
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-021-01615-w
Arch. Rational Mech. Anal. 240 (2021) 627–698

Emergence of Rigid Polycrystals from
Atomistic Systems with Heitmann–Radin Sticky

Disk Energy

Manuel Friedrich, Leonard Kreutz & Bernd Schmidt

Communicated by A. Garroni

Abstract

We investigate the emergence of rigid polycrystalline structures from atomistic
particle systems. The atomic interaction is governed by a suitably normalized pair
interaction energy, where the ‘sticky disk’ interaction potential models the atoms
as hard spheres that interact when they are tangential. The discrete energy is frame
invariant and no underlying reference lattice on the atomistic configurations is as-
sumed. By means of �-convergence, we characterize the asymptotic behavior of
configurations with finite surface energy scaling in the infinite particle limit. The
effective continuum theory is described in terms of a piecewise constant field delin-
eating the local orientation and micro-translation of the configuration. The limiting
energy is local and concentrated on the grain boundaries, that is, on the boundaries of
the zones where the underlying microscopic configuration has constant parameters.
The corresponding surface energy density depends on the relative orientation of the
two grains, their microscopic translation misfit, and the normal to the interface. We
further provide a fine analysis of the surface energies at grain boundaries both for
vacuum–solid and solid–solid phase transitions. The latter relies fundamentally on
a structure result for grain boundaries showing that, due to the extremely brittle
setup, interpolating boundary layers near cracks are energetically not favorable.

1. Introduction

Most inorganic solids in nature are polycrystals. They are composed of mi-
croscopic crystallites (grains) of varying size and orientation in which the atoms
are arranged in a periodic, crystalline pattern. In spite of their ubiquity, it remains
poorly understood why in these materials such highly regular structures develop
at the microscale. The core challenge is to investigate the phenomenon of crystal-
lization, that is, the tendency of atoms to self-assemble into a crystal structure. An
ultimate solution would be to understand this as a consequence of the interatomic
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interactions, where such interactions are determined by the laws of quantum me-
chanics.

In view of the current state of research, however, the crystallization question
seems out of reach in this generality. It is thus necessary to consider reducedmodels
and to study simplified theories which, however, retain essential features of the
interatomic interactions. We follow this route by restricting to zero temperature
and by describing our system in the frame of Molecular Mechanics [1,30,37] as a
classical system of particles, whose interaction is given in terms of an empirical pair
interaction potential. Moreover, we consider planar rather than three-dimensional
models. Given a configuration X = {x1, . . . , xN } ⊂ R

2 consisting of a finite
number of particles, their configurational energy E(X) takes the form

E(X) = 1

2

∑

i �= j

Vpair
(|xi − x j |

)
,

where Vpair : [0,+∞) → R denotes the pair potential. (The factor 1/2 accounts for
double counting.) Such potentials typically are repulsive for close-by atoms while
two atoms at larger distances (yet still in their interaction range) exert attractive
forces on each other. The latter favors the formation of clusters, whereas the short-
range repulsion guarantees that the atoms keep a minimal distance.

Notably, even for commonly used models such as the Lennard–Jones potential,
the crystallization problem is still open beyond the one-dimensional setting. (In one
dimension, the situation is considerably easier: crystallization at zero temperature
for Lennard–Jones interactions is shown in [31]. Recent results for positive temper-
ature including an analysis of boundary layers are obtained in [34,35]. For results
on dimers we refer to [6,29].) The first rigorous results for a two-dimensional sys-
temwere achieved in [32,33,43]; see also the recent paper [18]. For the very special
choice of the ‘Heitmann–Radin sticky disk’ interaction potential

Vsticky(r) =

⎧
⎪⎨

⎪⎩

+∞ if r < 1,

−1 if r = 1,

0 if r > 1,

(1.1)

it was shown in [33] that ground states, that is, minimizers under the cardinality
constraint #X = N , crystallize: they are subsets of the triangular lattice. The
potential Vsticky is pictured schematically in Fig. 1.

On the one hand, it draws its motivation from being the most basic choice of
a potential featuring the properties discussed above. On the other hand, it models
extremely brittle materials and might be viewed as an ‘infinitely brittle’ limit-
ing model for more generic interaction potentials, in which the hard core radius,
the equlibrium distance, and the interaction range coincide. Slightly more general
potentials are discussed in [43] which, however, do not allow for soft elastic inter-
actions either. Still only partial results are available for more general potentials or
higher dimensions, see [7] for a recent survey. Most noteworthy, [21,47] in two and
[24] in three dimensions prove that crystalline structures have optimal bulk energy
scaling and crystals are ground states subject to their own boundary conditions.
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Fig. 1. The interaction potential Vsticky

Such conditions, however, are insufficient, respectively, prohibitive in view of our
goal to investigate the emergence of polycrystals. For this task, it is indispensable
to both work at the surface energy scale, which is much finer than the bulk scaling,
and to allow for free boundary conditions.

The ground states of sticky disk potentials in two dimensions are by now very
well understood, and not only on the atomic microscale. In [3] the macroscopic
shape was identified as being theWulff shape of an associated crystalline perimeter
functional. Fine properties and surface fluctuations were investigated in [45] and
quantified in terms of an N 3/4 law (see the comment below (1.2)). Sharp constants
for this law were then established in [17] and the uniqueness of ground states was
characterized in [19]. We also mention extensions to other crystals [16,40,42] and
dimers [26,27]. By way of contrast, in dimension three or higher the recent results
[11,39,41] characterize optimal energy configurations within classes of lattices and
are in this sense conditional to crystallization.

The main objective of our contribution is to advance our understanding of (mi-
croscopic) crystallization and formation of macroscopic clusters beyond ground
states and single crystals. Indeed, all of the aforementioned results ultimately rely
on the emergence of a single crystal which is supported on a unique periodic struc-
ture. Restricting our analysis to the basic Heitmann–Radin sticky disk potential
(1.1), we succeed in deriving a rather complete picture on the formation of general
polycrystals by considering the �-limit for the interaction energy in the surface
energy regime in the infinite particle limit. (We refer to [8,14] for an exhaustive
treatment of�-convergence.) The first relevant steps in this direction were obtained
in [20], where the authors prove a compactness result for polycrystals and iden-
tify the �-limit in the case of a single crystal limiting configuration. In the present
work, we prove a full�-convergence result and provide a limiting continuummodel
consisting of grains that are characterized by a rotation and, in addition, a micro-
translation. We also analyze in depth the surface energy of grain boundaries both
for vacuum–solid and solid–solid phase transitions.

We proceed to describe our particle model in more detail. The minimal energy
of a configuration X N = {x1, . . . , xN } ⊂ R

2 of N particles has been determined
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already in [32]:

min{E(X N ) : #X N = N } = −�3N −√12N − 3� ≈ −3N + O(
√

N ). (1.2)

The leadingorder term−3N comes from N−O(
√

N ) atoms in the bulk, eachhaving
six neighbors. The lower order term∼ √N is due to missing neighbors of a number
O(
√

N ) of atoms at the boundary and is thus a surface energy. (The aforementioned
N 3/4 law quantifies the surprisingly large possible deviations of ground states from
the macroscopicWulff shape which involve a number of∼ N 3/4 � √

N particles.)
As polycrystals will not be ground states in general, but rather metastable states

with surface energy contributions from atoms at individual grain boundaries, we
proceed to address the class of all configurations at the finite surface energy scaling,
that is, we consider X N ⊂ R

2, #X N = N , with bounded normalized energy

E(X N )+ 3N√
N

= 1

2
√

N

∑

x∈X N

(
6+

∑

y∈X N \{x}
Vsticky

(|x − y|)
)

as N → ∞. Here, we have subtracted the minimal energy −3 per particle times
the number of particles and rescaled with

√
N .

The diameter of an N -particle configuration X N with energy given in (1.2) is
∼ √

N . To obtain configurations which are contained in a bounded domain, we
therefore rescale the configuration by a factor ε := 1/

√
N , that is, Xε := εX N .

We then study the asymptotics of the energy Eε(Xε) where the energy functional
Eε is defined on finite point sets X ⊂ R

2 by

Eε(X) = 1

2

∑

x∈X

ε
(
6+

∑

y∈X\{x}
Vsticky

( |x − y|
ε

))
. (1.3)

This will allow us to pass to a macroscopic description as ε → 0. In what follows,
we consider the energy Eε in (1.3) without cardinality constraint since the energy
has already been normalized with respect to the minimal energy per particle.

Ourmain results are a full�-convergence proof for the functionals Eε towards a
surface energy functional (Theorem 2.3) and a detailed analysis of the limiting con-
tinuum surface energy density (Proposition 2.2 and Theorem 2.5). We also prove
a corresponding compactness result for bounded energy sequences (Theorem 2.1),
which turns out to be comparatively straightforward. The proofs in fact also pro-
vide a rather complete picture of the structure of grain boundaries. We collect these
findings of independent interest in Theorem 5.4. Our continuum description keeps
track not only of the orientation angles of various grains but depends additionally
on a micro-translation vector which in particular measures the translational off-
set of two lattices with the same orientation. Indeed, the introduction of such an
augmented field does not only provide a finer characterization of the continuum
limit, but turns out to be crucial when polycrystals with multiple solid–solid grain
boundaries are considered.

The limiting surface energy ϕ is a function of the relative orientation of the
two grains, their microscopic translation misfit, and the normal to the interface. For
solid–vacuum surfaces this was identified in [3,20] as the Finsler norm whose unit



Emergence of Rigid Polycrystals from Atomistic Systems 631

ball is shaped like a Voronoi cell of the lattice in the solid part. In other words, this
is just the surface energy density of the crystal perimeter. For solid–solid interfaces,
however, the problem is considerably more subtle as there are atomic interactions
across the interface. In softer materials, one expects dislocations to accumulate and
elastic strain to concentrate near such grain boundaries. We refer to [23,38] for
recent mathematical developments on substantiating the Read–Shockley formula,
see [44]; in such a regime. By way of contrast, within our extremely brittle set-
up, generically ϕ turns out to be given by the sum of the solid–vacuum surface
energies of the two grains. Here, the term generic refers to the fact that the surface
energy may be smaller only for a countable number of mismatch angles between
the two lattices, and corresponding micro-translations contained in a finite number
of spheres.

We proceedwith some comments on the general proof strategy. As is customary
for variational limits with interfacial energies, the density ϕ is expressed in terms
of a cell formula minimizing the asymptotic surface energy between two grains
separated by a flat grain boundary. In such cell problems, it is instrumental to pass
from a mere L1-convergence to fixed boundary values in order to match the �-
lim inf and �-lim sup inequalities. Motivated by [5,25,46] for vectorial problems
in liquid-liquid phase transitions and [13,15,36] in solid–solid phase transitions,
we use a cut-off construction, the so-called fundamental estimate, to replace an
asymptotic realization by the exact attainnment of converging boundary values in
a first step. Here, our extremely brittle set-up on the one hand renders geometric
rigidity estimates easier as compared to, for example, [13,15]. On the other hand,
this calls for carefully refined cut-off constructions since very small modifications
in the configurations may induce a lot of energy. However, in contrast to [13,15],
a cell problem with converging boundary data turns out to be insufficient in the
presence of multiple grain boundaries. Thus, a further step is needed to show that
they can be replaced by fixed boundary values. Also this passage is subtle due to
our rigid set-up which requires a thorough analysis of possible touching points of
two lattices (points with distance ε). Finally, let us also mention that related, very
general �-convergence results for elastic materials exhibiting discontinuities along
surfaces, see for example [4,10,28], do not apply to our situation. Most notably,
in [28], a model similar to ours featuring rigid grains is considered. Unfortunately,
these results cannot be used in our setting as they fundamentally rely on continuous
surface interactions.

At the core of our proofs, there are two key steps to which we devote Sections 5
and 6, respectively. Firstly, Lemma 5.1 allows us to reduce the cell formula to two
lattices only. An expanded version of this observation is detailed in Theorem 5.4.
It shows that in our brittle set-up there are no interpolating boundary layers at
interfaces. This is done by employing techniques from graph theory in order to
exclude inclusions of grains of different orientation as the prescribed boundary
datum. The basic idea behind its proof is that to each admissible configuration
one can associate its bond-graph and for this graph such inclusions induce non-
triangular faces which in turn lead to fewer bonds than a competitor without such
inclusions. This can be quantified via the face defect, see definition (5.4). Once
established, this in particular results in a largely simplified analysis of the interaction
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energy with vacuum as compared to [20], see Lemma 6.1. More importantly, it is
crucial for the second main ingredient of the proof: the quantification of solid–solid
interactions with the help of Lemma 6.2, which clarifies when the surface energy
can be smaller than twice the interaction energy with vacuum and plays a pivotal
role in order to show that converging boundary values can be replaced by fixed ones.
This can be understood as a rigidity theorem for the mismatch-angle between two
grains: the generically expected interaction energy can exceed the grain boundary
energy only for finitely many mismatch angles depending on the excess. Its proof
relies on the fact that such an energy gap can only occur if the two lattices havemany
touching points (points with distance ε). This entails that the touching points of the
two lattices have to be rather equi-distributed along the interface. This, however, can
only happen in a periodic landscape, which reduces the possible mismatch-angle
to a finite set. Many further ingredients of our proofs are more standard (blow-up,
density arguments, fundamental estimate, …), but technically challenging in our
case since the energy is very rigid and thus very sensitive to small changes of the
configuration.

The paper is organized as follows: in Section 2 we introduce the model and
present the main results. Section 3 is devoted to the proofs of compactness and
�-convergence. They fundamentally rely on a fine characterization of the surface
energy density whose proof is postponed to Sections 4–7. In Section 4 we address
the fundamental estimate and in Section 7we show that converging boundary values
can be replaced by fixed ones. Sections 5 and 6 are devoted to the reduction of the
cell formula to two lattices only and to the characterization of solid–vacuum/solid–
solid interactions at grain boundaries, respectively.

2. Setting of the Problem and Main Results

In this section we introduce our model, give basic definitions, and present our
main results.

2.1. Configurations and Atomistic Energy

In what follows we always assume that X is a finite subset ofR2. We denote by
Vsticky : [0,+∞) → R the Heitmann–Radin potential defined in (1.1), see Fig. 1.
By ε > 0 we denote the atomic spacing. The normalized atomistic energy Eε of a
given configuration X is given by (1.3). The notion normalized has been explained
in the introduction and is chosen in such a way that an infinite triangular lattice
with spacing ε has energy zero. Equivalently, the energy can be expressed in terms
of the neighborhoods of the atoms. To this end, we introduce the neighborhood of
x ∈ X by

Nε(x) = {y ∈ X : |x − y| = ε}. (2.1)

If ε = 1, we omit the subscript ε and just write N (x) for simplicity. In view of
Vsticky(r) = ∞ for r ∈ (0, 1), an elementary geometric argument shows that for
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configurations X with Eε(X) < +∞ it holds that

#Nε(x) � 6 for all x ∈ X. (2.2)

In particular, if #Nε(x) = 6, the neighbors form a regular hexagon with center x
and diameter 2ε. By (1.1) and (1.3) we can now rewrite the energy as

Eε(X) = 1

2

∑

x∈X

ε
(
6− #Nε(x)

)
.

Additionally, for X ⊂ R
2 and Borel sets B ⊂ R

2, we define a localized version of
the energy by

Eε(X, B) = 1

2

∑

x∈X∩B

ε
(
6− #Nε(x)

)
. (2.3)

2.2. Basic Definitions

This subsection is devoted to basic notions which we will use throughout the
paper.
NotationWe let S1 = {x ∈ R

2 : |x | = 1}. Given ν ∈ S
1, we denote by ν⊥ ∈ S

1 the
unit vector obtained by rotating ν by π/2 in a clockwise sense. The scalar product
between two vectors x, y ∈ R

2 is denoted by 〈x, y〉. Without further notice, we
sometimes identify vectors x ∈ R

2 with elements of C. In particular, we identify
rotations in the plane with a multiplication with a unit vector in C: namely, the
rotation of x ∈ R

2 by an angle θ ∈ [0, 2π) is indicated by eiθ x . For t ∈ R, we
write �t� = max{k ∈ Z : k � t} and �t� = min{k ∈ Z : k � t}.

