex nesting problem (i.e., the 

spatial arrangement of all items without overlapping within the large object) becomes necessary. This 

can be very time consuming. To enhance this planning process, Gahm et al. (C4) propose the 

approximative anticipation of base-level nesting reactions by the application of machine learning 

techniques. Instead of solving the complex nesting problem, the feasibility of a batch is approximated. 

This approximation offers a very high quality of base-level anticipation with a relatively short 

computation time. With this contribution Gahm et al. (C4) lay the foundation for machine learning 

techniques as anticipation function for other hierarchical planning problems, exemplary for the use in 

ECS design. 

In the next four sections, contributions C1 to C4 are presented as submitted.  
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Abstract: The conscientious use of energy progressively gains importance in society and the pressure 

on manufacturing companies to use energy more efficiently increases from an economical, ecological, 

and social perspective. Since on-site energy conversion has been identified as a measure to increase 

energy efficiency, manufacturing companies often operate on-site energy conversion systems (ECS) to 

provide the energy required by their production processes. These production processes cause 

(strongly) varying energy demands, which can have a huge negative influence on the efficiency of an 

insufficiently designed ECS. This reason combined with the various design possibilities and the high 

complexity of ECS design in general, lead to numerous publications addressing specific ECS design 

problems. These numerous publications make it laborious to identify adequate design approaches for 

individual application cases, especially due to the lack of an established research framework for this 

area. Therefore, we present a concept-centric ECS design framework (ECSDF) to classify existing and 

upcoming publications about the design of on-site ECSs for manufacturing companies. The introduced 

ECSDF enables the identification of relevant design approaches from an industrial perspective, the 

identification of opportunities for future research from the scientific perspective, and unifies the 

understanding of the crucial ECS design aspects in general. 

Keywords: Energy conversion system, on-site, classification, research framework, manufacturing  
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1	 Introduction	

The conflict between globally rising energy demands (Upadhyay and Sharma, 2014) with the inherently 

scarce resources for demand fulfillment (Gahm et al., 2016) and continuously increasing fuel costs (Al 

Moussawi et al., 2016) calls for action. With the industrial sector being one of the main users of energy 

in the European Union (Eurostat, 2019), manufacturing companies have an immense impact on the 

global energy usage. This results in a great responsibility for manufacturing companies to use energy 

conscientiously. With energy as a non-substitutable and indispensable production factor (Gahm et al., 

2016), it is vital to use energy as efficiently as possible to preserve resources from an ecological 

perspective and to save costs from an economical perspective. 

Regarding energy provisioning in general, decentralized on-site energy conversion (for example by 

cogeneration and trigeneration systems) has been identified as one of the main measures to improve 

energy efficiency (cf., e.g., Liu et al., 2014 or Keshavarzzadeh et al., 2020). Other measures are for 

instance, general energy saving measures (Abdelaziz et al., 2011), the usage of renewable energy 

sources (Bukar and Tan, 2019), or efficiency increases for installed ECSs (Rashid et al., 2019). To fully 

benefit from the efficiency potentials of on-site energy conversion, energy conversion systems (ECSs) 

have to be accurately designed under consideration of the most relevant design parameters (e.g., size, 

system type, energy sources, operational range, …) as these parameters have an immense influence 

on an ECSs overall efficiency (Ghadimi et al. 2014). This influence on the overall efficiency increases 

even drastically, when the applied energy sources demand is varying over time (Yokoyama et al., 2002). 

Thus, regarding the ECS`s efficiency, an accurate design is especially important for on-site ECS in 

manufacturing companies as their energy demands vary strongly depending on the operation of their 

production system. 

To accurately design a highly efficient and individualized on-site ECS for a manufacturing company, the 

state-of-the-art of this research field should be taken into account. But in the current literature, the 

considered parameters have become more and more diversified (Yokoyama et al., 2015) and the 

increasing number of proposed ECS design approaches focus on various different aspects. Therefore, 

the identification of the most related ECS design approaches for a specific design problem is a great 

challenge. To essentially support researchers and decision makers in this, we propose a new concept-

centric research framework to classify existing and upcoming ECS design approaches. 

The values added by our proposed ECS design framework (ECSDF) are manifold: The ECSDF 

- builds a knowledge base for decision makers to identify relevant design approaches 

- facilitates the search within existing design approaches 

- comprises the most relevant aspects to be considered by ECS design approaches (for 

manufacturing companies) and helps to analyze and structure individual planning problems 
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- forms the base for empirical analyses of the research field 

- can disclose research gaps and provide insights for future research 

As this paper focuses on the development of the ECSDF, it is not going to provide a review or 

classification of the existing ECS design literature.  

The paper is organized as follows. Section 2 contains an analysis of literature reviews and related work 

conducted in the research field. Afterwards, section 3 describes in detail the methodology applied for 

the development of the new concept-centric ECSDF. Then, section 4 defines and elaborates the 

categories and attributes of the framework. Section 5 concludes the article. 

2	 Related	work	

In literature, the dimensioning of on-site ECS for manufacturing companies is continuously discussed. 

Besides complex solutions for individual planning problems, authors review existing literature to 

analyze and structure design approaches and to simplify the finding of adequate literature (Cho and 

Lee, 2014). During the performed structured literature search, we identified 32 reviews and 

frameworks on the design and operation of on-site ECSs.These reviews/frameworks mainly focus on 

specific aspects. Therefore, they can be distinguished in reviews/frameworks on design- and/or 

operation-based ECS approaches, on ECS configuration possibilities, on specific types of ECS with 

different energy sources as input (e.g., cogeneration, or trigeneration systems with renewable or 

hybrid renewable energy sources), and on applied methodologies (e.g., solution methods) for different 

ECS types with different energy sources. In the following we summarize and differentiate existing 

reviews and frameworks about on-site ECS design and carve out the necessity of our concept-centric 

framework. 

Some reviews distinguish between design-based, operation-based, and design-and-operation-based 

ECS approaches. Note, that for the design of an ECS mainly the design-based and design-and-

operation-based ECS approaches are relevant, but for the sake of completeness, the determined 

operation-based reviews will also be briefly discussed here. O'Brien and Bansal (2000) focus on a 

design-based approach and additionally classify the existing literature according to the three basic 

types. A pure design-based review is provided by Biezma and Cristóbal (2006). It focuses on the 

economical view of ECS design and presents objectives used to optimize the selection of cogeneration 

systems. This review is exclusively about economic objectives and neglects other design aspects. In 

contrast, other reviews focus strictly on the operation-based approaches. Padhy (2004) published a 

survey on the unit commitment problem in the power industry and gives an overview of the 

operational characteristics of ECSs. Another review on the operation of ECSs was published by Xia and 

Elaiw (2010), in which they focus on the difference between two operational strategies. Additionally, 
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both Xia and Elaiw (2010) as well as Padhy (2004) analyze applied solution methods. Furthermore, Cho 

et al. (2014) published an operation-based review on performance improvements and optimization of 

ECSs in form of combined cooling, heating, and power systems. Herein, they name publications on 

adequate ECS design and focus on the enhancement of already existing ECSs. 

Regardless of whether approaches are design-based or design-and-operation-based, some reviews 

differentiate approaches according to their components (e.g., types of conversion units) and 

configuration possibilities. For example in order to adequately design an ECS, Cho and Lee (2014) 

classify energy conversion systems according to their components. Similar to that, but with a defined 

focus on trigeneration plants, Al-Sulaiman et al. (2011) and Jradi and Riffat (2014) conduct a review 

related to their installed prime movers and corresponding selection criteria. Hereby, Jradi and Riffat 

(2014) further investigate system configurations and the latest operational strategies. 

A third group of reviews focuses on specific types of ECSs (e.g., cogeneration or trigeneration systems). 

For instance, Liu et al. (2014) provide a literature survey addressing cogeneration and trigeneration 

systems. The survey comprises ECS types, CU types, operational strategies, and optimization methods 

for the sizing of cogeneration systems. Liu et al. (2014) depict the identified CU types and give a textual 

summarization of the identified solution methods. Al Moussawi et al. (2016) published a concept-

centric review about trigeneration technologies. Within this framework, the authors focus on 

trigeneration systems and use the classification categories prime movers, CU types, energy storage 

systems, and heat recovery systems. They provide information about all possible combinations of the 

elements of these categories. Furthermore, the authors give an overview of solution methods used for 

trigeneration system design. Al Moussawi et al. (2017) published a continuing review, which 

emphasizes the importance of the distinction between cogeneration and trigeneration systems during 

the design process as well as the differences between cogeneration and trigeneration CUs. 

Additionally, Al Moussawi et al. (2017) provide a selection table to choose adequate CUs depending 

on specific, application case related parameters.  

Not only cogeneration and trigeneration systems are discussed in reviews, but also energy systems 

with renewable or hybrid renewable energy sources as input, called renewable or hybrid renewable 

energy system (RES / HRES). For example, Upadhyay and Sharma (2014) published a review on the 

configurations, operation, and design methodologies of hybrid systems. They classify according to four 

aspects that need to be considered during the design and implementation of hybrid energy systems: 

configuration, evaluation criterions, sizing methodologies, and operational strategies. Similar to 

Upadhyay and Sharma (2014), Al-falahi et al. (2017) provide a review on optimization methodologies 

for the sizing of HRES. They consider three aspects which comprise the configuration, the assessment 

parameters (comparable with goals and objectives) and sizing methodologies found in literature. For 

each aspect they provide an extensive concept-centric overview. 
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Next to the different system types, a widely analyzed topic in reviews are the applied solution methods 

for solving the ECS design (decision) problem. Regarding energy systems in general, Bazmi and Zahedi 

(2011) published an author-centric literature review about the role of optimization modeling 

techniques in power generation. They summarize the content of each considered author´s publication 

in the energy and power sector as well as for decentralized energy generation systems. Zeng et al. 

(2011) conducted a textual author-centric review about the optimization of energy system planning 

and greenhouse gas emission mitigation under uncertainty through the application of inexact 

optimization modeling methods and model-based decision support tools. Bargos et al. (2018) 

examined computational tools and operations research methods for the design and optimization of 

industrial cogeneration systems. Frangopoulos (2018) analyzed the current state, recent trends, and 

challenges in sizing and operation methods of energy systems in general. 

Next to solution methods for ECS in general, also solution methods related to RES and HRES are 

subjects of reviews. Baños et al. (2011) provide a literature review on applied solution methods in the 

context of RES. To that, they structure their review according to the types of renewable primary energy 

sources (PES; e.g., wind power or solar energy) and provide a text-based and author-centric listing for 

each type of PES. Similar to that, but in a concept-centric manner, Iqbal et al. (2014) examine RES with 

respect to different types of renewable PES, and additionally investigate different modes of operations 

and types of objective functions. In contrast to an overview of diverse PES as input Yilmaz and Selim 

(2013) published a review on methods of HRES design that are specialized on ECS that especially 

include biomass as energy source. Regarding solution methods on optimum design of HRESs, Erdinc 

and Uzunoglu (2012), Luna-Rubio et al. (2012), and Chauhan and Saini (2014) published reviews on 

sizing methods applied on HRESs in general, whereas the reviews of Zhou et al. (2010), Sinha and 

Chandel (2015), Khare et al. (2016), and Bukar and Tan (2019) are specialized on the current state and 

recent trends of optimum sizing methods specifically applied for wind and photovoltaic based HRESs. 

Additionally to the sizing methodologies, Sinha and Chandel (2015) and Khare et al. (2016) provide an 

overview of operation optimization techniques, whereas Bukar and Tan (2019) added a fuel cell to 

their stand-alone photovoltaic-wind energy systems and investigated the latest developments in 

operational strategies. Furthermore, Khare et al. (2016) included reliability aspects into their review. 

Also concerning solution methods for specific renewable systems, Scott et al. (2012) focus on multi-

criteria decision making for bioenergy systems, Lin et al. (2014) study wind power ECSs and reliability 

based system planning, and Khatib et al. (2016) concentrate on technical, economic, and social 

objectives for photovoltaic systems with batteries. In comparison to the reviews just mentioned, 

Bahramara et al. (2016) reversed the review process and investigate publications which apply one 

specific optimization method (the software HOMER) for the design of any HRES. 
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Other reviews do not focus on applied solution methods but on specific ECS types and their 

representation in literature. Eriksson and Gray (2017) for instance critically review current approaches 

on design and optimization of HRES with a hydrogen fuel cell and propose criteria addressing 

economical and socio-political design objectives. 

In Table II.A-1, all previously discussed reviews and frameworks on ECS design are depicted with regard 

to their addressed aspects. In the last row, the uniqueness and the completeness of our developed ECS 

design framework is emphasized. Note that the ECSDF concentrates on the ECS related aspects but not 

on solution methods or objectives because these aspects are not necessarily ECS related. Of course, 

when conducting a literature review, these aspects should also be considered. 
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Table II.A-1: Investigated aspects of existing reviews and frameworks 
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Jradi and Riffat (2014) x x x  x        

Khare et al. (2016) x x    x  x x  x  

Khatib et al. (2016) x  x     x  x   

Lin et al. (2014) x       x x  x  

Liu et al. (2014) x x x x x    x    

Luna-Rubio et al. (2012) x     x   x    

O'Brien and Bansal (2000) x x           

Padhy (2004)  x       x    

Scott et al. (2012) x x      x x x   

Sinha and Chandel (2015) x x    x  x x    

Upadhyay and Sharma (2014) x x x   x   x x   

Xia and Elaiw (2010)  x       x    

Yilmaz and Selim (2013) x     x  x x    

Zeng et al. (2011) x        x    

Zhou et al. (2010) x     x  x x    

  ECSDF x x x x x x x    x x 
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Summarizing, most of the discussed publications are reviews with a very specific focus (e.g., certain 

aspects or types of ECSs) and lack a general applicability and a comprehensive consideration of all 

relevant aspects crucial for ECS design. In addition, the specific requirements of manufacturing 

companies are hardly considered. This means, to the best of our knowledge, there is no all-

encompassing concept-centric framework supporting an accurate ECS design for manufacturing 

companies. This confirms the need for a new ECS design framework in order to facilitate the search for 

adequate literature and to analyze and structure design approaches and problems. Of course, 

concepts, aspects, categories, etc. that are used by the previously described reviews are analyzed and 

incorporated into our framework whenever appropriate. The complete methodology for the 

development of our ECSDF is described in the following section. 

3	 Methodology	and	literature	scope	

The methodology to develop the ECSDF follows a combination of recommendations on literature 

reviews and the development of research frameworks from Salipante et al. (1982) and Gahm et al. 

(2016) (which itself is based on the processes proposed by Webster and Watson (2002), Seuring and 

Müller (2008), and Vom Brocke et al. (2009)). According to these authors, literature should be 

categorized concept-centric instead of author-centric, because an author-centric categorization fails 

to analyze the literature systematically, whereas a concept-centric categorization structures literature 

in a research area in logical groups (Webster and Watson, 2002). For this reason, we develop a concept-

centric research framework. 

For the development of the ECSDF for manufacturing companies, the current state of science has to 

be considered by a comprehensive literature sample (because we cannot guarantee that all high-

quality articles are considered, it is always a sample). To determine a comprehensive literature sample, 

we follow the iterative research procedure of Gahm et al. (2016), (cf., Figure II.A-1). 

 
Figure II.A-1: ECSDF development based on a structured literature search 

I. Definition of 
scope & purpose

II. 
Conceptualization 

& Adaption

IV. Literature 
evaluation (title, 

abstract, full text)

V. Literature 
analysis and 

synthesis

VI. ECSDF

III a. Literature 
search by journal 
and search string

III b. Forward 
literature search

III c. Backward 
literature search
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Note, that the steps II., III., and VI. of the research process are slightly adapted compared to Gahm et 

al. (2016): phase II. and VI. were renamed and in phase III., the identified publications from the forward 

search are additionally considered within the backward search process. 

3.1 Definition	of	scope	and	purpose		

First, the thematical scope of the research field and thus, of the literature sample for the development 

of the ECSDF must be defined. To that, a clear definition of the research field covered by the literature 

sample and the framework is set up. Based on this definition, a guideline for the relevance assessment 

of journals and articles is defined (further referred to as scope and purpose criteria). 

3.1.1 Definition	of	the	research	field	

To define the research field of the ECSDF, we start with an analysis of the possibilities of energy 

procurement for manufacturing companies. Regarding energy procurement in general, Rager et al. 

(2015) and Gahm et al. (2016) describe three main procurement cases (A, B, and C) together with the 

relevant systems and entities, which are depicted in Figure II.A-2 and described in the following. 

 
Figure II.A-2: Procurement of energy sources in manufacturing companies 

 - relevant systems and entities 

Energy is transported or stored by energy sources (also called energy carriers). Energy providers 

transform primary energy sources (PES) (e.g., solar or wind energy) with external conversion units 

(eCU) into secondary energy sources (SES) (e.g., power). At the moment the ownership of SES is 
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transferred to the energy user (the manufacturing company), they are referred to as final energy 

sources (FES).  

These FES can either be directly used as applied energy sources (AES) by the production units (PUs) of 

a manufacturing companies’ production system (cf., Case A: flow of energy from eCU2 to PU1, PU3, or 

PU5 in Figure II.A-2) or need to be converted before being applied. In the latter case, the FES is the 

input for an on-site energy conversion system`s conversion unit (CU). Hereby, an ECS can comprise an 

individual number of CUs. The CUs convert the FES into the desired AES before it can be used by 

production units (cf., Case B: flow of energy from eCU1 over CU1 to PU1 and PU2 in Figure II.A-2). 

Additionally, the flow via an external conversion system can be avoided by using the PES directly as 

input for an on-site CU. In this case the PES serves as FES and is directly converted into the AES (cf., 

Case C: flow of energy from CU2 to PU3 and PU4 in Figure II.A-2). In addition, the ECS can interact with 

the external grid and/or energy market. Our ECSDF classifies and structures approaches, which design 

ECS for manufacturing companies as in cases B and C. 

3.1.2 Scope	and	purpose	criteria		

Based on the definition of the research field, the scope and purpose criteria for the journal and article 

selection is defined in this section.  

The focus of the ECSDF is on the design of ECS and therefore, only publications dealing either with the 

design or with the design and operation of ECSs are relevant. Consequently, articles dealing exclusively 

with the operation of ECSs (e.g., the energy flow, inlet pressure, or operational temperature of CUs) 

are excluded. Furthermore, to focus on the ECS design for manufacturing companies, an article is 

considered as relevant when it designs on-site ECSs in a manufacturing context (for a definition of the 

corresponding industrial sector see section C in United Nations, Department of Economic and Social 

Affairs, 2008). Consequently, commercial energy production at energy providers; the design and 

operation of the central grid, its layout, or extensions; and publications on on-site ECSs of city districts 

and public or private buildings (e.g., administrative offices, hospitals, or households) are excluded. 

Note, that the ECSDF can be suitable for non-industrial ECS design contexts with similar constraints as 

in the case of manufacturing companies (e.g. varying energy demands). Furthermore, the mere 

installation of an energy storage system is not part of the literature sample. Also, publications which 

have an ECS as a production system (which coincidentally can be an ECS; e.g., a hydrogen production 

system), are excluded. 

3.2 Conceptualization		

The iterative part of the research process starts with step II. (Conceptualization & Adaption). During 

the first iteration of the conceptualization phase the topic of interest is investigated in general. Hereby, 
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a deduction of the first categories and attributes of the ECSDF while analyzing existing reviews and 

literature of previous publications is undertaken (like proposed by Salipante et al., 1982, Webster and 

Watson, 2002, and Seuring and Müller, 2008). This results in a first version of the ECSDF.  

Further results of the first conceptualization phase are the definition of the scope of journals to 

investigate and the definition of the keywords (in order for the search procedure to be reproducible).  

The definition of the scope of journals is based on the “SCIMAGO Journal & Country Rank”, which 

provides the SJR-Index. The SJR-index is a number-based score for journals measuring the impact or 

prestige of its articles (Guerrero-Bote and Moya-Anegón, 2012). The journal selection is based on a 

journal ranking, because journal rankings identify high-quality journals and, according to Webster and 

Watson (2002), the most important publications are found in the most renowned journals. In addition 

to a journal ranking, the SJR provides sub-areas and sub-categories classifying journals with similar 

topics. 

Table II.A-2: Considered sub-areas and sub-categories for journal selection 

 

Within the sub-areas and sub-categories selected for this review (cf., Table II.A-2), we assume that the 

most quality research is published in scientific journals and thus, exclude books, theses, conference 

proceedings and trade journals (as done by Rubio et al., 2008 and Gahm et al., 2016). All investigated 

journals are published in the English language, peer reviewed, and rated with an SJR-index greater than 

1 to assure an adequate quality (further revered to as journal criteria). Subsequently, journals are 

excluded if they do not fit the topic according to the scope and purpose criteria (cf., section 3.1) 

considering their title, contents, and main focus. Finally, 47 appropriate journals have been identified 

for the aspired literature search. The journals identified in this process phase are listed in Table II.A-3. 

Next to the journal selection, also the keywords were determined. The complete combinations of 

journals and keywords define the so called “search string” depicted in the appendix A-1. 

Sub area Sub category 

Energy Energy Engineering and Power Technology (En. Eng. & Pow. Tech.) 
 Energy (miscellaneous) (En.) 
 Renewable Energy, Sustainability and the Environment (Ren. En. Sust. & Environ.) 
Engineering Electrical and Electronic Engineering (Electri. & Electro. Eng.) 
 Engineering (miscellaneous) (Eng.) 
 Industrial and Manufacturing Engineering (Ind. & Manu. Eng.) 
 Mechanical Engineering (M. Eng.) 
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3.3 Iterative	framework	development		

The iterative framework development process comprises the steps III. a. – III. c. and the succeeding 

steps IV., V., and II. in an iterative manner (cf., Figure II.A-1). In the first iteration (starting with step III. 

a.), a literature search by journal and keywords is conducted in the Web of Science database. This 

database is used as it hosts all 47 relevant journals. The search string`s application (in the advanced 

search tool in all databases and all years) reveals the “initial hits”: a set of 416 articles. This kind of 

search does not claim to be complete, but it is extensive, structured, and reproducible. 

Within the initial hits, the literature evaluation (IV.) preselects the relevant approaches by reviewing 

title, abstract, and keywords. Then, all preselected approaches are checked for their relevance by a full 

text review. In both steps, the articles are identified as relevant (or irrelevant) according to the criteria 

defined in section 3.1. Regarding the initial hits, 8 relevant articles have been identified. 

These 8 articles are analyzed and synthesized (V.) in order to be classified by the incumbent version of 

the ECSDF. In case approaches address terms or aspects which are not yet represented in the 

incumbent ECSDF, we adapt the ECSDF (II.).  

In the second iteration, the forward search (III. b.) with all subsequent steps is conducted. The forward 

search is based on the 8 identified publications and is carried out to find literature that cites these 

publications. Regarding the forward search, only approaches which fulfill the journal criteria and scope 

and purpose criteria (cf., sections 3.2 and 3.1) are added to the literature sample. This iteration 

identifies 14 additional ECS design approaches as relevant. 

To get a more comprehensive literature sample, in the last iteration (starting with step III. c.), a 

structured backward search is performed based on the 22 previously identified approaches. This final 

iteration leads to 22 additionally identified approaches. 

This iterative procedure leads to 44 ECS design approaches to be analyzed. Note that the 44 identified 

articles are the result of the thorough analysis of titles, abstracts, and full texts of over 600 potentially 

relevant articles. 

Table II.A-3 summarizes the reviewed journals and the number of relevant articles (depicted according 

to their publishing journals after each search iteration) from the iterative framework development. 

Note, that the 47 journals from the structured literature search are marked with an asterisk (*). 

Furthermore, Table II.A-3 shows in which quartile (Q1-Q4) each journal is ranked by the SJR. It stands 

out, that journals with an SJR >1 are most of the time considered to be in the top 25% of journals within 

each sub-category. The number of 51 journals in total (only 4 more than in the search string) indicates 

that the research field is analyzed in a sufficient manner, as not many further journals were identified 

through the forward and backward search of the search process.  
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Table II.A-3: Reviewed journals and identified relevant articles (state: May 2020) 

 

Journal name (initial hits search string search) 
 

SJR index and quartile of sub-categories 
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Applied Energy* (47) 3,61 Q1 Q1     Q1   2 2 

Applied Thermal Engineering* (18) 1,78 Q1     Q1    4 4 

Chemical Engineering Science 1,00      Q1    2 2 

Computers and Chemical Engineering 1,00         3 5 9 

Desalination 1,81       Q1   2 2 

Energy* (58) 2,17  Q1  Q1  Q1 Q1 2  3 6 

Energy Conversion and Management* (44) 2,92 Q1  Q1     3 2 1 6 

IEEE Transactions on Industry Applications* (10) 1,50    Q1  Q1  1   1 

International Journal of Hydrogen Energy* (33) 1,14 Q1  Q2     1 3 2 6 

Journal of Cleaner Production* (18) 1,89   Q1   Q1   1  1 

Renewable & Sustainable Energy Reviews* (7) 3,63   Q1      1  1 

Renewable Energy* (32) 2,05   Q1     1 2 1 4 

Solar Energy* (9) 1,54   Q1      2  2 

Computers & Industrial Engineering* (2), Electric Power Systems Research* (4), Energy & Environmental Science* (5), 
Energy Economics* (3), Energy for Sustainable Development* (0), Energy Journal* (0), Environmental Research 
Letters* (2), Experimental Thermal and Fluid Science* (0), IEEE Journal of Emerging and Selected Topics in Power 
Electronics* (1), IEEE Journal of Photovoltaics* (0), IEEE Power & Energy Magazine* (0), IEEE Transactions on Energy 
Conversion* (9), IEEE Transactions on Industrial Electronics* (14), IEEE Transactions on Power Delivery* (5), IEEE 
Transactions on Power Electronics* (8), IEEE Transactions on Power Systems* (21), IEEE Transactions on Sustainable 
Energy* (14), IET Generation, Transmission & Distribution* (8), IET Power Electronics* (2), IISE Transactions* (1), 
International Journal of Electrical Power & Energy Systems* (17), International Journal of Engineering Science* (1), 
International Journal of Heat and Mass Transfer* (7), International Journal of Production Economics* (1), International 
Journal of Production Research* (4), International Journal of Thermal Sciences* (2), Journal of Modern Power Systems 
and Clean Energy* (0), Journal of Operations Management* (0), Nano Energy* (4), Nonlinear Analysis: Real World 
Applications* (0), Production and Operations Management* (0), Production Planning & Control* (0), Progress in 
Energy and Combustion Science* (0), Progress in Photovoltaics* (0), Solar Energy Materials and Solar Cells* (3), 
Sustainable Energy Technologies and Assessments* (3), Journal of the Energy Institute* (0) 

Total  8 14 22 44 
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Of course suitable articles from the initial conceptualization phase and the related work section are 

included in the ECSDF development. Finally, over 76 articles (design approaches, reviews, frameworks 

etc.) form the literature sample to develop the ECSDF. 

The described methodology results in the ECSDF which is described in the following section. 

4	 The	concept-centric	ECS	design	framework	

The developed concept-centric ECS design framework consists of eight main categories with several 

sub-categories and attributes by which any ECS design approach for manufacturing companies can be 

classified. The main categories of the concept-centric framework are the Basic design approach, ECS 

type, ECS operation, Energy sources, CU types, CU operation, AES demand/FES supply, and Relations to 

other systems (cf., Figure II.A-3). 

 

Each of these main categories can consist of multiple sub-categories (groups of attributes) and 

attributes that are explained in detail in the following sections. To that, each section contains one or 

more figures, which illustrate the category to be explained (highlighted in a light grey) with its sub-

categories and corresponding attributes. Whenever the category or its attributes are related to one of 

the previous frameworks or reviews, these are acknowledged and cited within the descriptions. 

Note that a complete classification of the analyzed ECS design approaches is provided within the digital 

supplementary material. Therefore, to keep the text clear, we omit a complete list of references for 

each attribute but provide most informative references wherever it is appropriate. 

4.1 Basic	design	approach	

The first main category Basic design approach categorizes publications according to their treated 

decisions. To that, the category is subdivided into Scope and the Decision field (cf., Figure II.A-4). 
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Figure II.A-3: Main categories of the ECS design framework 
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4.1.1 Scope	

During the design of an ECS for manufacturing companies, the relation between the ECS and the 

production system (PS) is an integral part as this relation strongly influences the ECS design. As a result, 

the sub-category Scope differentiates between the attributes AES demand fulfillment, AES demand 

fulfillment & limited FES/PES, and AES output maximization (cf., Figure II.A-4). 

  
Figure II.A-4: Sub-category Scope 

The category AES demand fulfillment classifies approaches which design the ECS with the main goal to 

fulfill the AES demand of the PS (e.g., Leif Hanrahan et al., 2014 or Rad et al., 2016). The attribute AES 

demand fulfillment & limited FES/PES is similar, but classifies approaches which additionally consider 

a limited availability of FES/PES (e.g., when the FES/PES is a renewable energy source like solar or wind 

energy) (e.g., Amusat et al., 2016 or Campana et al., 2019). For both attributes, the AES demand can 

be static or varying. The third attribute AES output maximization classifies approaches which design 

ECS not with the goal to fulfill a given AES demand, but with the goal to maximize the ECS`s possible 

AES output. In this setting, the PS’s output relies on the amount of AES the ECS provides (e.g., Ahmadi 

et al., 2015; Bhattacharyya et al., 2017; Keshavarzzadeh et al., 2020). An example is the hydrogen 

production with renewable energy sources as FES. Here, the optimized design of an ECS defines the 

AES output und therefore, the hydrogen production volume. 

4.1.2 Decision	field	

The category Decision field describes the details of what (e.g., size of CUs) and how (e.g., a selection 

from a predefined set) major decisions regarding the ECS design are made. For that purpose, the 

category is divided into the two sub-categories Decision topic, i.e., what is decided, and the Decision 

type, i.e., the how is it decided (cf., Figure II.A-5). 
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Figure II.A-5: Sub-category Decision field 

One way to differentiate ECSs is by the parameters number, size, and type of installed CUs (cf., Cho 

and Lee, 2014). Within the category Decision topic, we accordingly differentiate approaches by the Size 

of units, Number of units, Type of units, Superstructure, System selection, ECS expansion, and System 

configuration. 

The attribute Size of units refers to the maximum capacity of CUs (e.g., Chitgar and Moghimi, 2020),  

Number of units refers to the quantity of installed CUs (e.g., Keshavarzzadeh et al., 2020), and Type of 

units refers to the selection of different technologies (e.g., a selection between gas-fired or coal-fired 

boilers; e.g., Aguilar et al., 2008; Sun and Liu, 2015; Alirahmi et al., 2020a). The attribute Superstructure 

means that selectable units (e.g., with distinct sizes and/or types) are considered as candidates for an 

ECS. The real structure of the ECS is created by selecting some units from the suggested superstructure 

candidates (e.g., Voll et al., 2013; Andiappan et al., 2015; Yokoyama et al., 2015). The attribute System 

selection classifies approaches in which complete ECSs (not individual CUs) are compared to one 

another. There is no decision on the number, size, and type of any CU but just the decision between 

complete, discrete systems (e.g., Pendergrass, 1983; Yokoyama et al., 2014; Campana et al., 2019; 

Abbasi and Pourrahmani, 2020). The attribute ECS expansion classifies approaches which extend 

already existing ECSs (e.g., Roy, 2001; Voll et al., 2012; Shamsi et al., 2019). The attribute System 

configuration classifies approaches which, in addition to design aspects, optimize “operational” design 

variables. Examples for these operational design variables are the turbine inlet pressure, the operation 

temperature, or the orientation angle of the photovoltaic system. Approaches can only be classified 

by the attribute System configuration when they also optimize at least one of the other decision topics 

(e.g., Najafi et al., 2014; Khanmohammadi et al., 2017; Alirahmi et al., 2020b). Nonetheless, we found 

this additional decision topic worth adding to the framework as it provides additional information 

about the planning approach. Note that these attributes are non-exclusive. 
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Because the decision on the previously described decision topics can have different degrees of 

freedom, the category Decision type depicts whether the decisions are Free, restricted by a Predefined 

set, or a combination of both (Combined). 