We denote by L2 andH1 the two-dimensional Lebesgue measure and the one-
dimensional Hausdorff measure, respectively. We write χE for the characteristic
function of any E ⊂ R

2, which is 1 on E and 0 otherwise. If E is a set of finite
perimeter, we denote its essential boundary by ∂∗E , see [2, Definition 3.60]. For
r > 0 and x ∈ R

2, we denote by Br (x) the open ball of radius r centered in x . For
simplicity, we write Br if x = 0. Given A ⊂ R

2, τ ∈ R
2, and λ ∈ R, we define

A + τ = {x + τ : x ∈ A}, λA = {λx : x ∈ A} and
(A)ε = {x + y : x ∈ A, y ∈ Bε}. (2.4)

For x1, x2 ∈ R
2, we define the line segment between x1 and x2 by

[x1; x2] =
{
λx1 + (1− λ)x2 : λ ∈ [0, 1]

}
. (2.5)

By Qν = {y ∈ R
2 : − 1

2 � 〈y, ν〉 < 1
2 ,− 1

2 � 〈y, ν⊥〉 < 1
2 } we denote the half-

open unit cube in R
2 with center zero and two sides parallel to ν ∈ S

1. Moreover,
we define the half-cubes

Qν,± = {y ∈ Qν : ± 〈ν, y〉 � 0}. (2.6)

Here and in what follows, we will frequently use the notation ± to indicate that a
property holds for both signs + and −. In a similar fashion, for x ∈ R

2 and ρ > 0
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we define Qν
ρ(x) := x + ρQν and Qν,±

ρ (x) := x + ρQν,±. For ρ = 1, we write
Qν(x) instead of Qν

1(x) for simplicity. For ε > 0 and Qν
ρ(x) we introduce the

notation of boundary regions

∂±ε Qν
ρ(x) = x +

{
y ∈ Qν

ρ+10ε\Qν
ρ−10ε : ± 〈ν, y〉 � 5ε

}
; (2.7)

see also Fig. 3 for an illustration. Forρ = 1,wewrite ∂±ε Qν(x) instead of ∂±ε Qν
ρ(x).

The triangular lattice We define the triangular lattice as the set of points given
by

L := {p + qω : p, q ∈ Z} ,
where ω := 1

2 + i
2

√
3 ∈ C.

The set of lattice isometries We denote by A the set of rotations by angles in
[0, π

3 ) equipped with the metric of the one-dimensional torus, that is, A = R/π
3Z.

In a similar fashion, we introduce the set of translations T = R
2/L = C/L . We

observe that each translation τ ∈ T can be represented by a vector in

{λ1 + λ2ω : 0 � λ1 < 1, 0 � λ2 < 1}. (2.8)

We introduce the set of lattice isometries by

Z := (A× T× {1}) ∪ {0}, (2.9)

where for each θ ∈ A and τ ∈ T the triple z = (θ, τ, 1) ∈ Z represents the rotated
and translated lattice

L (z) = L (θ, τ, 1) := eiθ (L + τ).

Here, the entry 1 encodes that a lattice is present. On the contrary, 0 = (0, 0, 0) ∈
A× T× {0} represents the empty set, also referred to as vacuum in what follows.
We set

L (0) = ∅.
Note that A � S

1 and T � S
1 × S

1. Therefore, the three-dimensional set Z can
naturally be embedded into R

7. We endow Z with the product topology, that is,
z j = (θ j , τ j , 1) → z = (θ, τ, 1) if and only if θ j → θ in A and τ j → τ in T.
Moreover, z j → 0 if and only if z j = 0 for all j large enough. For a set A ⊂ R

2,
z ∈ Z , and a configuration X with Eε(X) < +∞, we say that X coincides with
the lattice εL (z) on A, written X = εL (z) on A, if

X ∩ A = (εL (z)) ∩ A. (2.10)

The state spaceFor A ⊂ R
2,we introduce the spaceofpiecewise constant functions

PC(A;Z) with values in Z as functions of the form

u =
∞∑

j=1
χG j z j , (2.11)
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where {z j } j ⊂ Z\{0} are pairwise distinct and G j ⊂ A are pairwise disjoint sets
satisfying L2

(⋃∞
j=1 G j

)
<∞ and

∞∑

j=1
H1(∂∗G j ) < +∞. (2.12)

Here, {G j } j represent the grains of the polycrystal and {z j } j the corresponding
orientation and translation of the lattice.We remark that this space can be identified
with

PC(A;Z) = {u ∈ SBV (A;Z) : ∇u = 0, L2({u �= 0}) < +∞, H1(Ju) < +∞}.
(2.13)

Here, u is a function in SBV (A;Z) in the sense that u ∈ SBV (A;R7) and u
takes values in Z . The jump set of u is denoted by Ju . The one-sided limits of u
at a jump point will be indicated by u+ and u− in what follows, and the normal
will be denoted by νu . We refer to [2, Definition 4.21] for details on this space. In
a similar fashion, we say u ∈ PCloc(R

2;Z) if u|A ∈ PC(A;Z) for all compact
sets A ⊂ R

2.
Identification of configurationswithpiecewise constant functionsWenow relate
atomistic configurations X to the state space defined above. Consider x ∈ X ∩L
such that N (x) ⊂ L . Then, we define the open lattice Voronoi cell of x by

V (x) = x + 1√
3

eiπ/6 int
(
conv{±1,±ω,±ω2}), (2.14)

where conv{·} denotes the convex hull of a point set, and int the interior. In a similar
fashion, if x and the points in its neighborhood Nε(x) lie in a scaled rotated and
translated lattice εL (z), for ε > 0 and z = (θ, τ, 1) ∈ Z , we define V z

ε (x) = x +
eiθ εV (0).We also point out the implicit dependence on τ here, since x = eiθ (v+τ)

for some v ∈ L .
Given a configuration X with Eε(X) < +∞, we now identify X with a suitable

function u ∈ PC(R2;Z). Since E(X) < +∞, we have #Nε(x) � 6 for all
x ∈ X with equality only if {x} ∪ Nε(x) ⊂ eiθ(x)ε(L + τ(x)) for a unique pair
(θ(x), τ (x)) ∈ A× T. We set

z(x) = (θ(x), τ (x), 1
) ∈ Z for all x ∈ X with #Nε(x) = 6

and define u X
ε : R2 → Z by

u X
ε (x) :=

{
z(x) on V z(x)

ε (x) if x ∈ X with #Nε(x) = 6,

0 else.
(2.15)

In what follows, if no confusion may arise, we write uε instead of u X
ε . We note

that this definition is well posed in the sense that V z(x1)
ε (x1) ∩ V z(x2)

ε (x2) = ∅ for
all x1, x2 ∈ X , x1 �= x2, with #Nε(x1) = #Nε(x2) = 6. In fact, if this were not
the case, one of the six atoms in Nε(x1) (forming a regular hexagon on ∂ Bε(x1))
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Fig. 2. A function uε defined in (2.15): the different regions {u = z} with z �= 0 (here illus-
trated in different shades of gray) are made of unions of regular hexagons. The complement
of those regions is the set {u = 0}

would have distance smaller than 1 to x2. This contradicts Eε(X) < +∞. Clearly,
uε as defined in (2.15) lies in PC(R2;Z).

The function uε for some finite energy configuration X is illustrated in Fig. 2.
We point out that the translation τ(x) induces a shift of the Voronoi cells by the
vector εeiθ(x)τ (x). This is the reasonwhywe call the variable τ amicro-translation.
Convergence Let {Xε}ε be a sequence of configurations. We say that Xε → u in
L1
loc(R

2) if uε → u in L1
loc(R

2;Z), where uε is given by (2.15) for Xε.

2.3. Main Results

We now formulate our main results. We start with a compactness result for
sequences of configurations with bounded energy. Recall the definition for conver-
gence of configurations in Sect. 2.2.

Theorem 2.1. (Compactness) Let {Xε}ε be a sequence of configurations with

sup
ε>0

Eε(Xε) < +∞.

Then, there exists a subsequence {εk}k∈N with εk → 0and a function u ∈ PC(R2;Z)

such that Xεk → u in L1
loc(R

2) as k →+∞.

For ε > 0 and ν ∈ S
1, recall the definition of ∂±ε Qν

ρ in (2.7). Recall also
the coincidence with a lattice in (2.10). The following proposition introduces the
density ϕ : Z × Z × S

1 → [0,+∞) which appears in our continuum limiting
functional (see Fig. 3 for an illustration):

Proposition 2.2. (Density) For every z+, z− ∈ Z , ν ∈ S
1, x0 ∈ R

2, and ρ > 0
there exists

ϕ(z+, z−, ν) = lim
ε→0

1

ρ
min

{
Eε

(
X, Qν

ρ(x0)
) : X = εL (z±) on ∂±ε Qν

ρ(x0)
}
,

(2.16)

and is independent of x0 and ρ.
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Fig. 3. Illustration of a competitor for the cell-problem on Qν
ρ in the definition of ϕ. On the

light gray hatched and dark gray regions we have X = εL (z±), respectively. We point out
that the competitor is prescribed in a small neighborhood ∂−ε Qν

ρ ∪ ∂+ε Qν
ρ both inside and

outside of the cube. (The thickness of the neighborhood is larger than the lattice spacing,
see (2.7). Here, for illustration purposes, it is drawn with thickness 2ε instead of 10ε)

The limiting functional E : PC(R2;Z) → [0,+∞) is defined by

E(u) =
∫

Ju

ϕ(u+(x), u−(x), νu(x)) dH1(x). (2.17)

In view of (2.13), functions in PC(R2;Z) lie in SBV , and therefore u+, u−, and
νu are well defined. The following statement shows that E can be interpreted as the
effective limit of the atomistic energies Eε in the sense of �-convergence:

Theorem 2.3. (�-convergence) It holds that E = �(L1
loc)- limε→0 Eε; more pre-

cisely,

(i) (�-liminf inequality) For each u ∈ PC(R2;Z) and each sequence {Xε}ε with
Xε → u in L1

loc(R
2) it holds that

lim inf
ε→0

Eε(Xε) � E(u).

(ii) (�-limsup inequality) For each u ∈ PC(R2;Z) we find configurations {Xε}ε
such that Xε → u in L1

loc(R
2) and

lim
ε→0

Eε(Xε) = E(u).

Here and in the sequel, we follow the usual convention that convergence of the
continuous parameter ε → 0 stands for convergence of arbitrary sequences {εk}k
with εk → 0 as k →+∞.
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Remark 2.4. (Extension to L1) Defining Eε : L1(R2;Z) → [0,+∞] by

Eε(u) =
{

Eε(X) if there exists X such that u = u X
ε ,

+∞ otherwise,

and extending E to all of L1(R2;Z) by setting E(u) = +∞ if u ∈ L1(R2;Z)\
PC(R2;Z), in view of Theorem 2.1, this indeed implies �(L1

loc)- limε→0 Eε = E .

We close this section by providing properties of the density ϕ. To this end, we
introduce the function ϕhex : R2 → [0,+∞) defined by

ϕhex(ν) = 2√
3

3∑

k=1
|〈ν, ωk〉|. (2.18)

Note that ϕhex is a Finsler norm whose unit ball is a regular hexagon in R
2 with

vertices in 1
2eiπ/6{±1,±ω,±ω2}, cf. [3,20].

Theorem 2.5. (Properties of ϕ) Let ϕ be the density given in Proposition 2.2, ex-
tended to a function defined on Z ×Z ×R

2 which is positively 1-homogeneous in
the third variable. Then ϕ satisfies the following properties:

(i) (Solid–vacuum energy)There holdsϕ(z, 0, ν) = ϕ(0, z, ν) = ϕhex(e−iθ ν)

for all z = (θ, τ, 1) ∈ Z\{0} and ν ∈ S
1.

(ii) (Solid–solid energy) There exists a null-set N in (Z\{0})2 (with respect
to its six-dimensional Haar measure) such that for all pairs (z+, z−) ∈
(Z\{0})2\N , z+ �= z−, and ν ∈ S

1 that holds

ϕ(z+, z−, ν) = ϕhex
(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)
,

and for all (z+, z−) ∈ N , z+ �= z−, and ν ∈ S
1 it holds that

1

2
ϕhex

(
e−iθ+ν

)+ 1

2
ϕhex

(
e−iθ−ν

)
� ϕ(z+, z−, ν) < ϕhex

(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)
,

where we write z+ = (θ+, τ+, 1) and z− = (θ−, τ−, 1).
Moreover, there are exceptional sets GA ⊂ A of angles and, for each θ ∈ GA,
GT(θ) ⊂ R

2 of translation vectors such that GA is countable and each GT(θ)

is contained in a finite union of spheres, with

N ⊂ {(z+, z−) ∈ (Z\{0})2 : θ+ − θ− ∈ GA, eiθ+τ+ − eiθ−τ− ∈ GT(θ+ − θ−)
}
.

(iii) (Convexity) The mapping ν �→ ϕ(z+, z−, ν) is convex for all z+, z− ∈ Z .
(iv) (Rotational invariance) For all z± = (θ±, τ±, 1), ν ∈ S

1, and θ ∈ A it holds
that

ϕ
(
(θ+ + θ, τ+, 1), (θ− + θ, τ−, 1), eiθ ν

) = ϕ
(
(θ+, τ+, 1), (θ−τ−, 1), ν

)
.

(v) (Translational invariance) For all z± = (θ±, τ±, 1), ν ∈ S
1, and τ ∈ T it

holds that

ϕ
((

θ+, τ+ + e−iθ+τ, 1
)
,
(
θ−, τ− + e−iθ−τ, 1

)
, ν
)
= ϕ

(
(θ+, τ+, 1), (θ−τ−, 1), ν

)
.



Emergence of Rigid Polycrystals from Atomistic Systems 639

(a) (b) (c)

Fig. 4. Different scenarios of optimal interfaces for a fixed normal ν and different lattices
L (z±). The dark gray and white points form the lattice L (z+) and the lattice L (z−),
respectively. Edges are depicted between points of distance 1. a Two lattices L (z±) are
depicted for which ϕ is less than twice the interaction energy with the vacuum. b We see
two lattices L (z±) for which ϕ is equal to twice the interaction energy with the vacuum. c
Two lattices for which the lower bound in Theorem 2.5(ii) is attained

We note that the interaction with vacuum, see property (i), has already been
addressed in [3,20]. A main novelty of our work lies in the characterization (ii).
For explicit choices of the sets GA and GT(θ) we refer to (6.2) and the paragraph
above Lemma 7.6, respectively. In particular, (ii) states that generically the surface
energy between two lattices is if each of the two latticeswould interactwith vacuum.
In this case, the continuum energy E of a function u =∑∞

j=1 χG j z j corresponds to
the crystalline perimeter of the grains {G j } j , induced by ϕhex. In the non-generic
case (z+, z−) ∈ N , two lattices L (z+) and L (z−) have many touching pairs
(that is, pairs of points with distance 1) which reduce the energy (2.3). Optimal
interfaces for both cases for a normal vector ν are illustrated in Fig. 4. We remark
that the exact characterization of ϕ seems to be a difficult issue which is beyond
the scope of the present analysis. In fact, counting the number of touching pairs
depending on the relative orientation of the two lattices seems to be a non-trivial
number theoretic problem, see Remark 2.6 and Fig. 5 below for some details in
that direction. We remark that the properties of GA and GT(θ) imply that N is of
Hausdorff-dimension at most four. Finally, note that (iv) and (v) express the fact
that both the atomistic and the continuum model are frame indifferent.

More precisely, our proof in Lemma 6.2 shows that the non-degeneracy in
Theorem 2.5(ii) above can be quantized: for every η > 0 there are only a finite
number of differences θ of lattice rotations and a corresponding finite number of
spheres containing the difference of lattice shifts for which

ϕ(z+, z−, ν) � ϕhex
(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)− η.

These numbers only depend on η. Moreover, we remark that the lower bound pro-
vided forϕ is attained, for example, for z− = (0, 0, 1), z+ = (0, i, 1), and ν = i , see
Fig. 4c. (Consider X = {x ∈ εL (0, 0, 1) : 〈x, i〉 � 0}∪{x ∈ εL (0, i, 1) : 〈x, i〉 �
ε} in (2.16).)
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Fig. 5. Two latticesL (z±) forwhichϕ is less than twice the interaction energywith vacuum.
The dark gray points form the lattice L (z+) and the white points the lattice L (z−). The
black and light gray points are those that are of distance 1 to the other lattice, as emphasized
by an edge between them

Remark 2.6. We finally point out that for θ+ − θ− ∈ GA, eiθ+τ+ − eiθ−τ− ∈
GT(θ+ − θ−) the calculation of ϕ seems to be a difficult problem. In fact, for
ei(θ+−θ−) = v1

v2
with v1, v2 ∈ L and |v1| = |v2|, depending on the factorization

of v1, v2 in L , there may be points (x, y) ∈ L (z+) × L (z−) such that x, y /∈
L (z+) ∩L (z−) and |x − y| = 1. If this is the case, the relative position of two
such atoms is fixed through the prime factors of v1, v2, respectively. This leads
to two major challenges in the calculation of ϕ: (i) the characterization of points
(x, y) ∈ L (z+)×L (z−) such that |x−y| = 1depending on the relative orientation
ei(θ+−θ−) of the two lattices seems to be a non-trivial number theoretic problem.
(ii) even after the characterization of the set of points (x, y) ∈ L (z+) ×L (z−)

such that |x − y| = 1 for different normals ν to the interface, it is not always clear
if it is energetically convenient to include such points in the construction of the
optimal interface due to their relative orientation. Such a situation is illustrated in
Fig. 5.

The compactness and �-convergence results will be proved in Section 3. The
properties of several cell formulas related to ϕ, which are fundamental for the
proofs, are postponed to Sections. 4–7. Finally, the proofs of Proposition 2.2 and
Theorem 2.5 are given in Section 7.2.
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3. Proof of the Main Results

This section is devoted to the proofs of our main results. We start with some
preliminary properties. Then we prove compactness and finally we address the
�-convergence result.

3.1. Preliminaries

We state and prove some elementary properties of the family Eε. Recall the
representation of the energy in (2.3) and the definition of sets in (2.4).

Lemma 3.1. (Properties of Eε) Let ε > 0 and let X be a configuration with
Eε(X) < +∞. Then it holds that

(i) Eε(eiθ X + τ, eiθ A+ τ) = Eε(X, A) for all θ ∈ [0, 2π), τ ∈ R
2, and A ⊂ R

2,

(ii) Eλε(λX, λA) = λEε(X, A) for all λ > 0 and A ⊂ R
2,

(iii) Eε(X, A) � Eε(X, B) for all A ⊂ B ⊂ R
2,

(iv) Eε(X, A ∪ B) = Eε(X, B)+ Eε(X, A) for all A, B ⊂ R
2 with A ∩ B = ∅,

(v) There exists C > 0 such that for all A ⊂ R
2 there holds #(X ∩ A) �

CL2((A)ε)/ε
2.

Proof. Proof of (i): Given θ ∈ [0, 2π) and τ ∈ R
2, we define x̃ = eiθ x + τ

for each x ∈ R
2. The statement follows by noting that |x̃ − ỹ| = |x − y| for all

x, y ∈ R
2 and x̃ ∈ eiθ A + τ if and only if x ∈ A. This implies y ∈ Nε(x) if and

only if ỹ ∈ Nε(x̃).
Proof of (ii): For λ > 0 and x ∈ R

2, we define xλ = λx . Clearly, we have
|xλ − yλ| = λ|x − y| for all x, y ∈ R

2 and xλ ∈ λA if and only if x ∈ A. This
implies yλ ∈ Nλε(xλ) if and only if y ∈ Nε(x).
Proof of (iii): This statement follows from the fact that for all configurations X
with finite energy and all x ∈ X we have 6− #Nε(x) � 0 by (2.2).
Proof of (iv): This follows from the fact that, if A ∩ B = ∅, each term of the
summation on the left hand side occurs also in the right hand side and vice versa.
Proof of (v): Since X is a configuration with finite energy, there holds |x − y| � ε

for all x, y ∈ X , x �= y. Therefore, Bε/2(x)∩ Bε/2(y) = ∅ for all x, y ∈ X , x �= y.
By (2.4), we obtain

⋃
x∈X∩A Bε/2(x) ⊂ (A)ε and therefore

πε2/4 #(X ∩ A) = L2
( ⋃

x∈X∩A

Bε/2(x)
)

� L2((A)ε
)
.

From this the claim follows with C = 4/π . ��
The following scaling property will be instrumental:

Lemma 3.2. (Scaling) For ε > 0, consider configurations Xε satisfying Eε(Xε) <

+∞ and λXε for λ > 0. By uλ
λε and uε we denote the functions corresponding to

λXε and Xε, respectively, as defined in (2.15). Then, there holds

uλ
λε(λx) = uε(x) for all x ∈ R

2. (3.1)
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Moreover, for each bounded A ⊂ R
2, we have uλ

λε → u(λ−1 ·) in L1(λA) as ε → 0
if and only if uε → u in L1(A).

Proof. We first prove (3.1). To see this, it suffices to note that x ∈ Xε if and only
if λx ∈ λXε, #(Nε(x) ∩ X) = 6 if and only if #(Nλε(λx) ∩ λXε) = 6, and
(x ∪Nε(x)) ⊂ εeiθ (L + τ) if and only if (λx ∪Nλε(λx)) ⊂ λεeiθ (L + τ) for
θ ∈ A and τ ∈ T. Therefore, in view of (2.15) and the definition of theVoronoi cells
V z

ε (x) below (2.14), (3.1) holds true. The equivalence of the convergence follows
by a change of variables: we set y = λx and obtain

λ2
∫

A
|uε(x)− u(x)| dx = λ2

∫

A
|uλ

λε(λx)− u(x)| dx =
∫

λA
|uλ

λε(y)− u(λ−1y)| dy

for every bounded A ⊂ R
2. ��

3.2. Compactness

In this subsection we prove Theorem 2.1. As a preparation, we show the fol-
lowing coercivity property:

Proposition 3.3. (Coercivity) Let X be a configuration with Eε(X) < +∞ and let
A ⊂ R

2 be a Borel set. Then, there exists a universal C > 0 such that

H1(Ju ∩ A) � C Eε(X, (A)ε), (3.2)

where u associated to X is given by (2.15) and (A)ε is defined in (2.4).

Proof. Let A ⊂ R
2 be a Borel set. Consider X ⊂ R

2 with Eε(X) < +∞. In
view of (2.11) and (2.15), the function u associated to X can be written in the
form u = ∑∞

j=1 χG j z j for pairwise distinct {z j } j ⊂ Z\{0} and pairwise disjoint

{G j } j ⊂ R
2. By [2, Remark 4.22] it suffices to check that

∞∑

j=1
H1(∂∗G j ∩ A) � C Eε(X, (A)ε). (3.3)

Due to the construction in (2.15), each G j is made of a finite union of regular
hexagons with sidelength ε/

√
3 such that at the center of each such hexagon there

is an atom x ∈ X with #Nε(x) = 6. If an edge of such a hexagon is contained in
∂∗G j , then there exists a point y ∈ Nε(x) such that #Nε(y) < 6, see Fig. 2. If the
intersection of that edge with A is non-empty, then y ∈ (A)ε ∩ X , see (2.1) and
(2.4). Note that each such y is selected for at most six different edges of hexagons
contained in ∂G∗j . By (2.3), this yields

∑

j∈N
H1(∂∗G j ∩ A) � 6√

3
ε #{y ∈ X ∩ (A)ε : #Nε(y) < 6} � 12√

3
Eε(X, (A)ε),

where we used that each edge of the hexagon has length ε/
√
3. ��
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Proof of Theorem 2.1. Let {Xε}ε and {uε}ε be given, as defined in (2.15). Recall
that Z can be embedded into R

7 and that it is closed and bounded, see (2.9).
Therefore, for each Br , r ∈ N, we can use Proposition 3.3 and a compactness result
for piecewise constant functions, see [2, Theorem 4.25], to find a subsequence {εk}k
and ur ∈ PC(Br ;Z) such that uεk → ur in measure and thus also in L1(Br ;Z).
By lower semicontinuity there holdsH1(Jur ∩ Br ) � C for a constant independent
of r . By a diagonal argument, we obtain u : R2 → Z with u = ur on Br for all
r ∈ N such that uεk → u in L1

loc(R
2;Z). Clearly, H1(Ju) < +∞. Thus, to show

that u ∈ PC(R2;Z), it remains to check that L2({u �= 0}) < +∞.
Using (3.2) with A = R

2, the isoperimetric inequality onR2, L2({uεk �= 0}) <

+∞, and the fact that L2({u �= 0}) is lower semicontinuous with respect to strong
L1
loc convergence, we obtain

(
L2({u �= 0}))1/2 � lim inf

k→+∞
(
L2({uεk �= 0}))1/2 � lim inf

k→+∞ CH1(∂∗{uεk �= 0})
� lim inf

k→+∞ CH1(Juεk
) � lim inf

k→+∞ C Eεk (Xεk ) < +∞.

This implies that u ∈ PC(R2;Z) and concludes the proof. ��

3.3. Lower Bound

This subsection is devoted to the proof of Theorem 2.3(i). For the proof, it
is instrumental to use a different cell formula. In contrast to imposing bound-
ary conditions as in (2.16), we require L1-convergence to the function uν

z+,z− ∈
PCloc(R

2;Z) defined by

uν
z+,z−(x) =

{
z+ if 〈x, ν〉 � 0,

z− if 〈x, ν〉 < 0,
(3.4)

for x ∈ R
2, z+, z− ∈ Z , and ν ∈ S

1. More precisely, for z+, z− ∈ Z and ν ∈ S
1

we introduce

ψ(z+, z−, ν) := inf
{
lim inf

ε→0
Eε

(
Xε, Qν(yε)

) : yε ∈ R
2,

lim
ε→0

∫

Qν

|uε(x + yε)− uν
z+,z−(x)| dx = 0

}
,

(3.5)

where uε denotes the function associated to Xε, as defined in (2.15). The density
ψ is related to ϕ (see (2.16)) in the following way:

Proposition 3.4. (Relation of ψ and ϕ) For all z+, z− ∈ Z and ν ∈ S
1 it holds

that

ψ(z+, z−, ν) � ϕ(z+, z−, ν).

We postpone the proof of Proposition 3.4 to Sections 4–7. It will follow by
combining Lemmas 4.1, 7.1, and Proposition 7.2. After a further comment about
the definition of ψ , we proceed with the proof of the lower bound.
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Remark 3.5. (Varying cubes in the definition of ψ) We point out that, in contrast
to many other cell formulas in the literature, the position of the cubes in (3.5) is not
fixed but may vary along the sequence ε → 0. This general definition is necessary
as the problem is not translation invariant in the variables z±, although the discrete
energy has such a property, see Lemma 3.1(i). To see this issue, consider a sequence
{Xε}ε contained in a fixed lattice Xε ⊂ εeiθ (L + τ). Then, for a fixed translation
σ ∈ R

2, the shifted configurations X̃ε := Xε + σ are contained in εeiθ (L + τε),
where the translation τε := (τ + e−iθσ/ε) (modulo L ) is in general different
from τ and highly oscillating. This in general implies ũε �= uε(· − σ), where uε

and ũε are given in (2.15). This lack of translational invariance is remedied in our
approach by minimizing over all possible cell centers. Note that only a posteriori
we are able to show that the cell formula ϕ is actually independent of the center,
see Proposition 2.2.

Proof of Theorem 2.3(i). Let {Xε}ε be a sequence with Xε → u in L1
loc(R

2) for
u ∈ PC(R2;Z). Clearly, it suffices to treat the case

sup
ε>0

Eε(Xε) < +∞. (3.6)

We proceed in two steps. We first identify a limiting measure associated to the
discrete configurations (Step 1). Then, we proceed by a blow-up procedure for the
jump part of this measure (Step 2).
Step 1: Identification of a limiting measure. We consider the family of positive
measures {με}ε given by

με := 1

2

∑

x∈X

ε (6− #Nε(x)) δx .

By (2.3) we observe that for all open sets A ⊂ R
2 it holds that

|με|(A) = με(A) = Eε(Xε, A). (3.7)

Therefore, by (3.6) we get supε>0 |με|(R2) < +∞. Thus, asR2 is locally compact,
up to passing to a subsequence (not relabeled), there exists a positive finite Radon
measure μ such that

με
∗
⇀ μ. (3.8)

By theRadon–NykodymTheoremwemaydecomposeμ into twomutually singular
non-negative measures

μ = ξH1|Ju + μs .

The main point is to prove

ξ(x0) � ψ(z+, z−, ν) for H1-almost every x0 ∈ Ju, (3.9)

where z+ and z− denote the one-sided limits of u at x0 and ν denotes the cor-
responding normal. (For notational convenience, the explicit dependence on u is
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omitted.) Once this is shown, the statement follows from (2.17), (3.7), (3.8), and
Proposition 3.4. In fact,

lim inf
ε→0

Eε(Xε) = lim inf
ε→0

με(R
2) � μ(R2) �

∫

Ju

ξ dH1 �
∫

Ju

ϕ(z+, z−, ν) dH1

= E(u).

Step 2: Blow-up argument. It remains to prove (3.9). By the properties of SBV -
functions and Radon measures we know that forH1-almost every x0 ∈ Ju it holds
that

(a) lim
ρ→0

1

ρ2

∫

Qν
ρ(x0)

|u(x)− uν
z+,z−(x − x0)| dx = 0,

(b) lim
ρ→0

1

ρ
H1(Ju ∩ Qν

ρ(x0)
) = 1,

(c) ξ(x0) = lim
ρ→0

μ(Qν
ρ(x0))

H1
(
Ju ∩ Qν

ρ(x0)
) ;

see, for example, [2, Theorem 2.63, Theorem 3.78, and Remark 3.79]. Here, uν
z+,z−

is defined in (3.4). It suffices to prove (3.9) for all x0 ∈ Ju such that (a)–(c) hold.
We fix ρn → 0 such that |μ|(∂ Qν

ρn
(x0)) = 0 for all n ∈ N. By (3.7), (3.8), (b), (c),

and the Portmanteu Theorem, we get

ξ(x0) = lim
ρ→0

μ(Qν
ρ(x0))

H1(Ju ∩ Qν
ρ(x0))

= lim
ρ→0

μ(Qν
ρ(x0))

ρ
= lim

n→+∞
1

ρn
lim
ε→0

με

(
Qν

ρn
(x0)

)

= lim
n→+∞

1

ρn
lim
ε→0

Eε

(
Xε, Qν

ρn
(x0)

)
.

We introduce the configuration Xn
ε := ρ−1n Xε and obtain by Lemma 3.1(ii) (for

λ = 1/ρn)

ξ(x0) = lim
n→+∞ lim

ε→0
Eε/ρn

(
Xn

ε , Qν(ρ−1n x0)
)
. (3.10)

Since Xε → u in L1
loc(R

2), we obtain by definition that uε → u in L1
loc(R

2), see
the end of Section 2.2. By un

ε we denote the function corresponding to Xn
ε . By (3.1)

we have un
ε (x) = uε(ρn x) for all x ∈ R

2. In particular, Lemma 3.2 yields un
ε → un

on Qν(ρ−1n x0), where un(x) := u(ρn x) for x ∈ R
2. By (a), change of variables,

and the fact that un(x+ρ−1n x0) = u(x0+ρn x) as well as uν
z+,z−(x) = uν

z+,z−(ρn x)

for x ∈ R
2, we also get that

lim
n→+∞

∫

Qν

|un(x + ρ−1n x0)− uν
z+,z−(x)| dx

= lim
n→+∞

1

ρ2
n

∫

Qν
ρn (x0)

|u(x)− uν
z+,z−(x − x0)| dx = 0.