If an approach determines all considered Decision topics not from a limited amount of discrete options, 

but optimizes the considered decision topics during the design process, it is categorized as Free (e.g., 

Emadi and Mahmoudimehr, 2019; Chitgar and Moghimi, 2020). In contrast, if an approach determines 

all considered decision topics by choosing between discrete options, it is categorized as Predefined 

(e.g., Marechal and Kalitventzeff, 1998; Won et al., 2017; Ghorbani et al., 2019). When more than one 

decision topic is determined, the degree of freedom can vary between and within each decision topic. 

Therefore, the attribute Combined is necessary in the case that within one approach some decision 

topics are determined Free and some others are Predefined (e.g., Papoulias and Grossmann, 1983; Luo 

et al., 2014; Kazi et al., 2015; Campana et al., 2019). Note that these attributes are exclusive. 

4.2 ECS	type	

The main category ECS type classifies ECSs according to their basic type by classifying them by the 

number of provided AES (cf., Andiappan et al., 2014). To this, we differentiate between the attributes 

Singlegeneration system, Cogeneration system, Trigeneration system, Polygeneration system and 

Flexible (cf., Figure II.A-6). Some attributes of this category have also been used by Liu et al. (2014) and 

Al Moussawi et al. (2016; 2017).  

 
Figure II.A-6: Category ECS type 

In order to create an unambiguous definition of the ECS types, the attribute Singlegeneration system 

classifies an ECS which converts FES into a single AES. A Cogeneration system (Trigeneration system) is 

an ECS which converts FES into two (three) AES. A Cogeneration system is most commonly a combined 

heating and power (CHP) system, whereas a Trigeneration system is usually a combined cooling, 

heating, and power (CCHP) system (cf., Andiappan et al., 2014; Al Moussawi et al., 2017). When an ECS 

converts FES into more than three energy sources, it is categorized as a Polygeneration system (e.g., 

Papoulias and Grossmann, 1983; Carvalho et al., 2014). In case, approaches can design multiple kinds 

of ECS types (e.g., CHP and CCHP), they are classified as Flexible (cf., Azit and Nor, 2009). 
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The strict categorization and clear definition into the different ECS types proves necessary, as so far, 

some authors use the definitions in different contexts. For instance, occasionally authors talk about 

cogeneration systems although they provide more than two AES (e.g., Azit and Nor, 2009). Other 

approaches group heat and cold into one thermal energy source. Afterwards, they generate cold 

and/or heat by further processing the thermal energy sources provided by CUs (e.g., Yokoyama and 

Ito, 2002; Benam et al., 2015). In this case also no unified definition is used for the corresponding ECS 

types. Thus here, an ECS is categorized depending on whether it processes the thermal energy sources 

into just heat or cold (cogeneration system), or both (trigeneration system). Note, that the attributes 

of the category ECS types are usually mutually exclusive but in case of a comparison between different 

ECS types, they can be non-exclusive. 

4.3 ECS	operation	

The literature analysis carved out that, during the design of an ECS, the operation of the prospective 

ECS is considered in different ways. Thus, the main category ECS operation categorizes approaches 

according to the way the prospective operation is considered during the design phase. Therefore it 

classifies approaches according to the sub-categories Hierarchical integration and Operation strategies 

with their attributes and the attribute Operation Optimization (cf., Figure II.A-7). 

4.3.1 Hierarchical	integration	

The sub-category Hierarchical integration consists of attributes explaining the interdependencies of 

design decisions and operational decisions, as it is important to take their hierarchical relationship 

during design into account (Ghadimi et al., 2014). A detailed description of the concept of hierarchical 

planning in general can be found in Schneeweiss (2003) and of hierarchical interdependencies during 

ECS planning in Yokoyama et al. (2014). In literature, some authors (implicitly) differentiate between a 

separate (Aguilar et al., 2007), iterative (Aguilar et al., 2007), anticipating (Aguilar et al., 2008), or a 

simultaneous (Aguilar et al., 2008) optimization of the design and the operation of an ECS. Accordingly, 

the category Hierarchical integration classifies the different integration types of an ECS’s operation by 

the mutually exclusive attributes Top-down, Top-down with feedback, Anticipation, and Simultaneous 

(cf., Figure II.A-7). 
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Figure II.A-7: Sub-category Hierarchical integration 

The integration type Top-down means a strict top-down relationship between ECS design and ECS 

operation, i.e., the ECS operation is only used for evaluating the preceding, independent design 

decision (cf., e.g., Varbanov et al., 2005; Ghadimi et al., 2014; Alirahmi et al., 2020a). However, no 

design decisions are changed due to the evaluation, but one ECS design can be compared to another 

ECS design and the best design can be chosen. Hereby, exemplary evaluation criteria can be 

operational costs, investment costs, or energy consumptions. 

In contrast, approaches to be classified by the integration type Top-down with feedback use feedback 

information resulting from ECS operation related to a specific ECS design to adjust the incumbent ECS 

design in an iterative manner (cf., e.g., Roy, 2001; Amusat et al., 2017). Hereby, a definition of the 

feedback information and the procedure on how to integrate this feedback is mandatory. 

The third integration type Anticipation directly integrates some aspects of the ECS or CU operation into 

the ECS design. In doing so, some aspects and/or simplified (relaxed) aspects of the subordinate ECS 

or CU operation are integrated and others are not (otherwise, the ECS design might be getting to 

complex). The concrete ECS and CU operation aspects can be considered in individual detail and 

combinations during the ECS design. An Example for a CU operation aspect is the compliance with 

minimum time intervals between which a CU can be switched on and off (cf., e.g., Aguilar et al., 2008; 

and section 4.6). An Example for the anticipation of ECS operation is the usage of an operation strategy 

(e.g., Smaoui et al., 2015; Morais et al., 2020). By using such an operation strategy, an ECS’s operational 

behavior is integrated without optimizing it.  

Last attribute of hierarchical integration is called Simultaneous and classifies design approaches, which 

determine the design and operation of an ECS at the same time. Note that hereby the complete 

relevant subordinate ECS operation problem must be considered.  

4.3.2 Operation	strategies	

To take the interdependencies between the design and operation during the design stage into account, 

operation strategies simulate the prospective behavior of the ECS in a simplified way, i.e., by following 
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strategy-specific rules. The difficulty hereby is that not every strategy does necessarily exploit all 

benefits of every ECS and thus, has to be selected carefully (Kavvadias and Maroulis, 2010).  

The sub-category Operation strategies comprises typical representatives as sub-categories and 

attributes. We propose to distinguish strategies according to the sub-category AES demand following 

and the attributes FES supply following, Individual strategy, and Continuous operation. 

 
Figure II.A-8: Sub-category Operation strategies 

The sub-category AES demand following comprises approaches where the ECS operation is directly 

coupled to the AES demand and consists of the attributes electrical load following (ELF), thermal load 

following (TLF), and the attribute ELF & TLF switching (cf., Figure II.A-8). When following the ELF 

strategy, the priority of the ECS operation is to provide the electrical load demand as exactly as 

possible, independent of whether a deviation from this demand following would be beneficial (cf., e.g., 

Ghadimi et al., 2014; Al Moussawi et al., 2017; Morais et al., 2020). The strategy TLF is similar to ELF, 

but with the priority to follow the thermal load demands as exactly as possible (cf., e.g., Ghadimi et al., 

2014; Al Moussawi et al., 2017; Shamsi et al., 2019). In both strategies additional recovered heat during 

ELF or generated electricity during TLF can occur, but is treated as a byproduct (Ghadimi et al., 2014). 

The attribute ELF & TLF switching classifies approaches in which ECS operation interchanges between 

the ELF and TLF strategy depending on AES demands (Andiappan and Ng, 2016). 

The attribute FES supply following classifies approaches in which the conversion process completely 

depends on the FES supply. This means, the amount of available PES/FES (e.g., mostly in the form of 

uncontrollable occurrence of wind or solar energy) determines whether or not the ECS is operating 

and the corresponding amount of AES provided (cf., Bernal-Agustín and Dufo-López, 2010; Behzadi et 

al., 2019; Waseem et al., 2020). The provided AES are either directly used by the PS or transferred to 

an energy storage unit. In this case, the PS’s production rate is directly influenced by the PES/FES 

availability and no active decision on the ECS operation is made.  

The attribute Individual Strategy represents individual tailor-made or modified operation strategies 

sporadically used by a single or only a few approaches. Examples of such strategies are peak shaving 

(cf., e.g., Kavvadias and Maroulis, 2010), separate heat/ power generation (cf., e.g., Ghadimi et al., 
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2014), rule based operation (cf., e.g., Mavromatis and Kokossis, 1998; Amusat et al., 2017), and 

electrical/ thermal equivalent demand following (cf., e.g., Kavvadias and Maroulis, 2010). Note that a 

more detailed discussion on energy management strategies in the context of stand-alone renewable 

ECSs can be found in Bukar and Tan (2019). 

Approaches are classified by the attribute Continuous operation whenever the ECS operation is at a 

constant operation level and is not determined by the availability of PES/FES nor by a given AES 

demand. This is for instance the case when hydrogen (e.g., Chitgar and Moghimi, 2020) and/or fresh 

water is produced (e.g., Keshavarzzadeh et al., 2020).  

4.3.3 Operation	optimization	

During ECS design, the operation of the ECS can also be part of the optimization. Sometimes this 

approach is actually called optimization, in other cases, it is called an optimal dispatching strategy (cf., 

e.g., Ghadimi et al., 2014; Liu et al., 2014). For an approach being classified by the attribute Operation 

optimization, the approach needs to consider design and operational decision variables (e.g., Hui and 

Natori, 1996; Abbasi and Pourrahmani, 2020). Be aware that optimization not necessarily means that 

a mathematical optimum is reached, but also suboptimal solutions calculated by heuristics are 

appropriate. In case the design and operation are optimized at the same time, the approach is also 

classified as Simultaneous (e.g., Shang and Kokossis, 2005; Carvalho et al., 2014; Amusat et al., 2016). 

Note, that the attributes within the sub-category hierarchical integration are exclusive. Whereas the 

attributes of the sub-category Operation strategies and the attribute Operation optimization are non-

exclusive, as for instance, an approach can compare an operation strategy to an optimization 

procedure or the most suitable operation strategy is selected. 

4.4 Energy	sources	

The main category Energy sources classifies approaches according to their FES type (input energy 

sources) and their AES type (output energy sources) (cf., Figure II.A-2, Figure II.A-9, and Figure II.A-10).  

Note that in this section, the term energy sources is used because the final attribute of each sub-

category are energy sources (e.g., steam or hot water), even though intermediary sub-categories are 

common properties of energy sources (e.g., heat) but not energy sources by definition. 

4.4.1 FES	types	

The sub-category FES types differentiates FES by the sub-categories Renewable, Non-renewable, Re-

used and Flexible (cf., Figure II.A-9) because ECS design approaches have to take corresponding aspects 

(e.g., concerning supply availability) into account.  
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Renewable energy sources occur in forms of, e.g., Wind, Solar, Hydro, Marine, Geothermal energy or 

Bioenergy (cf., Shiun et al., 2012 or Ellabban et al., 2014). Non-renewable energy sources are, e.g., 

Coal, Natural gas, Oil based fuels, and Nuclear energy (cf., Shafiei and Salim, 2014). Electric power, has 

a double position as it can be renewable, non-renewable, or a combination of both, depending on its 

characteristics. Note, that if an approach does not define if the electric power is renewable or non-

renewable, we classify it according to both power attributes because the electric power from the grid 

consists of an energy mix. Furthermore, Re-used energy sources are the waste of other systems and 

are re-used by the ECS, e.g., Exhaust gas or Exhaust heat (with the energy sources hot water, air, or 

steam) (cf., e.g., Roy, 2001). The attribute Flexible classifies approaches, which can be applied to 

different types of FES (e.g., Iyer and Grossmann, 1998; Voll et al., 2013). 

 
Figure II.A-9: Sub-category FES types 

The attributes of the category FES types are non-exclusive. For instance, more than one attribute of 

FES types can be considered when an ECS consists of more than one CU which use different FES as 

input. 

4.4.2 AES	type	

The AES is directly applied by the production units of a manufacturing company’s production 

equipment (machines etc., cf., Figure II.A-2). The category AES types differentiates between the two 
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sub-categories Primary AES and Secondary AES as well as the attribute Flexible (cf., Figure II.A-10). This 

differentiation is introduced to highlight the AES the ECS is primarily designed for and the AES that 

result from a combined (secondary) production (e.g. from cogeneration or trigeneration systems).  

The attribute Flexible classifies approaches, which can be applied to different types of AES (e.g., Iyer 

and Grossmann, 1998; Voll et al., 2012). 

 
Figure II.A-10: Sub-category AES types 

4.4.2.1 Primary	AES	

The Primary AES, specifies the deliberately controlled output of the ECS (e.g., by an operational 

strategy, see section 4.3). It is called “primary” AES since the whole ECS’s design and operation is 

optimized to fulfill the demand of this AES as efficient as possible. The most common types of primary 

AESs are classified by the attribute electric Power and the sub-categories Heat (with the AES attributes 

hot water, air, or steam), Cold (with cold water, or air), and Pressure (with steam, air, or oil) (e.g., 

Aguilar et al., 2008; Tichi et al., 2010; Abbasi and Pourrahmani, 2020; Morais et al., 2020; Figure 

II.A-10). If an ECS design approach considers more than one AES (e.g., steam and power) but does not 

explicitly define which of the AES is the primary one, all AES are considered as primary AES. 

4.4.2.2 Secondary	AES	

The category Secondary AES classifies approaches which consider “byproducts” of the conversion 

process (e.g., within CHP or CCHP systems) and thus, a second (or third) AES. Be aware, that the 

provided amount of Secondary AES depends on the amount of the Primary AES. For instance, if an 

approach optimizes the fulfillment of the primary AES demand (e.g., steam) through an CHP which can 

additionally provide electric power as a byproduct, then electric power is the Secondary AES. 

The aggregated sub-categories for the Secondary AES are similar to the Primary AES: Power, Heat (with 

the AES: hot water, - air, and -steam), Cold (with cold water, and - air), Pressure (with steam, air, or 

EC
S 

de
sig

n 
fr

am
ew

or
k

En
er

gy
 so

ur
ce

s

FES types

AES types

Primary AES

Secondary AES

Power

Heat

Cold

Pressure

Mechanical energy

Power

Heat

Cold

Pressure

Flexible



II Contributions 
Design of on-site ECSs for manufacturing companies – A concept-centric research framework II.A Contribution 1 

 

47 

oil), and additionally Mechanical energy (cf., e.g., Andiappan and Ng, 2016; Emadi and 

Mahmoudimehr, 2019; Keshavarzzadeh et al., 2020; Figure 11).  

Note, that the attributes of the category AES types are non-exclusive, because if an approach uses or 

compares several operational strategies (e.g., TLF and ELF cf., Ghadimi et al., 2014), more than one 

AES can be categorized as a Primary AES as well as a Secondary AES. 

4.5 CU	types	

There exist several possibilities to classify CUs within an ECS design framework. As every CU converts 

one form of energy (e.g., chemical energy) into another form of energy (e.g., thermal energy) (cf., Shiun 

et al., 2012) and/or one energy sources (e.g., gas) to another energy sources (e.g., steam) (cf., Rager 

et al., 2015), these aspects could be the basis for the categorization. The first aspect of energy form 

conversion is not directly reflected by the ECSDF, because some CU integrate several conversion steps 

(e.g., internal combustion engines) and it is hardly possible nor helpful to dismantle CUs for identifying 

all energy form conversions. The second aspect of energy source conversion is also not unique for 

every CU as for example boilers can convert gas to steam or power to steam, depending on whether 

they are an electrical or a gas-fired boiler. Therefore, we follow the recommendations of several 

authors and use concrete manifestations of CUs as attributes for the category CU types (cf., Cho and 

Lee, 2014; Liu et al., 2014 and Sun and Liu, 2015; Al Moussawi et al., 2016).  

 
Figure II.A-11: Category CU types 
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The attributes are depicted in Figure II.A-11. Most of them are self-explanatory and not explained in 

more detail, but note that most of them aggregate concrete unit specifications. The attribute Boiler 

for instance unifies gas-fired and electrical boilers as well as all boilers which provide any pressure of 

steam or heat of water. The attribute Chiller unifies for instance absorption and compression chillers. 

The attribute CHP unit, describes an arrangement of CUs to a combined heat and power (CHP) unit 

that is not specified in more detail. Energy storage units unifies for instance batteries, compressed air 

storages or hydrogen storages. Fuel cells unifies for instance solid oxide (SOFC) or proton-exchange 

membrane fuel cells (PEMFC). Heat recovery units unifies for instance heat exchanger or heat recovery 

boiler. The attribute Refrigerator unifies absorption, electric, and compression refrigerators. The 

attribute Solar thermal unit, which defines units (e.g., power tower, solar panel, etc.,) collecting solar 

energy and converting it into heat (in contrast to photovoltaic units which provide power). The 

attribute Turbine unifies for instance gas, steam, and micro turbines. 

The additional attribute Flexible classifies approaches which are not specialized on any specific CU 

type, but can address different CU types.  

All these attributes are non-exclusive because an ECS can consist of more than one CU. Note, that 

approaches are only classified by the attribute Electrolyzer when the electrolyzer does not serve as a 

production unit for commercial hydrogen production but to supply AES as part of the ECS and/or to 

convert surplus AES for energy storage. 

During the literature analysis we observed that, in addition to these typical CUs, extra units like control 

units, pumps, AC/DC converter, DC/DC converter, inverter, compressors, or rectifier are installed. As 

these units are essential for ECSs but not a distinguishing feature they are not included into the ECSDF. 

4.6 CU	operation	

Approaches considering the design and operation of an ECS may consider different operational 

characteristics of the individual CUs during the ECS design. These operational characteristics are 

represented in the category CU operation comprising of the sub-categories CU states, CU loads, and 

CU efficiency (cf., Figure II.A-12). 

4.6.1 CU	states	

The sub-category CU states is about the different operational states a CU can operate at (e.g., Off and 

On (idle)) and the transition between these states. Thus, the CU states comprise the sub-categories 

State types, i.e., the operational states, and the State transitions, which represent the conditions of 

switching between two states (cf., Figure II.A-12). 
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Figure II.A-12: Category CU operation 

4.6.1.1 State	types	

The State type considered by any approach that considers CU states at all is the operating state, i.e., 

the state in which a CU is converting FES into AES. As this state is represented in every approach, it is 

not included into the ECSDF as it does not provide any helpful information. Beside the operating state, 

further states are considered in literature (cf., e.g., Aguilar et al., 2008; Sun and Liu, 2015; Amusat et 

al., 2017): The state Off-cold, i.e., in which the CU is not converting and has spent a minimum amount 

of time off, making a specific (cold) startup process necessary to reach the operating state. The state 

Cold-startup, i.e., the explicit state in which the CU switches from Off-cold to operating. These startup 

states can take several hours and during startups FES is consumed but no AES is provided. The state 

Off-warm, i.e., the state in which the CU is not converting and has not yet spent a maximum amount 

of time Off, making a specific (warm) startup process necessary to reach operating state. The state 

Warm-startup, i.e., the explicit state in which the CU switches from Off-warm to operating. The state 

Off, i.e., in which the CU is turned off and is not converting and not consuming any FES. Here, a 

transition between the states Operating and Off is possible without a transition state in between. The 

state On (idle) (also called hot standby), i.e., the state in which the CU is not converting but consumes 

FES to preserve its state to reach its operating state immediately (without an explicit startup process). 

The state Failure, i.e., in which the CU has an error and cannot convert anymore, making a maintenance 

procedure or repairs necessary to operate again. The attribute Failure represents (stochastic) CU 

breakdowns and thus, the consideration of the state Failure should imply the consideration of the 

ECS`s reliability. The state Maintenance, i.e., the explicit state in which the CU is not available as it 
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receives repairs or maintenance. Furthermore, if a CU is an energy storage system, the state 

Charging/Discharging can be considered (because approaches always consider both states when 

considering the charging or discharging process, a differentiation is unnecessary). 

4.6.1.2 State	transitions	

A state transition is the switching from one State type to another. Generally, state transitions are 

subject to certain physical rules, e.g., a CU cannot change from Off-cold to Operating state directly 

without a Cold-startup process in between or a CU cannot change its state from Operating to Cold-

startup as it is not possible. To consider these physical rules during ECS design (and operation), an 

appropriate representation of state transition restrictions is necessary. This can be accomplished in 

several ways, e.g., by Restricted sequences specifying the order in which the CU state types can be run 

through (e.g., Sun and Liu, 2015), by Minimum durations specifying how long a CU must remain in a 

specific CU state at least before it can switch to another CU state (e.g., Aguilar et al., 2008), by State-

time relations specifying the time needed to switch between two distinct CU states (transition times 

can vary depending on between which states the transition takes place), or by Transition costs (e.g., in 

form of additional FES requirements, losses of useful energy, or monetary values (e.g., Sun and Liu, 

2015).  

Note, that all attributes of the sub-category CU states are non-exclusive. 

4.6.2 CU	loads	

In the operating state, a CU provides a specific amount of AES, named (operational) load. The sub-

category CU loads specifies the different loads a CU can provide and the transition between these 

loads. Thus, the category CU loads comprises the two sub-categories Load types, i.e., the different 

operational loads, and Load transitions, which represent the conditions of switching between different 

loads (cf., Figure II.A-13). 

  
Figure II.A-13: Sub-category CU loads 
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4.6.2.1 Load	types	

The attributes of the sub-category Load types reflect the way the different amounts of AES provided 

by the ECS are considered by a design approach (cf., Figure II.A-13). The first three attributes address 

discrete load points. The first attribute, the Nominal load, classifies approaches which explicitly 

consider the nominal load (also called design point), i.e., the load at which the CU operates with 

maximum conversion efficiency. The second attribute is the Maximum load, i.e., the highest possible 

load and thus, a CU’s maximum AES capacity. The third attribute is the Minimum load, i.e., the lowest 

possible load a CU can provide before it must be shut down due to technical reasons. Together the 

Maximum load and the Minimum load determine the operational range of a CU. The last attribute is 

called Partial load. In contrary to the first three attributes, this attribute does not only classify 

approaches considering discrete load points, but approaches considering any loads within a CU’s 

operational range. Regarding partial loads, approaches can consider continuous partial loads (i.e., the 

CU can provide any partial load within its operational range (cf., Azit and Nor, 2009 or Morais et al., 

2020) or a limited number of discrete partial loads (cf., Roy, 2001 or Gibson et al., 2013).  

We would like to emphasize that even though every CU underlies physical restrictions in the maximum 

and minimum providable loads, it does not mean that every approach is classified into the 

corresponding attributes. The attributes Maximum, Minimum, Nominal and Partial loads are only 

classified for an approach, that explicitly defines or considers them. For instance Abdelkader et al. 

(2018) explicitly consider maximum and minimum operational loads in the constraints 19 to 22, and 

Yokoyama and Ito (2006) consider Maximum loads, Minimum loads, and continuous Partial loads. 

Strongly related to partial loads is the category CU efficiency discussed in section 4.6.3. 

4.6.2.2 Load	transitions	

Load transitions (similar to State transitions) refer to the switching between different loads. Load 

transitions are subject to certain physical rules, e.g., a CU cannot change from the minimum load to 

the maximum load within an arbitrarily short time. To classify approaches according to the respected 

physical rules during ECS design and operation, the category Load transitions provides the following 

attributes: Ramping constraints (i.e., an approach considers the maximum height of a load change a 

CU can manage within a certain amount of time cf., Shamsi et al. (2019)), Minimum durations (i.e., an 

approach considers the minimum amount of time a CU must remain at one load at least, before it can 

switch to another load), Maximum number (i.e., consideration of a maximum amount of times a CU 

can perform load transitions within a specific time interval), and Transition costs (i.e., an approach 

considers additional energy requirements, loses of useful energy, efficiency losses, or monetary values 

for a load transition). 

All attributes of the sub-category CU loads are non-exclusive. 
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4.6.3 CU	efficiency	

Each CU has its individual conversion efficiencies, which are generally listed in the CU’s specifications 

(Azit and Nor, 2009). Most approaches consider load-dependent conversion efficiency characteristics, 

as the efficiency strongly depends on the CU’s operational load (Ghadimi et al., 2014), or age- and size-

dependent efficiency characteristics. The ECSDF considers these aspects in the category CU efficiency 

and differentiates between the attributes Constant, Discrete, Linear, Piecewise-linear, Non-linear, 

Performance degradation, and Scale-effect (cf., Figure II.A-14). 

 
Figure II.A-14: Sub-category CU efficiency 

The attribute Constant classifies approaches considering one single conversion efficiency value for the 

CU’s entire operational range (cf., Behzadi et al., 2019), or in rare cases for a CU with a single nominal 

load (cf., Cho and Lee, 2014). The attribute Discrete classifies approaches considering a few discrete 

efficiencies with corresponding discrete loads (e.g., for the minimum-, maximum-, nominal, or a 

discrete partial load, cf., Roy, 2001). When approaches consider different continuous efficiencies, they 

determine the efficiencies via a function based on the load. Thus, the attributes Linear, Piecewise-

linear, and Non-linear classify approaches according to their considered efficiency functions (cf., e.g., 

Tichi et al., 2010; Voll et al., 2013). The attribute Performance degradation classifies approaches which 

consider a degradation of efficiency over the CU lifetime, for instance due to CU ageing (cf., e.g., Guinot 

et al., 2015). The attribute Scale-effect classifies approaches which consider CU efficiencies depending 

on the CU size. Hereby, the Scale-effect determines the proportionality between the increase in size 

and the thereof resulting increase of the (nominal) efficiency of a CU (cf., Gibson et al., 2013). 

Note, that these attributes are non-exclusive. This is for example the case, if an ECS design approach 

considers more than one CU and assumes different efficiency characteristics for each CU (cf., Tichi et 

al., 2010). 
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4.7 AES	demand	/	FES	supply	

Because the (strongly) varying AES demands of the production system severely impact the efficiency 

of the ECS (cf., Yokoyama and Ito, 2002; Ashok and Banerjee, 2003; Ghadimi et al., 2013, 2014), the 

consideration of historical and/or future (estimated) AES demands is mandatory to design an 

appropriate on-site ECS for manufacturing companies. But not only the characteristics of the AES 

demand influence the ECS design but also an accurate consideration of the prospective FES supply is 

needed for designing appropriate ECSs (Khatib et al., 2016).  

As the characteristics of AES demand and FES supply are (almost) identical, they are both represented 

by the main category AES demand/FES supply which classifies design approaches accordingly. To 

indicate which case is characterized by the attributes of this main category, we use the “auxiliary” 

attributes FES & AES related and Only FES related and define the following conventions: If only AES 

demands are characterized, no auxiliary attribute is selected (cf., Maia and Qassim, 1997; Spyrou and 

Anagnostopoulos, 2010; Emadi and Mahmoudimehr, 2019); If the AES demand and FES supply are 

characterized, the auxiliary attribute FES & AES related is selected (cf., Won et al., 2017; Abbasi and 

Pourrahmani, 2020); And if only the FES supply is characterized, the attribute Only FES related is 

selected (cf., Kamel, 1995; Khalilnejad and Riahy, 2014; Tebibel and Labed, 2014; Waseem et al., 2020).  

The actual classification is then based on the attributes Stochastic (cf., O'Brien and Bansal, 2000; 

Yokoyama et al., 2014) and the sub-categories Time dependency, Aggregation level, Aggregation 

method, and Data basis (cf., Figure II.A-15). 
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Figure II.A-15: Category AES demand/FES supply 

The attribute Stochastic, classifies design approaches which consider uncertain AES demand/FES 

supply to determine robust ECS designs (Yokoyama et al., 2014). Hereby, a scenario or sensitivity 

analysis or the modelling of AES demand/FES supply variations by probabilistic distributions imply a 

classification by the attribute Stochastic (e.g., Andiappan et al., 2015; Amusat et al., 2017). 

4.7.1.1 Time	dependency	

Depending on the behavior over time, the sub-category Time dependency classifies AES demand/FES 

supply by the attributes Static and Dynamic (cf., O'Brien and Bansal, 2000). Hereby, the attribute Static 

classifies design approaches which consider only a single Static AES demand/FES supply (e.g., Marechal 

and Kalitventzeff, 1998; Keshavarzzadeh et al., 2020), whereas Dynamic classifies design approaches 

considering dynamic AES demand/FES supply which vary over time (e.g., Campana et al., 2019; Shamsi 

et al., 2019). 
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4.7.1.2 Aggregation	level	and	aggregation	method	

Regarding the AES demand/FES supply at all, the considered amount of data and the way the AES 

demand/FES supply is modelled has a large influence on the accuracy of the design. For instance, 

Kavvadias and Maroulis (2010) recommend to take at least one year of historical data (e.g., in form of 

load duration curves) into consideration for designing a trigeneration plant and Azit and Nor (2009) 

state that the modelling must be as detailed as possible but also as aggregated as necessary. To these 

aspects, the sub-categories Aggregation level and Aggregation method are introduced (cf., Figure 

II.A-15). These terms are used because AES demand/FES supply are always modelled in an aggregated 

manner and the sub-categories classify the characteristics of the aggregation, which provides the 

appropriate level of detail. 

The sub-category Aggregation level classifies approaches according to the smallest time interval for 

which the AES demand/FES supply is considered. To that, it differentiates between the attributes 

Seconds (which considers intervals within the range of one second up to 59 seconds; cf., e.g., Saha and 

Kastha, 2010 or Jallouli and Krichen, 2012), Minutes (i.e., one minute up to 59 minutes; e.g., Ghadimi 

et al., 2014), Hours (i.e., one hour up to 23 hours; e.g., Amusat et al., 2017), Days (i.e., one day up to 6 

days), Weeks (i.e., one week up to 4 weeks), months or longer (e.g., Sun and Liu, 2015), and Flexible. 

Flexible classifies approaches which give instructions on how to adapt their approach to any 

appropriate aggregation level. 

For every aggregation level, the AES demand/FES supply has to be determined. The sub-category 

Aggregation method classifies approaches depending on the applied technique to determine the AES 

demand/FES supply for each aggregation level. To that, the sub-category differentiates the attributes 

Mean, Maximum, Minimum, and Sum. The aggregation method Mean (Maximum/Minimum/Sum), 

calculates the mean (maximum/ minimum/ sum) of all available AES demand/FES supply values within 

the time interval specified by the aggregation level (e.g., Tebibel and Labed, 2014; Bhattacharyya et 

al., 2017; Alirahmi et al., 2020b). 

Note, that the attributes within each sub-category are mutually exclusive, unless a comparison 

between different considerations of AES demand/FES supply is made. 