Therefore, by recalling (3.10) and un
ε → un on Qν(ρ−1n x0), by using a standard

diagonal argument, we find an infinitesimal sequence {ε(n)}n such that for Xn :=
Xn

ε(n) and un := un
ε(n) we have

ξ(x0) = lim
n→+∞ Eεn

(
Xn, Qν(yn)

)
, (3.11)
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and

lim
n→+∞

∫

Qν

|un(x + yn)− uν
z+,z−(x)| dx = 0,

where εn = ε(n)/ρn and yn = ρ−1n x0. Since the sequence is admissible in (3.5),
(3.11) implies ξ(x0) � ψ(z+, z−, ν). This shows (3.9) and concludes the proof. ��

3.4. Upper Bound

This subsection is devoted to the proof ofTheorem2.3(ii). The following density
result will be instrumental:

Lemma 3.6. Let u ∈ PC(R2;Z). Then there exists a sequence (un)n ⊂ PC(R2;Z)

with un → u in L1(R2) and lim supn→+∞ E(un) � E(u) such that each un attains
only finitely many values and has polygonal jump set, that is, Jun consists of finitely
many segments.

Proof. Consider u ∈ PC(R2;Z). We proceed in three steps. We first show that u
can be approximated by functions with finite support (Step 1). Then, we approxi-
mate with functions attaining only finitely many values (Step 2) and finally show
that the jump set can be approximated by a finite number of segments (Step 3).
Note that it suffices to show that for each δ > 0 there exists a function uδ with the
desired properties satisfying

E(uδ) � E(u)+ δ and ‖u − uδ‖L1(R2) � δ. (3.12)

We prove (3.12) up to the multiplication with a uniform constant C > 0 that is
independent of δ. Replacing uδ with uδ/C then yields the result.
Step 1: Reduction to finite support. We show that for every u ∈ PC(R2;Z) and
for every δ > 0 there exist R > 0 and uδ ∈ PC(R2;Z) such that (3.12) is satisfied
and it holds that

{uδ �= 0} ⊂ BR . (3.13)

To this end, fix δ > 0. Since there holds L2({u �= 0}) < +∞, we can choose
R′ > 0 such that

L2({u �= 0} ∩ (R2\BR′)
)

� δ. (3.14)

By the coarea formula and the previous inequality, we can select R ∈ (R′, R′ + 1)
such that

H1({u �= 0} ∩ ∂ BR
)

� L2({u �= 0} ∩ (BR′+1\BR′)
)

� L2({u �= 0} ∩ (R2\BR′)
)

� δ. (3.15)

Define uδ ∈ PC(R2;Z) by uδ = uχBR . Then clearly (3.13) holds. We choose
the orientation of νuδ (x) for x ∈ Ju ∩ ∂ BR such that u+δ coincides with the trace
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of u from the interior of BR . As ϕ(z, 0, ν) � C for all z ∈ Z and ν ∈ S
1 by

Theorem 2.5(i), we use (3.15) to get

E(uδ) =
∫

BR∩Juδ

ϕ(u+δ , u−δ , νuδ ) dH1 +
∫

∂ BR∩{u �=0}
ϕ(u+δ , 0, νuδ ) dH1

�
∫

BR∩Ju

ϕ(u+, u−, νu) dH1 + CH1({u �= 0} ∩ ∂ BR) � E(u)+ Cδ.

This implies the first inequality of (3.12). To see the second inequality of (3.12),
note that |z| � C for all z ∈ Z and therefore by (3.14)

‖uδ − u‖L1(R2) = ‖uδ − u‖L1(R2\BR) � CL2({u �= 0} ∩ (R2\BR′)
)

� Cδ.

Step 2: Reduction to functions attaining finitely many values. Consider
u ∈ PC(R2;Z). By Step 1 we may assume that (3.13) holds for some R > 0, that
is, {u �= 0} ⊂ BR . For each δ > 0, we prove that there exists uδ ∈ PC(R2;Z) such
that (3.12) holds and uδ attains only finitelymany values. Recall by (2.11) that u can
be written in the form u = ∑∞

j=1 χG j z j for pairwise distinct {z j } j ⊂ Z\{0} and
pairwise disjoint {G j } j ⊂ R

2. In view of (2.12), we can choose Jδ ∈ N sufficiently
large such that

∞∑

j=Jδ+1
H1(∂∗G j

)
� δ/R. (3.16)

Note that G j ⊂ BR for all j ∈ N since {u �= 0} ⊂ BR . Due to the isoperimetric
inequality on BR along with L2(G j ) � L2(BR) = π R2 for all j ∈ N, we obtain

∞∑

j=Jδ+1
L2(G j ) �

√
π R2

∞∑

j=Jδ+1

(
L2(G j )

)1/2 � C R
∞∑

j=Jδ+1
H1(∂∗G j

)
� Cδ,

(3.17)

where C > 0 is a universal constant. Now we define

uδ :=

⎧
⎪⎪⎨

⎪⎪⎩

u in
Jδ⋃

j=1
G j ,

0 otherwise.

Then, by (3.17) and ‖u‖∞ � C we get ‖uδ − u‖L1(R2) = ‖uδ − u‖L1(BR)�Cδ.
Moreover, setting for brevity � :=⋃∞j=Jδ+1 ∂∗G j we obtain, by (3.16), that

E(uδ) =
∫

Juδ

ϕ(u+δ , u−δ , νuδ ) dH1 =
∫

Juδ
∩�

ϕ(u+δ , u−δ , νuδ ) dH1

+
∫

Juδ
\�

ϕ(u+δ , u−δ , νuδ ) dH1

� C
∞∑

j=Jδ+1
H1(∂∗G j

)+ E(u) � Cδ + E(u),
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Fig. 6. The construction for the �-lim sup in the case where the jump set is polyhedral: The
part �1 ∪�2 of the jump set is shown. Here, x21 equals x12 . The region (M)δ is shown as the
dotted circles around the points in M . Also the cubes used in the construction to cover the
segments �1 and �2 are indicated

where we have used ϕ(z1, z2, ν) � C for all z1, z2 ∈ Z and ν ∈ S
1. Therefore,

(3.12) holds, and Step 2 is concluded.
Step 3: Reduction to polyhedral jump sets.Consider u ∈ PC(R2;Z). By Steps 1–2
we can assume that u attains only finitely many values, and its support is contained
in BR . By Theorem 2.5(iii) we get that the mapping ν �→ ϕ(z1, z2, ν) is convex and
thus continuous for all z1, z2 ∈ Z . Therefore, by [9, Theorem2.1 andCorollary 2.4]
(with � = BR and Z being the range of u) we obtain a function uδ ∈ PC(R2;Z)

with polyhedral jump set such that (3.12) is satisfied. This concludes the proof. ��
We are now in a position to prove Theorem 2.3(ii).

Proof of Theorem 2.3(ii). By Lemma 3.6 and a general density argument in the
theory of �-convergence (see [8, Remark 1.29]), it suffices to construct recovery
sequences for u ∈ PC(R2;Z) such that u attains only finitely many values, and
u has a polygonal jump set. Our goal is to prove that there exists {Xε}ε such that
Xε → u in L1

loc(R
2) and lim supε→0 Eε(Xε) � E(u).

Let Ju =⋃N
i=1 �i =⋃N

i=1[x1i ; x2i ],where the sets�i are line segments between
the points x1i and x2i , defined in (2.5), with length li , orientation ν⊥i , and normal νi .
We can assume that the traces (u+, u−) = (u+i , u−i ) are constant along each line
segment, and that two segments �i and � j intersect at most at endpoints of �i and
� j . Denote by M the collection of points where at least two of such line segments
meet. Fix 0 < δ < 1

3 min{|x − y| : x, y ∈ M, x �= y} and choose ρ ∈ (0, δ) small
enough such that

ρ <
1√
2
dist
(
�i\
(
Bδ(x1i ) ∪ Bδ(x2i )

)
, � j\

(
Bδ(x1j ) ∪ Bδ(x2j )

))
for all i �= j.

(3.18)

This choice of ρ implies that Qν
ρ(x1) ∩ Qν

ρ(x2) = ∅ for all x1 ∈ �i\(Bδ(x1i ) ∪
Bδ(x2i )) and x2 ∈ � j\(Bδ(x1j )∪Bδ(x2j )), i �= j . As the traces (u+, u−) are constant
on �i , it holds that

∫

�i

ϕ(u+, u−, νu) dH1 = li ϕ(u+i , u−i , νi ) for all i ∈ {1, . . . , N }. (3.19)
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We define

Pρ
i =

{
x1i + kρν⊥i : k ∈ N, 0 � k � �li/ρ�

}
, �

ρ
i =

⋃

x∈Pρ
i

Qν
ρ(x), �ρ =

N⋃

i=1
�

ρ
i

as well as (recall (2.7))

H ε=
N⋃

i=1

⋃

x∈Pρ
i

(
x+∂ H

ε Qν
ρ

)
, where ∂ H

ε Qν
ρ := Qν

ρ+10ε\Qν
ρ−10ε\

(
∂+ε Qν

ρ ∪ ∂−ε Qν
ρ

)
.

In view of Proposition 2.2, we can choose ε = ε(ρ, δ) > 0 sufficiently small
such that, for each x ∈ Pρ

i , we can choose a configuration X x
ε ⊂ R

2 satisfying
X x

ε = εL (u±i ) on ∂±ε Qν
ρ(x) and

Eε(X x
ε , Qν

ρ(x)) � ρ ϕ(u+i , u−i , νi )+ δρ/ li . (3.20)

We introduce the configuration

X δ
ε =

⎧
⎪⎨

⎪⎩

X x
ε in Qν

ρ(x)\((M)δ ∪ H ε), for x ∈ Pρ
i for some i ∈ {1, . . . , N },

L (z) in {u = z}\((M)δ ∪ �ρ) for z ∈ Im(u),

∅ in (M)δ ∪ H ε;
see Fig. 6 for an illustration.Here, (M)δ denotes the δ-neighborhood of M , see (2.4),
and Im(u) denotes the image of u. The set H ε is introduced in order to ensure that
Eε(X δ

ε) < +∞ since atoms in H ε of two adjacent cubes could violate the constraint
of having at least distance ε. Indeed, by X δ

ε = ∅ on (M)δ ∪ H ε and the boundary
conditions of X x

ε , we get |x − y| � ε for all x, y ∈ X δ
ε , x �= y, and therefore

Eε(X δ
ε) < +∞. We have #Nε(x) = 6 for each atom x ∈ X δ

ε\((M)δ+ε ∪ �ρ). To
see this, we take the boundary conditions of X x

ε and the choice of ρ in (3.18) into
account. By (2.3) this implies

Eε

(
X δ

ε,R
2\((M)δ+ε ∪ �ρ)

) = 0. (3.21)

Therefore, it remains to account for the energy contribution inside the cubes Qν
ρ(x),

x ∈ Pρ
i , and the set (M)δ+ε. First, note that for x̄ ∈ M we have that

#
(
X δ

ε ∩ Bδ+ε(x̄)
)

� Cδ/ε. (3.22)

In fact, (M)δ ∩ X δ
ε = ∅ by definition and thus X δ

ε ∩ Bδ(x̄) = ∅. As Eε(X δ
ε) < +∞,

by Lemma 3.1(v) and a simple computation we get #(X δ
ε ∩ (Bδ+ε(x̄)\Bδ(x̄))) �

Cε−2L2(Bδ+2ε(x̄)\Bδ−ε(x̄)) � Cδ/ε for a universal constant C > 0. This yields
(3.22) and then by (2.3) we get

Eε

(
X δ

ε, (M)δ+ε

)
� Cδ, (3.23)

where C depends also on #M . By definition of X δ
ε , for x ∈ Pρ

i we have that X δ
ε =

X x
ε in Qν

ρ+ε(x)\(H ε ∪ (M)δ). As Eε(X δ
ε) < +∞, we can employ Lemma 3.1(v)
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to deduce that #(X δ
ε ∩ (H ε)ε ∩ Qν

ρ(x)) � ε−2CL2((H ε ∩ Qν
ρ(x))2ε) � C . Hence,

by (2.3) we obtain

Eε

(
X δ

ε, Qν
ρ(x)

)
� Eε

(
X x

ε , Qν
ρ(x)

)+ Cε (3.24)

for all x ∈ Pρ
i such that dist(Qν

ρ(x), (M)δ) � ε. On the other hand, for x ∈ Pρ
i such

that dist(Qν
ρ(x), (M)δ) < ε, we use the estimate in (3.22) with x̄ ∈ M such that

dist(Qν
ρ(x), (M)δ) = dist(Qν

ρ(x), Bδ(x̄)) (and so dist(Qν
ρ(x), (M\{x̄})δ) > ε)

and obtain

Eε

(
X δ

ε, Qν
ρ(x)

)
� Eε

(
X x

ε , Qν
ρ(x)

)+ C(ε + δ). (3.25)

Consequently, using (3.20), (3.24)–(3.25), and Lemma 3.1(iii), we obtain
∑

x∈Pρ
i

Eε

(
X δ

ε, Qν
ρ(x)\(M)δ+ε

)
�
∑

x∈P̃ρ
i

Eε

(
X δ

ε, Qν
ρ(x)

)

� ρ�li/ρ�ϕ(u+i , u−i , νi )+ Cδ + Cε/ρ,

where we have set P̃ρ
i = {x ∈ Pρ

i : Qν
ρ(x) �⊂ (M)δ+ε}. Here, C depends on N

and #M , but is independent of ε, δ, and ρ. Thus, by choosing ε small enough with
respect to ρ (that is, with respect to δ) we get by (3.19) that

∑

x∈Pρ
i

Eε

(
X δ

ε, Qν
ρ(x)\(M)δ+ε

)
� li ϕ(u+i , u−i , νi )+ Cδ

=
∫

�i∩Ju

ϕ(u+, u−, νu) dH1 + Cδ. (3.26)

Now, by Lemma 3.1(iv), (3.21), (3.23), and (3.26) we conclude

Eε(X δ
ε) �

N∑

i=1

∑

x∈Pρ
i

Eε

(
X δ

ε, Qν
ρ(x)\(M)δ+ε

)+ Eε

(
X δ

ε, (M)δ+ε

)

+ Eε

(
X δ

ε,R
2\((M)δ+ε ∪ �ρ)

)

�
N∑

i=1

∫

�i∩Ju

ϕ(u+, u−, νu) dH1 + C Nδ =
∫

Ju

ϕ(u+, u−, νu) dH1 + C Nδ.

By choosing δ = δ(ε) → 0 sufficiently slowly as ε → 0 we obtain X δ(ε)
ε → u in

L1
loc(R

2) (see Section 2.2 for the definition of this convergence) and

lim sup
ε→0

Eε(X δ(ε)
ε ) �

∫

Ju

ϕ(u+, u−, νu) dH1.

This concludes the proof. ��
To conclude the proof of the main theorems, it remains to show Proposition 2.2,

Theorem 2.5, and Proposition 3.4. This is subject to the next sections.
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4. Cell Formula Part I: Relation of L1-convergence and Boundary Values

In this first part about cell formulas,we show that the conditionof L1-convergence
as given in the cell formula ψ , see (3.5), can be replaced by converging boundary
values. More precisely, in this section we consider � : Z × Z × S

1 → [0,+∞)

defined by

�(z+, z−, ν) = min
{
lim inf

ε→0
inf
{

Eε(Xε, Qν(yε)) : yε ∈ R
2, Xε

= εL (z±ε ) on ∂±ε Qν(yε)
}
: {z±ε }ε ⊂ Z with z±ε → z±

}
,

(4.1)

where the identity Xε = εL (z±ε ) is defined in (2.10) and ∂±ε Qν(yε) in (2.7).
This means that near the boundary of the cube the configuration is contained in at
most two different lattices εL (z±ε ). (Less is possible if z±ε = 0.) We note that the
minimum in (4.1) is attained by a standard diagonal sequence argument. Our aim
is to prove the following statement:

Lemma 4.1. (Relation of ψ and �) Let z+, z− ∈ Z and ν ∈ S
1. Then

ψ(z+, z−, ν) � �(z+, z−, ν). (4.2)

In Section 7, we will prove �(z+, z−, ν) = ϕ(z+, z−, ν) for all z+, z− ∈ Z and
ν ∈ S

1, see Lemma 7.1, and Proposition 7.2. This along with Lemma 4.1 will
conclude the proof of Proposition 3.4.

As it is customary in the analysis of cell formulas, the proof of Lemma 4.1
crucially relies on a cut-off argument which allows to construct configurations at-
taining the boundary values.Whereas for problems onSobolev spaces this is usually
achieved by a convex combination of functions, our discrete problem is consider-
ably more delicate. In fact, on the one hand, the system is quite flexible due to the
rotational and translational invariance of the atomistic energy, cf. Lemma 3.1(i).
On the other hand, the system is very rigid as small changes in the configuration
may induce a lot of energy due to the discontinuous interaction potential, see (1.1).
This calls for a refined cut-off construction.