4.7.1.3 Data	basis	

Furthermore, we found a broad difference in the considered data basis within the analyzed 

approaches. The considered data basis vary from one considered data point to more than 8,760 data 

points (e.g., representing 365 days with 24 hours). The considered data basis has a huge influence on 

the reliability of the prospective ECS and the computational efforts of the solution methods applied to 

solve the ECS design problem. For this reason, and to make approaches comparable, the sub-category 

data basis with its attributes One data point (static), ≤ 50 data points, ≤ 500 data points, < 8,670 data 
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points, = 8,670 data points, and > 8,670 data points is introduced (cf., Figure II.A-15). Each attribute 

describes an upper limit on the considered data points of an approach and classifies them accordingly. 

Hereby, a data point can represent any time unit which is defined by the Aggregation level (e.g., 

minutes or hours). 

4.8 Relations	to	other	systems	

ECS design approaches may consider the relationship between the ECS and other systems (cf., Figure 

II.A-2). Thus, the main category Relations to other systems classifies ECSs according to their interaction 

and relationship with other systems and differentiates between the sub-categories External grid and 

Energy market, representing some of these systems and their attributes (cf., Figure II.A-16). 

 
Figure II.A-16: Category Relations to other systems 

In general, connections to an External grid allow the import of AES from and/or the export to the grid. 

Since on-site ECSs are expected to be self-sufficient, they should be able to fulfill the base AES demand 

without exchanges with the external grid (Aguilar et al., 2008). Therefore, many approaches do not 

permit any AES exchange with the external grid during the design. In contrast, other design approaches 

explicitly allow the exchange of AES with the external grid in order to maximize the overall benefit (cf., 

e.g., Azit and Nor, 2009) or to minimize the overall costs (cf., e.g., Gamou et al., 2002). These aspects 

are considered in the ECSDF by the two attributes Export, i.e., the allowance to sell converted AES to 

the grid; and Import, i.e., the allowance to buy “missing” AES from the grid (note, that not the import 

of FES is reflected by this attribute). These attributes are non-exclusive, as an Import as wells as an 

Export can be considered by an approach. 

Furthermore, an interaction with the Energy market could be considered. This sub-category 

differentiates between attributes to classify approaches that design an ECS with regard to external 

energy market influences like Uncertain prices or demand side management (demand response) 

mechanisms like Time-of-use tariffs, Critical peak pricing, or Power purchase agreements (cf., e.g., 

Kavvadias and Maroulis, 2010; Gibson et al., 2013; Cho and Lee, 2014). These attributes also are non-

exclusive. 
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5	 Conclusion	

Rising energy demands, scarce resources, and continuously increasing resource costs require a more 

efficient use of energy in the industrial sector — from an ecological and an economical perspective. To 

use and acquire energy as efficiently as possible, on-site ECSs have been identified as one of the main 

solutions. To fully benefit from the efficiency potentials of on-site ECSs, the ECSs have to be designed 

accurately under the consideration of the relevant design aspects. This accurate design is especially 

relevant when designing an ECS for manufacturing companies, as their varying energy demands 

strongly decrease an inaccurately designed ECS`s efficiency. Hereby, the many aspects that are crucial 

for an adequate ECS’s design and the design’s high complexity force researchers to focus on different 

design aspects for individual planning problems. This has led to a huge number of problem-specific 

approaches. Although this increasing number of approaches is very appreciated, it complicates the 

search for most related ECS design approaches for a specific design problem and the structuring and 

analysis of the research area. In Consequence, an all-encompassing framework with unambiguous and 

unified definitions is desperately needed. 

Therefore, we developed the ECSDF. It is developed from an initial scope of more than 44 carefully 

selected publications and 32 preceding reviews and is composed of eight main categories, 27 sub-

categories and 126 attributes representing aspects which are essential for a high quality ECS design for 

manufacturing companies. Of course, the current state of the framework is not final but future 

literature analysis will lead to continuous adaptations like performed in the iterative development 

process. 

Next step to fully exploit the benefits of the developed ECSDF is the analysis of the classified articles 

by an extensive literature review (the classification of ECS design approaches used for the ECSDF 

development can be found in the digital supplementary material). Unfortunately, there is no space in 

this paper to perform such an analysis adequately. 

In summary the ECS design framework`s main contributions are to provide a knowledge base for 

decision makers for identifying relevant design approaches, to facilitate the search within the existing 

literature, to unify the understanding of the crucial design aspects, to support the analysis and 

structuring of individual planning problems, and to provide the base for an empirical literature analyses 

to disclose research gaps and provide insights for future research. 
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6	 Appendix	

A-1:	Search	string	

The abbreviations of the search string mean the following: 

TI = title 

TS = title, abstract, and key words 

SO = journal name 

 

TI =  (conversion OR planning OR generation)  

AND TI =  (model* OR optim* OR dimensioning OR design*)  

AND TS  = (combined heat and power OR chp OR cogeneration OR cchp OR combined cool* 

heat* power OR trigeneration OR photovoltaic* OR pv OR Solar* OR turbine OR hydro 

power OR fuel cell* OR biogas* OR biomass OR boiler* OR combustion engin* OR heat 

pump* OR stand alone OR energy system* OR power system* OR wind power)  

AND TS  =  (size* OR scale* OR dimensioning* OR design*)  

AND TS  =  (plant* OR industr* OR produc* OR compan* OR firm* OR enterprise* OR 

corporation* OR concern* OR manufactur*)  

NOT TS  =  (hospital OR building OR grid OR household OR store* OR schedule* OR commercial 

energy OR region* OR area* OR district* OR market)  

AND SO  =  (Applied Energy OR Applied Thermal Engineering OR "Computers & Industrial 

Engineering"OR Electric Power Systems Research OR Energy OR Energy & Environmental 

Science OR "Energy Conversion and Management" OR Energy Economics OR Energy for 

Sustainable Development OR Energy Journal OR Environmental Research Letters OR 

"Experimental Thermal and Fluid Science" OR "IEEE Journal of Emerging and Selected 

Topics in Power Electronics" OR IEEE Journal of Photovoltaics OR IEEE Power & Energy 

Magazine OR IEEE Transactions on Energy Conversion OR IEEE Transactions on Industrial 

Electronics OR IEEE Transactions on Industry Applications OR IEEE Transactions on 

Power Delivery OR IEEE Transactions on Power Electronics OR IEEE Transactions on 

Power Systems OR IEEE Transactions on Sustainable Energy OR IET Generation 

Transmission & Distribution OR IET Power Electronics OR IISE Transactions OR 

International Journal of Electrical Power & Energy Systems OR International Journal of 

Engineering Science OR "International Journal of Heat and Mass Transfer" OR 
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International Journal of Hydrogen Energy OR International Journal of Production 

Economics OR International Journal of Production Research OR International Journal of 

Thermal Sciences OR JOM OR Journal of Cleaner Production OR "Journal of Modern 

Power Systems and Clean Energy" OR Journal of Operations Management OR Nano 

Energy OR Nonlinear Analysis: Real World Applications OR "Production and Operations 

Management" OR Production Planning & Control OR "Progress in Energy and 

Combustion Science" OR Progress in Photovoltaics OR Renewable & Sustainable Energy 

Reviews OR Renewable Energy OR Solar Energy OR "Solar Energy Materials and Solar 

Cells" OR "Sustainable Energy Technologies and Assessments" OR Journal of the Energy 

Institute) 
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Abstract: The conservation and efficient use of resources is an omnipresent topic in today´s society 

and industry. In this context, to cover production process energy demands more efficiently, 

manufacturing companies started to install energy conversion (utility) systems (ECSs) on-site. To fully 

exploit the benefits of on-site ECSs, versatile factors, such as the characteristics of demand, conversion 

units, or energy sources, must be considered during ECS design. Particularly the interdependencies of 

the ECS and the production system (PS), which are mainly reflected in the PS’s strongly varying energy 

demands the ECS has to cover, must be considered by ECS designs for manufacturing companies. The 

manifold properties and the degrees of freedom for instance regarding the conversion technology or 

conversion unit size make the planning task challenging and the scientific literature diverse. 

To assist scientists and real-world decision makers, Ganschinietz (2020) developed a concept-centric 

ECS design framework to structure existing and forthcoming ECS design approaches. In this 

contribution, the ECS design framework is used to classify existing ECS design approaches identified by 

a structured literature search. The classified approaches form the base for several empirical analyses 

performed to gain insights about the existing approaches as well as starting points for further research 

topics. 

Keywords: energy conversion system, on-site, manufacturing, review, classification 
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1	 Introduction	

The constantly growing demand for products and their consumption has put pressure on industrial 

production and its supply chains to decrease negative impacts on the environment and society (Rajeev 

et al., 2017). These negative impacts become especially obvious when considering the fact that 

industry accounts for approximately 25% of the total energy consumption in the European Union 

(Eurostat, 2019). This pressure and the current energy supply situation, combined with the fact that 

energy is a non-substitutable production factor, motivates (manufacturing) companies to reorient 

themselves towards a strategically expedient management and optimized utilization strategy of the 

(scarce) resource energy (Ghadimi et al., 2014). This reorientation can be achieved in different ways, 

for instance by energy-oriented production scheduling (Liu et al., 2020), energy saving measures 

(Abdelaziz et al., 2011), sustainable and renewable energy sources usage (Bukar and Tan, 2019), 

efficiency increases for installed ECSs (Rashid et al., 2019), or by installing on-site ECSs at 

manufacturing companies (Keshavarzzadeh et al., 2020).  

Particularly the installation of on-site ECSs is an attractive possibility for manufacturing companies to 

meet energy demands independently, increase energy supply reliability, save costs, and, with an 

accurately designed ECS, improve energy efficiency and act more sustainably. Thereby, an accurate 

ECS design strongly depends on the planning environment and its implications for the ECS design. 

Regarding manufacturing companies, particularly the strongly varying energy demands resulting from 

the production system must be considered during ECS design, because the demand variations can lead 

to long running times in partial load operation, which negatively influence the ECS’s overall conversion 

efficiency. This is due to the technical property that conversion efficiencies are lower at partial loads, 

i.e., the more the load deviates from the nominal load (design point), the lower the conversion 

efficiency (cf., Aguilar et al., 2007, Voll et al., 2013, or Li et al., 2016). Beside this major aspect for an 

appropriate ECS design for manufacturing companies, several other aspects must be considered. 

Because of the numerous aspects and because of numerous possible ECS topologies (comprising the 

number and type of conversion units und technologies, type of input energy sources, etc.), identifying 

related ECS design approaches in literature is challenging. To support this process, Ganschinietz (C1) 

recently proposed a new, concept-centric research framework for the classification of ECS design 

approaches (ECSDF).  

The contribution of this paper is the application (and extension) of this ECSDF by a comprehensive 

literature review and classification according to the ECSDF, combined with a consecutive empirical 

analysis of the literature about design approaches for on-site ECSs at manufacturing companies. 

Compared to the original ECSDF, we extended the scope of the literature sample to expand the focused 

research field in order to generate more general conclusions. Furthermore, we added three main 
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categories (objective system, solution method, and application case) to enrich the information created 

with the review and analysis. 

The paper is structured as follows: Section 2 provides a short overview on the ECSDF. In section 3 , the 

methodology for the literature review and the adaptation of the ECSDF is described and section 4 gives 

a detailed description on the categories added to the ECSDF. Successively, section 5 presents an 

excerpt of the literature classification which forms the base for the empirical analysis in section 6 . 

Major findings are presented in section 7 . Section 8 concludes the paper. 

2	 Related	work	

To structure the current state of science for the design of on-site ECSs for manufacturing companies, 

Ganschinietz (C1) proposes the concept-centric ECS design framework ECSDF to classify existing and 

upcoming ECS design approaches. The benefits of this framework are manifold: First, the ECSDF unifies 

the understanding and definition of the most relevant aspects to be considered for an adequate ECS 

design (for manufacturing companies) and thus, enables scientists to analyze and structure their 

planning problems accordingly. Second, the ECSDF facilitates the search within existing design 

approaches and provides an excellent knowledge base to enable decision makers to identify relevant 

design approaches. Third, the ECSDF can be used to analyze research progress and directions, to 

disclose research gaps, and to provide insights for future research by classifying ECS design approaches 

according to the ECSDF (Ganschinietz, C1).  

The ECSDF classifies ECS design approaches by eight main categories comprising, 27 subcategories, and 

126 attributes. The eight main categories are illustrated in Figure II.B-1 (in Figure II.B-1, AES stands for 

applied energy sources, FES stands for final energy sources, and CU for conversion unit; for more 

details on the terms cf., Ganschinietz, C1). 
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Figure II.B-1: Main categories of the ECS design framework by Ganschinietz (C1) 

Because related reviews, frameworks, and other meta-analyses are exhaustively discussed by 

Ganschinietz (C1), we omit the repetition here but like to emphasize that this is the first article that 

uses the ECSDF to perform a structured literature review and analysis. 

3	 Methodology	and	Scope	

The methodology used for the review and analysis is basically the same as used in Ganschinietz (C1). 

We use the same iterative research process but with an extended scope and continuous framework 

adaptations (cf., Figure 1 in Ganschinietz, C1; process adjustments are marked bold).  

 
Figure II.B-2: Iterative literature search, analysis, and synthesis process 

To classify, review, and analyze all ECS design approaches that are applicable at manufacturing 

companies, we do not limit the relevant literature to articles that directly address production systems 
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or industry, but consider all articles that address design problems considering strongly varying AES 

demands. Accordingly, we adapted the subcategory Scope in the ECSDF (in Figure II.B-3 the two new 

attributes are marked light grey, and PES stands for primary energy sources; for more details on the 

term cf., Ganschinietz, C1). 

 
Figure II.B-3: ECSDF adaptations 

The other scope and purpose criteria for the article selection are the same as in (Ganschinietz, C1): 

only articles either dealing with the design or with the design and operation of ECSs are considered 

and articles exclusively dealing with the operation of ECSs are excluded. Furthermore, articles 

addressing the topics commercial energy production (for markets), design and operation of the central 

grid, its layout, or extensions, and publications on on-site ECSs of city districts and public or private 

buildings (e.g., administrative offices, hospitals, or households) are excluded (if not explicitly 

considering varying AES demands). Also articles only addressing the mere installation of energy storage 

systems are excluded. 

To reflect the new literature scope, we slightly adapted the keyword search (see the Appendix A-1) 

and considered the new scope and purpose criteria in the literature evaluation step (IV.). With the 

iterative search procedure (keyword search, forward search, and backward search), we identified 120 

relevant articles that fulfill the scope and purpose criteria and are published in a journal having an SJR-

Index greater than 1. Because most important publications of a research field can be found in 

renowned journals (Webster and Watson, 2002), we use the SJR-Index (provided by the “SCIMAGO 

Journal & Country Rank”) for journal selection. The SJR-Index is number-based score measuring the 

impact or prestige of a journals articles (Guerrero-Bote and Moya-Anegón, 2012). 

The complete literature sample used for the review and analysis in this paper is depicted in Table II.B-1: 
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Table II.B-1: Reviewed journals and identified relevant articles (state: May 2020) 
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Applied Energy* (47) 3,61 Q1 Q1     Q1   10 10 
Applied Thermal Engineering* (18) 1,78 Q1     Q1    6 6 
Chemical Engineering Science 1,00      Q1    2 2 
Computers and Chemical Engineering 1,00         3 6 9 
Computers in Industry 1,01     Q1     1 1 
Desalination 1,81       Q1   2 2 
Energy* (58) 2,17  Q1  Q1  Q1 Q1 2 2 13 17 
Energy and Buildings 2,06    Q1   Q1  1 1 2 
Energy Conversion and Management* (44) 2,92 Q1  Q1     3 4 9 16 
Energy Policy 2,17  Q1        4 4 
IEEE Transactions on Energy Conversion* (9) 1,78 Q1   Q1    1  2 3 
IEEE Transactions on Industry Applications* (10) 1,50    Q1  Q1  1   1 
IEEE Transactions on Power Delivery* (5) 2,13 Q1   Q1      1 1 
IEEE Transactions on Power Systems* (21) 3,43 Q1   Q1    1   1 
International Journal of Elec. Power & En. Systems* (18) 1,20 Q1   Q1    1  1 2 
International Journal of Hydrogen Energy* (33) 1,14 Q1  Q2     2 4 6 12 
Journal of Cleaner Production* (18) 1,89   Q1   Q1   1  1 
Journal of the Energy Institute * (0) 1,26 Q1  Q1 Q1      1 1 
Renewable & Sustainable Energy Reviews* (7) 3,63   Q1      1 1 2 
Renewable Energy* (32) 2,05   Q1     1 3 9 13 
Solar Energy* (9) 1,54   Q1     1 3 9 13 
Swarm and Evolutionary Computation 1,65          1 1 

Electric Power Systems Research* (4), Energy & Environmental Science* (5), Energy Economics* (3), Energy for 
Sustainable Development* (0), Energy Journal* (0), Environmental Research Letters* (2), Experimental Thermal 
and Fluid Science* (0), IEEE Journal of Emerging and Selected Topics in Power Electronics* (1), IEEE Journal of 
Photovoltaics* (0), IEEE Power & Energy Magazine* (0), IEEE Transactions on Industrial Electronics* (14), IEEE 
Transactions on Power Electronics* (8), IEEE Transactions on Sustainable Energy* (14), IET Generation, 
Transmission & Distribution* (8), IISE Transactions* (1), International Journal of Engineering Science* (1), 
International Journal of Heat and Mass Transfer* (7), International Journal of Production Economics* (1), 
International Journal of Production Research* (4), International Journal of Thermal Sciences* (2), Journal of 
Modern Power Systems and Clean Energy* (0), Journal of Operations Management* (0), Nano Energy* (4), 
Nonlinear Analysis: Real World Applications* (0), Production and Operations Management* (0), Production 
Planning & Control* (0), Progress in Energy and Combustion Science* (0), Progress in Photovoltaics* (0), Solar 
Energy Materials and Solar Cells* (3), Sustainable Energy Technologies and Assessments* (3) 

Total 13 22 85 120 
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Altogether, more than 620 articles have been evaluated during the iterative search process. Hereby, 

the search string resulted in 13 relevant ECS design approaches (from 416 initial hits), the forward 

search added 22 and the backward search 85 relevant articles. Overall this leads to a literature scope 

of 120 ECS design approaches to be classified by the ECSDF. 

4	 Framework	extensions	for	analysis	

The eight main categories of the ECSDF constitute the core of the following literature review, 

classification, and analysis. Beside these main categories and their attributes explicitly related to ECSs, 

we additionally analyze the ECS design approaches with regard to the more common aspects Objective 

system, Solution method, and Application case. As the structuring of information and knowledge in 

form of categories has shown to be useful, we also organize these three aspects in categories (with 

sub-categories and attributes). The complete structure of the ECSDF including the extensions is 

provided within Figure II.B-25 to Figure II.B-27 in the Appendix A-2 and the digital supplementary 

material. Note that in the following figures, not all attributes for any sub-categories are depicted to 

keep the figures clear. To provide a better overview, attributes are marked grey, while categories are 

marked white.  

4.1 Objective	system	

The category Objective system consists of the sub-categories Objective criteria, multi-criteria decision 

making (MCDM), and Evaluation horizon (cf., Figure II.B-4). Note, that for the sub-category Objective 

criteria only sub-categories are illustrated in Figure II.B-4 (due to the high number of attributes; the 

complete set of attributes can be found in the complete classification provided within the digital 

supplementary material). The three sub-categories of Objective criteria characterize the objective 

criterion or the objective criteria used to evaluate and/or optimize an ECS design. If multiple criteria 

are used, an approach is also classified by methods from the research field of multi-criteria decision 

making (MCDM) (or a related field). Here, we focus on the most often used ones (more details can be 

found in the literature classification): Satisficing constraint indicates approaches where at least one 

objective is transferred to a constraint with a lower (or upper) bound, Pareto indicates approaches 

depicting Pareto fronts and related concepts, and Analytical indicates approaches where a single 

objective criterion is used for optimization and other criteria are “only” used to evaluate the results. 

The attribute Other classifies approaches not using one of the MCDM methods above. The sub-

category Evaluation horizon depicts the ECS lifetime considered by most of the objective criteria (e.g., 

“total annual costs”).  
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Figure II.B-4: Sub-categories and attributes to characterize the objective system 

Remark that the attribute Not relevant has a very different meaning compared to Not specified: the 

first one means that this information is not required because of the objective criteria, whereas the 

latter one means that the information is not given in the article. 

4.2 Solution	method	

The category Solution method comprises the sub-category Model type which reflects the type of the 

optimization model (Linear program, Mixed-integer linear program – MILP, Quadratic program – QP, 

nonlinear program – NLP, or Mixed-integer non-linear program – MINLP) or if “only” a mathematical 

formulation of the decision problem is presented. Beside the model type, further self-explanatory sub-

categories and attributes are depicted in Figure II.B-5 (further details can be found in Table II.B-7 and 

in the complete classification provided within the digital supplementary material).  



II Contributions Design of on-site energy conversion systems for manufacturing companies – A review and 
literature analysis II.B Contribution 2 

 

77 

 
Figure II.B-5: Sub-categories and attributes to characterize the solution method 

Note that even if an optimization model is specified, not necessarily a standard solver (like CPLEX or 

Gurobi) must be used to solve the planning problem. 

4.3 Application	case	

Within the third additional category Application case, we use the attribute Real world evaluation to 

mark an ECS design evaluation based on data from a real-world application case. The sub-category 

Non-industrial marks contributions related to districts or buildings (e.g., hospitals). All industry related 

publications are classified according to the industrial sector (as defined and numbered by the 

“International Standard Industrial Classification of All Economic Activities (ISIC), Rev. 4” - United 

Nations, Department of Economic and Social Affairs, 2008). 

 
Figure II.B-6: Sub-categories and attributes to characterize the area of application 

Note, that even when an industrial sector can be derived from a manuscript, not necessarily a real-

world evaluation has been performed.  
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5	 Literature	classification		

Because of the large number of 120 identified relevant articles, we cannot present the complete 

classification of all relevant papers within the paper. Instead, to put the ECSDF into perspective, we 

present an exemplarily classification of a subset of articles: Table II.B-3 to Table II.B-7 show the 

classification of 22 excerpted articles (one per letter of the alphabet and name of the first author). The 

complete classification with a maximum level of detail regarding categories, sub-categories, and 

attributes is provided as supplementary material.  

Although it’s impossible to depict the complete classification here, we show in Table II.B-2 the extent 

and results of the classification for the 120 approaches for the first 5 attributes of sub-category Scope: 
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Table II.B-2: Sub-category Scope of the 120 classified ECS design approaches 

Scope 
(Number of classified 

articles) 

Classified approaches 
 
 

AES demand fulfillment 
(26) 

Papoulias and Grossmann, (1983), Pendergrass, (1983), Kamel, (1995), Hui 
and Natori, (1996), Maia and Qassim, (1997), Iyer and Grossmann, (1998), 
Marechal and Kalitventzeff, (1998), Roy, (2001), Shang and Kokossis, (2005)), 
Varbanov et al. (2005), Aguilar et al. (2008), Azit and Nor (2009), Tichi et al. 
(2010), Voll et al. (2012), Gibson et al. (2013), Voll et al. (2013), Carvalho et 
al. (2014), Ghadimi et al. (2014), Leif Hanrahan et al. (2014), Luo et al. (2014), 
Kazi et al. (2015), Smaoui et al. (2015), Sun and Liu (2015), Rad et al. (2016), 
Shamsi et al. (2019), Morais et al. (2020) 

AES demand fulfillment with 
limited FES/PES 

(5) 

Andiappan et al. (2015), Amusat et al. (2016), Andiappan and Ng (2016), 
Amusat et al. (2017), Campana et al. (2019) 

AES output maximization 
(19) 

Mavromatis and Kokossis (1998), Bernal-Agustín and Dufo-López (2010), 
Spyrou and Anagnostopoulos (2010), Khalilnejad and Riahy (2014), Najafi et 
al. (2014), Tebibel and Labed (2014), Ahmadi et al. (2015), Bhattacharyya et 
al. (2017), Khanmohammadi et al. (2017), Won et al. (2017), Behzadi et al. 
(2019), Emadi and Mahmoudimehr (2019), Ghorbani et al. (2019), Abbasi 
and Pourrahmani (2020), Alirahmi et al. (2020b), Alirahmi et al. (2020a), 
Chitgar and Moghimi (2020), Keshavarzzadeh et al. (2020), Waseem et al. 
(2020) 

General varying demand 
fulfillment 

(36) 

Muselli et al. (1999), Gamou et al. (2002), Khodr et al. (2002), Yokoyama et 
al. (2002), Yokoyama and Ito (2002), Frangopoulos (2004), Beihong and 
Weiding (2006), Koutroulis et al. (2006), Chicco and Mancarella (2007), 
Sanaye et al. (2008), Kavvadias et al. (2010), Kavvadias and Maroulis (2010), 
Saha and Kastha (2010), Wang et al. (2010), Carpaneto et al. (2011a, 2011b), 
Carvalho et al. (2011), Carapellucci and Giordano (2012), Kumar et al. (2013), 
Cho and Lee (2014), Kaabeche and Ibtiouen (2014), Yokoyama et al. (2014), 
Arcuri et al. (2015), Benam et al. (2015), Guinot et al. (2015), Wu et al. 
(2015), Yokoyama et al. (2015), Li et al. (2016), Zeng et al. (2016), Kaabeche 
et al. (2017), Zhu et al. (2017), Abdelkader et al. (2018), Du Guangqian et al. 
(2018), Forough and Roshandel (2018), Khiareddine et al. (2018), Kaabeche 
and Bakelli (2019) 

General varying demand 
fulfillment with limited 

FES/PES 
(34) 

Dufo-López and Bernal-Agustín (2005), Bernal-Agustín et al. (2006), Diaf et 
al. (2007), Dufo-López and Bernal-Agustín (2008), Yang et al. (2008), Kashefi 
Kaviani et al. (2009), Li et al. (2009), Ekren and Ekren (2010), Roy et al. 
(2010), Belfkira et al. (2011), Dufo-López et al. (2011), Kaabeche et al. 
(2011a, 2011b), Erdinc and Uzunoglu (2012), Jallouli and Krichen (2012), 
Askarzadeh (2013), Castañeda et al. (2013), Zhou et al. (2013), Belmili et al. 
(2014), Cano et al. (2014), Feroldi and Zumoffen (2014), Maleki and 
Askarzadeh (2014), Sharafi and ELMekkawy (2014), Maleki et al. (2015), 
Maleki and Pourfayaz (2015), Malheiro et al. (2015), Ahmadi and Abdi 
(2016), Destro et al. (2016), Dufo-López et al. (2016), Heydari and 
Askarzadeh (2016), Maleki et al. (2016), Soheyli et al. (2016), Acuña et al. 
(2018), Anoune et al. (2018) 

 

Note, that in following classification tables, the second column depicts the total number of all relevant 

ECS design approaches classified by the corresponding attribute.  
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Table II.B-3: Exemplary literature classification (22/120) - Part I/V 

ECS design framework  

 …
/1

20
 

Ab
ba

si 
an

d 
Po

ur
ra

hm
an

i  (
20

20
) 

Be
hz

ad
i e

t a
l.  

(2
01

9)
 

Ca
m

pa
na

 e
t a

l. 
(2

01
9)

 
De

st
ro

 e
t a

l.  
(2

01
6)

 
Ek

re
n 

an
d 

Ek
re

n  
(2

01
0)

 
Fe

ro
ld

i a
nd

 Z
um

of
fe

n 
(2

01
4)

 
G

am
ou

 e
t a

l. 
(2

00
2)

 
H

ey
da

ri 
an

d 
As

ka
rz

ad
eh

 (2
01

6)
 

Iy
er

 a
nd

 G
ro

ss
m

an
n 

(1
99

8)
 

Ja
llo

ul
i a

nd
 K

ric
he

n  
(2

01
2)

 
Ka

ab
ec

he
 a

nd
 B

ak
el

li 
(2

01
9)

 
Le

if 
H

an
ra

ha
n 

et
 a

l.  
(2

01
4)

 
M

ai
a 

an
d 

Q
as

sim
 (1

99
7)

 
N

aj
af

i e
t a

l.  
(2

01
4)

 
Pa

po
ul

ia
s a

nd
 G

ro
ss

m
an

n  
(1

98
3)

 
Ra

d 
et

 a
l.  

(2
01

6)
 

Sa
ha

 a
nd

 K
as

th
a 

(2
01

0)
 

Te
bi

be
l a

nd
 L

ab
ed

 (2
01

4)
 

Va
rb

an
ov

 e
t a

l.  
(2

00
5)

 
W

an
g 

et
 a

l. 
(2

01
0)

 
Ya

ng
 e

t a
l. 

(2
00

8)
 

Ze
ng

 e
t a

l.  
(2

01
6)

 

Basic design approach -                       
 Scope -                       
  AES demand fulfillment 26         x   x x  x x   x    
  AES dem. fulf. & lim. FES/PES 5   x                    
  AES output maximization 19 x x            x    x     
  Gen. var. dem. fulfillment 36       x    x      x   x  x 
  Gen. var. dem. fulf. & lim.  
   FES/PES 

34    x x x  x  x           x  

 Decision field -                       
  Decision topics -                       
   Size of units 83 x  x x x  x x x x x x   x  x x  x  x 
   Number of units 52      x     x         x x  
   Type of units 18                       
   Superstructure 26         x    x  x x   x    
   System selection 15 x x x                    
   Expansion of ECS 6                       
   System configuration 13 x             x       x  
  Decision type -                       
   Free 64    x x x x x  x x   x   x x  x x x 
   Predefined 30 x x          x x   x       
   Combined 26   x      x      x    x    
ECS type -                       
 Singlegeneration system 59  x x  x x  x  x x      x x   x  
 Cogeneration system 30 x           x  x  x       
 Trigeneration system 22    x   x      x      x x  x 
 Polygeneration system 4               x        
 Flexible 6                       
ECS operation -                       
 Hierarchical integration -                       
  Top-down 13         x          x    
  Top-down with feedback 16            x           
  Anticipation 79 x x x x x  x x  x x  x x  x x x  x x x 
  Simultaneous 12      x         x        
 Operation strategies 92  x x  x x  x  x x x x x x x x x x x x  
  AES demand following 37           x  x      x    
   Electrical load follow. (ELF) 33           x            
   Thermal load follow. (TLF) 13                   x    
   ELF and TLF switching 1                       
  FES supply following  24  x x  x     x        x     
  Individual strategies 26      x  x  x  x     x   x   
  Continuous operation 18              x  x     x  
 Operation optimization 41 x   x   x  x      x     x  x 
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Table II.B-4: Exemplary literature classification (22/120) - Part II/V 

ECS design framework  
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Energy sources                        
 FES types                        
  Renewable 79 x x x x x x  x  x x x     x x x  x x 
   Wind energy 47   x  x x     x x     x    x  
   Solar energy 65  x x x x x  x  x x       x   x  
   Geothermal energy 7 x                     x 
   Power 3                       
   Bioenergy 8      x  x           x    
  Non-renewable 71   x x   x  x   x x x x x x  x x  x 
   Coal 3                       
   Natural gas 36       x  x   x x x  x    x  x 
   Oil based fuel 41   x x         x  x x x  x    
   Power 6         x              
  Re-used 9                       
  Flexible 5         x              
 AES types                        
  Primary AES                        
   Power 110 x x x x x x x x x x x x x x x  x x   x x 
   Heat 52    x   x  x    x  x x   x x  x 
   Cold 24    x   x      x  x    x x  x 
   Pressure 1                       
  Secondary AES 31 x             x  x   x    
   Power 20                x   x    
   Heat 18 x             x         
   Cold 12                       
  Flexible 4         x              
CU types                        
 Boiler 42    x   x  x    x  x x   x x  x 
 Chiller 17                    x   
 Combined heat and power  
  (CHP) unit 8            x        x  x 

 Electrolyzer 21 x         x        x     
 Energy storage unit 58   x x x x    x           x x 
 Engine / motor 18    x             x      
 Fuel cell 20      x x   x    x         
 Generator 32 x x x              x      
 Heat recovery unit 35  x           x x x    x x  x 
 Photovoltaic unit 57  x x x x x  x  x x       x   x  
 Refrigerator 9       x                
 Solar thermal unit 11  x                     
 Turbine 50 x        x    x x x x   x    
 Wind turbine 46   x  x x     x x     x    x  
 Flexible 6                       
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Table II.B-5: Exemplary literature classification (22/120) - Part III/V 

ECS design framework  
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CU operation -                       
 CU states -                       
  State types -                       
   Off-cold 1                       
   Cold-startup 3                       
   Off-warm 0                       
   Warm-startup 0                       
   Off 55    x  x x x x x       x     x 
   On (idle) 7                       
   Failure 9                x       
   Maintenance 4                       
   Charging/Discharging 45   x x  x    x           x  
  State transitions -                       
   Restricted sequences 2                       
   Minimum durations 3                       
   Transition costs 2                       
   State-time relations 1                       
 CU loads -                       
  Load types -                       
   Nominal load 27   x              x x     
   Maximum load 60   x   x x  x x x x     x    x  
   Minimum load 71   x x x x x  x x x x     x      
   Partial load 100 x x x x x x x x x x x x x x x x x  x x x x 
  Load transitions -                       
   Ramping constraints 1                       
   Minimum durations 0                       
   Maximum number 0                       
   Transition costs 0                       
 CU efficiency -                       
  Constant 66  x x    x  x x x   x x   x  x x  
  Discrete 2     x                  
  Linear 13        x        x       
  Piecewise-linear 12    x  x             x   x 
  Non-linear 22 x                x      
  Performance degradation 2                       
  Scale effect 3                       
Relations to other systems -                       
 External grid -                       
  Export 40 x  x         x  x  x   x    
  Import 47   x    x  x   x    x   x x  x 
 Energy market -                       
  Uncertain prices 4                       
  Time of use tariffs 7            x       x    
  Critical peak pricing 5                x       
  Power purchase agreements 1                       
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Table II.B-6: Exemplary literature classification (22/120) - Part IV/V 

ECS design framework  
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AES demand/FES supply -                       
 FES related 11                  x     
 FES & AES related 36 x  x x x       x     x    x  
   Stochastic 17       x          x      
 Time dependency -                       
  Static 24 x x           x x x x   x    
  Dynamic 97   x x x x x x x x x x     x x  x x x 
 Aggregation level -                       
  Seconds 2          x       x      
  Minutes 4            x           
  Hours 77   x x x x  x   x       x  x x x 
  Days 1                       
  Months or longer 9         x              
  Flexible 2                       
 Aggregation method -                       
  Mean 28   x    x           x     
  Maximum 2                       
  Minimum 1                       
  Sum 3     x                  
 Data basis -                       
  One data point (static) 21 x x           x x x x   x    
  ≤ 50 data points 15         x              
  ≤ 500 data points 19       x   x       x      
  < 8,760 data points 3                       
   = 8,760 data points 57   x x  x  x   x       x  x x x 
   > 8,760 data points 5     x       x           
Objective system -                       
 Objective criteria -                       
  Economic 118 x x x x x x x x x x x x x x x x x x x x x x 
   Monetary 114 x x x x x x x x x x x x x x x x x x x x x x 
   Non-monetary 52 x x x   x  x   x   x  x x    x  
  Environmental 26   x           x     x x  x 
  Social 1                       
 Multi-criteria decision making 64 x x x   x  x   x   x  x x  x x x x 
  Satisficing constraints 20      x  x   x      x    x  
  Pareto 23  x x           x  x      x 
  Other 10 x     x        x      x   
  Analytical 13                   x    
 Evaluation horizon -                       
  Not relevant 32  x  x     x x  x x  x   x     
  ≤ 15 year 9              x         
       > 15 years 51 x  x  x x  x   x      x    x  
  Not specified 28       x         x   x x  x 
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Table II.B-7: Exemplary literature classification (22/120) - Part V/V 

ECS design framework  
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Solution method -                       
 Model type -                       
  Linear program 1                       
  Mixed-integer linear program 23       x        x   x x    
  Quadratic program 1                       
  Nonlinear program 4       x          x      
  Mixed-integer nonlinear  
   prog. 

11                       

  Mathematical formulation 83 x x x x x x  x x x x x  x  x    x x x 
 Exact solution methods 9         x              
  Total enumeration 2                       
  Branch-and-bound 4                       
  Branch-and-cut 1                       
  Dynamic programming (DP) 1                       
 Robust solution method 17       x         x x      
       Stochastic DP 1                       
  Minimax regret 3                       
  Markov model 3                x       
  Multi-level programming 3                       
  Monte Carlo Simulation 5                       
  Chance-constrained prog. 2                       
  Scenario / sensitivity analysis 8       x          x      
 Heuristics 11                       
 Metaheuristics 51 x x x x x x  x   x  x x  x    x x x 
 Simulation 19   x       x  x       x    
 Standard solver 21               x        
Application case -                       
 Real world evaluation 85    x x  x x x x x x x x x   x x  x  
 Non-industrial 57    x  x x   x x         x  x 
 Section A - Agriculture, … 4   x     x               
 Section B - Mining and … 5                       
 Section C - Manufacturing 46 x x       x   x x  x x  x x    
  C10 - Food products 3                       
  C11 - Beverages 1                       
  C17 - Paper and paper  
   products 

2                       

  C19 - Coke and refined  
   petrol. 4             x  x x       

  C20 - Chemicals and  
   chemical … 21 x x                x x    

  C21 – Basic pharmaceutical ... 2                       
  Not further specified 13         x   x           
 Section E - Water supply, … 8 x             x         
 Section J – Inf. and comm. 2     x                x  
 Not specified 6                 x      
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6	 Empirical	analysis	

Due to the fact that only a partial extract of the 120 classified approaches can be shown inside this 

paper, not all analytical results described in the following are directly traceable by the data within the 

manuscript but by the complete literature classification provided in the supplementary material. 

The temporal development of articles describing ECS design approaches that are suitable for the on-

site AES supply at manufacturing companies is illustrated in Figure II.B-7. Generally, a continuously 

increasing trend with a peak in 2014 and the following years is observed.  

 
Figure II.B-7: Temporal development (state: Mai 2020) 

Further on, the focus on renewable and hybrid ECSs increased from 2006 to 2020. 

Note that, if not stated otherwise, all numbers in the following figures and legends depict the absolute 

numbers of articles that are classified by the corresponding attribute or sub-category. 

6.1 Scope	and	decision	topics	

The scope distribution of the analyzed ECS design approaches is depicted in Figure II.B-8 (along with 

the related decision topics).  

 
Figure II.B-8. Relationship between Scope and Decision topic 
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Most of the analyzed ECS design approaches are designed to fulfill (varying) energy demands (101), of 

which only 31 are directly related to production systems. Despite the fact that AES demands from 

production system are strongly varying in most cases, 13 of the 31 production related ECS design 

approaches only consider static demands and five do not consider partial loads (which can be seen as 

mandatory for ECS design for manufacturing companies). On the one hand, we can state that most of 

the articles targeting AES output maximization are related to the application case of hydrogen 

production by using renewable (or hybrid) ECSs. On the other hand, articles targeting General varying 

demand fulfillment with and without limited FES supply (70) are mostly related to the energy supply of 

districts (30), hospitals (6), or buildings (22). As Figure II.B-8 illustrates, there is a high diversity 

regarding decision topics but in most articles, the Size (maximum capacity) and/or the number of CUs 

is determined. The use of a Superstructure is also common. We would like to mention here, that it was 

very difficult to determine the decision topic for several articles and that the decision topic should be 

clearly stated in the abstract of an article. 

6.2 ECS	types	

Regarding the considered ECS types (cf., Figure II.B-9), it is worth to mention that almost any approach 

designing a singlegeneration system (55/59) uses renewable energy sources as FES to provide power 

as AES (58). This can be traced back to the fact that most of these approaches design ECS to fulfill 

general varying AES demands at remote locations. 

 
Figure II.B-9: ECS type analysis 

6.3 ECS	operation	

As Figure II.B-10 illustrates, there is an apparent majority of ECS design approaches that anticipate 

operational behavior and integrate the most important aspects of ECS operation into the design 

decision. However, a few approaches even do a simultaneous optimization. 
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Figure II.B-10: Relationship between Hierarchical integration and ECS operation 

Concerning the modelling of ECS operation decisions, most approaches perform an optimization and 

the second most integrate AES demand following strategies (e.g., electrical load following or thermal 

load following). 

6.4 Energy	sources	

The great diversity of ECS approaches regarding energy sources is best illustrated by Figure II.B-11 and 

Figure II.B-12: twelve different FES types (cf., Figure II.B-11) are used to provide more than nine 

different AES types (comprised by the six attributes in Figure II.B-12; e.g., power or heat). Note, that 

the attributes depicted in both figures are not exclusive.  

 
Figure II.B-11: Diversity of FES types 

The figures also show that the number of flexible ECS design approaches is very small: i.e., approaches 

that are flexible regarding FES type (5), regarding AES type (4), or regarding FES and AES type (4). 
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Figure II.B-12: Relationship between FES types and AES types (primary and secondary) 

6.5 CU	types	

Figure II.B-13 perfectly illustrates the enormously large decision field of ECS design (particularly when 

considering that the shown attributes are generic terms for many different unit manifestations). 

 
Figure II.B-13: Diversity of considered CU types 

The figure also shows that only a few ECS design approaches are flexible regarding CU types. 

6.6 CU	operation	

The small number of articles that consider CU states is generally surprising (cf., Figure II.B-14), 

especially when taking into account that most considered states are related to the “simple” off state 

and to battery Charging/ discharging. Depending on the CU type, the consideration of states, especially 

the state on (idle), should receive more attention. Generally, the aspect of different CU state types and 

State transitions should at least be discussed when designing an ECS. 
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Figure II.B-14: CU state types analysis 

Regarding CU loads (cf., Figure II.B-15), we observed that only a few authors differentiate between the 

Nominal load (i.e., the load at which the CU operates with maximum conversion efficiency; also called 

design point) and the Maximum load. Of course, for some CU types this might be correct, but for others 

this is a model simplification which should at least be discussed. 

 
Figure II.B-15: CU loads analysis 

In this context, we also would like to emphasize that 51 of the 100 ECS design approaches considering 

Partial loads use a Constant conversion efficiency, i.e., conversion efficiencies that are independent of 

the actual load. However, the reasonability of this simplification or whether more complex modelling 

approaches (e.g., Linear, Piecewise-linear, or Non-linear) should be used, is seldomly discussed. 

Altogether the other 49 approaches considering partial loads consider the following CU efficiency 

characteristics: 2 discrete loads and efficiencies, 13 articles apply a Linear, 12 a Piecewise-linear, and 

22 a Non-linear load-efficiency relationship. Concerning Load transitions, we must report that only one 

article addresses this topic by a ramping constraint: Shamsi et al. (2019). 

6.7 AES	demand	/	FES	supply	

As Figure II.B-16 shows, 21 ECS design approaches base on a single AES demand point (One data point 

(static)) and the majority, 62 design approaches, consider 8,760 data points or more for the design of 
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an ECS (note that only approaches related to AES demands are considered here). Here, the 8,760 data 

points represent the hours of one year (365 days with 24 hours).  

 
Figure II.B-16: Data basis of AES demand related approaches 

(number of data points in one optimization scenario) 

The Aggregation level (time resolution) for most articles (77) is Hour.  

Regarding these observations, it seems that most of the analyzed approaches do not consider the 

special characteristic of strongly varying demands in manufacturing companies in an appropriate 

manner. In this context, it is also worth mentioning that only 17 articles address Stochastic AES 

demands. 

Analyzing the remaining main category Relations to other systems, it is worth to highlight that 64 ECSs 

are designed to fulfill AES demands as autonomous system without any connections to a grid and that 

only 17 articles consider special market relations like Uncertain prices or TOU tariffs. 

6.8 Objective	system	

The first additional category to be analyzed, is the Objective system. As to be expected, the majority of 

articles optimizes economic objectives, Monetary as well as Non-monetary ones (cf., Figure II.B-17). At 

least, 26 articles address Environmental objectives but only one approach considers Social objectives 

(Dufo-López et al., 2016).  
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Figure II.B-17: Number of articles per type of objective criteria 

Analyzing the applied Monetary criteria (cf., Figure II.B-18), Non-monetary criteria (Figure II.B-19), and 

Environmental criteria (cf., Figure II.B-20), we observed a great diversity which makes a comparison 

between approaches very difficult. Even if the same Monetary criteria (e.g., total annual costs) is used, 

the components that are included in the costs (e.g., investment costs, operational costs, maintenance 

costs, replacement costs, salvage costs, …) are very heterogenous.  

 
Figure II.B-18: Diversity of considered Monetary criteria 
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Figure II.B-19: Diversity of the considered Non-monetary criteria 

 

 
Figure II.B-20: Diversity of the considered Environmental criteria 

The only article addressing social objectives, namely “Maximization of human development index 

(HDI)” and “Maximization of job creation” is from Dufo-López et al. (2016). 

Altogether 64 ECS design approaches consider more than one objective criterion, whereas 20 use a 

Satisficing constraint (mostly on demand fulfillment reliability), 23 use Pareto-frontier related 

concepts, 13 use Analytical approaches, and 10 use Other concepts like lexicographical optimization 

(1), weighted sum (4), goal programming (1), TOPSIS (4), or LINMAP (1). 
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The analysis of the used Evaluation horizon underlines the great heterogeneity of the applied objective 

systems: 51 articles use horizons greater than 15 years, 9 not more than 15 years, and 32 articles use 

objective criteria without considering system lifetimes (cf., Figure II.B-21). 

 
Figure II.B-21: Diversity of the considered Evaluation horizons 

At this point we would like to criticize that it was not possible to extract all planning horizons from the 

articles even if they are used within the objective criteria. 

6.9 Solution	methods	and	model	types	

As Figure II.B-22 shows, the majority of articles (83) provides mathematical formulations to describe 

the interdependencies of the ECS and uses non-exact solution methods for solving the decision 

problem (remember that the model types and solution methods are non-exclusive, i.e., one article can 

use more than one model type or solution method). Nevertheless, several authors propose 

optimization models und use standard solvers (mostly CPLEX and Lingo). 

 
Figure II.B-22: Model types and Solution methods 

Most often applied solution methods are metaheuristics. This is explained by two reasons: First, 

metaheuristics can tackle almost any kind of optimization problem and provide a sufficient solution 
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quality in a reasonable time (in most cases). Second, there exists a great variety of evolutionary 

algorithm capable to solve multi-objective optimization problems (mostly based on the Pareto frontier 

concept). The diversity of applied metaheuristics is illustrated by Figure II.B-23.  

 
Figure II.B-23: Diversity of applied metaheuristics 

6.10 Application	case	

Figure II.B-24 illustrates the great diversity of the 65 industrial application cases considered by the 

articles.  

 
Figure II.B-24: Areas of application (only industry-related articles) 

Most often considered application cases are from Section E and Section C20: Articles classified by 

Section E (“Water supply; sewerage, waste management and remediation activities”) are related to 
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fresh water production (7) and articles classified by Section C20 (Section C - Division 20 - Class 2011: 

“Manufacture of basic chemicals”) are related to hydrogen production (15).  

Altogether 57 articles address non-industrial application cases (32 districts or remote sites, 22 buildings 

and 7 hospitals) and six articles do not specify any specific application case (but all of them consider 

varying AES demands). 

From the total of 120 articles, the majority (85) articles use real-world data for the evaluation.  

Note that the total number of articles is greater than 120 because some articles consider several 

application cases or address several industrial sectors simultaneously (e.g., hydrogen and freshwater 

production; Abbasi and Pourrahmani, 2020). 

7	 Major	findings	

Based on the previous analysis, we would like to emphasize several major findings and derive further 

research topics for improving the design of ECSs for manufacturing companies: 

- Most of the design approaches are very specific regarding the ECS type (cf., Figure II.B-9), FES 

supply (cf., Figure II.B-11) and AES types (cf., Figure II.B-12). The other way around, only a few 

design approaches are flexible regarding these aspects. The development of flexible ECS design 

approaches would certainly be helpful for a broad application of on-site ECSs.  

- The heterogeneity of the research field results in several challenges. For instance, there exist no 

benchmark data sets (e.g., providing the AES demand of a company) to enable a reasonable 

comparison of different planning approaches and solution methods. Such comparisons are only 

made within single contributions and therefore are somehow limited. Also, the broad variety of 

used evaluation criteria (cf., Figure II.B-18, Figure II.B-19, and Figure II.B-20) combined with 

different evaluation horizons (cf., Figure II.B-21) make comparisons between articles almost 

impossible. 

- Batteries and hydrogen storage systems, or a combination of both, are used to compensate 

supply uncertainty of renewable energy sources. Sometimes an additional generator using non-

renewable energy sources is integrated to reduce storage cost and increase fulfillment 

reliability. However, most of these ECSs are designed for non-industrial application cases. 

Therefore, the design of such ECSs for manufacturing companies should be considered in further 

research. 

- The operational characteristics CU states, CU state transitions, partial load behavior, load 

transitions, and related conversion efficiencies are hardly considered by the analyzed ECS design 

approaches. For instance, only Shamsi et al. (2019) consider ramping constraints. Accordingly, 



II Contributions Design of on-site energy conversion systems for manufacturing companies – A review and 
literature analysis II.B Contribution 2 

 

96 

we propose the analysis of their influences on the ECS design and the development of concepts 

and modelling approaches for their consideration. 

- Although many articles design an ECS that will be in operation for many years, performance 

degradation over time is only considered by two approaches. The same holds true for scale-

effects on the performance related to the size of CUs. To model these aspects appropriately for 

ECS design, a detailed (technical) analysis of both aspects would be appreciated. 

- The generation and/or preparation of the data that is used for evaluation purposes is often not 

properly described. Information about aggregation methods, the aggregation level, or the 

number of data points is sometimes hard to extract. But since this is an important aspect for the 

application of the proposed ECS design approaches, a more thorough explanation of the data 

used for optimization is recommended.  

- Because production processes and units are very sensitive on energy shortages, system and AES 

demand fulfillment reliability are of highest importance for manufacturing companies. If the AES 

provisioning fails only for seconds, the impact on the production can be drastic. Therefore, the 

CU state Failure should receive more attention (only nine articles are classified by this attribute) 

and either fallback strategies like grid connections (e.g., for the AES power) or other reliability 

measures (e.g., for the AES steam) should be considered. At least, a sufficient number of AES 

demand points should be considered to achieve a reliable ECS design. In this context, we would 

also like to emphasize that the aggregation level of hours (used by 82 authors) is very “high” and 

that a more detailed aggregation level (e.g. of minutes) would be more appropriate to model 

the highly varying AES demands of production systems. 

8	 Conclusion	

Because energy is a non-substitutable production factor and environmental concerns have drastically 

increased in recent years, measures to provide energy for production processes in a more sustainable 

way (e.g., with a higher energy efficiency) have become an increasingly important topic. One such 

measure to increase the energy efficiency are on-site ECSs. To support the installation of on-site ECSs 

at manufacturing companies, numerous ECS design approaches have been published in the recent 

years. However, the research field addressing this topic is very heterogenous (which can be seen by 

the diversity of journals in Table II.B-1) and the lack of a comprehensive research framework to 

structure the field was only recently resolved by the concept-centric ECS design framework proposed 

by Ganschinietz (2020).  

The four contributions of this paper are provided within the sections 4  to 7 : First, we extended the 

scope to ECS design approaches that are either related to production systems or consider varying AES 
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demands, because these approaches can be transferable on ECS design for manufacturing companies. 

Furthermore, for an in-depth analysis, we extended the ECSDF by three main categories: Objective 

system, Solution method, and Application case. Second, we identified 120 approaches to be relevant 

(by evaluating over 620 papers found by the structured literature search process) and reviewed and 

classified them according to the ECSDF. Third, an empirical analysis based on the classified articles has 

been performed. Finally, major findings were elaborated. These major findings also provide 

opportunities and topics for further research that are particularly, but not only, important for the 

design of ECSs for manufacturing companies.  

Beside the possibility to analyze the research area of ECS design in a structured manner, the ECSDF can 

also be used to identify major aspects that must be considered when designing an application case 

specific ECS and to determine minor aspects that can be ignored or modelled in a simplified way. 

Therefore, we would like to recommend authors to use the ECSDF to analyze and classify their planning 

problems and design approaches and to discuss major and minor aspects accordingly. To support this 

process, we provide the complete classification of the 120 relevant ECS design approaches and an 

overview of the ECSDF in the digital supplementary material. 
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9	 Appendix	

A-1:	Adapted	keyword	search	

Abbreviations of the search string mean the following: 

TI = title 

TS = title, abstract, and key words 

SO = journal name 

 

TI =  (conversion OR planning OR generation)  

AND TI   =  (model* OR optim* OR dimensioning OR design*)  

AND TS  =  (combined heat and power OR chp OR cogeneration OR cchp OR combined cool* heat* 

power OR trigeneration OR photovoltaic* OR pv OR Solar* OR turbine OR hydro power 

OR fuel cell* OR biogas* OR biomass OR boiler* OR combustion engin* OR heat pump* 

OR stand alone OR energy system* OR power system* OR wind power)  

AND TS  =  (size* OR scale* OR dimensioning* OR design*)  

AND TS  =   (plant* OR industr* OR produc* OR compan* OR firm* OR enterprise* OR 

corporation* OR concern* OR manufactur*)  

NOT TS  =   (grid OR store* OR schedule* OR commercial energy OR region* OR area* OR market)  

AND SO  = (Applied Energy OR Applied Thermal Engineering OR "Computers & Industrial 

Engineering"OR Electric Power Systems Research OR Energy OR Energy & Environmental 

Science OR "Energy Conversion and Management" OR Energy Economics OR Energy for 

Sustainable Development OR Energy Journal OR Environmental Research Letters OR 

"Experimental Thermal and Fluid Science" OR "IEEE Journal of Emerging and Selected 

Topics in Power Electronics" OR IEEE Journal of Photovoltaics OR IEEE Power & Energy 

Magazine OR IEEE Transactions on Energy Conversion OR IEEE Transactions on Industrial 

Electronics OR IEEE Transactions on Industry Applications OR IEEE Transactions on Power 

Delivery OR IEEE Transactions on Power Electronics OR IEEE Transactions on Power 

Systems OR IEEE Transactions on Sustainable Energy OR IET Generation Transmission & 

Distribution OR IET Power Electronics OR IISE Transactions OR International Journal of 

Electrical Power & Energy Systems OR International Journal of Engineering Science OR 

"International Journal of Heat and Mass Transfer" OR International Journal of Hydrogen 

Energy OR International Journal of Production Economics OR International Journal of 
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Production Research OR International Journal of Thermal Sciences OR JOM OR Journal of 

Cleaner Production OR "Journal of Modern Power Systems and Clean Energy" OR Journal 

of Operations Management OR Nano Energy OR Nonlinear Analysis: Real World 

Applications OR "Production and Operations Management" OR Production Planning & 

Control OR "Progress in Energy and Combustion Science" OR Progress in Photovoltaics OR 

Renewable & Sustainable Energy Reviews OR Renewable Energy OR Solar Energy OR 

"Solar Energy Materials and Solar Cells" OR "Sustainable Energy Technologies and 

Assessments" OR Journal of the Energy Institute) 
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A-2:	Complete	structure	of	the	ECSDF	including	the	extensions	

 
Figure II.B-25: ECSDF part I/III 
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Figure II.B-26: ECSDF part II/III  
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Figure II.B-27: ECSDF part III/III 
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Abstract: Besides electricity, many industrial production processes require other applied energy 

sources (AES) such as steam or pressure. To transform primary or secondary energy sources into the 

required AES, manufacturing companies often operate their own on-site energy conversion system 

(ECS) comprising of several conversion units (CUs). Most important parameters determining a CU’s 

overall degree of efficiency are its dimension (maximum load) and the design point (nominal load) at 

which the CU operates with maximum efficiency. Thus, we present a new ECS planning approach 

maximizing the energy efficiency by specifically optimizing these two parameters. Regarding 

manufacturing companies, particularly the varying AES demand from production processes and the 

resulting part-load operation of CUs have to be considered during ECS design. Furthermore, as many 

types of CUs have a nonlinear relationship between partial loads and the corresponding conversion 

efficiency, this relationship must be considered appropriately. In our experimental analysis, the 

influence of a nonlinear and a linear modelling approach of this relationship on the ECS design is 

evaluated. Furthermore, because our planning approach is based on AES demand time series resulting 

from production scheduling, we investigate the influence of different scheduling objectives on the AES 

demand and in turn, on the ECS design. To solve the planning problem, we propose a highly efficient 

heuristic and a mixed-integer nonlinear program that reflects the nonlinear efficiency characteristics 

of CUs. The experimental analysis investigates different types of company types, scheduling objectives, 

CU parameters, and part-load efficiency modelling approaches and shows that all these factors can 

have remarkable influences on the design and the energy efficiency of an ECS. 

Keywords: conversion (utility) systems, energy efficiency, manufacturing, nonlinear programming 
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1	 Introduction	

The sustainable development of a society is strongly related to the sustainable development of its 

manufacturing companies (Jovane et al., 2008 and Haapala et al., 2013) and their overall energy 

demand (in 2017, industry accounted for approximately 24.6% of the total energy consumption in the 

European Union; Eurostat, 2019). However, the execution of manufacturing processes is inevitably 

paired with the application of energy and there is no option to abandon manufacturing for the sake of 

lowering energy demands. Instead, improving energy efficiency, i.e., the ratio between energy input 

and the desired output of a production process (for a more specific definition of energy efficiency, see 

e.g. Fysikopoulos et al., 2014), is an effective measure to guarantee a desired production output at a 

minimum energy demand.  

In manufacturing companies, applied energy sources (AES) are used to run production processes that 

are executed by production units (e.g., machines or chemical reactors) of the production system (PS). 

For a detailed analysis of energy application in production see for instance Dietmair and Verl (2009), 

Herrmann and Thiede (2009), Avram and Xirouchakis (2011), Duflou et al. (2012), Li et al. (2014) or 

Gahm et al. (2016). According to Gahm et al. (2016), a production system’s AES demand is either 

supplied directly by an external energy provider or it has to be converted by an internally operated 

conversion (utility) system. Also, a combination of both is common. In the latter cases, on-site (energy) 

conversion system (ECS) consisting of one or more conversion units (CUs) supply the production 

system with a specific AES (e.g., steam or pressure) by converting primary energy sources (e.g., oil or 

coal) or secondary energy sources (e.g., electricity or fuel) into the required type of AES (e.g., 

steam/heat or compressed air). As soon as the ownership of these energy sources is transferred to the 

manufacturing company (the final energy user), the energy sources are referred to as final energy 

sources (Gahm et al., 2016). Analyzing this structure, it becomes obvious that improving the energy 

efficiency in manufacturing companies can be achieved by various measures on different decision 

levels: e.g., in the short-term, by energy-efficient scheduling (cf., Gahm et al., 2016 or Biel and Glock, 

2016) or in the long-term, by an appropriate design of energy conversion systems (cf., e.g., Sun and 

Liu, 2015 or Yokoyama et al., 2015).  

In this paper, our goal is to improve the energy efficiency of manufacturing companies by optimizing 

the design of internally operated ECSs. To that we propose a new flexible planning approach for energy 

conversion system dimensioning (ECSD), i.e., for determining the size (maximum capacity) and related 

parameters (like the nominal load; i.e., the load at which the CU operates with maximum efficiency; 

also called design point) of its CUs. This long-term (strategic) measure is used because an appropriate 

dimensioning can remarkably reduce conversion inefficiencies (i.e., the dissipation of useful energy). 

Next to the basic design, the extent of these inefficiencies depends on the technical conversion process 
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and its characteristics as well as the operational behavior and control of the ECS and its CUs. Therefore, 

we present an analysis of conversion processes and CU characteristics and carve out several starting 

points for avoiding inefficiencies. These technical characteristics of ECSs are particularly analyzed with 

regard to manufacturing companies where two special aspects must be considered: First, the AES 

demand arising from the production system is highly dynamic and can strongly vary from period to 

period (e.g., minute to minute). Second, we have the opportunity to directly influence the course of 

the AES demand by controlling the production process execution (in contrast to other settings where 

“only” measures like demand side management are possible; cf., Gahm et al., 2016). Consequently, 

our paper makes the following contribution to literature: 

- Our approach is flexible because it is suitable for almost any type of AES and CUs and is not 

limited to specific ones. We achieve this flexibility by considering common (type unspecific) 

characteristics of CUs.  

- Regarding CU characteristics, we explicitly consider a CU’s part-load behavior combined with 

nonlinear part-load efficiencies, which is rarely done in literature but very important in the 

context of manufacturing companies (due to the highly dynamic AES demands).  

- In addition, we consider the relationship between the production system (scheduling) and the 

ECS during the ECSD by a hierarchical integration of the interdependencies between PS, ECS 

operation, and ECS design. In doing so, we particularly analyze the influence of production 

scheduling objectives on the ECS design.  

- Finally, to get a robust ECS design with regard to uncertain future AES demands, within each 

AES demand time series that is used during ECS dimensioning, we incorporate a complete 

production year with 240 production scenarios.  

From the perspective of a manufacturing company’s decision-maker, the results of our ECSD approach 

(suitable CU dimensions and several basic parameters) can be used to pre-select the most suitable AES 

type-specific CUs based on CU-producer data. Then, the pre-selected CUs can be used as input for AES-

specific planning approaches (e.g., based on superstructures) from the literature. From the perspective 

of a CU-producer, the ECSD results can be used by CU-engineers to develop more appropriate CUs for 

specific production processes and/or manufacturing companies. To that, we elaborate insights into the 

most important CU parameters and further planning factors influencing the ECS design for 

manufacturing companies.  

To solve the ECSD problem at hand, we present a highly efficient tailor-made heuristic and a mixed-

integer nonlinear program (MINLP). 

The structure of this article is as follows: The analysis of the organizational and technical background 

of ECS design and the most relevant literature is depicted in section 2 . The new ECSD approach is 
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described in Section 3  and the developed solution methods are presented in section 4 . In Section 5 , 

we specify the experimental design before we analyze the influences of several planning parameters 

(e.g., CU characteristics or scheduling objectives) on the energy efficiency of an ECS in section 6 . 

Conclusions are drawn in section 7 . 

2	 Background	and	literature	

To provide a general understanding of the organizational and technical backgrounds, this section 

examines two main aspects that must be considered during ECSD. First, the interdependencies 

between the AES-demanding PS and the ECS are explained and second, the most important technical 

characteristics of CUs are analyzed.  