The construction fundamentally relies on the fact that the energy of an optimal
sequence in (3.5) is concentrated asymptotically arbitrarily close to the interface.
(Similar properties can be observed in related phase transition problems, see for
example [12,13,15].) As a preliminary step, we need to show that in the definition
of ψ we may replace cubes by rectangles. To this end, we introduce half-open
rectangles with sides parallel to ν by

Rν
l,h(y) = y +

{
x ∈ R

2 : − h

2
� 〈x, ν〉 <

h

2
, − l

2
� 〈x, ν⊥〉 <

l

2

}
, (4.3)

where y ∈ R
2, and l, h > 0.We simplywrite Rν

l,h instead of Rν
l,h(y) if the rectangle

is centered at y = 0. Recall the definition in (3.4).
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Lemma 4.2. (Density ψ on rectangles) For all z+, z− ∈ Z , all ν ∈ S
1, and all

l, h > 0 there holds

ψ(z+, z−, ν) = inf
{
lim inf

ε→0

1

l
Eε

(
Xε, Rν

l,h(yε)
) : yε ∈ R

2,

lim
ε→0

∫

Rν
l,h

|uε(x + yε)− uν
z+,z−(x)| dx = 0

}
. (4.4)

Proof. For convenience, we denote the function on the right hand side of (4.4) in
the variables (z+, z−, ν, l, h) by �. We will use certain scaling properties of �:

�(z+, z−, ν, λ�, λκ) = �(z+, z−, ν, �, κ) for all λ > 0. (4.5)

�(z+, z−, ν, �, κ) � �(z+, z−, ν, �, λκ) for all λ � 1. (4.6)

�(z+, z−, ν, �, κ) � �(z+, z−, ν, λ�, κ) for all λ ∈ N. (4.7)

�1�(z+, z−, ν, �1, κ) � �2�(z+, z−, ν, �2, κ) for all 0 < �1 � �2. (4.8)

We postpone the proof of (4.5)–(4.8) to Step 3 of the proof, and first derive the
statement.
Step 1: Independence of l. We start by proving the independence of the length l,
that is,

�(z+, z−, ν, l, h) = �(z+, z−, ν, μl, h) (4.9)

for all μ > 0. To this end, consider first μ ∈ N. Using (4.5) and then (4.6) with
λ = μ, � = l, and κ = h/μ, we obtain

�(z+, z−, ν, μl, h) = �
(
z+, z−, ν, l, h/μ

)
� �

(
z+, z−, ν, l, h

)
.

By (4.7) for μ ∈ N it holds that �(z+, z−, ν, μl, h) � �(z+, z−, ν, l, h). Com-
bining the estimates we get

�(z+, z−, ν, μl, h) = �(z+, z−, ν, l, h) (4.10)

for μ ∈ N. Now substituting l with l
μ
in the previous equation, we obtain

�(z+, z−, ν, l, h) = �(z+, z−, ν, l/μ, h) (4.11)

for all μ ∈ N and l > 0. Hence, due to (4.10) and (4.11), equality (4.9) holds for
all μ ∈ Q

+.
Now, for general μ > 0, we take a sequence {μn}n ⊂ Q such that μn � μn+1

for all n ∈ N and μn → μ. By (4.8) and the fact that (4.9) holds for all μ ∈ Q, we
obtain

�(z+, z−, ν, l, h) = �(z+, z−, ν, μnl, h) � μ

μn
�(z+, z−, ν, μl, h).

Taking n →+∞, we obtain

�(z+, z−, ν, l, h) � �(z+, z−, ν, μl, h). (4.12)



Emergence of Rigid Polycrystals from Atomistic Systems 653

This yields one inequality in (4.9). Applying (4.12) for λ in place of μ and l/λ in
place of l we also get

�(z+, z−, ν, l, h) = �(z+, z−, ν, λl/λ, h) � �(z+, z−, ν, l/λ, h).

If we choose λ = μ−1, we get the other inequality in (4.9).
Step 2: Independence of h. Let μ > 0. By first applying (4.5) and then (4.9) we
obtain

�(z+, z−, ν, l, h) = �
(
z+, z−, ν, μl, μh

) = �(z+, z−, ν, l, μh).

This yields the desired independence of the height h.
Step 3: Proof of (4.5)–(4.8). It remains to prove (4.5)–(4.8).
Step 3.1: Proof of (4.5). Fix λ, �, κ > 0. Let Xε ⊂ R

2 and yε ∈ R
2 be given such

that limε→0
∫

Rν
�,κ
|uε(x + yε)− uν

z+,z−(x)| dx = 0 and

�(z+, z−, ν, �, κ) = lim inf
ε→0

1

�
Eε

(
Xε, Rν

�,κ (yε)
)
. (4.13)

(By a standard diagonal sequence argument the infimum on the right hand side of
(4.4) is attained.) Set Xλ

ε = λXε. By (3.1) we get that the corresponding functions
uλ

λε, see (2.15), satisfy uλ
λε(x) = uε(λ

−1x) for all x ∈ R
2. Change of variables

y = λ−1x and uν
z+,z−(y) = uν

z+,z−(λy) imply

lim
ε→0

∫

Rν
λ�,λκ

|uλ
λε(x + λyε)− uν

z+,z−(x)| dx

= lim
ε→0

λ2
∫

Rν
�,κ

|uε(y + yε)− uν
z+,z−(y)| dy = 0.

Using Lemma 3.1(ii) along with (4.13) and the definition of �, we obtain

�(z+, z−, ν, λ�, λκ) � lim inf
ε→0

1

λ�
Eλε

(
Xλ

ε , Rν
λ�,λκ (λyε)

)

= lim inf
ε→0

1

�
Eε

(
Xε, Rν

�,κ (yε)
) = �(z+, z−, ν, �, κ).

By exchanging λ with 1
λ
and �, κ with λ�, λκ , respectively, we obtain (4.5).

Step 3.2: Proof of (4.6). Fix λ � 1 and �, κ > 0. Consider Xε ⊂ R
2 and yε ∈ R

2

such that limε→0
∫

Rν
�,λκ
|uε(x + yε)− uν

z+,z−(x)| dx = 0 and

�(z+, z−, ν, �, λκ) = lim inf
ε→0

1

�
Eε

(
Xε, Rν

�,λκ (yε)
)
.

By Lemma 3.1(iii) and the definition of � we get

�(z+, z−, ν, �, κ) � lim inf
ε→0

1

�
Eε

(
Xε, Rν

�,κ (yε)
)

� lim inf
ε→0

1

�
Eε

(
Xε, Rν

�,λκ (yε))

= �(z+, z−, ν, �, λκ
)
.
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Step 3.3: Proof of (4.7). Let λ ∈ N and �, κ > 0. Consider Xε ⊂ R
2 and yε ∈ R

2

such that

lim
ε→0

∫

Rν
λ�,κ

|uε(x + yε)− uν
z+,z−(x)| dx = 0 (4.14)

and

�(z+, z−, ν, λ�, κ) = lim inf
ε→0

1

λ�
Eε

(
Xε, Rν

λ�,κ (yε)
)
. (4.15)

We decompose the half-open rectangle Rν
λ�,κ (yε) into pairwise disjoint half-open

rectangles of the form

Rν
λ�,κ (yε) =

λ−1⋃

j=0
Rν

�,κ (yε
j ),

where yε
j = yε + 2 j−λ+1

2 �ν⊥. Now, using Lemma 3.1(iv), we derive that there
exists j0 such that

Eε

(
Xε, Rν

�,κ (yε
j0)
)

� 1

λ

λ−1∑

j=0
Eε

(
Xε, Rν

�,κ (yε
j )
) = 1

λ
Eε

(
Xε, Rν

λ�,κ (yε)
)
. (4.16)

By (4.14) and the fact that uν
z+,z−(x) = uν

z+,z−(x + tν⊥) for all x ∈ R
2 and

t ∈ R, see (3.4), we get that limε→0
∫

Rν
�,κ
|uε(x + yε

j0
)− uν

z+,z−(x)| dx = 0. By the

definition of �, (4.15), and (4.16) this yields

�(z+, z−, ν, �, κ) � lim inf
ε→0

1

�
Eε

(
Xε, Rν

�,κ (yε
j0)
)

� lim inf
ε→0

1

λ�
Eε

(
Xε, Rν

λ�,κ (yε)
)

= �(z+, z−, ν, λ�, κ).

This implies (4.7).
Step 3.4: Proof of (4.8). Let 0 < �1 � �2. Consider Xε ⊂ R

2 and yε ∈ R
2 such

that limε→0
∫

Rν
�2,κ
|uε(x + yε)− uν

z+,z−(x)| dx = 0 and

�(z+, z−, ν, �2, κ) = lim inf
ε→0

1

�2
Eε

(
Xε, Rν

�2,κ
(yε)

)
.

By using Lemma 3.1(iii) along with �2 � �1 and the definition of � we get

�(z+, z−, ν, �1, κ) � lim inf
ε→0

1

�1
Eε

(
Xε, Rν

�1,κ
(yε)

)
� lim inf

ε→0

1

�1
Eε

(
Xε, Rν

�2,κ
(yε)

)

= �2

�1
lim inf

ε→0

1

�2
Eε

(
Xε, Rν

�2,κ
(yε)

) = �2

�1
�(z+, z−, ν, �2, κ).

This yields (4.8) and concludes the proof. ��
We now proceed with the proof of Lemma 4.1.
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Proof of Lemma 4.1. In view of (3.5), we can choose a subsequence in ε (not re-
labeled) and configurations Xε ⊂ R

2 and yε ∈ R
2 such that limε→0

∫
Qν |uε(x +

yε)− uν
z+,z−(x)| dx = 0 and

ψ(z+, z−, ν) = lim
ε→0

Eε

(
Xε, Qν(yε)

)
. (4.17)

We perform a refined cut-off construction and split the proof into several steps. As
explained above, the construction is quite delicate due to the fact that the energy
is very sensitive to small changes of the configurations. First, we use Lemma 4.2
to prove that the energy of Xε concentrates around a strip close to the limiting
interface (Step 1). This allows us to select one dominant component on each side
of the interface, that is, on the upper and the lower half-cube (Step 2). Here, the
notion “component” refers to a subset of a specific triangular lattice.

Our goal in the subsequent steps is to modify the configuration Xε such that it
coincides with these lattices near the boundary of the upper and lower half-cube,
respectively. In Step 3, we give a precise cardinality estimate on the number of
points that differ from the lattices of the two dominant components in terms of
o(ε−2). In Step 4, we select a “good layer” where we can modify our configura-
tion. “Good” means here that, in that layer, the configuration coincides with the
lattice of the dominant component up to o(ε−1) atoms. In Step 5, we show that the
configuration constructed in Step 4 is an asymptotic energy lower bound for the
original configuration. Finally, in Step 6, we conclude by observing that the con-
structed configuration is a competitor in the definition of �. We will perform this
construction under the assumption that in both the upper and the lower half-cube
there exist (dominant) lattices. The case of vacuum calls for small adaptions which
are described at the end in Step 7.
Step 1: The energy concentrates near the line {〈ν, (x − yε)〉 = 0}. Recall (4.3). We
show that for all δ ∈ (0, 1) it holds that

lim
ε→0

Eε

(
Xε, Qν(yε)\Rν

1,δ(yε)
) = 0. (4.18)

By Lemma 3.1(iii), Lemma 4.2, (4.17), and the fact that {Xε}ε is admissible in the
definition of ψ on Rν

1,δ , see (4.4), we obtain

ψ(z+, z−, ν) � lim inf
ε→0

Eε

(
Xε, Rν

1,δ(yε)
)

� lim
ε→0

Eε

(
Xε, Qν(yε)

) = ψ(z+, z−, ν).

Lemma 3.1(iv) then implies

0 � lim sup
ε→0

Eε

(
Xε, Qν(yε)\Rν

1,δ(yε)
)

= lim sup
ε→0

(
Eε

(
Xε, Qν(yε)

)− Eε

(
Xε, Rν

1,δ(yε)
))

� lim
ε→0

Eε

(
Xε, Qν(yε)

)− lim inf
ε→0

Eε

(
Xε, Rν

1,δ(yε)
) = 0.

This yields (4.18) and concludes Step 1.
In order to shorten the notation, we omit the dependence on the center yε and

simply write Qν
ρ instead of Qν

ρ(yε) for ρ > 0 and Rν
1,δ instead of Rν

1,δ(yε). For
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brevity, we also define (omitting the center yε) the rectangles P±δ,ε = Qν,±
1−ε\Rν

1−ε,δ ,

where Qν,±
1−ε is defined below (2.6). We will prove all auxiliary statements along

the proof for the upper half-cube Qν,+ only since the arguments for the lower
one are analogous. In what follows, δ ∈ (0, 1) is fixed sufficiently small. Without
restriction, we may suppose that ε � δ.
Step 2: Single dominant component in the upper and lower half. We prove that
there exist sequences {z±ε }ε ⊂ Z such that z±ε → z± and

L2({uε �= z±ε } ∩ P±δ,ε
)

� C Eε

(
Xε, Qν\Rν

1,δ/2

)
, (4.19)

where C > 0 is a universal constant independent of ε.
Recall by (2.11) and (2.15) that the function uε can be written as uε =∑∞

j=1 χGε
j
zε

j for pairwise distinct {zε
j } j ⊂ Z\{0} and pairwise disjoint {Gε

j } j ⊂
R
2.ByProposition 3.3 (more precisely, see (3.3)), (2.4), andLemma3.1(iii)wehave

∞∑

j=1
H1(∂∗Gε

j ∩ P+δ,ε) � C Eε

(
Xε, (P+δ,ε)ε

)
� C Eε

(
Xε, Qν\Rν

1,δ/2

)
, (4.20)

where in the last step we used (P+δ,ε)ε ⊂ Qν\Rν
1,δ/2. We also define the vacuum

inside Qν by Gε
0 := Qν\⋃∞j=1 Gε

j . By the relative isoperimetric inequality (see
for example [22, Theorem 2, Section 5.6.2]), there exists c > 0 such that for all
j ∈ N0 that holds

min
{
L2(Gε

j∩P+δ,ε),L
2(P+δ,ε\Gε

j )
}

� min
{
L2(Gε

j ∩ P+δ,ε),L
2(P+δ,ε\Gε

j )
}1/2L2(P+δ,ε)

1/2

� cH1(∂∗Gε
j ∩ P+δ,ε), (4.21)

where we usedL2(P+δ,ε) � 1. (Note that the theorem in the reference above is stated
and proved in a ball, but that the argument only relies on Poincaré inequalities, and
thus easily extends to the rectangles P+δ,ε. Since the ratio of length and width is
controlled, the constant is independent of δ and ε.) Then, from (4.20), (4.21), and
∂∗Gε

0 ∩ P+δ,ε ⊂
⋃∞

j=1(∂∗Gε
j ∩ P+δ,ε) it follows that

∞∑

j=0
min

{
L2(Gε

j ∩ P+δ,ε), L
2(P+δ,ε\Gε

j )
}

� C Eε

(
Xε, Qν\Rν

1,δ/2

)
. (4.22)

We now get that there is a unique dominant component, that is, there exists jε ∈ N0
such that

L2(Gε
jε ∩ P+δ,ε) >

1

2
L2(P+δ,ε). (4.23)

In fact, assume by contradiction that this were not the case. Then, we get, for all
j ∈ N0,

min
{
L2(Gε

j ∩ P+δ,ε),L
2(P+δ,ε\Gε

j )
} = L2(Gε

j ∩ P+δ,ε).
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Byusing (4.22)weobtainL2(P+δ,ε) =
∑∞

j=0 L2(Gε
j∩P+δ,ε) � C Eε

(
Xε, Qν\Rν

1,δ/2

)
.

This contradicts (4.18) for ε small enough. Now (4.22) and (4.23) imply (4.19) for
the choice z+ε = zε

jε
.