2.1 On	the	interdependencies	between	PS	and	ECS	

Most ECS design approaches in literature solely take the interdependencies between the long-term 

design and the short-term operation of conversion systems into account but neglect the 

interdependencies to the production system. Such approaches are sufficient for ECS design tasks 

related to district heating, building supply, or power generation for grids, but should be adapted in the 

case of ECS design for manufacturing companies. In contrast to ECS planning environments in which 

the AES demand can only be influenced to a limited extent (e.g., by demand-side management or 

demand response programs; for a brief overview on these topics cf., Merkert et al., 2014), 

manufacturing companies can directly influence the temporal course of AES demands by aligning 

production process execution (cf., Figure II.C-1; a similar illustration can be found in Rager et al. 2015). 

 
Figure II.C-1: Interdependencies between PS and the cumulated AES demand to be supplied by the 

ECS 

In manufacturing companies, one or more production units (PUs) are available for production process 

execution. These PUs require specific AES to fulfil the process steps (tasks) defined by the working 

plans. As soon as tasks are scheduled on the PUs, the AES demand per time unit can be determined 

for most production processes. If several PUs require the same type of AES, a cumulated AES demand 

arises. In Figure II.C-1, a production schedule (Gantt-chart on the left) shows task executions on four 
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PUs (tasks with a light grey background indicate an AES demand of one unit, whereas tasks with a dark 

grey background indicate an AES demand of two units). This schedule leads to the cumulated AES 

demands depicted on the right of Figure II.C-1.  

In spite of the direct interdependency between PS and ECS and the associated influence on the ECS 

operation and in turn on the design of a ECS, this interdependency has currently almost only been 

considered by energy-efficient scheduling approaches (e.g., by Moon and Park, 2014, Rager et al., 

2015, Schulz et al., 2019 or Liu et al., 2020; for more approaches, see Gahm et al., 2016) and 

operational ECS planning approaches (e.g., by Mignon and Hermia, 1996, Agha et al., 2010, Zhang et 

al., 2013, or Zulkafli and Kopanos, 2017). To the best of our knowledge, only Denz (2015) considers this 

relationship in terms of ECS design.  

Of course, the relationship between the long-term design and the short-term operation of ECS (cf., 

e.g., Gamou et al., 2002, Ghadimi et al., 2014a, Wakui and Yokoyama, 2014 or Yokoyama et al., 2015) 

is also a main aspect for ECS design because the long-term ECS design sets the constraints on the 

attainable efficiency in the short-term. Regarding this relationship, the design approaches in literature 

can be differentiated according to the way they consider ECS operation. Some approaches consider 

the top-down relationship by first fixing the ECS design and then evaluating its operational 

performance with and without operation optimization (e.g., Azit and Nor, 2009, Forough and 

Roshandel, 2018, or Alirahmi et al., 2020). In contrast to the top-down approaches, an integrated, 

iterative top-down approach explicitly uses feedback from ECS operations to influence the subsequent 

design decisions (e.g., Kavvadias and Maroulis, 2010, Benam et al., 2015, or Amusat et al., 2017). Most 

design approaches consider ECS operation by integrating some operational characteristics and thus, 

anticipate an ECS’s operational behavior (e.g., Khiareddine et al., 2018, Emadi and Mahmoudimehr, 

2019, or Keshavarzzadeh et al., 2020). In doing so, the ECS operation can be part of the design decision 

(e.g., Wang et al., 2010, Ghadimi et al., 2014b, or Sun and Liu, 2015) or not (e.g., Gibson et al., 2013, 

Benam et al., 2015 or Kazi et al., 2015). Our design approach anticipates the relation between long-

term design and ECS operation by integrating some operational aspects directly (e.g., partial loads and 

part-load efficiencies) into the design decisions and others (e.g., minimum load level durations) 

indirectly by an approximate anticipation. 

2.2 Technical	characteristics	of	conversion	units		

An energy conversion process is always associated with losses of useful energy and the magnitude of 

these losses depends on the technical process and its characteristics, i.e., on the technical 

characteristics of the conversion units. One of the most important technical CU characteristics is the 

energy conversion efficiency which. This energy conversion efficiency of a CU is strongly related to its 

part-load utilization (also called off-design loads, i.e., any load different from the nominal load), 
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because the efficiency of most CU’s suffers in partial load (cf., e.g., O'Brien and Bansal, 2000a, O'Brien 

and Bansal, 2000b, Aguilar et al., 2007, Kaikko and Backman, 2007, Théry et al., 2012, Gibson et al., 

2013, Pruitt et al., 2013, Denz, 2015, Sun and Liu, 2015, or Darrow et al., 2017).  

In principle, literature agrees (for most types of CUs) that conversion efficiencies are lower at partial 

loads and that the more the load deviates from the nominal load, the lower the conversion efficiency 

(cf., e.g., Frangopoulos, 2004, Varbanov et al., 2004, Aguilar et al., 2007, Sanaye et al., 2008, Azit and 

Nor, 2009, Kavvadias and Maroulis, 2010, Tichi et al., 2010, Dufo-López et al., 2011, Voll et al., 2012, 

Castañeda et al., 2013, Voll et al., 2013, Ghadimi et al., 2014a, Arcuri et al., 2015, Destro et al., 2016, 

Li et al., 2016). This effect of efficiency loss is particularly relevant for ECSs at manufacturing sites 

because of to the varying AES demands, these ECSs will operate at CU`s partial loads for most of the 

time (e.g., Varbanov et al., 2004). Figure II.C-2 illustrates a nonlinear dependency between (part) load 

and conversion efficiency for two representative CUs (A and B) and introduces the corresponding CU 

parameters , , , , , and .  

For the minimum load ( ) at which a CU can operate, the nominal load ( ) at which the CU 

operates with maximum efficiency, and the maximum load ( ) at which a CU can operate (i.e., its 

dimension or maximum capacity), the corresponding efficiencies , , and  can be 

obtained easily in most cases (e.g., with technical documentations or literature; cf., e.g., Pruitt et al., 

2013). Figure II.C-2 shows two CUs: CU A represents a CU having a small operational range (MaxL-

MinL) and a high nominal load efficiency at the expense of high part-load efficiency losses, while CU B 

represents a CU having a broad operational range and small part-load efficiency losses at the expense 

of basically lower efficiencies. Note that the higher minimum load of CU A could cause the provisioning 

of unnecessary AES if the required AES is lower than , and thus the overall efficiency of CU A 

could decrease. The influence of operational ranges and related efficiencies on the ECS design is 

analyzed in this contribution (cf., section 6.2). 

MinL NomL MaxL hMinL hMaxL hNomL

MinL NomL

MaxL

hMinL hMaxL hNomL

AMinL
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Figure II.C-2: Load-efficiency curves illustrating the relationship between (partial) load and 

conversion efficiency 

 

Although in principle the literature agrees on efficiency losses in part-load operation (for most CUs) 

and on the importance of an appropriate modelling of the part load behavior (cf., Azit and Nor, 2009; 

Arcuri et al., 2015), the efficiency modelling is not unified. Several authors like Frangopoulos (2004), 

Sanaye et al. (2008), Dufo-López et al. (2011), Castañeda et al. (2013), Arcuri et al. (2015), and Li et al. 

(2016), use a nonlinear modelling approach to achieve a most accurate part-load behavior 

representation. This most accurate modelling comes at the expense of a higher problem complexity as 

in linear optimization models. To reduce this complexity, some authors use piecewise linear 

approximations (e.g., Voll et al., 2013, Ghadimi et al., 2014a, or Destro et al., 2016). Furthermore, 

several authors use a linear approximation and claim that the errors are neglectable. For instance 

Aguilar et al. (2007) state that “it is possible to fit linear equations representing equipment 

performance with enough accuracy for preliminary design purposes (i.e., a normal error range of +5%)” 

(Aguilar et al., 2007: 1137). Varbanov et al. (2004) report maximum linearization errors of 3.8% and a 

mean error less than 1% for steam turbines. However, both authors investigate the errors isolated for 

specific CUs but do not investigate the influence on the ECS design or efficiency. To the best of our 

knowledge, there exists no contribution analyzing the influence of the different part-load efficiency 

modelling approaches on the ECS design and its efficiency. To fill this research gap, we are going to 

perform a comparative analysis by comparing nonlinear part-load efficiency modelling with linear part-

load efficiency modelling. 

Load

Operational range B

Operational range A
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2.3 Further	aspects	and	conclusions	

Another aspect in literature is the development of robust ECS design approaches tackling uncertainties 

such as variations in energy demand (cf., e.g., Yokoyama et al., 2014 or Maleki et al., 2016), varying 

prices (cf., e.g., Carpaneto et al., 2011a or Gibson et al., 2013 or ), or equipment failures (cf., e.g., 

Aguilar et al., 2008, Rad et al., 2016 or Andiappan and Ng, 2016). Most approaches considering 

uncertainty at all, focus on energy demand uncertainty and use scenario-based robust design 

approaches (e.g., Aguilar et al., 2008, Carpaneto et al., 2011a, Carpaneto et al., 2011b, or Benam et al., 

2015). Stochastic modelling is seldom used (e.g., by Gamou et al., 2002 and Sun and Liu, 2015). To 

achieve a robust ECS design with regard to variations in energy demand, we generally follow the first 

approach but do not optimize the ECS design for several scenarios individually and then derive the 

most suitable ES design, but we integrate the demand scenarios of one year with 240 production days 

into an AES demand time series and calculate the optimal ECS design for all the integrated scenarios 

simultaneously. 

Most ECS design approaches in the literature are related to specific types of ECSs, mostly cogeneration 

systems (typically combined heat and power; e.g., see Azit and Nor, 2009, Ghadimi et al., 2014b, Kazi 

et al., 2015, Sun and Liu, 2015, and Keshavarzzadeh et al., 2020) and trigeneration systems (typically 

combining cooling, heat, and power; cf., e.g., Chicco and Mancarella, 2007, Kavvadias and Maroulis, 

2010, Wang et al., 2010, or Kasivisvanathan et al., 2014). These approaches have been developed for 

specific environments (e.g., types of AES or CUs) but lack some generality and flexibility as any of these 

approaches formulate a selection decision based on AES specific CUs (or for instance superstructures) 

with given characteristics (e.g., Shiun et al., 2012, Carvalho et al., 2014, or Rad et al., 2016). Only a few 

approaches are independent regarding the type of AES and provide some flexibility (e.g., Voll et al., 

2012 or Zhou et al., 2013). 

Summarizing the analysis of the planning backgrounds and the most relevant literature, we conclude 

that—to the best of our knowledge—there exists no flexible and robust ECSD approach addressing the 

specific needs of manufacturing companies, i.e., that considers the (hierarchical) interdependencies 

between conversion system (CS) design, CS operation, and PSs as well as highly varying AES demands 

and operational CU behavior such as partial loads combined with nonlinear part-load efficiencies.  

3	 A	new	flexible	approach	for	ECSD	

In this section, we first present a comprehensive decision model for ECSD with the objective to 

maximize the ECS’ energy efficiency while considering the most relevant (technical) aspects (regarding 

manufacturing companies) as examined in section 2 . Afterwards, we describe the aggregation process 
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for preparing the data of the AES demands per period ( ) as used by the decision model. Source 

of the data preparation are the cumulated AES demands originating from historical data of the 

production system or from “simulative” scheduling (cf., section 3.3). 

3.1 The	model	for	maximizing	the	CS’	energy	efficiency	

The basic task of ECSD as defined in this contribution is to determine the dimension ( ) and the 

nominal load ( ) of two CUs. The composition of the ECS by more than one CU is appropriate 

whenever (strongly) varying AES demands are present. In this case, we can distinguish between the 

so-called “base-load” share and the “peak-load” share of the AES demand. In consequence, we 

propose to differentiate CUs by their general characteristics to handle these two basic load types as 

follows: large scale conversion units (LCUs) to cover “constant” base loads with a high efficiency and 

flexible conversion units (FCUs) with a large operational range to cover peak loads and/or strongly 

varying loads (cf., Figure II.C-2, where CU A represents an LCU and CU B represents an FCU). In this 

contribution, to keep the analyses manageable, we limit the composition of the CS to one LCU and one 

FCU. Nevertheless, an extension to consider several FCUs would be possible (but using multiple LCUs 

for covering the base-load is not common in literature and practice). To specify the planning problem 

at hand most precisely, we present the main aspects by mathematical equations that are also part of 

the optimization model to be completed in section 4.1. 

One part of the decisions to be made are the dimensions of both CUs:  and . These 

dimensions must be determined in a way that the maximum AES demand 

 is covered by the two CUs and the ECS’ energy efficiency is maximized. 

As we use two CUs to cover the complete AES demand and the LCU operates with maximum efficiency 

at , we would like to run the LCU at its nominal load point for most of the time. To accomplish 

this, the FCU is dimensioned related to  (not to ) and  (note that if more than 

one FCU should be integrated in the ECS, the  must be divided between these FCUs):  

 (1) 

In this context we assume that the nominal load of a CU is different from the maximum load and that 

for the LCU, the nominal load is relative to its maximum load. Therefore, the nominal load of the LCU 

is defined by the parameter : 

 (2) 

CS
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For the FCU, we assume that it exists a given degree of freedom to determine a most sufficient nominal 

load. Thus, we can decide on the nominal load  within given bounds ( , 

) related to the FCU`s dimension (on feasible regions, cf., Mavromatis and Kokossis, 1998 or Mitra et 

al., 2013). These bounds are relatively defined by  and . The is bounded as 

follows:  

 (3) 

 (4) 

This second approach for determining the nominal load of a CU could also be used for the LCU if it is 

technically realizable for large CU of a specific (AES) type. However, this additional degree of freedom 

increases problem complexity. 

Two main differences between LCUs and FCUs are their operational ranges and the related part-load 

behavior (cf., Figure II.C-2). The operational range of both CU types is defined by their maximum load 

, which is part of the planning decision, and their minimum load , which is a parameter 

either given by an absolute value (e.g., Azit and Nor, 2009) or a relative value with regard to the 

maximum load (e.g. Sun and Liu, 2015). Here, we follow the relative approach and use the two 

parameters  and  for determining  and , respectively:  

 (5) 

 (6) 

The assumptions and conditions described so far are illustrated by the left side of Figure II.C-3 depicting 

a load duration curve (LDC) representing the varying AES demands, the main decisions about maximum 

and nominal loads, and the depending decisions.  
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Figure II.C-3: Main decisions and depending decisions illustrated by an LDC 

 

In addition, Figure II.C-3 shows the allocation of load shares of both CUs. The light grey area (restricted 

by the dotted line) represents the AES demands allocated to the FCU and the dark grey area (restricted 

by the dashed line) AES demands allocated to the LCU. In consequence of the decision on both 

dimensions, we have to decide for each time period  of the LDC which CU provides how 

much load share of the required . As we would like to run the LCU at its nominal load for most 

of the time and to reduce problem complexity (by avoiding the operational decision on the load 

separation), we propose the following approach for load separation: Whenever  is larger than 

, the LCU operates at . The remaining demand is provided by the FCU, except in the 

case in which the complete AES demand can be provided by the LCU only. In this case, the LCU provides 

the total AES demand and the FCU load share is zero. This approach of load separation between CUs 

can also be applied if more than one FCU should be integrated in the ECS design. 

To indicate whether the FCU is required to fulfil the AES demand for period , we use the auxiliary 

binary variable  (with  indicating that the FCU is required and  otherwise) and the 

following sets of disjunctive constraints (with  specifying a sufficiently large number; ): 
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Based on , the individual load shares can be determined. To accomplish this, two sets of auxiliary 

integer variables (  and ) representing the load share for each period and the following 

constraint sets (9) and (10) are used. Hereby, the constraints also guarantee that the LCU operates at 

the nominal load whenever the FCU is required. 

  (9) 

  (10) 

To respect the technical restrictions of minimal loads, we have to update  and  to their 

“current” admissible values represented by the auxiliary integer variables  and . The 

update is assured by the following sets of constraints (constraint set (15) assures that the  is 

equal to zero if the FCU is not required at all): 

  (11) 

  (12) 

  (13) 

  (14) 

  (15) 

The technical analysis of CUs (cf., section 2.2) has shown that the part-load and conversion efficiency 

characteristics are a central aspect for the dimensioning of CUs. The relationship of the planning 

decisions and the resulting partial loads with the corresponding conversion efficiencies is illustrated in 

the right part of Figure II.C-3. To that, Figure II.C-3 depicts illustrative load-efficiency curves with the 

corresponding efficiencies for the related loads (within their operational ranges) for the LCU and FCU. 

To model the increasing efficiency losses of larger deviations from the nominal load most adequately, 

we use quadratic functions for the determination of the conversion efficiency at a specific partial load 

(cf., e.g., Ashok and Banerjee, 2003, Savola and Keppo, 2005, Aguilar et al., 2007, Agha et al., 2010, or 

Denz, 2015). To increase model accuracy even more, we use two functions for each CU: one to 

determine the part-load efficiencies between the minimum and the nominal load and another one to 

determine the part-load efficiencies between the nominal and the maximum load of a CU. To ensure 

that only one of these functions is in use, the binary auxiliary variables  and  are introduced. 
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The following constraint sets guarantee that if , then  (otherwise, 

 ) and that if , then  (otherwise, ): 

  (16) 

  (17) 

  (18) 

  (19) 

To reflect the nonlinear part-load efficiency behavior of the CUs, for each CU, the vertex form of 

univariate quadratic functions is used. For the LCU and the FCU, the part-load efficiencies per period (

 and ) are determined based on the current load,  and , and the corresponding basic 

efficiencies ( , , and ) at the extreme points ( , , and ). The constraint 

sets (20) and (21) define the continuous auxiliary variables  and . Note that we assume “static” 

efficiencies for the extreme points , , and  that are independent of a CU’s dimension 

because at these points, the efficiencies of most types of CUs only minimally depend on the finally 

determined dimension (cf., e.g., efficiency ranges of steam boilers listed in Robert Bosch (SEA), 2014).  
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For the comparative analysis between nonlinear and linear part-load efficiency modelling, for the 

linear part-load efficiencies we replace the constraint sets (20) and (21) by the following ones: 

   (22) 

  (23) 

Of course, we are aware that using a function consisting of two linear functions results in a piecewise 

linear function, but to strengthen our point regarding different part-load efficiency modelling 

approaches, we use the differentiation between the nonlinear and the “linear” modelling approach. 

To distinguish the two models, each of which represents a different approach of part-load efficiency 

modelling, we refer to the MINLP using the constraint sets (20) and (21) as model M-NL and the model 

using the constraint sets (22) and (23) as model M-L. 

Because the AES output (required by the PS) of the ECS is given, we maximize the energy efficiency of 

the manufacturing companies’ ECS by input minimization, i.e., the minimization of the amount of 

totally required final energy sources (TFES): 

 (24) 
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are not using these techno-economic approaches to avoid biases by additional (economic) parameters. 

The input minimization objective is also based on the idea of developing a flexible ECSD approach that 

is independent of a specific type of AES and specific CUs. To maintain this flexibility, generic cost 

parameters (e.g., for investment and operational costs) would have to be determined, which is hardly 

possible to do in a reasonable manner. However, based on the determined size of the CUs, investment 

costs could be estimated by scaling functions for specific types of CUs (cf., e.g., Peters et al., 2004 or 

Arcuri et al., 2015) and the required FES determines the main part of the operational costs (combined 

with corresponding cost factors).  

An additional aspect that could be considered is that, due to economic and/or strategic reasons, it 

might be appropriate (particularly for LCUs) to define a minimum number of periods at which a CU has 

to operate at its nominal load. This is for example done to achieve 4,500 hours of nominal load 

operation annually (cf., O'Brien and Bansal, 2000a). Thus, we introduce the parameter  defining 

a relative number of periods and derive a corresponding upper bound for  from the LDC:  

 (25) 

In (25), the function  returns the AES demand of the LDC at period t. In addition to the 

economic or strategic reasons, this parameter can be used to limit the solution space of the LCU`s 

maximum load. If  is set to zero, the upper bound would be greater than the maximum AES 

demand  (as the cumulated AES demands in an LDC are arranged in a descending order of 

magnitude and  ) and constraint (25) is not binding. 

3.2 Data	preparation	and	aggregation	

Basic data of our ECSD approach for manufacturing companies are discrete time series of cumulated 

AES demands originating from the PS. Each time series  (with set  of all available time series) 

represents a production period subdivided into a number of time slices  with a given duration  

(i.e.,  defines the level of detail for all the time series). The cumulated AES demand per time slice 

originating from the PS is then given by . Sources of the time series could be historical data 

from manufacturing execution (O'Brien and Bansal, 2000b) but also the result of “simulative 

scheduling” (planning predictions) that will be discussed in section 3.3. Both sources can be used alone 

or in combination. Each time series represents an AES demand scenario representing one production 

day. Therefore, if an appropriate number of time series (scenarios) is used during ECSD, the resulting 

ECS design will be robust with regard to uncertain energy demands. We propose using a set  of time 
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series representing the number of production periods within one year (e.g.,  time series, each 

representing one working day with = 480 minutes). 

To anticipate load transition characteristics of the ECS (cf., section 2.2), we use an approximate 

anticipation approach by an “aggregating” model to not further increase problem complexity (cf., 

Ghadimi et al., 2014b). To that, we consider these characteristics (e.g., maximum or minimum ramping 

restrictions, minimum durations, and efficiency losses) by estimating their impact and aggregating the 

original AES demands per time slice ( ) accordingly. To that, we use a time slice aggregation 

factor  to determine a number of time intervals for each time series ( ). An 

aggregation factor of 10 minutes is used to reflect the varying AES demand on the one side and load 

transition characteristics (like ramp ups) on the other side. Within each aggregation interval , 

restricted by a first time slice  and a last time slice , we use the maximum AES demand to guarantee 

demand fulfilment and to account for conversion efficiency losses during load transitions. The new 

estimated AES demand ( ) per time slice within interval  is calculated as follows:  

  (26) 

Note that consecutive intervals that do not have any AES demands in one of their time slices and that 

are at the end of a time series are excluded from further considerations. Of course, the intervals not 

at the end of a time series are not excluded (this can be interpreted as operational state “idle” or “hot 

standby”). 

3.3 Simulative	scheduling	

Due to the strong relationship between the ECS and the PS of a manufacturing company, besides 

historical AES demands, our proposed ECSD approach incorporates the opportunity to consider time 

series based on simulative (machine) scheduling. Simulative scheduling could mean that historical 

scheduling problem instances are solved by considering new constraints and/or objectives (variant a.), 

that anticipated scheduling problem instances are solved by considering existing (traditional) 

constraints and/or objectives (b.), or that anticipated scheduling problem instances are solved by 

considering new constraints and/or objectives (c.). 

4	 Solution	methods	

For solving the planning problem, we formulate a mixed-integer nonlinear program (MINLP) and 

evaluate several standard solvers capable to solve MINLPs. To support the solution process, we 
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propose a lower bound on the objective value (TFES, cf., (24)) and a new truncated enumeration 

heuristic (TEH) to provide an initial solution and an upper bound on the objective value. 

According to section 3.2, AES demand time series and their data points are the base for ECSD. To 

reduce the computational efforts of optimization, we combine all data points of a time series having 

identical AES demands to AES demand levels (indexed by ). These AES demands levels  

combined with the number of aggregated data points ( ) reduce the number of variables without 

influencing the result. 

4.1 Mixed-integer	nonlinear	program		

The MINLP used for optimization is generally specified by the equations (1) to (25) presented in section 

3.1. To reduce computational efforts by using the AES demand levels,  must be replaced by 

 (after a corresponding aggregation), all indices  must be replaced by  and the objective 

function must slightly be adapted to: 

 (27) 

In (27), the parameter  and the sufficiently small parameter  are only required for solver related, 

technical reasons ( ). 

To provide an initial approximated lower bound ( ) on the objective value, we assume that 

the total AES demand would be provided with maximum efficiency and hence use the following 

approximation (here, we assume that the efficiency at the nominal load of the LCU is highest): 

 
(28) 

For solver selection, the investigated solvers have been evaluated due to their capability to solve 

general mixed-integer nonlinear programs and have shown a good performance in the analysis of 

Kronqvist et al. (2019). Preliminary tests based on eight randomly selected problem instances have 

shown that the solver ANTIGONE outperforms the solvers BARON, DICOPT, and SCIP in terms of 

solution quality (all solvers are provided within GAMS). In the following, the application of ANTIGONE 

for solving the MINLP specified by the equations (1) to (25) and (27) to (29) is abbreviated by ANT.  

As SCIP provides better lower bounds ( ) on the TFES in a short time, we use this solver to 
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. 

As the preliminary tests have also shown that the maximum load of the LCU should be larger than 30% 

of , we introduce a lower bound for  to reduce the solution space and thus, decrease 

the computational effort (the minimum function in (29) is used to guarantee feasibility): 

 (29) 

4.2 Truncated	enumeration	heuristic		

The developed heuristic to determine initial solutions is based on a truncated enumeration scheme. 

Therefore, it is called truncated enumeration heuristic (TEH). It consists of two phases: the first phase 

determines  and the second phase determines .  

In the first phase, we start with an incumbent maximum load  (cf.,  

(25)) and iteratively decrement it by parameter  until  (cf., (29)) is reached. For the 

, a “fixed” incumbent nominal load  is used in the first 

phase (cf., (3) and (4)). The parameter  defines an offset from the upper bound. Based on this 

decision, all other variables and the objective value are determined according to the MINLP described 

above. To avoid inefficient iterations, the first phase terminates if the relative objective value 

degradation of the incumbent solution  (with regard to the best known solution ) becomes larger 

than a given parameter: . After the termination of the first phase, 

 of the best solution so far (i.e., with the minimum TFES) is fixed. Thereafter, the second phase 

starts with  and iteratively decrements  by  until  is 

reached. The heuristic terminates early if the relative degradation becomes larger than . The 

parameters , , and  have revealed the best results (regarding the trade-off 

between solution quality and computation time) in preliminary tests. 

5	 Experimental	design	

To analyze the interdependencies between the basic planning parameters and their influence on the 

energy efficiency of an ECS, an appropriate experimental design is necessary.  
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5.1 The	scheduling	problem	

Because we follow the simulative scheduling variant b. in our analysis (cf., section 3.3), we have to 

anticipate scheduling problem instances for the simulative scheduling. To keep the analysis straight, 

we limit the analysis to a production system consisting of identical (unrelated) parallel machines, as 

we can assume that machines of this type have the same energy characteristics and thus, that the total 

required AES demand is independent of the job to machine allocation. The basic scheduling task for 

such a production system is the allocation and sequencing of a set of jobs  (with indices ) on 

a set of identical parallel machines  (with indices ). The processing time of a job  is 

depicted by . Each job can only be processed by one machine at one time, and each machine can 

only process one job at one time. All jobs are available at time zero, and the preemption of jobs is 

prohibited. To represent the AES demand of a job, we follow the approaches of Artigues et al. (2013) 

and Rager et al. (2015) and use discrete AES demand profiles. Therefore, the AES demand of job  is 

defined by a sequence of energy demands  (with ). Usually,  and  are defined as 

integers. 

To solve the scheduling problem with regard to the two standard scheduling objectives makespan 

(Cmax) and total flow time (TFT), we use the list scheduling approaches LPT (longest processing time) 

for Cmax and SPT (shortest processing time) for TFT, as these approaches are very efficient and provide 

a sufficient solution quality (or even the optimum) for these objectives (cf., Baker and Trietsch, 2009: 

204 & 214).  

5.2 Scheduling	instances	and	scenarios	

To provide a broad testing environment for our analysis, we consider different types of companies to 

generate company related, anticipated scheduling problem instances. We distinguish companies 

according to the following production-related parameters: production system size (i.e., the number of 

machines), job size (i.e., the mean processing times) and variability (i.e., the processing time 

distribution), energy demand type (i.e., the energy demand course), and energy demand variability 

(i.e., the energy demand distribution).  

With respect to the production system size, we differentiate between two basic settings: small (S) and 

medium (M). The small (medium) type consists of four (twelve) machines, and for half of the 

production days, only three (ten) machines are in use (due to less jobs and cost savings, e.g., the cost 

of machine operators). Each of these company types can produce either many simple (MS) products 

(with an assumed mean processing time  and processing times that are randomly drawn from a 

discrete uniform distribution restricted by [24, 36]) or few complex (FC) products (with  and a 
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discrete uniform distribution restricted by [64, 96]). Altogether, the introduced production parameters 

define four basic settings (S-MS, S-FC, M-MS, and M-FC) with two types of production days. 

Because the AES demand time series represent individual production days with one eight-hour shift, 

we assume a “target” planning horizon .This planning horizon together with the actual mean 

processing time  and the number of available machines  is used to approximate the 

maximum number of jobs  to be processed within . Then, based on , the 

number of jobs  per problem instance is randomly chosen from a discrete uniform distribution 

restricted by .  

In addition to the basic production system parameters, companies and their production processes can 

be further separated due to their energy demand characteristics (for a detailed overview see Gahm et 

al., 2016). Within our analysis, we concentrate on “job related” and “varying job related” demands and 

differentiate companies by their job-related energy demand type and their energy demand variability. 

With respect to the energy demand type, we use four different courses (cf., Figure II.C-4): constant (C), 

hill (H), iterating (I), and erratic (E). Each of these types represents a specific production process (e.g., 

the iterating demand course can be found in the dyeing process in the textile industries; see Rager et 

al., 2015). To represent different energy demand variabilities, we use different intervals for 

representing a small range of variability (SR) and a large range of variability (LR). 

For the constant demand course, the intervals for the two ranges SR and LR are restricted by [80, 120] 

and [20, 180], respectively, and only a single constant energy demand  has to be drawn from the 

corresponding discrete uniform distribution. 

 

Figure II.C-4: Energy demand course types 
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are used to guarantee that  and thus, to differentiate those types from type C. For type 

H, we use the function , with  to determine the 

AES demand profile. For type I, we additionally draw the number of periods with the same AES demand 

in sequence from a discrete uniform distribution limited by  and all jobs start with an AES 

demand equal to . With these interval borders, we can guarantee at least one change between 

 and  and thus, a minimum difference to type C. For type E, we individually draw  from 

discrete uniform distributions restricted by [80, 120] and [0, 200] for SR and LR, respectively. 

Altogether, the four basic production environments (S-MS, S-FC, M-MS, and M-FC) combined with the 

eight energy settings (C-SR, C-LR, H-SR, H-LR, I-SR, I-LR, E-SR, and E-LR) represent 32 company types. 

Since our ECSD approach is based on time series which cover one year with 240 production days, a 

corresponding set of scheduling instances for each company type must be generated. Furthermore, to 

analyze the scheduling objectives` influence on the ECS efficiency, two sets of time series are calculated 

for each company type (one with the scheduling objective Cmax and one with TFT). The combination 

of a company type and a scheduling objective defines the content of a so-called PS scenario. 

Altogether, a total of 15,360 schedules have to be calculated to provide the 240 time series for the 64 

PS scenarios. The complete set of AES demand time series is publicly accessible at – Mendeley Data 

(and will be provided within the supplementary material within this doctoral dissertation). 