To conclude this step, we note that the convergence limε→0
∫

Qν |uε(x + yε)−
uν

z+,z−(x)| dx = 0 along with (4.23) also yields z+ε → z+.
The rest of the proof is divided into two cases: (a) z+ε �= 0 and (b) z+ε = 0,

that is, Xε converges to a lattice in the upper half of the cube or there is vacuum.
We perform the proof for case (a). At the end of the proof (Step 7), we indicate the
necessary changes to treat case (b).
Step 3: Cardinality estimate. We prove that there exists C > 0 such that

ε2#
((

εL (z±ε )�Xε

) ∩ P±δ,ε
)

� C Eε

(
Xε, Qν\Rν

1,δ/2

)
, (4.24)

where here and in what follows � denotes the symmetric difference of sets. First,
consider some x ∈ (εL (z+ε )\Xε) ∩ P+δ,ε. Then, by the definition of uε in (2.15)
we get

uε(y) �= z+ε for all y ∈ Bε/4(x). (4.25)

Indeed, otherwise we would find y ∈ Bε/4(x) and x ′ ∈ Xε ∩ Bε/
√
3(y) with

#Nε(x ′) = 6 and {x ′} ∪ Nε(x ′) ⊂ εL (z+ε ). The latter follows from the fact

that V
z+ε
ε (x ′) ⊂ Bε/

√
3(x ′). In particular, we have x ′ ∈ εL (z+ε ) and |x − x ′| �

|x − y| + |y − x ′| � ε/4 + ε/
√
3 < ε. This, however, is impossible, since

|x1 − x2| � ε for all x1, x2 ∈ εL (z+ε ), x1 �= x2.
On the other hand, if there exists x ∈ (Xε\εL (z+ε )) ∩ P+δ,ε, then we find

x0 ∈ εL (z+ε )∩ P+δ,ε with |x0 − x | < ε. Clearly, x0 /∈ Xε by (1.1) and the fact that
Eε(Xε) < +∞. Repeating the reasoning in (4.25) we find that

uε(y) �= z+ε for all y ∈ Bε/4(x0). (4.26)

Note that, in this procedure, x0 can be chosen for at most six x ∈ Xε indepen-
dently of ε since #(Xε ∩ Bε(x0)) � 6 due to Eε(Xε) < +∞. Using (4.19),
L2(Bε/4(x)∩P+δ,ε) � cε2 for all x ∈ εL (z+ε )∩P+δ,ε, and (4.25)–(4.26)we conclude

ε2#
((

εL (z+ε )�Xε

) ∩ P+δ,ε
)

� CL2({uε �= z+ε } ∩ P+δ,ε
)

� C Eε

(
Xε, Qν\Rν

1,δ/2

)
.

Step 4: Cut-off construction. In this step,we construct a new configurationY+ε ⊂ R
2

such that Y+ε = εL (z+ε ) on ∂+ε Qν , see (2.7). This construction changes the con-
figuration in the upper half-cube Qν,+. Step 5 then shows that the energy of Y+ε is
asymptotically equal to the one of Xε. The procedure can then be repeated on the
lower half-cube. We defer this to Step 6 below.

Set Nε =
⌊

δ
6ε

⌋
. (Here and in the sequel, we do not highlight the dependence

on δ to save notation.) For k ∈ {0, . . . , Nε + 1} we let rk = 1− δ+ 3kε and define
the layers

Sε
k =

(
Qν,+

rk
\Qν,+

rk−1
)\Rν

1,δ. (4.27)
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For k ∈ {1, . . . , Nε} we also define the “thickened layers” Lε
k = Sε

k−1 ∪ Sε
k ∪ Sε

k+1.
Our goal is to perform a transition to the lattice εL (z+ε ) on one of these layers. To
this end, we choose a convenient layer by an averaging argument: by (4.24) there
exists kε ∈ {1, . . . , Nε} such that

#
(
(εL (z+ε )�Xε) ∩ Lε

kε

)
� 1

Nε

Nε∑

k=1
#
(
(εL (z+ε )�Xε) ∩ Lε

k

)

� 3

Nε

#
(
(εL (z+ε )�Xε) ∩ P+δ,ε

)
� C

εδ
Eε

(
Xε, Qν\Rν

1,δ/2

)
. (4.28)

Here, we used Lε
k ⊂ P+δ,ε for all k and εδ � C Nεε

2. The factor 3 is due to the fact
that we count each strip Sε

k at most three times. Set Dε := Qν
rkε−1 ∪ (Qν,−\Rν

1,δ).
We now define Y+ε by

Y+ε =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εL (z+ε ) in (P+δ,ε\Qν
rkε

) ∪ ∂+ε Qν,

∅ in (Rν
1,δ\Qν

rkε−1)\(∂+ε Qν ∪ ∂−ε Qν),

Xε ∩ εL (z+ε ) in Sε
kε

,

Xε in Dε ∪ ∂−ε Qν.

(4.29)

See Fig. 7 for an illustration of the different regions. We briefly explain the defini-
tion. In Dε ∪ ∂−ε Qν , the configuration remains unchanged, and near the boundary
of the upper half-cube it coincides with the lattice εL (z+ε ). In Sε

kε
, we use the in-

tersection Xε ∩ εL (z+ε ). In this sense, Sε
kε
can be understood as a transition layer.

Eventually, small regions near the boundary close to the interface ∂ Qν,+ ∩ ∂ Qν,−
do not contain atoms. This is convenient since in this region the energy of the
original configuration possibly does not vanish. Note that the latter ensures that
|y1 − y2| � ε for all y1, y2 ∈ Y+ε , y1 �= y2, and therefore

Eε(Y
+
ε ) < +∞. (4.30)

Finally, we point out that Y+ε �⊂ Qν due to the definition of ∂±ε Qν in (2.7), see also
Fig. 3.
Step 5: Energy estimate. In this step we show that the energy of the configuration
constructed in Step 4 is asymptotically controlled by the original energy, that is,

lim inf
ε→0

Eε(Y
+
ε , Qν) � lim inf

ε→0
Eε(Xε, Qν)+ Cδ (4.31)

for some universal C > 0. In order to obtain (4.31), we distinguish three regions:

Aε
1 = (Rν

1,δ\Qν
rkε−1)ε, Aε

2 = (Sε
kε

)ε\Aε
1, Aε

3 = Qν\(Aε
1 ∪ Aε

2). (4.32)

Energy estimate on Aε
1: We claim that there exists a universal C > 0 such that

Eε(Y
+
ε , Aε

1) � Cδ. (4.33)

In fact, due to (4.29), we have Y+ε ∩ (Rν
1,δ\Qν

rkε−1) = (εL (z+ε )∩ Rν
1,δ ∩ ∂+ε Qν)∪

(Xε ∩ Rν
1,δ ∩ ∂−ε Qν). As L2((Rν

1,δ ∩ ∂±ε Qν)ε) � Cδε, see (2.7) and (4.3), by
Lemma 3.1(v) we get

#
(
Y+ε ∩ (Rν

1,δ\Qν
rkε−1)

)
� Cδ/ε. (4.34)
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Rν
1,δ

Sε
kε

δ

∼ δ

(P+
δ,ε \ Qν

rkε
) ∪ ∂+

ε Qν

Dε ∪ ∂−
ε Qν

ν

Fig. 7. The different regions for Y+ε inside Qν : dark gray region Dε ∪ ∂−ε Qν , gray region
(Rν

1,δ\Qν
rkε−1)\(∂+ε Qν ∪ ∂−ε Qν), light gray region Sε

kε
, and white region (P+δ,ε\Qν

rkε
) ∪

∂+ε Qν . The two dashed lines enclose the region Rν
1,δ

Here, Lemma 3.1 is applicable by (4.30). Additionally, we note that Rν
1,δ\Qν

rkε−1
consists of two rectangles and we have H1(∂(Rν

1,δ\Qν
rkε−1)) � Cδ. Hence, by

Lemma 3.1(v) we obtain

#
(
(Aε

1 ∩ Y+ε )\(Rν
1,δ\Qν

rkε−1)
)

� Cε−2L2
((

(Rν
1,δ\Qν

rkε−1)ε\(Rν
1,δ\Qν

rkε−1)
)
ε

)

� Cε−1H1(∂(Rν
1,δ\Qν

rkε−1)
)

� Cδ/ε.

This along with (4.34) yields #(Aε
1 ∩Y+ε ) � Cδ/ε, and therefore (4.33) follows by

(2.3).
Energy estimate on Aε

2: We prove that there exists a universal C > 0 such that

Eε(Y
+
ε , Aε

2) � (1+ C/δ) Eε

(
Xε, Qν\Rν

1,δ/2

)
. (4.35)

First, the definition of Lε
kε

below (4.27) implies (Aε
2)ε ⊂ Lε

kε
. For x ∈ Y+ε , we

denote the neighborhood of x with respect toY+ε byNε,Y (x), cf. (2.1).We claim that

#Nε,Y (x) � #Nε(x)− 6 #
(
Bε(x) ∩ (Xε\εL (z+ε ))

)
for all x ∈ Xε ∩ Y+ε ∩ Aε

2.

(4.36)

In fact, if Bε(x) ∩ (Xε\εL (z+ε )) �= ∅, the right hand side is nonpositive since
#Nε(x) � 6, see (2.2). Since #Nε,Y (x) � 0, (4.36) follows in this case. On
the other hand, if Bε(x) ∩ (Xε\εL (z+ε )) = ∅, by (4.29), we may have only in-
creased the cardinality of the neighborhood by adding atoms in εL (z+ε )\Xε, that
is, #Nε,Y (x) � #Nε(x). This again yields (4.36).
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We split the sum into Xε ∩ Y+ε and Y+ε \Xε. By using (2.3), Aε
2 ⊂ Lε

kε
,

Lemma 3.1(iii), and (4.36) we obtain

Eε(Y
+
ε , Aε

2) � Cε#
{

x ∈ Aε
2 ∩ (Y+ε \Xε)

}+ 1

2

∑

x∈Y+ε ∩Xε

x∈Aε
2

ε
(
6− #Nε,Y (x)

)

� Cε#
{

x ∈ (Y+ε ∩ Lε
kε

)\Xε

}+ 3ε
∑

x∈Y+ε ∩Xε

x∈Aε
2

#
(
Bε(x) ∩ (Xε\εL (z+ε ))

)

+ Eε(Xε, Lε
kε

). (4.37)

Note, by (4.29), that Y+ε ⊂ εL (z+ε ) ∪ Xε in Lε
kε
. Therefore, in view of (4.28), we

obtain

#
{

x ∈ (Y+ε ∩ Lε
kε

)\Xε

}
� #
{

x ∈ (εL (z+ε )�Xε) ∩ Lε
kε

}
� C

εδ
Eε

(
Xε, Qν\Rν

1,δ/2

)
.

(4.38)

Exploiting (4.28) once more, we get
∑

x∈Y+ε ∩Xε∩Aε
2

#
(
Bε(x) ∩ (Xε\εL (z+ε ))

)
� C#

{
x ∈ (εL (z+ε )�Xε) ∩ Lε

kε

}

� C

εδ
Eε

(
Xε, Qν\Rν

1,δ/2

)
.

(4.39)

Here, the first inequality holds because |x1− x2| � ε for x1, x2 ∈ Xε, x1 �= x2, and
Bε(x) ⊂ Lε

kε
for all x ∈ Aε

2. Hence, we get that every point in (Xε\εL (z+ε ))∩ Lε
kε

is only accounted for at most seven times in the sum. Now, using (4.37)–(4.39),
Lε

kε
⊂ Qν\Rν

1,δ , and Lemma 3.1(iii), we obtain (4.35).
Energy estimate on Aε

3: We claim that

Eε(Y
+
ε , Aε

3) � Eε(Xε, Qν). (4.40)

Recalling (4.32) we get that each x ∈ Aε
3 ∩ Y+ε lies either in T ε := (P+δ,ε\Qν

rkε
) ∪

(∂+ε Qν\Rν
1,δ) or in Dε. If x ∈ Aε

3 ∩Y+ε ∩ T ε, then also Bε(x) ⊂ T ε. (Here, we use
the definition of Aε

1, Aε
2 and (2.7).) Then, (4.29) implies #Nε,Y (x) = 6. On the other

hand, if x ∈ Aε
3∩Y+ε ∩Dε, then Xε∩Bε(x) = Y+ε ∩Bε(x), which yieldsNε,Y (x) =

Nε(x). Thus, by (2.3) and Lemma 3.1(iii),(iv) we obtain (4.40). In fact, we get

Eε(Y
+
ε , Aε

3) = Eε

(
Y+ε , Aε

3 ∩ T ε
)+ Eε

(
Y+ε , Aε

3 ∩ Dε
)

= Eε

(
Y+ε , Aε

3 ∩ Dε
)

� Eε(Xε, Qν).

To conclude this step of the proof, it suffices to recall that by Lemma 3.1(iv)

Eε(Y
+
ε , Qν) = Eε(Y

+
ε , Aε

1)+ Eε(Y
+
ε , Aε

2)+ Eε(Y
+
ε , Aε

3).

Then we obtain (4.31) by (4.18), (4.33), (4.35), and (4.40).
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Step 6: Conclusion. By repeating the cut-off construction in Step 4 on Qν,− for z−ε ,
we obtain a configuration Yε such that Yε = εL (z±ε ) on ∂±ε Qν(yε) and

lim inf
ε→0

Eε

(
Yε, Qν(yε)

)
� lim inf

ε→0
Eε

(
Xε, Qν(yε)

)+ Cδ (4.41)

by (4.31), where we reinclude the center yε in the notation for clarification. Since
z±ε → z± by Step 2, we observe by the definition of � in (4.1) that

lim inf
ε→0

Eε(Yε, Qν(yε)) � �(z+, z−, ν).

By using (4.17), (4.41) and by passing to δ → 0, we obtain the statement of the
lemma.
Step 7: Adaptions in (b). To conclude the proof of the lemma, it remains to describe
Steps 3–5 in the case of vacuum, that is, z+ε = 0.
Step 3 for case (b): Cardinality estimate. We prove that

ε2#(Xε ∩ P+δ,ε) � C Eε(Xε, Qν\Rν
1,δ/2) (4.42)

for a universalC > 0. In fact, if x ∈ Xε has #Nε(x) = 6, then uε(x) �= 0 on Bε/2(x)

by (2.15) and the fact that Bε/2(x) ⊂ V z(x)
ε (x). Also note the Bε/2(x)∩Bε/2(y) = ∅

for x, y ∈ Xε, x �= y. Thus, by (2.3), (4.19) (with z+ε = 0), and Lemma 3.1(iii) we
get

ε2#(Xε ∩ P+δ,ε) � ε2#{x ∈ Xε ∩ P+δ,ε : #Nε(x) = 6} + ε2
∑

x∈Xε∩P+δ,ε

(6− #Nε(x))

� CL2({uε �= 0} ∩ P+δ,ε
)+ 2εEε

(
Xε, Qν\Rν

1,δ/2

)
� C Eε

(
Xε, Qν\Rν

1,δ/2

)
,

where we again used that P+δ,ε ⊂ Qν\Rν
1,δ/2. This concludes Step 3 in case (b).

Step 4 for case (b): Cut-off construction. We now explain the construction of a new
configuration Y+ε such that Y+ε = 0 on ∂+ε Qν . Again set Nε =

⌊
δ
6ε

⌋
and define Sε

k
as in (4.27), as well as Lε

k = Sε
k−1∪ Sε

k ∪ Sε
k+1. Similar to (4.28), by averaging over

k and using (4.42), there exists kε ∈ {1, . . . , Nε} such that

#(Xε ∩ Lε
kε

) � 1

Nε

Nε∑

k=1
#(Xε ∩ Lε

k) � 3

Nε

#(Xε ∩ P+δ,ε) � C

εδ
Eε

(
Xε, Qν\Rν

1,δ/2

)
,

(4.43)

where we again use that each strip Sε
k is counted at most three times. We define

Y+ε =
{
∅ in

(
(P+δ,ε ∪ Rν

1,δ)\(Qν
rkε
∪ ∂−ε Qν)

) ∪ ∂+ε Qν,

Xε otherwise.
(4.44)

Note that, since Eε(Xε) < +∞, we have that Eε(Y+ε ) < +∞.
Step 5 for case (b): Energy estimate. We again split the estimate into the three sets
Aε
1, Aε

2, and Aε
3 defined in (4.32).

Energy estimate for Aε
1: We claim that there exists C > 0 such that

Eε(Y
+
ε , Aε

1) � Cδ. (4.45)
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In fact, due to (4.44), we have Y+ε ∩ (Rν
1,δ\Qν

rkε
) = Xε ∩ Rν

1,δ ∩ ∂−ε Qν , where,
similarly as in (4.34), #(Xε ∩ Rν

1,δ ∩ ∂−ε Qν) � Cδ/ε. As Rν
1,δ\Qν

rkε−1 consists of

two rectangles with H1(∂(Rν
1,δ\Qν

rkε−1)) � Cδ and Y+ε satisfies Eε(Y+ε ) < +∞,
we obtain, by Lemma 3.1(v)

#(Aε
1 ∩ Y+ε ) = #

((
Aε
1\(Rν

1,δ\Qν
rkε

)
) ∩ Y+ε

)+ #
(
Xε ∩ Rν

1,δ ∩ ∂−ε Qν
)

� Cε−2L2((Aε
1\(Rν

1,δ\Qν
rkε

)
)
ε

)+ Cδ/ε

� Cε−1H1(∂(Rν
1,δ\Qν

rkε−1)
)+ Cδ/ε � Cδ/ε.

Then (4.45) follows by (2.3).
Energy estimate for Aε

2: We claim that there exists C > 0 such that

Eε(Y
+
ε , Aε

2) � C

δ
Eε

(
Xε, Qν\Rν

1,δ/2

)
. (4.46)

In fact, if x ∈ Y+ε ∩ Aε
2, then x ∈ Xε∩ Lε

kε
. Using (2.3) and (4.43) we obtain (4.46).

Energy estimate for Aε
3: We observe that

Eε(Y
+
ε , Aε

3) � Eε(Xε, Qν). (4.47)

Indeed, if x ∈ Y+ε ∩ (Qν\(Aε
1 ∪ Aε

2)), then Nε,Y (x) = Nε(x), where the neigh-
borhood of x with respect to Y+ε is again denoted by Nε,Y (x). Therefore, (4.47)
follows by (2.3) and Lemma 3.1(iii).

Summarizing, (4.45)–(4.47) and (4.18) yield

lim inf
ε→0

Eε(Y
+
ε , Qν) � lim inf

ε→0
Eε(Xε, Qν)+ Cδ,

which is the analog to (4.31). The rest of the proof (that is, Step 6) remains un-
changed. ��

5. Reduction of the Problem to Subsets of Two Lattices

In the previous section, we have seen that the condition of L1-convergence in
the definition of ψ (see (3.5)) can be replaced by converging boundary values,
see the definition of � in (4.1). From now on, it will be convenient to express the
problemwith lattice spacing equal to 1. Recall (2.7) and observe that by Lemma 3.1
the cell formula for � can be written as

�(z+, z−, ν) = min
{
lim inf
T→+∞

1

T
inf
{

E1
(
XT , Qν

T (yT )
) : yT ∈ R

2,

XT = L (z±T ) on ∂±1 Qν
T (yT )

}
: {z±T }T ⊂ Z with z±T → z±

}

(5.1)

for all z+, z− ∈ Z and ν ∈ S
1. This section is devoted to a fundamental ingredient

for the proof of relation of� and ϕ, and the properties of ϕ, which will be addressed
in Sections 6 and 7.We show that the minimization problem in (5.1) can be reduced
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to configurations that are subsets of two lattices only (or just one if either z+ = 0
or z− = 0). For the formulation of the lemma, we introduce two further notions:
we say that a set Y ⊂ R

2 is connected if for each pair x, y ∈ Y there exists a chain
(v1, . . . , vn) with vi ∈ Y for i ∈ {1, . . . , n}, v1 = x , vn = y, and |vi+1 − vi | = 1
for i ∈ {1, . . . , n − 1}. Moreover, given a configuration X and Y ⊂ X , we define
the boundary of Y inside Qν

T (y) by

∂Y = {x ∈ Y ∩ Qν
T (y) : #(N (x) ∩ Y ) < 6}. (5.2)

Lemma 5.1. (Reduction to subsets of two lattices)Let z+, z− ∈ Z , ν ∈ S
1, y ∈ R

2,
and T > 0. Let X ⊂ R

2 be a minimizer of

min
{

E1
(
X, Qν

T (y)
) : X = L (z±) on ∂±1 Qν

T (y)
}
. (5.3)

Then, it satisfies the following two properties:

(i) (Subset of lattices) There holds X = X+∪ X− on Qν
T (y), where X± ⊂ L (z±)

and X± is connected.
(ii) (Structure of boundaries) The sets ∂ X+ and ∂ X− defined in (5.2) are connected

and satisfy #N (x) � 5 for all x ∈ ∂ X±, as well as maxx,y∈∂ X± |x − y| � T .

Note that theminimum in (5.3) exists since E1 is lower semicontinuous, see (1.1)
and (1.3), and the problem is finite dimensional.We also point out that X+∩X− �= ∅
is possible, see for example Fig. 4, that is, the two grains described by X+ and X−
can have common atoms. Resolving this ambiguity by introducing a specific choice,
the grain boundary and bonds connecting the two grains can be described in more
detail.

Lemma 5.2. (Bondsbetweengrain boundaries)Let X± be the sets found in Lemma5.1.
There exist Y± with X±\∂ X∓ ⊂ Y± ⊂ X± such that

(i) (Partition into grains) Y+ ∪ Y− = X+ ∪ X− and Y+ ∩ Y− ∩ Qν
T (y) = ∅.

(ii) (Grain and bulk boundaries) ∂Y± ⊂ ∂ X± and Y± = L (z±) on ∂±1 Qν
T (y).

(iii) (Neighborhood structure at grain boundary) it holds that
∣∣
∑

x∈∂Y±
#(N (x) ∩ Y±)− 4#∂Y±

∣∣ � 2.

We thus have that on average each boundary atom has four neighbors in the same
grain. As it has at most five neighbors in the whole configuration, it has on average
less than one bond connecting it to the other grain.

From a technical perspective, Lemma 5.1 will provide an important tool to
study the properties of the cell formulas. From the physical point of view, it shows
that our extremely brittle set-up, while allowing for rebonding, does not support
interpolating boundary layers near cracks. Its proof will require some concepts
from graph theory which will be only needed for this part of the article. For this
reason, it is possible to omit the proofs of Lemmas 5.1 and 5.2 on first reading
and to proceed directly with Section 6. As our graph theoretic description gives in
fact a more precise picture of the geometry of grain boundaries, which is of some
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independent interest, we summarize these findings in Theorem 5.4 at the end of
Section 5.

We now address the proof of the lemma and start by introducing some notions
from graph theory.
The bond graph: We define the bond graph of X ⊂ R

2 as the set of positions X
with the set of bonds {{x, y} : x ∈ X, y ∈ N (x)}, whereN (x) = N1(x) is defined
in (2.1). As for configurations with finite energy E1 there holds dist(x, X\{x}) � 1
for all x ∈ X and y ∈ N (x) only if |x − y| = 1 <

√
2, the bond graph is planar.

Indeed, given a quadrilateral with all sides and one diagonal equal to 1, the second
diagonal is

√
3 > 1.

A sequence of atoms p = (v1, . . . , vn) ⊂ X is called a simple path in X if the
atoms are distinct and {v j−1, v j } are bonds for j ∈ {1, . . . , n−1}. If (v1, . . . , vn−1)
is a simple path and vn−1 is connected to vn = v1 by a bond, p is a cycle in X .
We say that a configuration is connected if each two atoms are joinable through a
simple path. (Note that this definition is consistent with the one given before the
statement of Lemma 5.1.) A bond is called acyclic if it is not contained in any cycle
of the bond graph. The reduced bond graph of X is obtained by first deleting all
acyclic bonds and then all atoms which are not connected to any other atom. By
a face of X we always mean a face of its reduced bond graph. The boundary of a
face is given by a disjoint union of cycles and by a unique cycle if the reduced bond
graph is connected. Such a boundary is called a polygon and, in particular, a j-gon
if it consists of j ∈ N atoms.
Sub-configuration: We say that Z ⊂ X is a sub-configuration of X . All notions
defined above are defined analogously for any sub-configuration Z of X .
Face defect: We define the face defect of a sub-configuration Z ⊂ X by

η(Z) =
∑

j�3

( j − 3) f j (Z), (5.4)

where f j (Z) denotes the number of polygons with j atoms in the bond graph of Z .
Strong connectedness:We say that a configuration Z is strongly connected if Z\{x}
is connected for every x ∈ Z . Note that strongly connected graphs with more than
two atoms coincide with their reduced bond graph as they do not contain acyclic
bonds since removing one of the atoms belonging to the bond would disconnect
the configuration.
Maximal components: Fix Qν

T (y). Let z+, z− ∈ Z and consider X ⊂ R
2 such

that X = L (z±) on ∂±1 Qν
T (y). We denote the set of strongly connected subsets of

lattices by

C± = {Z ⊂ X ∩L (z±) : Z ∩ ∂±1 Qν
T (y) �= ∅, Z is strongly connected

}
.

We introduce the maximal components, denoted by M±, as the maximal elements
in C± with respect to set inclusion. These sets can be written as

M± =
⋃

Z∈C±
Z . (5.5)
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∂M−

∂M+

M+

M−

pγ

ν

Fig. 8. A schematic picture of M+ ∩ Qν
T (y), depicted in dark gray, and of M− ∩ Qν

T (y),
depicted in light gray. Their boundaries are illustrated in bold. We depict also a curve pγ

considered in Step 2 of the proof below

x2 x1

x3

x2 x1x3x2 x1

x3

Fig. 9. The three different (up to rotation and reflection) possibilities of paths of length 3

Note that M+ = ∅ or M− = ∅ if z+ = 0 or z− = 0, respectively. Moreover, we
point out that M± are in general not subsets of Qν

T (y). We illustrate M± ∩ Qν
T in

Fig. 8.

Lemma 5.3. (Simple paths in maximal components) Let γ = (x1, . . . , xk) be a
simple path in X with x1, xk ∈ M+ (or both in M−) such that x2, . . . , xk−1 /∈ M+
(or x2, . . . , xk−1 /∈ M−, respectively). Then k � 4.

Proof. Let γ be as in the statement, without restriction with x1, xk ∈ M+. Recall
that M+ ⊂ L (z+). If we had k = 3, then we would necessarily get x2 ∈ L (z+),
as well, see Fig. 9. This, however, contradicts the choice of the maximal component
M+. In fact, also M+ ∪ {x2} would be a strongly connected set. ��

Proof. Without restriction we assume z+ �= z−. The proof strategy is as follows:
we first show that X consists of at most two connected components which contain
the lower and the upper part of the boundary, respectively (Step 1). We are then left
with at most two connected components which contain the maximal components
M± defined in (5.5). Then, we prove that these components M± do not contain
holes. This ensures that ∂ M± ∩ Qν

T (y) are simple paths (Step 2). Finally, we show
that there are no parts of X that may be connected to M±, but that are not subsets of
the upper and lower latticeL (z±) (Step 3). Steps 1–3 are proved by contradiction,
that is, we suppose that X did not satisfy the abovementioned properties and then
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we show that the configuration can bemodified in such away that the energy strictly
decreases. Some technical estimates are given in Steps 4–5.

Fix z± ∈ Z , ν ∈ S
1, T > 0, and y ∈ R

2. Denote by X ⊂ R
2 a minimizer of

(5.3). Without loss of generality we assume that

X ⊂ {x ∈ (Qν
T (y))1 : N (x) ∩ Qν

T (y) �= ∅} ∪ ∂+1 Qν
T (y) ∪ ∂−1 Qν

T (y). (5.6)

In particular, we have X = L (z±) on ∂±1 Qν
T (y). By M± we denote its maximal

upper and lower component, respectively, given by (5.5). (Recall that M+ = ∅
or M− = ∅ if z+ = 0 or z− = 0.) Without restriction we assume that z± =
(θ±, τ±, 1). Otherwise, we apply all arguments just to the component z± with
z± �= 0.
Step 1: X has at most two connected components in Qν

T (y) and #N (x) � 2 for
all x ∈ X ∩ Qν

T (y). First, we observe that the maximal components M+ and M−
are either contained in one single or in two different connected components of X .
Assume by contradiction that the configuration X consists of more than the (at
most two) connected components containing M±. Then we can remove the other
connected components not containing M± and obtain a new configuration which
has strictly less energy and the same boundary data as X . This follows directly from
the definition of the energy in (2.3).

Moreover, if there exists x ′ ∈ X such that #N (x ′) � 1, then we can consider
the configuration X\{x ′} to obtain a configuration with strictly less energy since,
by (2.3), we have

E1(X, Qν
T (y)) = 1

2

∑

x∈X∩Qν
T (y)

(6− #N (x)) � E1
(
X\{x ′}, Qν

T (y)
)+ 2.

Step 2: ∂ M± is a simple path. In this step, we show that each of the sets ∂ M±
defined in (5.2) is a simple path in X joining the lateral faces of Qν

T (y). More
precisely, let

H T
ν⊥,−(y) := {x ∈ R

2 : 〈(x − y), ν⊥〉 < −T/2} and H T
ν⊥,+(y)

= {x ∈ R
2 : 〈(x − y), ν⊥〉 � T/2}.

Then there are v±− ∈ M±∩H T
ν⊥,−(y) and v±+ ∈ M±∩H T

ν⊥,+(y) such that {v±−, v±+}∪
∂ M± is a simple path with first element v±− and last element v±+ .

To prove this, we color each (closed) equilateral triangle of sidelength 1 all of
whose corners are contained in M± in dark/light gray, respectively, see Fig. 8. We
first show that there are no cycles in ∂ M±. Since M± is strongly connected, this also
yields that the colored regions inside Qν

T (y) are simply connected and that ∂ M±
lies on the boundary of the respective colored region. Assume by contradiction that
there exists a cycle p = (v1, . . . , vn) ⊂ M± with vn = v1. Denote by int(p) the
interior connected component of the curve

pγ =
n−1⋃

i=1
[vi ; vi+1];
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see Fig. 8. Now define

X̃ =
{
L (z+) in int(p),

X otherwise.

Since we did not change the neighborhood of each atom x ∈ Qν
T (y)\int(p), we

obtain by (2.3) and Lemma 3.1(iv)

E1
(
X̃ , Qν

T (y)
) = E1

(
X̃ , int(p)

)+ E1
(
X̃ , Qν

T (y)\int(p)
)

< E1
(
X, int(p)

)+ E1
(
X, Qν

T (y)\int(p)
) = E1

(
X, Qν

T (y)
)
,

where we have used that #N (x) = 6 for all x ∈ X̃ ∩ int(p) and that every x ∈ p
has at least as many bonds in X̃ as in X , while for at least one x ∈ p the number
of bonds has increased. We have constructed a configuration X̃ with strictly less
energy and the same boundary data as X . This contradicts the fact that X ⊂ R

2 is
a minimizer of (5.3), and shows that there are no such cycles in M±.

We next show that even the complement of each colored region inside Qν
T (y) is

connected. If this were not the case, without restriction we assume for contradiction
that there are v,w ∈ M+ ∩ H T

ν⊥,+(y) such that there is a simple path with first

element v, last elementw, and intermediate elements in ∂ M+, whose bonds together
with a segment in ∂ Qν

T (y) bound a region free of dark triangles. By the boundary
conditions, we can suppose that 6 � 〈v, ν〉 > 〈w, ν〉 � −6, see also Fig. 8. We
extend it to a cycle p by placing additional atoms inL (z+)∩(Qν

T (y))ε∩H T
ν⊥,+(y).

Our assumptions on X specified in (5.6) and Step 1 guarantee that each point in
L (z+) on or inside of p has distance at least 1 to every atom of the connected
component of X that contains M−. Now let

X̃ =

⎧
⎪⎨

⎪⎩

L (z+) in int(p),

X in R
2\int(p),

∅ otherwise.