5.3 CU	parameter	settings	and	ECSD	scenarios	

In addition to PS scenarios, CU parameters are required to completely define an experiment. To create 

a traceable planning parameter analysis, we use a basic parameter setting for each CU (i.e., LCU-0 and 

FCU-0) and vary these settings according to the goals of the analysis. The LCU and FCU parameter 

settings described in Table II.C-1 and Table II.C-2 are then combined to form CS-parameter settings 

(e.g., LCU-0 and FCU-3 are combined to form CS-0-3) used for analyzing different aspects: The influence 

of the operational range of LCUs is examined on its own (CS-1-0) and in combination with efficiency 

losses (CS-2-0 and CS-3-0). Additionally, different LCU efficiency parameters are solely considered (CS-

4-0 and CS-5-0). The influence of the bounds restricting the nominal load of FCUs is investigated on its 

own (CS-0-1) and in combination with efficiency losses (CS-0-2). Again, different efficiency parameters 

are solely investigated (CS-0-3 and CS-0-4). The complete LCU and FCU parameter settings are listed in 

Table II.C-1 and Table II.C-2, respectively (changes compared to the basic parameter settings are 

marked bold). Note that the efficiencies of both CUs considered in our experiments are generally based 

on boiler data from the literature (cf., Chicco and Mancarella, 2007 and Kavvadias and Maroulis, 2010). 
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Table II.C-1: LCU parameter settings 

 

The combination of a PS scenario with a CS setting defines a complete experiment and is called an 

ECSD scenario in the following. For the segregated parameter influence analysis, we use a subset of all 

possible CS-parameter settings (CS-0-0, CS-1-0, CS-2-0, CS-3-0, CS-4-0, CS-5-0, CS-0-1, CS-0-2, CS-0-3, 

and CS-0-4) and define the ECSD scenario set ESS with 640 experiments (based on 64 PS scenarios and 

the ten CS-parameter settings).  

Table II.C-2: FCU parameter settings 

 

The (optional) parameter  is fixed to 40% in our experiments because this value defines a loose 

upper bound for the maximum load and thus does not restrict the optimum solution but only the 

solution space (to reduce computational efforts). The parameter  is fixed for all 

experiments. 

All experiments have been executed on workstations with an Intel® Xeon® CPU with 3.00 GHz and 64 

GB RAM. SCIP was executed with the following settings: limits/gap=1E-12, limits/time=600 (seconds), 

gams/mipstart=true (an initial solution provided by TEH is used), and misc/printreason=TRUE (checks 

the feasibility of the initial solution). ANTIGONE was executed with CPLEX (threads=1) for solving 

relaxations, CONOPT for finding feasible points, a relative stopping tolerance (rel_opt_tol=1E-9), and 

a time limit of 10 hours (reslim=36000 seconds).  

LCU
NomLrelP

D =FCU
MinL 0.15

 LCU-0 LCU-1 LCU-2 LCU-3 LCU-4 LCU-5 

  87.0% 87.0% 85.0% 85.0% 80.0% 91.0% 

 95.0% 95.0% 95.0% 93.0% 97.0% 93.0% 

 82.0% 82.0% 80.0% 80.0% 75.0% 86.0% 

 0.95 0.90 0.90 0.90 0.95 0.95 

 0.70 0.60 0.60 0.60 0.70 0.70 

 FCU-0 FCU-1 FCU-2 FCU-3 FCU-4 

 65.0% 65.0% 65.0% 60.0% 70.0% 

 84.0% 84.0% 82.0% 86.0% 82.0% 

 60.0% 60.0% 60.0% 55.0% 65.0% 

 0.15 0.05 0.05 0.15 0.15 

 0.30 0.10 0.10 0.30 0.30 

hLCU
MaxL

hLCU
NomL

hLCU
MinL

DLCU
NomL

DLCU
MinL

hFCU
MaxL

hFCU
NomL

hFCU
MinL

D FCU
NomLub

D FCU
NomLlb
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6	 Experimental	results	

In the first part of our analysis, we compare the two part-load efficiency modelling approaches. In part 

two, we investigate the influences of the CU parameters on the TFES and in the last part, we analyze 

the most preferable CU parameters per company type, the influence of scheduling objectives, and the 

effect of decreasing conversion efficiencies.  

Note that although the relative differences between objective values seem to be small, the impacts on 

the ECSs’ efficiency should not to be underestimated as the absolute objective values (i.e., the final 

energy demand of one year) vary between 39,551,151 to 193,720,091 units. 

6.1 Nonlinear	vs.	linear	part-load	efficiency	modelling	

To analyze and compare the influence of both part-load efficiency modelling approaches on the ECS’s 

design, we optimize both models (M-NL and M-L) with TEH and ANTIGONE and afterwards evaluate 

both solutions with the more accurate, but more complex model M-NL. The consequences of the 

simplified linear modelling of part-load efficiencies is then measured in terms of the required TFES (

 vs. ). In addition, we analyze the influence of both modelling approaches on the main 

decisions, i.e., the maximum load of the LCUs (  vs. ) and the nominal load of the 

FCUs (  vs. ). To that, we measure the influence of both modelling approaches 

on the ECS’s design by the relative percentage difference of the TFES achieved with M-NL ( ) 

and the TFES achieved with M-L ( ): [(TFES(L) - TFES(NL)) / TFES(NL)] . In addition, 

the influence on the actual design decisions  and  is evaluated by the relative 

percentage differences  and  (defined like ). 

Table II.C-3 shows the maximum, mean, standard deviation, and minimum relative percentage 

differences per scheduling objective, aggregated with regard to the 32 company types and the ten CS 

setting combinations from ESS (positive values mark that , , or  

is smaller than , , or , respectively). 

Table II.C-3: Aggregated relative percentage differences  

 

TFES(NL) TFES(L)

LCUMaxL (NL) LCUMaxL (L)
FCUNomL (NL) FCUNomL (L)

TFES(NL)

TFES(L) D =TFES ×100

LCUMaxL FCUNomL

D LCUMaxL D FCUNomL DTFES

TFES(NL) D LCUMaxL (NL) D FCUNomL (NL)

TEFS(L) D LCUMaxL (L) D FCUNomL (L)

    

 Max Mean 
Std 
Dev Min Max Mean 

Std 
Dev Min Max Mean 

Std 
Dev Min 

Cmax 2.15 0.01 0.28 -0.87 10.21 -2.32 4.11 -15.63 78.71 -5.27 4.11 -83.63 

TFT 3.50 0.01 0.28 -0.97 34.70 -2.50 3.89 -22.58 83.78 11.23 4.88 -82.98 

DTFES D LCUMaxL D FCUNomL
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In Figure II.C-5, the influence of the two part-load efficiency modelling approaches on TFES, , 

and  is illustrated by violin plots (note the different scaling of the three parts). 

0 

Figure II.C-5: Violin plots of the relative percentage difference key figures  

On the one hand, Figure II.C-5 and the values in Table II.C-3 show that the TFES values calculated with 

the nonlinear modelling approach can be remarkably lower (positive ) for some cases and are 

also slightly lower on average. On the other hand, the values also indicate that the ECS designs 

determined with the linear modelling approach can be better (in terms of solution quality). The latter 

effect can be traced back to the fact that the optimization of model M-NL is more complex compared 

to model M-L, which was not accounted for in the experiments (because both models had the same 

time limit for computations). This drawback of the nonlinear modelling approach can be eliminated or 

at least weakened by extending the computation time limits or by using more efficient solution 

methods. However, possible savings up to 3.5 % are not insubstantial. In addition, it must be 

considered that the ECSD planning approach forces the LCU to operate at the nominal load level for 

most of the time. If relaxing this assumption during ECS operation, the appropriate modeling of part-

load efficiencies becomes even more important. 

The (remarkably) high differences of , and  (cf., Figure II.C-5 and Table II.C-3) 

substantiate the previous finding that the way of modelling part-load efficiencies has a not neglectable 

influence on the ECS’s design and therefore, the way of modelling must be chosen wisely. 

6.2 Influences	of	CU	parameters	

Goal of the ten CS-parameter settings in the ECSD scenario set ESS is to analyze the influence of 

different CU parameters on the ECS’s efficiency. For analyzing the influences, we illustrate in Figure 

II.C-6 the relative percentage deviation of TFES achieved (by ANT) with each of the corresponding CS-

parameter settings compared to the TFES achieved with the reference setting CS-0-0. Note that 

LCUMaxL
FCUNomL

% % %

Cmax TFT

DTFES

LCUMaxL FCUNomL
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negative values indicate a lower, improved TFES and that positive values indicate a higher, worsened 

TFES.  

 
Figure II.C-6: Influence of CU parameters on the TFES 

The results in Figure II.C-6 show that the effects of CU-parameters seem to be independent of the 

scheduling objectives. Furthermore, the results show a larger operational range for LCUs to be 

preferable (CS-1-0), even if the boundary load efficiencies (  and ) decrease (CS-2-0), but that 

a simultaneous decrease of the nominal load efficiency cannot be compensated (CS-3-0). Figure II.C-6 

also reveals a high positive influence of an increased nominal load efficiency (CS-4-0) and a high 

negative influence if boundary load efficiency increases comes along with nominal load efficiency 

decreases (CS-5-0) for LCUs. Both effects and thus the importance of the nominal load efficiency of an 

LCU can easily be explained, as the LCU is designed to operate at the nominal load for most of the time 

(cf., section 3.1, Figure II.C-3, and Table II.C-4). 

Table II.C-4: Relative numbers of periods LCUs operate at nominal load 

 

hLCU
MinL hLCU

MaxL

 Cmax TFT 

Mean 57.61 % 58.80 % 

Variance 0.74 % 0.87 % 
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As seen by the results of Figure II.C-6, a greater degree of freedom for the determination of the nominal 

load of the FCU only slightly increases the CS’s efficiency (cf., CS-0-1 and CS-0-2). In contrast to LCUs, 

for the FCU, the nominal load efficiency is of minor importance compared to the boundary load 

efficiencies (  and ) as can be seen by comparing CS-0-3 and CS-0-4. 

Generally, we can report that compared to FCU parameters, LCU parameters have a greater influence. 

This can be traced back to the larger amount of AES provided by the LCUs (cf., Table II.C-5). 

Table II.C-5: Relative load share of LCUs 

6.3 Most	suitable	planning	parameters	per	company	type 

To finally evaluate the influence of the basic planning parameters, we report in Table II.C-6 for each 

company type the most preferable combination of scheduling objective, LCU parameters, and FCU 

parameters (here we evaluated all possible compositions of non-dominated CS-parameter settings). 

For comparing the influence of both scheduling objectives, we depict in column five the relative 

percentage difference between the most suitable objective and the other objective. In addition, we 

report the results of a sensitivity analysis simulating decreasing conversion efficiencies (e.g. due to unit 

aging or other stochastic influences; cf., e.g., Guinot et al., 2015). To that, efficiencies of the most 

preferable CS parameter settings are adapted after 5 and 10 years (nominal load efficiencies are 

decreased by 0.6 per “year” and minimum and maximum load efficiencies by 0.4 per “year”) and for 

each company type, further ECS designs are calculated with the reduced CU efficiencies. The resulting 

relative percentage changes of the (additional) TFES, , and  (compared to the 

unchanged efficiencies) are depicted in the last six columns of Table II.C-6:  

hFCU
MinL hFCU

MaxL

LCUMaxL FCUNomL

 Cmax TFT 

Mean 88.91 % 88.12 % 

Variance 0.29 % 0.36 % 
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Table II.C-6: Most preferable parameters by company type (sensitivity analysis) 

 

Regarding the FCU settings, FCU-3 is most preferable for almost all company types (29 of 32). 

Nevertheless, FCU-1 (3 times) is more suitable for specific company types. Accordingly, the nominal 

load efficiency is not the only important parameter for FCUs (cf., Table II.C-2). For the same reasoning 

as in Section 6.2, LCU-5 is not preferable due to its lower nominal load efficiency (cf., Table II.C-1). 

However, although LCU-4 has the highest nominal load efficiency, LCU-1 with its larger operational 

range is preferable for most company types (21 of 32). Therefore, we conclude that next to the nominal 

load efficiency, the operational range is a second main influencing parameter for LCUs.  

Company type LCU FCU Sched. 
obj. 

Rel. 
TFES 
diff.  
[%] 

Additional TFES 
after 

changes 
after 

 changes 
after 

5 "years" 
[%] 

10 
"years" 

[%] 

5 "years" 
[%] 

10 
"years" 

[%] 

5 "years" 
[%] 

10 
"years" 

[%] 

S-FC-C-LR LCU-1 FCU-1 Cmax 1.13 3.23 6.64 1.47 1.47 -1.14 -1.14 
S-FC-C-SR LCU-1 FCU-3 Cmax 0.84 3.22 6.68 0.00 0.55 0.00 -3.11 
S-FC-E-LR LCU-1 FCU-3 Cmax 0.97 3.17 6.55 0.38 1.34 0.00 0.30 
S-FC-E-SR LCU-4 FCU-3 Cmax 1.35 3.20 6.62 0.00 0.00 0.00 0.00 
S-FC-H-LR LCU-1 FCU-3 Cmax 0.11 3.20 6.60 3.08 4.98 -2.61 -4.69 
S-FC-H-SR LCU-1 FCU-3 Cmax 0.59 3.21 6.69 0.25 1.26 -0.77 -3.64 
S-FC-I-LR LCU-1 FCU-1 Cmax 0.90 3.21 6.65 0.00 1.22 0.00 -1.20 
S-FC-I-SR LCU-1 FCU-3 Cmax 1.00 3.21 6.64 0.00 0.00 0.00 0.00 

S-MS-C-LR LCU-1 FCU-3 Cmax 0.66 3.18 6.57 1.08 1.62 -1.62 -1.62 
S-MS-C-SR LCU-4 FCU-3 Cmax 0.17 3.21 6.63 0.00 0.00 0.00 0.00 
S-MS-E-LR LCU-1 FCU-3 Cmax 0.05 3.18 6.55 0.74 2.03 1.17 2.59 
S-MS-E-SR LCU-4 FCU-3 TFT 0.01 3.24 6.69 0.14 0.27 -0.53 -1.47 
S-MS-H-LR LCU-1 FCU-3 TFT 1.18 3.18 6.56 0.59 0.98 -0.34 -1.46 
S-MS-H-SR LCU-4 FCU-3 TFT 0.46 3.22 6.65 0.00 0.00 0.00 0.00 
S-MS-I-LR LCU-1 FCU-3 TFT 0.89 3.17 6.54 1.57 1.57 10.06 9.28 
S-MS-I-SR LCU-4 FCU-3 TFT 0.35 3.25 6.68 0.27 0.27 -0.75 -0.75 
M-FC-C-LR LCU-1 FCU-3 Cmax 1.56 3.17 6.58 0.00 3.22 0.00 12.23 
M-FC-C-SR LCU-1 FCU-3 Cmax 1.42 3.21 6.69 0.00 0.97 0.00 -4.94 
M-FC-E-LR LCU-1 FCU-3 Cmax 1.29 3.17 6.55 0.43 2.00 0.55 3.11 
M-FC-E-SR LCU-4 FCU-3 Cmax 1.57 3.18 6.57 0.00 0.00 0.00 0.00 
M-FC-H-LR LCU-1 FCU-3 TFT 0.05 3.24 6.69 1.12 2.23 -3.96 -8.18 
M-FC-H-SR LCU-1 FCU-3 Cmax 1.06 3.17 6.54 0.00 0.00 0.00 0.00 
M-FC-I-LR LCU-1 FCU-3 Cmax 0.79 3.18 6.56 1.10 1.86 -1.38 -2.28 
M-FC-I-SR LCU-1 FCU-3 Cmax 1.10 3.19 6.55 2.01 2.01 -5.01 -5.19 

M-MS-C-LR LCU-1 FCU-3 Cmax 1.13 3.16 6.53 0.00 0.00 -0.35 -0.35 
M-MS-C-SR LCU-4 FCU-3 Cmax 0.65 3.20 6.63 0.00 0.27 -0.31 -2.45 
M-MS-E-LR LCU-4 FCU-1 Cmax 0.30 3.18 6.57 0.00 0.00 0.00 0.00 
M-MS-E-SR LCU-4 FCU-3 Cmax 0.43 3.25 6.67 0.52 0.60 -3.93 -4.72 
M-MS-H-LR LCU-1 FCU-3 TFT 0.84 3.14 6.49 1.65 1.65 -2.76 -3.10 
M-MS-H-SR LCU-4 FCU-3 Cmax 0.09 3.20 6.61 0.00 0.00 0.00 0.00 
M-MS-I-LR LCU-1 FCU-3 TFT 1.45 3.17 6.54 1.14 2.55 1.72 3.14 
M-MS-I-SR LCU-4 FCU-3 TFT 0.27 3.19 6.59 0.00 0.00 -0.23 -0.45 

MAX    1.57 3.25 6.69 3.08 4.98 10.06 12.23 

MEAN    0.77 3.20 6.60 0.55 1.09 -0.38 -0.63 

STD    0.48 0.03 0.06 0.75 1.14 2.37 3.82 

LCUMaxL FCUNomL
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Analyzing the influence of the scheduling objective, the values in Table II.C-6 show that the makespan 

objective is preferable for most company types but that also the TFT objective can be superior. The 

comparison of both objectives by a two-sided pairwise t-tests (on the ten CS-parameter settings), used 

to test whether the difference of the objective values (TFES) is statistically significant (≤ 0.05; with 

degrees-of-freedom df = 9) or not, leads to the following results: mean relative percentage difference 

= -0.44 (Cmax is superior), mean p-value = 0.009, mean t-value =28.238, and that the differences are 

significant for 31 of 32 company types. This leads to the conclusion that manufacturing companies can 

influence their energy efficiency by an appropriate scheduling objective (presumably even more when 

an energy-oriented scheduling is performed) and that this scheduling objective should be already 

considered during ECS design. 

The increasing TFES values resulting from the decreasing conversion efficiencies are as expected. More 

interesting are the sensitivity analysis’ results concerning the decisions on the maximum load of the 

LCU and the nominal load of the FCU. The results in Table II.C-6 reveal a very robust dimension of the 

LCU regarding decreasing conversion efficiencies: if the nominal load efficiency decreases by 3% (6%), 

the most suitable  only increases by 0.55% (1.09%) on average (maximum increases are 3.08% 

and 4.98%). Somehow more sensitive is the nominal load of the FCU. The mean decreases of 0.38% 

and 0.63% are comparable small but for some company types, the “new” adapted nominal load is 

remarkably higher (e.g., M-FC-C-LR), whereas for other company types, the “new” adapted nominal 

load is remarkably lower (e.g., M-FC-H-LR). For these cases, an appropriate adjustment of the nominal 

load of the FCU is advised. 

7	 Conclusions	

In this paper, we presented a new, flexible —AES-type independent— approach for the dimensioning 

of a manufacturing company’s ECS. With respect to the special conditions arising in the context of 

manufacturing companies (highly dynamic AES demands and the opportunity to directly influence the 

temporal course of the AES demand by scheduling), our approach not only considers and anticipates 

the hierarchical interdependencies between ECS design and ECS operation but additionally takes the 

relationship to the PS into account. To that, the simulative scheduling component of our planning 

approach is capable to model different types of production systems, constraints, and objectives. In 

addition, as we propose to consider 240 production days during the ECSD, the resulting ECS design is 

robust with regard to AES demand uncertainties and also to decreasing conversion efficiencies.  

The most important characteristics defining an ECS’s energy-related behavior (i.e., size, nominal loads, 

and part loads with related conversion efficiencies) are explicitly modelled by the proposed MINLP. In 

this context, our experimental results have shown the advantage of the most accurate modelling of 

LCUMaxL
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part-load efficiencies by nonlinear functions as it leads to a more efficient ECS design compared to 

linear modelling approaches (savings up to 3.5 % can be achieved). In consequence of this result, we 

emphasize the importance of a suitable part-load behavior modelling when designing ECSs for 

manufacturing companies. 

Another essential aspect highlighted by the experiments is the importance of not only the nominal 

load efficiency but also of the operational ranges and boundary efficiencies for the ECS design (at least 

for CUs used to cover peak demands).  

Furthermore, the possibility of manufacturing companies to directly influence the AES demand course 

by scheduling can be used to improve the ECS design and its efficiency. Hereby, the usage of energy-

oriented objectives or constraints is a promising research topic to further improve energy efficiency. 

The final conclusion from the experimental analysis is that, depending on a manufacturing company’s 

characteristics, individual combinations of a scheduling objective and CU parameters are best suited 

to maximize its energy efficiency. 
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Abstract: In hierarchical production planning systems, complex nesting problems (also known as two-

dimensional, highly irregular strip packing problems) often constitute a subordinated problem of a 

superior scheduling problem, e.g., the serial-batch scheduling problem in metal manufacturing. Here, 

the top-level scheduling decision includes a batching decision, i.e., the determination of a set of small 

items to be cut out of a large object. To examine the feasibility of a batch, the base-level nesting 

problem must be solved. Because solving subordinated (nesting) problems is often time consuming 

even when applying heuristics, it is troublesome to solve it multiple times during solving the superior 

(scheduling) problem.  

Instead, we propose an approximative anticipation of base-level reactions by the application of 

machine learning techniques (i.e., to approximate the feasibility of a batch by predicting the height of 

the required strip). To that, we propose a prediction framework to identify the most promising 

machine learning technique for the prediction (regression) task. For applying these techniques, we 

propose new feature vectors describing the characteristics of complex nesting problem instances. For 

training, validation, and testing, we present a new instance generation procedure that uses a set of 

6,000 different convex, concave, and complex shapes to generate 88,200 nesting instances. The testing 

results show that an artificial neural network achieves the lowest expected loss (root mean squared 

error). Depending on further assumptions, we can report that based on the height predictions, for 

98.9% of the nesting instances, the approximate anticipation leads to an appropriate decision 

regarding batch feasibility. 

Keywords: (R) Machine learning, hierarchical planning, anticipation, nesting, irregular strip packing (S) 

Artificial intelligence, (O) Cutting, (O) Packing, (T) Manufacturing 
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1. Introduction	

The concept of hierarchical production planning is used by almost any manufacturing company 

applying production planning and scheduling methods. The concept can be traced back to the works 

of Hax and Meal (1973), Bitran et al. (1981), Bitran and Tirupati (1993) and Schneeweiß (1995) 

(amongst others). Particularly the conceptual framework of Schneeweiß (1995) describes this essential 

aspect of actual production planning systems. In this framework, the interdependencies between 

superior top-level decisions (defining the instructions or top-down influence) and the subordinate 

base-level decisions are explicitly emphasized (cf., Figure II.D-1). In addition, the anticipation of base-

level reactions (bottom-up feedback) by top-level decisions is recommended. This anticipated reaction 

can be modelled by a so-called anticipation function “calculating” hypothetical reactions of the base-

level founded on hypothetical instructions of the top-level. In Schneeweiß (2003), four archetypical 

types of anticipation functions are described: perfect anticipation (reactive), approximate anticipation 

(reactive), implicit approximation (reactive), and non-reactive anticipation (further details are 

discussed in Section 3).  

In this paper, we propose to use machine learning techniques for the approximate anticipation of base-

level reactions instead of solving complex nesting problems (CNPs; also known as two-dimensional, 

highly irregular strip packing problems; cf., e.g., Burke et al., 2009 or Leao et al., 2020). Without losing 

the ambition to propose a general anticipation method, the application context of CNPs provides 

several advantages: First, CNPs, a special kind of packing/cutting problem, occur in many industrial 

sectors like metal-processing, carbon fiber, or textile manufacturing and therefore, make our approach 

relevant in different industrial application fields (Burke et al., 2009). Second, very often nesting 

problems, or packing/cutting problems in general, constitute a subordinated (base-level) problem of a 

superior (top-level) decision problem (e.g., a machine scheduling problem) or are at least closely 

related to it (cf., e.g., Chryssolouris et al., 2000 or Helo et al., 2019). More details on an application 

case and the hierarchical interdependencies between the planning tasks are described in section 2. 

Finally, solving CNPs causes high computational efforts, even if heuristics are used (note, that solving 

CNPs within an iterative solution method for the superior problem would even be troublesome if 

computation times are only a few seconds; cf., e.g., López-Camacho et al., 2013a). Therefore, the most 

accurate and efficient approximate anticipation method would be very welcome to improve the 

solution quality and/or reduce computational efforts of superior planning problems in a broad range 

of industries. 

Our main contribution to literature is the new method for an approximate anticipation of base-level 

reactions by machine learning used to substitute the solving of complex nesting problems. In contrast 

to Rohde (2004) who only uses artificial neural networks to anticipate lot-size stocks and setup times 
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in the context of master production scheduling, we recommend to use a broad range of machine 

learning techniques to improve anticipation accuracy. To that, we propose a prediction framework to 

identify the most suitable technique. Further contributions to literature are the new instance 

generation procedure for CNPs (based on real-world shapes and controllable attributes) and the 

feature vectors to model CNP characteristics used by the machine learning techniques.  

The structure of this paper is as follows: After an introductory section and the description of the 

application case in section 2, we analyze in section 3 the backgrounds and related work of our 

anticipation approach. The approximative anticipation approach itself is described in section 2  and 

the prediction framework used for the approximation is depicted in section 3 . Section 4  is dedicated 

to the evaluation of the proposed anticipation approach and the applied machine learning techniques. 

Concluding remarks are given in section 5  and a brief summary and outlook on further research is 

presented in section 6 . 

2. Application	case	

An incisive example of the interdependencies between a top-level decision, i.e., a serial-batch 

scheduling problem, and a base-level decision, i.e., a complex nesting problem, can be found in the 

sheet metal manufacturing. Here, customer-specific metal pieces have to be cut out from large metal 

slides by one or more laser cutting machines. Thereby, the metal pieces (cutting items) should be 

grouped into batches to avoid machine setups. This batching decision, together with the machine 

allocation (in the case of multiple cutting machines) and the sequencing decision, defines the (superior, 

top-level) serial-batch scheduling problem. The serial-batching type (i.e., the processing time of a batch 

is the total processing time of all items assigned to this batch), the presence of setup times, and the 

due dates of the items make the batching decision crucial for the overall performance of the scheduling 

decision (e.g., in terms of delivery reliability). Besides economic reasons, good batching decisions also 

influence resource efficiency by avoiding waste and thus, a more sustainable production can be 

achieved.  

To evaluate the solution quality of a batch and, more important, to evaluate its feasibility (metal slide 

dimensions must be respected and items may not overlap), the metal pieces must be packed on the 

metal slide. This packing task leads to the subordinated complex nesting problem. Actually, the base-

level decision problem could be formulated as “two-dimensional bin packing problem” (or “two-

dimensional finite bin packing problem”; cf., the typology of Wäscher et al., 2007). Instead, we consider 

the more general “two-dimensional strip packing problem” having one open (infinite) dimension (cf., 

e.g., Martello et al., 2003). For this problem, the planning objective is the minimization of the height 

of the required strip whereas the second dimension (width) is fixed. Then, to evaluate batch feasibility, 

the calculated height can be compared to any reference height, e.g., the height of standard metal slides 
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or the height of smaller metal slides remaining from previous cutting processes (to increase resource 

efficiency). Regarding the cutting items, it must be considered that the customer specific items have 

arbitrary shapes that are typically irregular (also called non-regular; cf., Wäscher et al., 2007; for an 

overview of relevant application areas see e.g., Dowsland and Dowsland, 1995). Accordingly, the 

problem is called “irregular strip packing problem” or “nesting problem” (cf., Oliveira et al., 2000; in 

textile manufacturing, the problem is called “marker-making problem”, cf., e.g., Li and Milenkovic, 

1995). Burke et al. (2007) use the term “highly irregular” shapes if the item shapes include concavities 

and/or holes. Complexity further increases if the items can be rotated (at fixed angles, a given number 

of times, or even arbitrarily). In consequence, for evaluating the feasibility of a batch in the context of 

serial-batch scheduling in sheet metal manufacturing, the “highly irregular strip packing problem with 

free rotations” must be solved. For simplicity, we call this problem the “complex nesting problem 

(CNP)”.  

The relationship between the theoretical concept of hierarchical production planning and the concrete 

manifestations of the decision problems (models) of the application case is depicted in Figure II.D-1.  

 
Figure II.D-1. Hierarchical integration of the approximate anticipation by machine learning 

The bold terms in Figure II.D-1 represent the abstract concepts and elements as used in literature (cf., 

e.g., Schneeweiß, 1995 and Schneeweiß, 2003), whereas the italic terms depict the concrete 

manifestations regarding the sheet metal manufacturing case. The numbers in brackets show the basic 
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course of action. Because we assume the reader to be familiar with the concepts of hierarchical 

production planning, we omit a detailed explanation here. 

3. Background	and	related	work	

The literature review to examine related work is divided into three parts. The first part is dedicated to 

anticipation functions in the context of hierarchical production planning. The second part contains 

contributions related to the application of machine learning techniques in the area of packing and 

cutting, whereas the third part introduces major machine learning concepts in general and briefly 

describes potential techniques appropriate for the height prediction task. 

1.1 Basics	on	anticipation	functions	

As already described in the introduction, Schneeweiß (2003) differentiates between four archetypical 

types of anticipation functions. In the case of perfect anticipation, the base-level decision model is 

completely known and exactly integrated into the top-level model. Only the parameters (information) 

used by the top-level model might not be known deterministically and change when solving the base-

level model. In contrast, approximate anticipation is performed by using some approximative 

anticipation function (models or methods). For an implicit anticipation, only some (most important) 

aspects of possible base-level reactions are considered within the anticipation function. Note that for 

these three anticipation types, explicit anticipation functions are used, whereas for the last type, non-

reactive anticipation, no explicit anticipation function is used. Instead, some major aspects of the base-

level decision are incorporated within the top-level model. Hereby, these aspects are not (reactively) 

depending on the top-level instructions. Because the complexity of the top-level model is often already 

too high, using non-reactive anticipation or even perfect anticipation is not possible. This is particularly 

the case for the models considered in this paper: the serial-batch scheduling problem (e.g., with 

minimizing total weighted tardiness as objective, it is NP-hard since it is a reduction from the 

corresponding NP-hard single machine sequencing problem) and the CNP (already the strip packing 

problem with rectangular items is NP-hard in the strong sense; cf., Martello et al., 2003). Therefore, 

we propose to use an approximative anticipation function that has also an implicit anticipation aspect 

as we only consider the height (representing the major aspect) to decide on batch feasibility and do 

not require the complete CNP solution.  

In literature, different approaches for approximative anticipation functions can be found: for instance, 

exponential smoothing (Selçuk et al., 2006), clearing functions (cf., e.g., Graves, 1986 or Asmundsson 

et al., 2006), or simulation (cf., e.g., Venkateswaran and Son, 2005 or Albey and Bilge, 2011). To the 

best of our knowledge, only Rohde (2004) uses a machine learning technique (artificial neural 

networks) for anticipation as we propose. Giving a good example for implicit anticipation, Kallestrup 
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et al. (2014) emphasize that for non-perfect anticipations, the actual reaction from the object-system 

may be quite different from the anticipated reaction and that this problem can be reduced by 

increasing the quality of the anticipation. Therefore, we are not going to rely our prediction on a single 

machine learning technique like Rohde (2004) but propose a prediction framework to identify the most 

suitable technique. 

1.2 Machine	learning	applied	to	packing	and	cutting	problems	

In contrast to the almost non-existing application of machine learning techniques for anticipation 

purposes, these techniques are commonly used by hyper-heuristics and less frequently as solution 

method itself. Hyper-heuristics can be defined as “an automated methodology for selecting or 

generating heuristics to solve hard computational search problems” (Burke et al., 2010; for a similar 

definition cf., Pappa et al. 2014). To that, the central idea of hyper-heuristics is to learn which heuristic 

(or operator) will perform best by exploiting information about the current problem instance to solve 

and/or information from already solved problem instances. In this context, Burke et al. (2010) propose 

the distinction between online and offline learning. Online learning takes place while a heuristic solves 

a single problem instance, whereas offline learning aims to gather knowledge (e.g., in form of rules) 

from a set of training instances and to use this knowledge for solving unknown instances better. For 

recent advances and an extended classification scheme of hyper-heuristics see Drake et al. (2020). 

Most relevant publications concerning the development of hyper-heuristics for solving cutting and 

packing problems are Terashima-Marín et al. (2010), Sim et al. (2012), López-Camacho et al. (2013b), 

López-Camacho et al. (2014), Segredo et al. (2014), and Gomez and Terashima-Marín (2018). Although 

these publications have a different scope, they are relevant concerning the prediction task at hand as 

the authors use features to characterize their problems that are related to CNPs. An explicit 

performance prediction to estimate minimum reference values for evaluation purposes or as 

termination criteria of iterative solution methods for the rectangular two-dimensional strip-packing 

problem is proposed by Neuenfeldt Júnior et al. (2019). Besides the differing prediction purpose, 

another main difference between their and our prediction task is their limitation to the problem with 

rectangular shaped items (in contrast to highly irregular ones). Remember, goal of our approach is to 

predict the height of the strip that would result from the application of the CNP solution method that 

will be actually used for solving the CNPs defined by the superior scheduling (batching) decision. 

Another way of applying machine learning techniques is to use them as autonomous solution method 

or as a part of a solution method. For instance, to calculate initial solutions for a two-dimensional 

cutting problem, Han and Na (1996) combine self-organizing feature maps (an unsupervised learning 

architecture) and fuzzy c-means. Dagli and Poshyanonda (1997) use a back-propagation neural 

network to generate larger patterns out of smaller input patterns for the nesting of rectangular 
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patterns. Wong and Guo (2010) use a learning vector quantization neural network to classify items in 

order to select packing rules. 

1.3 Major	machine	learning	concepts	

Recent advances in machine learning have risen new possibilities for its application. Particularly deep 

learning (a synonym for deep neural networks; cf., Goodfellow et al., 2017 or Kraus et al., 2020) has 

become a very powerful technique in the last years. According to Goodfellow et al. (2017), this is due 

to the rapidly growing computational capabilities, the widespread use of graphical processing units, 

the increasing amount of available training data (not least due to the emerging idea of the internet-of-

things), and the improvements in optimizing the parameters of (deep) neural networks. Besides deep 

learning and “traditional” artificial neural networks, also other machine learning techniques might be 

appropriate for the height prediction task at hand. To be appropriate, the technique must be capable 

to perform a univariate multiple regression for the following reasons: First, as the strip height to be 

predicted is a single dependent continuous variable (“outcome variable”), classification and clustering 

models (methods) are not useful but univariate regression models. Second, as we do not expect that 

the height is related to a single CNP instance characteristic, several independent variables (also called 

“predictors”, “covariates”, or “features”) must be considered by a multiple regression model. 

Summarizing, machine learning techniques that are capable to perform univariate multiple regressions 

and that belong to the class of supervised machine learning methods are basically appropriate. To 

select and evaluate the most appropriate machine learning method, we will briefly review models and 

methods in the following. For easier reading, we use the term regression model, regression method, 

or the abbreviation RM if we refer to corresponding machine learning models and methods in the 

remainder of this paper.  

Because a detailed description of RMs is out of the scope of this paper, we only carve out the main 

aspects related to the prediction task at hand and refer to several books that are good starting points 

to deepen the topics. Remark that the basic idea of supervised machine learning is the use of training 

data (containing training instances or samples comprising independent variables and 

dependent/response variables) to determine the parameters of a model in such a way that a sufficient 

generalization is achieved. In the context of machine learning, a sufficient generalization means that a 

RM performs well on new, previously unseen inputs (cf., Goodfellow et al., 2017) and not only on the 

training data. Because we are not interested in inference (i.e., understanding the relationship between 

independent and dependent variables) but in most accurate predictions, the aspect of interpretability 

is not that important and thus, even very flexible parametric and non-parametric regression models 

are suitable. An important theoretical result of statistics and also machine learning is that a model’s 

“generalization error” (i.e., its error rate on unknown data; also called “out-of-sample error”, “test 
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error”, or, related to prediction tasks, “prediction error”) consists of three very different errors (cf., 

Géron, 2019: 196, p. 195): bias, variance, and irreducible error. Accordingly, the challenge is to find a 

RM for which bias and variance are low (this is referred to as the bias-variance trade-off; cf., e.g., James 

et al., 2013 or Goodfellow et al., 2017). This is challenging because in general, more flexible RMs have 

a lower bias but a higher variance compared to inflexible ones. Note that the generalization error is 

not measured by using the training data but by a special hold-out data set called “test set”. This test 

set may not be used in advance, neither during development, training, nor during the validation 

(evaluation) of different RMs. For the validation of different models (i.e., the identification of the most 

suitable RM), a special hold-out set, the “validation set”, can be separated from the training data set. 

Behind this background, we briefly describe some main aspects of appropriate machine learning 

techniques in the following. 

The group of rather inflexible, linear models includes multiple linear regression and regularized linear 

models like Ridge regression, Lasso regression or Elastic Net. More flexible are non-linear models like 

polynomial regression (based on non-linear transformations of the predictors; cf., e.g., Géron, 2019) 

or generalized additive models. Generalized additive models provide a universal framework for 

extending standard linear models by allowing non-linear functions for each of the variables, while 

maintaining additivity (cf., e.g., James et al., 2013).  

Even more flexible is support vector regression basing on the same principles as support vector 

machines used for classification tasks (also called support vector classifier). For regression, an -

insensitive error function is used. Central hyper-parameter (hyper-parameters control the general 

behavior of a RM, e.g., how the model is trained; in contrast, a “normal” parameter is part of the model 

and determined during training) of support vector regression is the used kernel: e.g., linear, polynomial 

with a specific degree, Gaussian RBF, or sigmoid. The kernels are used for “virtually enlarging” the 

feature space without having the (computational) drawback of an actually large feature space (cf., e.g., 

Bishop, 2006 or Murphy, 2013). 

Another group of regression model bases on decision trees. Besides their advantages (e.g., 

interpretability or visualizability), decision trees have several disadvantages, i.e. they are non-robust 

(instable to even small changes in the data; cf., e.g., Géron, 2019) and tend to overfitting. To eliminate 

these disadvantages, for example bagging regression trees, random patches and random subspaces, 

random forests (particularly helpful to determine a feature’s importance), or boosting (e.g., gradient 

boosted regression trees) have been developed. Because these RMs use several decision trees to 

construct a more accurate prediction model, they belong to the group of “ensemble models” where 

the final prediction is the (weighted) mean value of the individual predictions of the ensemble’s 

members (e.g., decision trees). Generally, the result of an ensemble model has a similar bias but a 

lower variance than a single prediction model (cf., James et al., 2013). Instead of using the mean value 

e
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to determine the final prediction, also an additional RM could be used. This type of ensemble model, 

where one or more layers of RMs are used and the prediction of the preceding layer is the input 

(feature) of the succeeding layer, is called stacking or blending (cf., e.g., Géron, 2019). An idea that is 

also used by the following RM. 

Artificial neural networks are maybe the most flexible machine learning technique for predicting the 

strip height, as they do not make any assumptions about the relationship between independent 

variables and dependent variable (cf., Bishop, 1995). Because we are not going to discuss biological 

neural networks, we use the term neural networks (or NN) for simplicity in the following. Due to their 

nonlinear nature, NNs perform very well for modeling complex data structures where the functional 

form is most likely nonlinear. Basically, NN consist of several layers of processing units (neurons) that 

are structured and interacting according to a basic network architecture like “feedforward neural 

networks” (or “multilayer perceptrons”) or “recurrent neural networks” (cf., e.g., Goodfellow et al., 

2017). Because the number of NN architectures is almost infinite (a good visualization is provided on 

www.asimovinstitute.org), we are not going into more detail about all available architectures. In this 

paper, we concentrate on a “standard” feedforward NN architecture with two hidden layers and 

evaluate several hyper-parameters like number of neurons per hidden layer and learning epochs. Such 

a NN with two hidden layers can be seen as a deep learning method.  

Summarizing the related work, we conclude that there is no existing approach that uses and evaluates 

different machine learning techniques for the approximative anticipation of base-level reactions in the 

context of complex nesting problems. 

2	 Approximate	anticipation	by	machine	learning	predictions	

Goal of the application of machine learning techniques as approximative anticipation function is a most 

accurate anticipation of base-level reactions. Regarding the metal-processing application case, the 

anticipation function is used to predict batch feasibility, i.e., if the items assigned to a batch can be 

placed on a metal slide. Note that goal of the prediction is not a minimum height or lower bound but 

to hit the result of the solution method that would be actually used for solving the CNPs. Instead of 

solving the corresponding CNP, we seek to find an efficient RM and its parameters (used as 

anticipation/prediction function ) that predicts the height  of a CNP instance  based on a set of 

instance features  such that the prediction error  is minimum. To measure the overall 

prediction error, we use the root mean squared error (RMSE) because larger errors are penalized 

stronger and it has the same unit (and scale) as the predicted value. Besides using the RMSE as 

prediction error measure in the training, hyper-parameter tuning, and validation phase, the RMSE is 

also used to estimate the overall expected loss of prediction function  regarding unknown instances 
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. Depending on the purpose, instance set X in equation (1) can either be a training data set (T), a 

validation set (V), or a test set (D): 

 (1) 

In (1),  depicts the height predicted by prediction function  and  (  for readability in the 

following) depicts the height calculated by solution method  for CNP instance : . 

Note that  depicts the known response variable in the regression analysis (also called label in the 

context of supervised learning).  

Before describing three simple approximative anticipation functions and their evaluation in terms of 

prediction accuracy, further terms and notations are introduced.  

2.1 Notations	

Basic task of the CNP as considered in this contribution is to position a set  of n items 

on a large object (the strip) having a fixed width  by minimizing the “used” height of the object. A 

feasible solution (called “nesting”) is a placement of items without overlaps and with no item outside 

the object limits. An item  is represented by a tuple of polygons  with . 

The first (enclosing) polygon  (also depicted by  in the following) defines the enclosing line and 

thus, separates the “interior” from the “exterior” of an item shape. All other polygons define holes of 

an item (these are also called difference polygons). Each of the polygons is defined by a tuple of vertices 

 in . The edges defined by the vertices of a polygon are given by  and their 

lengths by .  

 
Figure II.D-2: Item shape properties 

Basic properties of an item’s shape are the height  and width  of the shape’s minimum bounding 

rectangle (MBR; as we allow arbitrary rotations, the naming is not relevant but we use the convention 

that without rotation, the width of an item is not smaller than its height, i.e., ). The area of the 
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minimum bounding rectangle is depicted by , the area of the enclosing polygon by  (dark 

grey area plus white area  of polygon  in Figure II.D-2), and the area of the convex hull of the 

enclosing polygon by . 

2.2 Simple	approximation	approaches	

Based on the “area lower bound” idea proposed by Martello et al. (2003) for the strip-packing problem, 

three very simple but highly efficient problem-specific approximate anticipation functions can be 

derived: SA-E (2), SA-CH (3), and SA-MBR (4).  

The first function “fills” the strip with the total area of the enclosing polygons and represents an 

inordinate optimistic anticipation approach: 

SA-E:  (2) 

The second, more conservative approach, fills the strip with the total area of the convex hulls: 

SA-CH:  (3) 

The third, most conservative approach, fills the strip with the total area of the MBR of all items: 

SA-MBR:  (4) 

Figure II.D-3 illustrates the three simple approximation approaches compared to a nested solution by 

an example with 15 items: 

 

Figure II.D-3. Illustration of simple approximation approaches by a single CNP instance 
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The low prediction accuracy of the simple approximation approaches is illustrated by the three 

diagrams in Figure II.D-4. The diagrams show the approximations based on the test data set consisting 

of 17,640 CNP instances.  

 
Figure II.D-4. Predictions by simple approximation approaches 

The diagrams of Figure II.D-4 show that the simple approximation methods are not suitable for an 

accurate decision on the batch feasibility: SA-E and SA-CH most likely will underestimate the height 

and lead to infeasible batches, whereas the accuracy of SA-MBR decreases with increasing height. 

Further details, substantiating the low prediction accuracy of the simple approximation methods are 

listed in Table II.D-5 (section 4.3). The lack of accuracy of these methods manifest the need for more 

accurate techniques e.g., from machine learning. 

However, the information provided by the simple approximation methods should or can be used by 

the RMs. One way for integration is to use them as descriptive features (independent variables). 

Another way is to use one of them for defining a new response variable  by the difference between 

 and :  (  is used because it achieved the lowest RMSE of all simple 

approximation approaches). In this case, the RM is no longer predicting the height but the difference 

 to . Based on this labeling strategy, the following RMSE definition is to be used during training 

and hyper-parameter tuning: 

 (5) 

Note that a height value can easily be derived by . 
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3	 The	prediction	framework	

For the approximate anticipation, we propose the following framework to identify and apply the most 

suitable RM for the strip height prediction. Figure II.D-5 illustrates the framework’s main components, 

the flow of information and data, and highlights the relationship between the top-level and the base-

level decisions. 

To determine the most suitable RM ( ), CNP instances are required for training and validation. 

These instances, provided by the “Data acquisition” component, can be either acquired “real-world” 

instances or generated instances that optimally represent “real-world” instances (the latter aspect is 

described in detail in section 3.1).  

 
Figure II.D-5. Prediction framework 

The component “Feature preparation” is responsible for calculating the descriptive features of the CNP 

instances (cf., section 3.2.1) which in turn are the base of the following “Dimension reduction” (cf., 
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3.2.2). Note that these two steps must also be performed when applying  for the prediction of the 

height and therefore, should be very efficient.  

For CNP instances that are not yet solved, it is important to calculate the actual heights with the same 

CNP solution method with which the “real-world” instances are solved. If the solution method changes, 

all available instances must be solved again by this solution method. This is part of the component 

“CNP solving”. The resulting set of instances with features and labels (height ) are then split to 

training and test data sets.  

The component “RM selection” uses these data sets for the RM pre-selection, hyper-parameter tuning 

(HP tuning), training, validation, and testing (cf., 3.4). Thereby, we recommend to use two cycles of 

hyper-parameter tuning, training, and validation: In the first phase (I), all generally applicable RMs (cf., 

section 1.3) are evaluated by means of their RMSE. To reduce computational efforts, this evaluation is 

based on the half of the training data and a limited set of hyper-parameter settings. In the second 

phase (II), a selection of the n most promising RMs is investigated with a greater set of hyper-

parameter settings and the complete training data set. In this way, the complete potential of each 

promising RM can be exploited and the best RM is identified and trained in an efficient manner. 

Component “RM application” contains the final application of the most suitable prediction method, 

i.e., the RM with the lowest expected loss after phase II. 

3.1 Data	acquisition	and	CNP	instance	generation	

If there is no sufficient number of real-world CNP instances for training, validation, and testing of RMs 

available (not sufficient means that the number of samples is too small and thus, sampling noise is 

induced), instances can be generated (e.g., also proposed by Feng et al., 2003). To avoid sampling 

biases, these instances must be representative for the complete, diverse instance space of real-world 

instances. Therefore, we basically rely on the procedures and aspects discussed by Wang and Valenzela 

(2001), Wäscher et al. (2007), Silva et al. (2014), López-Camacho et al. (2014) and Neuenfeldt Júnior et 

al. (2019) for generating instances. In addition, we particularly follow the advice of Smith-Miles and 

Bowly (2015) to generate instances by controllable characteristics (attributes) to achieve a high 

instance dissimilarity and method discrimination (instances should elicit different behaviors; cf., Smith-

Miles et al., 2014). Note that the following instance generation procedure could be applied or easily 

adapted to any type of (complex) cutting and packing problems.  

Because the quality of the training data is substantial for applying machine learning techniques, we 

put great emphasize on the instance generation procedure and its description. 
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3.1.1 Basic	item	shapes	

In contrast to the generation of shapes for regular, rectangular, or (simple) irregular packing and 

cutting problems, the shapes of CNPs have a high degree of freedom and a completely automated 

generation of shapes would likely lead to unrealistic shapes and consequently, to unrealistic problem 

instances. To address this problem, we create shapes based on technical drawings from a sheet metal 

manufacturer operating several laser cutting machines (cf., Figure II.D-10 in Appendix A-1). In doing 

so, we take care that the generated instances represent the diversity of real-world shapes. Accordingly, 

the instances base on 50 elementary item shapes with three basic types : 10 shapes 

are convex (CV; regular and irregular), 20 shapes are concave (CA), and 20 shapes are complex (CX). 

These elementary shapes are then used to derive a comprehensive set of diverse item shapes by 

scaling according to the attributes item widths IW and item height IH (Figure II.D-6 illustrates the 

scaling for the shape depicted in Figure II.D-2).  

 
Figure II.D-6. Illustration of the shape scaling mechanism  

Based on the item width attribute specified by {S, M, L, XL}, the width of an item’s MBR is drawn 

from a uniform distribution with restrictions related to the reference strip width  scaled by 

parameter :  with , , , and  for S, M, 

L, and XL, respectively. 
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To reflect the approach of quadratic and narrow items proposed by several authors (cf., e.g., 

Terashima-Marín et al., 2010 or Silva et al., 2014), we use quadratic, half-narrow, and narrow items. 

Accordingly, the item height attribute  defines how heights are drawn from uniform 

distributions with restrictions related to the item’s width  scaled by parameter : 

 with , , and  for Q, HN, and N, respectively. 

For each of the 12 combinations of width and height attribute, we derive ten MBRs by drawing  and 

 ten times. Then, we scale each of the 50 elementary shapes to fit in the 120 MBRs. This leads to a 

shape repository of 6,000 different shapes that are separated into 36 categories according to their 

attributes type , width {S, M, L, XL}, and height : e.g., the 

category (CV, S, Q) contains 100 basic shapes or the category (CA, L, HN) contains 200 basic shapes. 

3.1.2 Instance	attributes	and	classes	

All generated instances are categorized by classes based on several attributes (generation 

parameters). First attribute of a generated instance  is the width  of the strip. Here, we use the 

attributes  with the corresponding widths of , , 

and . Together with the number of items  and the item related parameters explained 

in the following, the strip width determines if the strip (or nesting) aspect ratio is basically rather 

“quadratic” or “narrow” (on the importance of the strip aspect ratio cf., e.g., Neuenfeldt Júnior et al., 

2019). Item related attributes used in our generation procedure described in the following section are 

item type assortment ( ), item type heterogeneity ( ), item width assortment ( ), and item 

height assortment ( ). 

Before describing these attributes in detail, we introduce the mechanism of “random attribute 

selection with shuffling” that is used later on (cf., section 3.1.3). As pointed out by Silva et al. (2014), 

beta distributions with probability density function  should be preferred for instance 

generation because of their flexibility to model different probabilities depending on the parameters 

 and . Since we are going to use beta distributions for selecting specific instance attributes from 

discrete sets and too similar beta distributions would result in too similar instances (contradicting the 

request for diverse instances), we propose to use a set B of 81 beta distributions based on all 

combinations of  and  values from set . The resulting density functions 

are illustrated in Figure II.D-7. Then, we randomly select one beta distribution from this set. The drawn 

distribution is marked by . As the evaluation of the resulting attribute selection by these 

distributions has shown small undesired accumulations due to the law of large numbers (cf., graphs a) 

and c) of Figure II.D-11 in Appendix A-2), we enhance the attribute selection by a “shuffling” 

mechanism, i.e., the assignment of attributes to selection intervals (cf., Figure II.D-7) is randomized. A 
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randomly determined assignment of an attribute to a selection interval is called  in the 

following. The positive effect of this mechanism is illustrated by the graphs b) and d) in Figure II.D-11 

in Appendix A-2. Summarizing, the “random attribute selection with shuffling - ” mechanism 

has two randomly defined parameters:  and . 

The parameter item type assortment  defines the composition of different items with regard to 

the elementary shape types convex (CV), concave (CA), and complex (CX): {CV, CA, CX, CV+CA, 

CV+CX, CA+CX, CV+CA+CX}. If more than one type is specified, the selection is done by .  

 
Figure II.D-7. Visualization of selectable beta distributions 

To further improve instance dissimilarity, we use the parameter item type heterogeneity 

 and only consider randomly defined subsets of all elementary shapes (specified by the 

other parameters) for selection. Thereby, for WH (“weakly heterogeneous”) and SH (“strongly 

heterogeneous”), the number of elementary shapes in the subsets is drawn from a discrete uniform 

distribution restricted by  with  and , respectively. Here,  depicts 

the total number of elementary shapes per type (e.g.,  for convex shapes).  

The parameter item width assortment  defines the composition of items with different widths 

according to {S, M, L, XL}: S+M, M+L, L+XL, S+M+L, M+L+XL, S+M+L+XL}. If more than one 

type is specified, the selection is done by . 
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The item height assortment parameter  defines the composition of items with different heights 

according to : {Q, HN, N, Q+HN, Q+N, HN+N, Q+HN+N}. If more than one type is 

specified, the selection is done by . 

According to the attributes OW, , , , and , a total number of 1,764 instance classes are 

available. Each class can be specified by a tuple like (SW, CV+CX, WH, M+L+XL, Q+HN). Regarding the 

aspect of weakly and strongly heterogenous items (cf., Wäscher et al., 2007), we classify all instances 

with item type heterogeneity WH and an item width assortment from the subset {S+M, M+L, L+XL} to 

be weakly heterogenous and all others to be strongly heterogenous. 

3.1.3 Generation	Procedure	

The following pseudo-code illustrates the main course of action of the instance generation procedure: 

createInstances(  := number of instances per class, , , shapeRepository[ ]) 

For each {SW, MW, LW} 

 For each {CV, CA, CX, CV+CA, CV+CX, CA+CX, CV+CA+CX} 

  For each {WH, SH} 

   For each S+M, M+L, L+XL, S+M+L, M+L+XL, S+M+L+XL} 

    For each {Q, HN, N, Q+HN, Q+N, HN+N, Q+HN+N} 

     For i = 1 to  

       := ~U(B);  := ~U(B);  := ~U(B); 

       := getPerm(ITA);  

       := getPerm(IWA);  

       := getPerm(IHA); 

      S[ ] := getShapeSubsets (shapeRepository[ ], ITA, ITH, IWA, IHA) 

      n := ~  

      For j = 1 to n 

        := getTypeAttribute ( , , ITA); // e.g., CX 

        := getWidthAttribute ( , , IWA); // e.g., L 

        := getHeightAttribute ( , , IHA); // e.g., IH 

       item := selectItemFromSubset (S[ ], , , )  

       addItemToInstance (item); 

      Next 

   … 

Next 
 

IHA

ÎIH {Q, HN, N} ÎIHA

RBetaS

ITA ITH IWA IHA

cN
nlb nub
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ÎITH
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cN
R
ITAbeta R

IWAbeta R
IHAbeta

ITAattPerm

IWAattPerm

IHAattPerm

n nU(lb , ub )
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ITAbeta ITAattPerm

jw R
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jh
R
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Based on this procedure, we generate 50 instances ( ) for each of the 1,764 instance classes, 

leading to 88,200 CNP instances in total. The lower bound of the number of items per instance (

) is derived by the number of items used by instances from literature, whereas the upper 

bound ( ) is justified by the application case. 

3.2 Feature	preparation	

The descriptive features used by the RMs are based on aggregated item (shape) properties and further 

instance related characteristics. Thereby, we use properties and concepts known from literature and 

new ones, particularly developed to characterize CNPs. Feature selection and combination are part of 

the feature engineering that has an important influence on the prediction performance of RMs (e.g., 

on the one hand, too less features can lead to underfitting but, on the other hand, irrelevant features 

can lead to overfitting; these aspects will be discussed in more detail in section 3.2.2).  

Instead of numerically descriptive features used by our RMs, it would be generally possible to use the 

information how many items with a specific shape are part of an CNP instance: e.g., the instance 

contains eight items with shape A, 34 items with shape B, 12 items with shape C, and so on. This kind 

of feature preparation could be very fruitful if item shapes are not varying but constant because using 

this kind of features, other prediction methods, like bag-of-words models as used in Naive Bayes spam 

filtering, could be used. Unfortunately, the number of different shapes is anything but constant in most 

companies and particularly in most sheet metal manufacturing companies. In this case, whenever a 

new shape has to be cut or packed, new instances for training, validation, and testing would have to 

be available or generated. As this is not an adequate approach for real-world applications, we use 

descriptive numerical features as these provide a higher degree of flexibility (regarding new item 

shapes). 

3.2.1 Feature	calculation	

Besides the basic properties described in section 2.1, further item properties are used to define the 

descriptive features  of a CNP instance i. Some of these properties are obvious, some of them are 

derived from literature (Wang and Valenzela, 2001, López-Camacho et al., 2013b, López-Camacho et 

al., 2014, and Neuenfeldt Júnior et al., 2018), and some are newly defined to particularly express highly 

irregular shapes. The complete set of 43 item properties is listed in Table II.D-7 in Appendix A-3. Based 

on these item properties, we use the functions SUM, MED (median), MIN, MAX, VAR (variance), Q1 

(first quartile), Q3 (third quartile), P10 (10% percentile), P90 (90% percentile), and SKEW (Fisher-

Pearson coefficient of skewness; cf., Zwillinger and Kokoska, 2000) to determine aggregated instance 

related features. Note that mean values are omitted because they are directly related to SUM. In 

contrast to Neuenfeldt Júnior et al. (2019), we are not using the ratios Q3/Q1 and P90/P10 but use the 

=cN 50

=nlb 50

=nub 150

qi
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“unrelated” values and leave the combination of both to the RM. Besides these 430 ( ) 

aggregated features (named ,  etc. in the following), additional instance related 

features are listed in Table II.D-1 (features marked by an asterisk * originate from López-Camacho et 

al., 2013b). 

Table II.D-1: Additional instance features 

 

The number of totally 452 features ( ) seems to be quite large and can cause difficulties for 

some RMs. To that, we use dimension reduction as described in the following section. In addition, we 

define two sets containing different instance features to evaluate the influence of features on the 

prediction quality and computational efforts. The first set contains the total number of available 

×43 10

jSUM(h ) jMED(h )

× +43 10 22

Feature Description 

 Total number of items 

 Width of the strip 

 Predicted height based on the area of the enclosing polygon 

 Predicted height based on the area of the enclosing polygon’s convex hull 

 Predicted height based on the area of the enclosing polygon’s MBR 

 
Number of different item categories; two items have a different category if 
they are not completely identical regarding the combination of the attributes 

, {S, M, L, XL}, and . 

  Minimum number of items regarding all item categories 

  Maximum number of items regarding all item categories 

  Mean of the number of items regarding all item categories 

  Median of the number of items regarding all item categories 

  Variance of the number of items regarding all item categories 

  Skewness of the number of items regarding all item categories 

  First quartile of the number of items regarding all item categories 

  Third quartile of the number of items regarding all item categories 

  10% percentile of the number of items regarding all item categories 

  90% percentile of the number of items regarding all item categories 

 Number of large items ( ); * 

 Number of small items ( ); * 

 Number of items with a high rectangularity ( ); * 

 Number of items with a low rectangularity ( ); * 

 Number of non-convex items (items with ) 

 Number of complex items (items with ) 

n

W
EĤ
CHĤ

MBRĤ

Dn
ÎBT {CV, CA, CX} ÎIW ÎIH {Q, HN, N}

#IpCMIN
#IpCMAX
#IpCMEAN

#IpCMED
#IpCVAR

#IpCSKEW
#IpCQ1
#IpCQ3
#IpCP10
#IpCP90

LIn ³ ×jw 0.75 W
SIn £ ×jw 0.25 W
HRn >E

jr 0.9
LRn £E

jr 0.5
NCONn >XIA

jn 0
COMPn >jn 1
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instance features (TIF), whereas the second set only contains a reduced number of instance features 

(RIF). This second set RIF does not contain features having an average-case computation complexity 

higher than O(n), e.g., O(n log n): MED, Q1, Q3, P10, P90, and SKEW. Accordingly, feature set RIF only 

contains 188 features ( ). Note that because item properties only have to be computed once, 

their amount influences computation efficiency only minimally. 

As many RMs require or perform better on scaled feature values, we use a normalization (min-max 

scaling) between 0.0 and 1.0 for scaling all features. 

3.2.2 Dimension	reduction	

At first sight, a large number of descriptive features seems to be favorable for characterizing an 

instance in the best possible way and thus, increase prediction accuracy. This is indeed the case if these 

features are actually relevant for the prediction. If features are not relevant, the prediction accuracy 

can get worse. This is because such “noise” features, while increasing the dimensionality, exacerbating 

the risk of overfitting and adding bias (cf., e.g., James et al., 2013). Even if features are relevant, the 

variance incurred in determining their coefficients may compensate the benefits that they bring. 

Furthermore, the increased dimensionality leads to the need for larger data sets due to the curse of 

dimensionality (cf., e.g., Géron, 2019). To handle the tradeoff between benefits and drawbacks of more 

or less descriptive features, dimension reduction methods can be very helpful and therefore, are 

applied and analyzed in detail for the prediction task at hand. Another important aspect to be 

considered regarding this tradeoff is that dimension reduction can speed up the training of RMs. 

One of the most popular dimension reduction methods is the Principal Component Analysis (PCA) 

belonging to the group of unsupervised machine learning methods. Besides dimension reduction, PCA 

is used as clustering method (cf., e.g., Anzanello and Fogliatto, 2011), in the context of face recognition 

and image compression (cf., e.g., Bishop, 2006), and for the visualization and interpretation of high 

dimensional data (cf., e.g., López-Camacho et al., 2013b). Within the prediction framework, PCA is used 

to convert a set of features into a set of uncorrelated descriptive variables (called “principal 

components”) by retaining most of the variance of the original features. Main parameter for the PCA 

is the number of resulting components. Instead of defining a fixed number, we use the approach to 

specify a minimum value for the training data set’s variance to be preserved (e.g., PCA(98%); as 

proposed by Géron, 2019).  

Of course, also other dimension reduction methods like “Kernel PCA”, “Locally Linear Embedding”, or 

“Linear and Quadratic Discriminant Analysis” could be applied. 

× +43 4 16
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3.3 CNP	solving	

Because the RM is used to predict strip heights calculated with one specific CNP solution method, this 

solution method, that is not only used for solving training instances but also applied on the real CNP 

instances resulting from the superior scheduling task, must be determined. The CNP solution method 

used in this contribution is the open source nesting software “deepnest” (https://deepnest.io) that 

bases on “SVGnest” (https://svgnest.com) which in turn bases on the works of Kendall (2000), Burke 

et al. (2007), and López-Camacho et al. (2013a). All used sources and libraries are available at 

github.com. For solving the CNP instances, we used the following parameters: population size = 10, 

mutation rate = 10, maximum computation time = 180 seconds, optimization ratio = 0, and number of 

threads = 2. 

3.4 RM	selection	

The determination of the most appropriate RM, its parameters, and hyper-parameters starts with the 

separation of the available data into training data and test data. Only the training data is used for the 

next steps of hyper-parameter tuning, model training, and model validation. Final result of these steps 

is the RM achieving the lowest RMSE with regard to the training data. 

3.4.1 Data	separation:	training	and	test	data	

As it is common practice to use at least 20% of the available data for testing, we follow this approach 

and separate our 88,200 CNP instances into a training data set (T) consisting of 70,560 instances and a 

test data set (D) of 17,640 instances. Because we use an integrated training and validation method (cf., 

section 3.4.3), an explicit validation set is not required. To have a greatest possible diversity in the test 

data set, we randomly select 10 from each of the 1,764 instance classes for the test data set and put 

the remaining instances into the training data set. This results in a stratified sampling.  

3.4.2 RM	pre-selection	

Because we have only very limited information about previous RM applications related to the 

prediction task at hand (only Neuenfeldt Júnior et al., 2019 address a similar problem), we have pre-

selected a relatively large number of 18 RMs to be evaluated in the first phase of the RM selection 

process (the pre-selection is based on the different groups of RMs described in section 3): Multiple 

linear regression (MLR), Ridge regression (RR), Lasso regression (LR), Elastic net (EN), LARS Lasso (LL), 

Polynomial regression (PR; with the best tuned linear model), Stochastic gradient descent (SGD), K-

nearest neighbors regression (KNN), Kernel ridge regression (KRR), Support vector regression (SVR), 

Decision tree – CART (CART), Bagging regression trees (BRT; uses one of the base estimators PR, SGD, 

KNN, KRR, SVR, or CART with best hyperparameters), Random forest regressor (RF), Extremely 

randomized trees (ERT), AdaBoost with R2 (ABR2; uses one of the base estimators PR, SGD, KNN, KRR, 
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SVR, or CART with best hyperparameters), Gradient boosted decision trees (GBDT), Stochastic gradient 

boosted decision trees (SGBDT), and Neural networks (NN). Because some of the RMs (PR, BRT, and 

ABR2) base on other RMs, a corresponding sequence of experiments must be respected. 

3.4.3 Hyper-parameter	tuning,	training,	and	validation	

Because hyper-parameter tuning, training, and validation are strongly related to each other, these 

aspects are explained together. 

To determine the best hyper-parameter setting (HP-setting) of a RM, approaches like manual search, 

grid search, or randomized search are common. In manual search, hyper-parameter values are set 

manually, in grid search, given value vectors for each hyper-parameter are combined to a full factorial 

analysis, and in randomized search random combinations of the values given by predefined vectors for 

each hyper-parameter are used. In all three cases, one RM is iteratively trained and validated to 

determine the best hyper-parameter setting. 

The training and validation of a RM with a specific hyper-parameter setting is performed based on the 

cross validation technique (cf., e.g., Bishop, 1995 or Goodfellow et al., 2017). This technique is 

commonly used by learning methods to achieve a good generalization, to compare the performance 

of several RMs (cf., Wong, 2015), and to estimate prediction errors (cf., Fushiki, 2011). Therefore, for 

determining the most suitable RM and its parameters, we use grid search and a 5-fold cross-validation 

with shuffling. Shuffling means that the instances in the training data set are randomly reordered 

before they are split into the different folds. To reduce computational efforts, we restrict the number 

of folds to five and do not perform any repetitions as we can assume that our training data set is large 

enough (35,280 instances in the first phase and 70,560 in the second phase; for discussions about the 

usefulness of a higher number of folds and repetitions cf., e.g., Bengio and Grandvalet, 2004 or Baets 

et al., 2012).  

The result of the 5-fold cross-validation of a RM is the mean validation RMSE of all five folds. This mean 

validation RMSE is the major criteria when determining the most suitable RMs in the first phase and 

the best RM in the second phase. Further criteria are the mean computation times (regarding all folds 

and the best hyper-parameter setting) and the coefficient of determination (R2). 

3.5 Testing	and	RM	application	(prediction)	

To evaluate whether a RM generalizes well on new CNP problem instances, we follow the common 

approach and apply the best RM on the test data set (containing instances the RM has never “seen” 

before) to determine its expected loss.  
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The best (most accurate) RM is finally used for the prediction of the strip height, i.e., this trained RM 

provides a highly efficient anticipation function for the superior scheduling problem to anticipate batch 

feasibility (and quality). 

4	 Evaluation	

The accuracy of a machine learning technique does not only depend on its basic capabilities (e.g., the 

possibility to model nonlinear relations) but also on the engineered features, the dimension reduction 

(parameters), and the labeling strategy. Accordingly, we investigate the influence of the two feature 

sets RIF and TIF combined with three parameter settings: PCA(98%) combined with the original 

absolute height label “AbsLab” and the difference label “DiffLab” (as used in equation (5)). A third 

setting, indicated by “SimApp”, uses PCA(90%) and the additional information of the simple height 

approximations as unscaled features (to compensate the reduced number of principal components) 

combined with the absolute height label. 

The proposed prediction framework is implemented in Python 3.7, instance data, training and test 

results are persisted in a PostgreSQL database, and statistical analyses are performed by RStudio. For 

implementing the various regression methods, we use the “scikit-learn” package (Pedregosa et al., 

2011) despite for SGBDT and NN. For SGBDT, we use “XGBoost” (xgboost.ai) and for NN, we use “Keras” 

(keras.io) and “TensorFlow” (www.tensorflow.org). To provide the possibility to reproduce our results, 

an executable Jupyter-Notebook and the complete set of instance data with instance attributes, 

features, labels, simple approximations, and the results of our best RM method are provided within 

the digital supplementary material. Within the supplementary material we also list the evaluated 

hyper-parameter settings and indicate the best setting of each RM. 

All experiments are executed on workstations with Intel Xeon 3GHz CPUs and 64 GB RAM. 

4.1 Results	of	RM	selection	phase	I 

In phase I, we evaluate the 18 pre-selected RMs in terms of their mean validation RMSE and with 

regard to the different settings previously described. Besides the mean validation RMSEs, Table II.D-2 

additionally depicts the number of tuned hyper-parameters (“Num. HP”) and the number of 

investigated HP-settings (“Num. HP-settings”) for each RM. Note that PR(EN) names Polynomial 

regression combined with tuned Elastic net, BRT(PR(EN)) names Bagging regression trees with tuned 

PR(EN), and so on. Unfortunately, not all RMs have been able to produce reasonable results and the 

return codes have not been meaningful in all cases. Thus, in Table II.D-2, abbreviation OOM indicates 

“Out-of-Memory” errors and UKE indicate “unknown errors”. 
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The results in Table II.D-2 show that the calculation of all defined instance features (TIF) justifies the 

additional computational efforts by improved predictions. Particularly when considering the small 

additional efforts: the RIF instance feature set can be calculated in 0.09 seconds on average and the 

TIF instance feature set can be calculated in 0.39 seconds on average. However, if computation times 

are very critical also the RIF set in combination with NN, PCA(98%), and “DiffLab” is an opportunity. 

The results also show that linear models like MLR or LL are underfitting and thus, are not suitable for 

the height prediction task. Furthermore, the results clearly indicate the benefit of using the 

information provided by the simple approximation approaches, especially if  is used by the 

“DiffLab” label (cf., equation (5)).  

Table II.D-2: RMSEs with regard to RM, feature set, PCA variance, and labeling 

 
 

The most promising RMs after this first phase are marked bold in Table II.D-2 and analyzed in detail in 

Table II.D-3. Besides the RMSE, we report the explained variance (R2) and the mean computation time 

(“Mean CT”; mean with regard to the best HP-setting and the five folds including training and 

validation). 

MBR
iĤ

PCA 98% - 
AbsLab

PCA 98% - 
DiffLab

PCA 90% - 
SimApp

PCA 98% - 
AbsLab

PCA 98% - 
DiffLab

PCA 90% - 
SimApp

MLR (0, 1) 6786,6 822,3 788,3 6600,8 750,8 767,5
RR (2, 120) 6786,6 822,3 788,3 6600,7 750,8 767,5
LR (3, 240) 6786,6 822,3 788,3 6600,7 750,8 767,5
EN (4, 2160) 6786,6 822,3 788,3 6600,7 750,8 767,5
LL (2, 120) 6786,6 822,3 788,3 6600,7 750,8 767,5
PR(EN) (5, 1080) 753,1 464,8 443,5 432,3 389,7 413,6
SGD (4, 3240) 6818,9 828,2 UKE 6641,8 758,7 UKE
KNN (3, 48) 3550,6 805,8 628,3 4159,0 800,1 628,8
KRR (1-4, 1140) OOM OOM OOM OOM OOM OOM
SVR (3-5, 390) 2447,9 772,0 UKE OOM OOM OOM
CART (5, 256) 2604,1 840,8 727,6 2505,4 826,8 745,5
BRT (PR(EN)) (2, 8) 751,9 462,9 442,8 430,1 386,4 410,6
RF (6, 1024) 1684,6 684,1 558,9 1725,4 642,8 550,1
ERT (6, 1024) 1612,8 664,0 541,3 1548,1 609,9 526,8
ABR2 (PR(EN)) (2, 10) 752,2 463,6 442,5 429,8 386,8 411,1
GBDT (6, 1536) 1399,8 664,0 553,8 1390,1 577,0 536,8
SGBDT (7, 4608) 1244,0 590,5 550,8 1280,7 552,6 528,3
NN (4, 225) 424,9 389,5 732,4 361,7 341,7 725,4

RM 
(Num. HP, Num. HP-
settings)

RIF TIF
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Table II.D-3: Key figures of most promising RMs in phase I 
(all with TIF, PCA 98%, and “DiffLab”) 

 

Because the solution quality of ABR2(PR(EN)) is similar to that of the other most promising RMs but its 

mean computation is remarkably higher, we decided to use PR(EN), BRT(PR(EN)), and NN (with TIF, 

PCA 98%, and “DiffLab”) in RM selection phase II. 

The results of the RM selection phase I also show the benefit of the proposed prediction framework 

that emphasizes the evaluation of a broad range of RMs, different feature sets, different labeling 

strategies, and dimension reduction parameters in order to identify the most suitable ones.   

4.2 Results	of	RM	selection	phase	II	

In phase II, we concentrate on the three RMs PR(EN), BRT(PR(EN)), and NN and the two configurations 

with RIF and TIF combined with PCA(98%) and “DiffLab”. Here, we use the complete training data set 

with 70,560 CNP instances. Table II.D-4 depicts the key figures with regard to RM and feature set, and 

additionally the percentage changes compared to phase I. 

Table II.D-4: Key figures of most promising RMs in phase II (with PCA(98%) and “DiffLab”) 

 

As we can see by the percentage changes of the mean computation times, computational efforts 

remarkably increase (particularly for NN) whereas prediction accuracy and explained variance are only 

slightly improved (despite NN with RIF where we have a larger improvement). Note that remarkably 

increase of the mean computation time of the NN in phase II can be traced back not only to the larger 

number of CNP instances in the training set but also to the different best HP-settings: in phase I, we 

RM  RMSE R2 Mean CT [seconds] 

PR(EN) 389.7 0.8813 115.96 
BRT(PR(EN)) 386.4 0.8833 6,256.07 

ABR2(PR(EN)) 386.8 0.8831 45,182.49 
NN 341.7 0.9088 962.95 

RM  
RIF TIF 

RMSE R2 mean CT 
[seconds] 

RMSE R2 mean CT 
[seconds] 

PR(EN) 
471.58 
(1.46%) 

0.8383 
(0.90%) 

42.19 
(72.13%) 

383.96 
(-1.47%) 

0.8926 
(1.28%) 

240.40 
(107.31%) 

BRT(PR(EN))  470.84 
(1.72%) 

0.8389 
(0.81%) 

3,284.89 
(149.90%) 

383.22 
(-0.82%) 

0.8930 
(1.10%) 

17,082.95 
(173.06%) 

NN  374.96 
(-3.73%) 

0.8978 
(1.88%) 

6,135.63 
(191.26%) 

339.17 
(-0.74%) 

0.9162 
(0.81%) 

56,569.90 
(5,774.65%) 
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have two hidden layers with 512 and 64 neurons and 200 epochs and in phase II we have two hidden 

layers with 1024 and 1024 neurons and 500 epochs. 

Summarizing the RM selection process, artificial neural networks (with two hidden layers each 

containing 1024 nodes, a dropout rate of 0.3 for each node in the hidden layers and a L2 weight 

regularization rate of 0.001 for 500 epochs) are identified to provide the most accurate predictions.  

4.3 Testing	results	

The final testing of the best RM (NN) is used to estimate the overall expected loss of the prediction. 

The standard test of machine learning techniques to estimate  bases on the test data set 

separated from the complete data set before starting training and validation (cf., section 3.4.1). In 

Table II.D-5, the results of the testing are depicted with regard to the complete test set D and with 

regard to the different instance classes (in the last four rows, the number in brackets indicates the 

number of instances).   

PL(X, f )
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Table II.D-5. Testing results 

 

The results of Table II.D-5 clearly show the remarkable benefit of using NN as anticipation function 

compared to the simple approximation methods: For any case of instance characteristics, the expected 

loss achieved with NN is much lower compared to SA-E, SA-CH, and, SA-MBR. However, there are some 

CNP instance characteristics that make predictions more difficult: e.g., instances with a small strip 

width (OW=SW), instances where items with a large or extra-large width constitute the majority of 

items (IWA=L+XL or =M+L+XL), or instances where items are all more or less quadratic (IHA=Q). 

   R2 
 

 SA
-E

 

SA
-C

H
 

SA
-M

BR
 

N
N

 

SA
- E

 

SA
-C

H
 

SA
-M

BR
 

N
N

 

Testing (D) 3,688.03 2,474.07 1,230.48 327.89 0.8286 0.9229 0.9809 0.9986 

OW SW  5,918.05 4,062.95 1,931.17 509.31 0.7797 0.8962 0.9765 0.9984 

MW 2,148.95 1,218.10 812.13 217.55 0.8435 0.9497 0.9777 0.9984 

LW 1,078.64 609.66 391.47 125.73 0.8430 0.9498 0.9793 0.9979 
ITA CV 3129.45 3129.45 1249.70 275.33 0.8760 0.8760 0.9802 0.9990 

CA 4601.00 1611.84 1146.52 350.19 0.6833 0.9611 0.9803 0.9982 
CX 3149.15 2502.35 1586.27 357.52 0.8932 0.9326 0.9729 0.9986 

CV+CA 3977.66 2424.98 1051.82 303.41 0.7877 0.9211 0.9852 0.9988 
CV+CX 3119.24 2792.69 1251.61 334.86 0.8843 0.9072 0.9814 0.9987 
CA+CX 3949.07 2090.48 1147.13 335.36 0.8030 0.9448 0.9834 0.9986 

CV+CA+CX 3631.07 2478.72 1103.30 331.17 0.8319 0.9217 0.9845 0.9986 
ITH WH 3,615.56 2,419.76 1,292.59 356.02 0.8312 0.9244 0.9784 0.9984 

SH 3,759.10 2,527.21 1,165.05 297.11 0.8260 0.9214 0.9833 0.9989 
IWA S+M 451.00 270.59 169.20 77.85 0.8356 0.9408 0.9769 0.9951 

M+L 2021.32 1208.99 724.60 225.19 0.8231 0.9367 0.9773 0.9978 
L+XL 6644.81 4589.43 2186.82 506.77 0.7525 0.8819 0.9732 0.9986 

S+M+L 1303.67 752.53 507.64 170.35 0.8440 0.9480 0.9763 0.9973 
M+L+XL 4310.76 2773.85 1415.28 402.00 0.7944 0.9149 0.9778 0.9982 

S+M+L+XL 3589.52 2422.33 1219.77 375.32 0.8140 0.9153 0.9785 0.9980 
IHA Q 6352.49 4394.10 2125.28 545.00 0.7792 0.8943 0.9753 0.9984 

HN 2813.26 1737.32 865.29 249.37 0.8066 0.9263 0.9817 0.9985 
N 1108.51 727.32 258.17 133.20 0.7966 0.9124 0.9890 0.9971 

Q+HN 4473.39 2957.50 1504.45 360.63 0.8178 0.9204 0.9794 0.9988 
Q+N 3608.03 2460.09 1232.61 346.02 0.8350 0.9233 0.9807 0.9985 

HN+N 1920.72 1150.45 530.59 182.41 0.8270 0.9379 0.9868 0.9984 
Q+HN+N 2999.24 1967.05 1096.40 304.28 0.8451 0.9334 0.9793 0.9984 

50≤ n ≤75 (4547) 2215.57 1429.96 725.22 221.77 0.8221 0.9259 0.9809 0.9982 
75< n ≤100 (4396) 3145.23 2032.87 1000.57 289.51 0.8137 0.9222 0.9811 0.9984 

100< n ≤125 (4312) 3967.05 2695.10 1331.19 353.93 0.8238 0.9187 0.9802 0.9986 
125< n ≤150 (4385) 4922.76 3349.28 1673.09 417.48 0.8208 0.9170 0.9793 0.9987 

( , )PLX f

Pf
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Furthermore, the results also show that prediction accuracy decreases with increasing number of 

items. 

 

Figure II.D-8. Height predictions by the neural network (test data set) 

Summarizing the testing results, the prediction accuracy of the NN is remarkably good (with a mean 

expected loss – RMSE – of 327.89), particularly when comparing the predictions of the NN illustrated 

in Figure II.D-8 to the simple approximations methods illustrated by the diagrams in Figure II.D-4 

(section 2.2). Note that the mean total response time to predict the height of a CNP instance is 

sufficiently small: 440.81ms (instance feature calculation: 397.56ms; feature scaling: 0.10ms; PCA 

computation: 0.09ms; NN prediction: 43.06ms).  

Against the background of the hierarchical planning model and the importance of fast anticipation, 

prediction accuracy could be traded for a lower response time. For that, the RIF features achieve a 

mean expected loss of 368.46 and a mean total response time of 140.13ms (instance feature 

calculation: 99.91ms; feature scaling: 0.09ms; PCA computation: 0.09ms; NN prediction: 40.04ms).  

5	 Conclusions	

In this paper, we proposed using machine learning techniques for the approximate anticipation of 

base-level reactions instead of solving CNPs. Main question yet to be answered is the suitability of our 

approximate anticipation function to substitute the solving of CNPs. Remember, during solving the 

superior serial-batch scheduling problem, the predicted height is used to estimate whether or not a 

created batch is feasible, i.e., a batch is feasible if the predicted height is smaller than the maximum 

height of any currently available metal slide ( ). In this context, we must be aware of two cases: 
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false negative feasibility decisions and false positive feasibility decisions (the two other cases, i.e., true 

positive and true negative, will not cause any problems; cf., Table II.D-6). False negative feasibility 

decisions mean that the height is overestimated and thus, a batch is declared to be infeasible although 

it would have been feasible. In this case, we might skip a good, or even the optimum, scheduling 

solution (i.e., scheduling solution quality is affected). False positive feasibility decisions mean that the 

height is underestimated and thus, a batch is declared to be feasible although it is infeasible. In this 

case, the most critical one, not only solution quality but solution feasibility is affected and the 

scheduling solution might be infeasible.  

Table II.D-6. Error type distinction 

 

Because we do not have any information about actual available metal slides, we show the benefits of 

our approach by the following line of arguments. In Figure II.D-9, a histogram depicts 12 classes of 

relative percentage errors. Thereby, negative errors indicate overestimations and positive errors 

underestimations. Assuming that false negative decisions are bearable, all overestimations (58.5%) are 

acceptable. Furthermore, if we can assume that underestimations below or equal 5% only lead to a 

negligible share of false positive conclusions, in total 93.5% of the overall decisions would be 

implementable. 

 
Figure II.D-9. Histogram of relative percentage errors (test data set) 
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Relaxing this assumption to underestimations below or equal 10%, this value even increases to 98.9%. 

6	 Summary	and	outlook	

As the conclusions in the previous section show, the approach to use machine learning techniques as 

approximate anticipation function used to substitute the solving of CNPs is appropriate and suitable. 

Furthermore, the conclusions underscore the importance of a most accurate height prediction and the 

testing results, on which the conclusions are based on, demonstrate that the proposed prediction 

framework is capable to identify, train, and validate the best machine learning technique for the 

univariate multiple regression task at hand. Regarding the prediction framework, special emphasis has 

been spent on the completely new data generation procedure and the feature engineering. Potential 

to further improve prediction accuracy is given for instance by applying deeper neural network 

architectures or using machine learning stack models. Additionally, providing prediction or confidence 

intervals quantifying the uncertainty of a prediction would be helpful for the batch feasibility decision. 

This information could be used to get a better control over false positive conclusions. 

Besides the application case sheet metal manufacturing described in section 2, several other areas of 

application can be found. For example, the emerging area of additive manufacturing constitutes a very 

similar decision environment: top-level batching and scheduling decisions combined with three-

dimensional packing decisions. Here, depending on the additive manufacturing technology, not only 

the feasibility of a batch is of interest but the processing (build) time of a batch depends on the packing 

decision (e.g., on the build orientation or on the maximum height of the batch; cf., Griffiths et al., 2019 

and Zhang et al., 2020, respectively).  

However, the application of machine learning techniques as approximate anticipation function is not 

restricted to production scheduling but applicable to many other hierarchical decision environments. 
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7	 Appendix	

A-1:	Elementary	item	shapes	

 

Figure II.D-10. Elementary item shapes (scaled 1:1) 
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A-2:	Visualization	of	discrete	parameter	selection	

 
Figure II.D-11: Parameter selection based on the beta distributions  

without and with shuffling 

For the illustration of the shuffling mechanism in Figure II.D-11, a simulation with 1,000 iterations was 

used. In each iteration, one beta distribution (out of the set of 81) was drawn and based on this beta 

distribution, 1,000 attributes have been drawn out of three or four classes, respectively. Accordingly, 

each of the four diagrams in Figure II.D-11 illustrates the distribution of 1,000,000 randomly selected 

attributes. 
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A-3:	List	of	item	properties	

Table II.D-7: Item properties 

Property Description 

 Height of the MBR 

 Width of the MBR 

 Aspect ratio of the dimensions of the MBR 

 Ratio between the height and the diagonal of the MBR 

 Ratio between the width and the diagonal of the MBR 

 Area of the enclosing polygon (including areas of the difference 
polygons) 

 Area of the convex hull 

 Area of the MBR 

 Filling degree of the shape with  depicting the total area 

of all difference polygons (  depicting the area of a difference polygon 

; cf., white area in Figure II.D-2) 

 Filling degree of the MBR with  depicting the total occupied 

area 

 Elementary rectangularity based on MBR (cf., López-Camacho et al., 
2013b; for alternative measures of rectangularity cf., e.g., Rosin, 1999) 

 Rectangularity of the convex hull 

 Total number of vertices (edges) of the enclosing polygon 

 Total length of the enclosing polygon’s edges 

 Mean absolute length of the enclosing polygon’s edges 

 Mean relative length of the enclosing polygon’s edges 

 Median of the absolute lengths of the enclosing polygon’s edges 

 Median of the relative lengths of the enclosing polygon’s edges 

 Variance of the absolute lengths of the enclosing polygon’s edges 
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 Variance of the relative lengths of the enclosing polygon’s edges 

 Minimum absolute length of the enclosing polygon’s edges 

 Minimum relative length of the enclosing polygon’s edges 

 Maximum absolute length of the enclosing polygon’s edges 

 Maximum relative length of the enclosing polygon’s edges 

 Total cutting length, with  depicting the length of the perimeter of a 

difference polygon . 

 Number of “right” interior angles (between 85° and 95°) 

  Relative number of “right” interior angles 

 Number of reflex interior angles (angles between 180° and 360°); if 
, the item has an irregular shape 

 Relative number of reflex interior angles 

 Total number of polygons per item; if , the item has a complex 

shape 

 Maximum degree of concavity (cf., López-Camacho et al., 2013b and 
Wang, 1998) 

 Total degree of concavity measured by the sum of concavity of all reflex 
interior angles (e.g., to reflect star-shaped items) 

 Euclidean distance between the centroid of the enclosing polygon 

(defined by the means of the x and y coordinates of all vertices in ) 

and the centroid of the MBR  (cf., Figure II.D-2) 

 Mean absolute distance between the enclosing polygon’s vertices and 
centroid  (with  depicting the set of all distances between the 

enclosing polygon’s edges and ) 

 Mean relative distance between the enclosing polygon’s vertices and 
the centroid   

 Median of absolute centroid distances 

 Median of relative centroid distances 

 Variance of absolute centroid distances 

 Variance of relative centroid distances 
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 Minimum of absolute centroid distances 

 Minimum of relative centroid distances 

 Maximum of absolute centroid distances 

 Maximum of relative centroid distances 
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III.A Added	value	and	findings	

This doctoral dissertation advances the research field of ECS design for manufacturing companies with 

special consideration of the concept of hierarchical planning. In the following section the most 

important added value and findings are presented. 

The added value of Ganschinietz (C1) to the research field is the answer to the first research question 

RQ110 with the concept centric ECS design framework (ECSDF). The ECSDF unifies the understanding 

of important planning factors crucial for ECS design and forms an easily accessible platform for 

discussion and collaboration. Furthermore, from a practical perspective, the framework supports the 

analysis and structuring of individual planning problems and provides a knowledge base for decision 

makers for identifying relevant design approaches. From a scientific perspective, Ganschinietz (C1) 

provides the structure for an empirical literature analysis to disclose important research gaps.  

Ganschinietz et al. (C2) answer RQ211and extent the ECSDF for the analytical categories “Objective 

system”, “Solution method”, and “Application case”. They apply the extended ECSDF on findings of a 

systematic literature search and structure the research field by categorizing 120 scientific articles. 

Within this categorization process also ECS design approaches with similar assumptions as for 

manufacturing companies were categorized which shows a more general validity of the ECSDF. Based 

on the categorized articles the following intensive analysis reveals deficiencies in research concerning 

ECS design approaches that are flexible regarding the FES supply, AES type, and ECS type. Furthermore, 

research gaps regarding the operational CU states, CU state transitions, partial load behavior, load 

transitions, and related conversion efficiencies are pointed out. Concerning the comparability of 

diverse ECS design approaches, the analysis exposes two problems: First, the lack of suitable 

benchmark data sets, and second, the broad variety of the used evaluation criteria and underlying time 

horizons. In addition to the deficiencies in research, there are some points already covered in literature 

that need to be considered and discussed in more detail: A more thorough explanation of the data 

used for optimization, the necessity of a more detailed AES demand aggregation level (e.g., minutes 

instead of hours), and sensitivity to ECS performance degradation over time.  

Gahm et al. (C3) add to literature by addressing many of the research gaps identified in Ganschinietz 

et al. (C2) and by answering RQ312, RQ413, and RQ514. They develop an AES type independent ECS 

design approach (RQ3) which proves to be robust to AES demand uncertainties and performance 

 
10RQ1: How can the research area of ECS design for manufacturing companies be structured and which planning factors are 
crucial for an adequate ECS design? 
11RQ2: Which individual planning problems of ECS design have been addressed thus far or reveal a deficiency in research? 
12RQ3: How can different complex and individual planning problems of ECS design be addressed to increase energy efficiency? 
13RQ4: How do the most important planning factors influence ECS design and ECS energy efficiency for manufacturing 
company? 
14RQ5: How can the concept of hierarchical planning be incorporated during ECS design? 
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degradation over time. Gahm et al. (C3) are one of the first in literature who take the relationship of 

the ECS and the PS into account. This flexible ECS design approach incorporates the concept of 

hierarchical planning by the anticipation of different base-level production scheduling objectives and 

aspects of the ECS operation during the design (RQ5). As already stated above, the literature analysis 

of Ganschinietz et al. (C2) reveals the current lack of suitable benchmark data sets in literature to test 

and compare different ECS design approaches. Consequently, Gahm et al. (C3) define an experimental 

setup and describe the generation of the underlying data used for optimization in detail. In line with 

this setup, they provide generated AES demands from simulative scheduling in the supplementary 

material. Besides that, Gahm et al. (C3) provide an experimental analysis which investigates the 

influence of different scheduling objectives, different technical CU parameters, and part-load 

efficiency modelling approaches on the ECS design and ECS energy efficiency for different company 

types (RQ4). The analysis shows the advantage of a most accurate modelling of CU partial load behavior 

combined with nonlinear partial load efficiencies. Compared to linear modelling approaches, FES 

savings up to 3.5% can be achieved. These savings and the importance of the accurate modelling of 

partial load behavior can be explained by the high share of partial load operation due to the highly 

dynamic AES demands in manufacturing companies. Another essential finding is the identification of 

the CU`s nominal load efficiency, the operational ranges, and the boundary efficiencies as influencing 

parameters for the ECS design. In addition, the ability of manufacturing companies to directly influence 

the AES demand per time unit through production scheduling is shown to influence the energy 

efficiency of an ECS. The final conclusion from the experimental analysis is that, depending on a 

manufacturing company’s characteristics, an individual combination of a scheduling objective and CU 

parameters is best suited to maximize energy efficiency.  

Gahm et al. (C4) test machine learning techniques as new anticipation functions for the approximation 

of the base-level reactions, exemplary on a serial-batch scheduling problem with an integrated 

subordinate complex nesting problem. For the identification and selection of the best approximation 

method, a prediction framework based on the concept of hierarchical planning is developed. This new 

approach enables a much more accurate approximation and offers the opportunity to make better 

scheduling decisions. Against the background of these promising results, they generate insights and 

lay the foundation to transfer this approach to other hierarchical planning problems. One example is 

the emerging area of additive manufacturing since it comprises similar decisions to CNP (top-level 

serial-batch scheduling problem with an integrated subordinate three-dimensional complex nesting 

problem). And yet, the utilization of machine learning techniques in this context is not limited to 

production planning but can be transferred to other decision environments. Another added value by 

Gahm et al. (C4) is the development of a completely new instance generation procedure (of complex 

item shapes) for CNPs (based on real-world shapes and controllable attributes) and the development 

of feature vectors to model CNP characteristics. By doing so, they create a much needed benchmark 
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set, and invite future researchers to utilize the defined methods and benchmark set for evaluation and 

comparison. 

III.B Outlook	

Besides answering the introduced research questions, this doctoral dissertation discloses 

opportunities for future research.  

Regarding the first contribution (Ganschinietz, C1), the development of the ECSDF is a continuous 

process, since future applicability of the ECSDF relies on a constant iterative adaption with an evolving 

research field. Because Ganschinietz et al. (C2) classify ECS design approaches according to the ECSDF 

that are related to ECS design for manufacturing companies, the ECSDF`s transferability to ECS design 

in general is conceivable. Nonetheless, this suggestion needs to be tested in future research by 

applying the ECSDF on ECS design approaches for different application cases (for instance ECSs for 

households or residential districts). In the case of ECS design, the reactions of the base-level production 

scheduling and/or the corresponding base-level ECS operation (cf., Figure I.B-4) could be approximated 

with the techniques investigated in Gahm et al. (C4). These techniques offer the consideration of the 

additionally needed amount of final energy sources or efficiency losses caused by transitions between 

CU states and CU loads with an unprecedented approximation accuracy and could enable a further 

improvement of the overall ECS design and ECS efficiency. The applicability and benefit of using 

machine learning techniques in this planning context needs to be tested in future research.  

Concluding this doctoral dissertation, production processes are accountable for 90% of industrial 

energy consumption. For this reason, this thesis refines qualitative structuring and quantitative 

methods for an adequate and energy efficient design of an ECS providing energy for production 

processes. Besides energy savings achieved by an efficient ECS design, such a design has been 

identified as one of the most important aspects leading to a cost efficient ECS. Ultimately, this doctoral 

thesis fosters a simultaneously economic and ecological striving for a cost efficient and 

environmentally friendly orientation of industry.   
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