In a fashion similiar to before we get E1(X̃ , Qν
T (y)) < E1(X, Qν

T (y)), which also
shows that this situation does not occur. We conclude that each M± is strongly con-
nected and both the dark and the light colored areas have connected complements
relative to Qν

T (y).
We claim that ∂ M± has to be a simple path. Assume by contradiction that this

were not the case, for example, for M+. Then, since ∂ M+ lies on the boundary of the
region in dark gray being the union of triangles, we find x ∈ ∂ M+ which is a corner
of exactly two of these triangles and these triangles share only x as a common point,
see Fig. 10. Since ∂ M+ does not contain cycles, we find x+, x− ∈ N (x) such that
each path in M+ connecting x+ with x− contains x . This, however, contradicts the
strong connectedness of M+, and shows that ∂ M+ is a simple path. This concludes
Step 2.
Step 3: Comparison with subsets of the lattice. Our goal is to show that there holds
X ⊂ L (z+) ∪ L (z−). Recalling the definition of M± in (5.5), it thus suffices
to show that removing the connected components of (X ∩ Qν

T (y))\(M+ ∪ M−)
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x

x−

x+

Fig. 10. A point x ∈ ∂ M± that would make ∂ M± a non-simple path

would strictly decrease the energy which clearly contradicts the assumption that X
is a minimizer. (Recall that we have already reduced to the case that X consists of
at most two connected components. Note, however, that (X ∩Qν

T (y))\(M+∪M−)

might consist of more connected components.)
This will conclude the proof of the statement: it shows that the minimizer X is

indeed a subset ofL (z+)∪L (z−). Moreover, the property that ∂ M±∩Qν
T (y) are

simple paths joining the lateral faces of Qν
T (y) has already been addressed in Step

2. Finally, we observe that #N (x) � 5 for all x ∈ ∂ M±. In fact, #N (x) = 6 for
some x ∈ ∂ M± would entail {x} ∪N (x) ⊂ M± as M± ⊂ L (z±) is the maximal
component. This contradicts (5.2).

Now, consider a connected component X ′ of (X ∩ Qν
T (y))\(M+ ∪ M−). We

want to prove that

E1
(
X, Qν

T (y)
)

� E1
(
X\X ′, Qν

T (y)
)+ 1. (5.7)

We first introduce some further notation. By �± ⊂ ∂ M± we denote the smallest
connected sets �± ⊃ N (X ′)∩ M±, where we defineN (X ′) :=⋃x∈X ′ N (x)\X ′.
Define � := �+ ∪ �− and X� := X ′ ∪ �. Note that both �− and �+ are simple
paths in X since ∂ M± are simple paths, see Fig. 11. For x ∈ X� , we introduce the
internal and external neighborhoods by

Ni (x) = N (x) ∩ X�, Ne(x) = N (x)\X�, (5.8)

that is, the set of neighbors inside and outside of X� , respectively. Note that X� is
connected. Its reduced bond graph is delimited by a finite union of disjoint cycles.
We denote by ∂ X� the union of these cycles and by d = #∂ X� its cardinality. (The
notation is unrelated to (5.2).) We further define

f j = # j-gons of X�, f =
∑

j

f j , η = η(X�), n� = #�, n = #X�,

b� = #
{{x, y} : x, y ∈ �, y ∈ N (x)

}
, b = #

{{x, y} : x, y ∈ X�, y ∈ N (x)
}
,

bac = #
{{x, y} acyclic : x, y ∈ X�, y ∈ N (x)

}
, (5.9)

where η was introduced in (5.4). Note that f corresponds to the number of faces
both in the bond graph and in the reduced bond graph of X� . We will see that it
holds that

2+ d + 2bac + η � 3n� − b�. (5.10)
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M−

M+

X ′

M−

X ′

M+

M−

X ′

M+

M−

X ′

(a) (b)

(c)

Fig. 11. The different possibilities of X ′ touching M± corresponding to case (a) on the top
left, case (b) on the top right, and case (c) in the two bottom pictures. M+ is always depicted
in gray, M− in light gray, and X ′ in dark gray. �+ and �− are depicted by the bold black
lines

We defer the proof of (5.10) to Steps 4–5 below and proceed to prove (5.7).
Since in the passage from X to X\X ′ the neighborhood of atoms outside X� is

left unchanged and for atoms in � the neighbors outside of X�\� remain, in view
of (2.3), we need to check that

1

2

∑

x∈X�

(6− #N (x)) � 1

2

∑

x∈�

(
6− (#Ne(x)+ #(N (x) ∩ �)

)+ 1. (5.11)

We can count the faces to obtain

2b − d − 2bac =
∑

j�3

j f j = η + 3 f. (5.12)

Indeed, the first identity follows from the fact that in the summation all bonds
contained in the union of cycles delimiting the reduced bond graph of X� are
counted only once, the acyclic bonds are not counted, and all other cyclic bonds
are counted twice. The second identity follows from (5.4). As the bond graph is
planar and connected, we can apply Euler’s formula (omitting the exterior face) to
get n − b + f = 1. Then, by (5.10) and (5.12) we derive

3n − b � 3n� − b� + 1.

By the definitions in (5.8)–(5.9) and the facts that
∑

x∈X�
#Ni (x) = 2b,∑

x∈� #(N (x) ∩ �) = 2b� this implies

1

2

∑

x∈X�

(6− #Ni (x)) � 1

2

∑

x∈�

(
6− #(N (x) ∩ �)

)+ 1. (5.13)

Now we note that #N (x) − #Ne(x) = #Ni (x) for x ∈ � and N (x) = Ni (x) for
x ∈ X�\�, see (5.8). This along with (5.13) shows the desired estimate (5.11). To
conclude the proof, it remains to show (5.10).
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Step 4: Proof of (5.10). Recall that � consists of the two simple paths �+ and �−.
We need to distinguish three cases:

(a) � is not connected, (b) � is a cycle, (c) � is a simple path.

Since �± are simple paths, and the bond graph of X ′ is planar and connected, we
see that these are all possibilities that may occur, see Fig. 11 for an illustration of
the different cases. At this point, we also use that�± are the smallest connected sets
with �± ⊃ N (X ′)∩M± and �± ⊂ ∂ M±, where ∂ M± is a simple path connecting
H T

ν⊥,−(y) ∩L (z±) and H T
ν⊥,+(y) ∩L (z±).

First of all, we observe that

Case (a): n� � b� + 2, Case (b): n� � b�, Case (c): n� � b� + 1.
(5.14)

This is due to the fact that the bond graph of � contains �± and a simple path
containing k bonds consists of k + 1 atoms, and in a cycle the number of bonds
equals the number of atoms. (As there may be more bonds present if there are
triangles in the bond graph, we get inequalities.)

Using (5.14), it suffices to prove

d + 2bac + η �

⎧
⎪⎨

⎪⎩

2n� in case (a),

2n� − 2 in case (b),

2n� − 1 in case (c),

(5.15)

where d, η, n� , and bac are defined in (5.9). This will rely on the estimate

η � n� − 2. (5.16)

We first show (5.15) in the three cases and defer the proof of (5.16) to Step 5.
Observe that if a connected component �̃ of � satisfies �̃ �⊂ ∂ X� , then #�̃ = 1
and �̃ connects to X ′ by one acyclic bond. This follows from the observation that,
whenever x ∈ �̃ satisfies N (x) ∩ X� � 2, then x lies on a cycle in X� and thus,
as an element of �, is contained in ∂ X� .
Case (a): Suppose first � ⊂ ∂ X� . Since ∂ X� is a disjoint union of cycles and �

consists of two simple paths, we get #(∂ X�\�) � 2. In fact, if �+ and �− intersect
the same cycle of ∂ X� , this follows from the fact that �+ ∪�− is not connected. If
�+ and�− intersect different cycles of ∂ X� , it suffices to use that�± are not cycles.
This shows d � n�+2. Then (5.16) implies (5.15). If�− ⊂ ∂ X� ,�+ �⊂ ∂ X� , then,
as before, #(∂ X�\�−) � 1 and thus d � #�− + 1. The observation below (5.16)
gives #�+ = 1 and bac � 1, so particularly d � n� . Then again (5.16) implies
(5.15). The case �− �⊂ ∂ X� , �+ ⊂ ∂ X� is analogous. Finally, if �−, �+ �⊂ ∂ X� ,
then n� = 2 and bac � 2 since �− and �+ cannot be connected to X ′ by the same
(acyclic) bond. This proves (5.15).
Case (b): Since � is a cycle, we get � ⊂ ∂ X� . Thus, we obtain n� � d and (5.16)
yields (5.15).
Case (c): Suppose first that � ⊂ ∂ X� . Since � is not a cycle and ∂ X� is a union of
cycles, we get #(∂ X�\�) � 1. This implies d � n� + 1. Then (5.16) again yields
(5.15). If � �⊂ ∂ X� , then n� = 1 and bac � 1, from which (5.15) follows.
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Step 5: Proof of (5.16). It remains to check (5.16). To this end, we classify the
polygons in the (reduced) bond graph of X� in the following way: for k � 1, we
set

∂-k-gon = {P polygon in X� : #(P ∩ �) = k} and ∂-gon =
⋃

k�1

∂-k-gon,

and define Dk = #∂-k-gon. In order to estimate the cardinality of P ∈ ∂-k-gon,
we introduce the following condition:

there exist x+ ∈ M+ ∩ P and x− ∈ (M−\M+) ∩ P with |x+ − x−| = 1.
(5.17)

We claim that always, #P � k + 1, while if (5.17) does not hold then it holds that
#P � k + 2.

To see the first claim we note that clearly #P � k. If #P = k, then P ⊂ � and
� is a cycle, hence P = �. But then all bonds connecting � and X ′ are acyclic. As
observed below (5.16), this entails #� = 1 which, however, is not possible in case
� is a cycle.

Assume now (5.17) does not hold. First, suppose that P ∩� ⊂ M+ or P ∩� ⊂
M−. If k = 1, the statement #P � k + 2 is clear as #P � 3. If k � 2, we can
choose a simple path in P such that only the first and the last atom lie in M+
(or M−, respectively). The statement then follows from Lemma 5.3. On the other
hand, if P ∩ (M+\M−) �= ∅ and P ∩ (M−\M+) �= ∅, then there exist two simple
paths contained in P joining M+\M− and M−\M+. Since (5.17) does not hold,
each of these two paths contains an atom that is not contained in �. This implies
#P � k + 2.

Weare now in aposition to prove (5.16).By the definition ofη and the cardinality
estimate for ∂-k-gons we obtain

η =
∑

j�3

f j ( j − 3) �
∑

k�1

Dk(k + 2− 3)− N

�
∑

k�1

Dk(k − 1)−

⎧
⎪⎨

⎪⎩

0 in case (a),

2 in case (b),

1 in case (c),

(5.18)

where N denotes the number of ∂-gons satisfying case (5.17). We used that: in case
(a) we have N = 0 since otherwise � would be connected, in case (b) the fact that
X ′ is connected and the planarity of the bond graph imply that N � 2, and in case
(c) we get N � 1 since � is a simple path. Finally, we claim that

∑

k�1

Dk(k − 1) �

⎧
⎪⎨

⎪⎩

n� − 2 in case (a),

n� in case (b),

n� − 1 in case (c),

(5.19)

Indeed, this follows from the fact that each bond in between two successive atoms
x, y ∈ � is contained in exactly one ∂-gon and k − 1 estimates from above the
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number of bonds between atoms in � ∩ P whenever P ∈ ∂-k-gon as otherwise
P = � and #P = k which we have excluded above. (The estimate is strict if �∩ P
is not connected.) By combining (5.18)–(5.19) we obtain (5.16). This concludes
the proof. ��
Proof of Lemma 5.2. Without restriction we assume that z+ �= z−. Let X± be as
in the statement of Lemma 5.1, that is, X± = M±. We define

Y+ = X+\(∂ X+ ∩ ∂ X−) ∪ {x ∈ ∂ X+ ∩ ∂ X− : #(N (x) ∩ X+) � #(N (x) ∩ X−)
}
,

Y− = X−\(∂ X+ ∩ ∂ X−) ∪ {x ∈ ∂ X+ ∩ ∂ X− : #(N (x) ∩ X+) < #(N (x) ∩ X−)
}
.

Proof of (i). Property (i) is obviously satisfied by construction.
Proof of (ii). As a preparation, let us note that, if x ∈ X+∩ X−, thenN (x)∩ X+∩
X− = ∅ since z+ �= z−. Moreover, if x ∈ X+ ∩ X− ∩ Qν

T (y) = ∂ X+ ∩ ∂ X−,
then #N (x) � 5 by Lemma 5.1(ii). Since X± is strongly connected, we also have
#(N (x) ∩ X±) � 2. Our definition of Y± then entails

x ∈ X±\Y± "⇒ #(N (x) ∩ X±) = 2. (5.20)

This ensures that Y± = X± = L (z±) on ∂±1 Qν
T (y). Furthermore, it entails ∂Y± ⊂

∂ X±. Indeed, y ∈ ∂Y±\∂ X± would give #(N (y)∩X±) = 6 and #(N (y)∩Y±) �
5, that is, there exists x ∈ X±\Y± with |x − y| = 1. But then #(N (x) ∩N (y) ∩
X±) = 2, which yields the contradiction #(N (x) ∩ X±) � 3.
Proof of (iii). Since X± is simply connected and x ∈ ∂ X±\∂Y± is only possible
if #(N (x)∩ X±) = 2 (see (5.20)), we get that ∂Y± is a simple path connecting the
lateral faces of Qν

T (y). More precisely, by Step 2 of the proof of Lemma 5.1, there
are v±− ∈ X± ∩ H T

ν⊥,−(y) and v±+ ∈ X± ∩ H T
ν⊥,+(y) such that {v±−, v±+} ∪ ∂Y± is

a simple path with first element v±− and last element v±+ . The bonds between any
two consecutive atoms in this chain form a polygonal line and we denote by α(x)

the (interior) angle it forms at atom x .
As the first and the last segments cross the lateral faces of Qν

T (y) and Y± is
strongly connected, we have

∑

x∈∂Y±
(π − α(x)) ∈ 1

3
{−2π,−π, 0, π, 2π}.

Since X± is simply connected, due to (5.20), the same holds true for Y±. Hence,
α(x) relates to the number of neighbours of x within Y± by the formula

α(x) = 1

3

(
#(N (x) ∩ Y±)− 1

)
π.

As a consequence we obtain

∣∣∣
∑

x∈∂Y±

(
#(N (x) ∩ Y±)− 4

)∣∣∣ =
∣∣∣
3

π

∑

x∈∂Y±

(
α(x)− π

)∣∣∣ � 2.

This concludes the proof. ��
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We summarize our main findings on the structure of grain boundaries obtained
in the proof of Lemma 5.1 in the following theorem:

Theorem 5.4. (Reduction to subsets of two lattices) Let z+, z− ∈ Z , z+ �= z−,
ν ∈ S

1, y ∈ R
2, and T > 0. Let X ⊂ R

2 be a minimizer of

min
{

E1
(
X, Qν

T (y)
) : X = L (z±) on ∂±1 Qν

T (y)
}
.

Then X = M+ ∪ M− on Qν
T (y), where M+, M− are the maximal components of

X, see (5.5). Coloring each (closed) equilateral triangle of sidelength 1 all of whose
corners are contained in M± in dark/light gray, yields two simply connected plain
regions containing ∂±1 Qν

T (y), respectively, whose boundary part inside of Qν
T (y)

is given by a simple path of atoms.

6. Characterization of Solid–Vacuum/Solid–Solid Interactions

This section is devoted to establish a relation between the cell formula� defined
in (4.1) and the density ϕhex given in (2.18). In particular, we will analyze the
situationwhere the two latticesL (z+) andL (z−), which determine the admissible
configurations at the boundary, allow for touching points, that is, atoms x+ ∈
L (z+) and x− ∈ L (z−) with |x+ − x−| = 1. We start by formulating the two
results of this section.

Lemma 6.1. (Relation of � and ϕhex) There exists a universal constant C > 0
such that for each ν ∈ S

1 and for every sequence of centers {yT }T the following
properties hold:

(i) If z+ = (θ, τ, 1) ∈ Z and z− = 0 or if z+ = 0 and z− = (θ, τ, 1) ∈ Z , there
holds for all T > 0

∣∣∣
1

T
min

{
E1
(
XT , Qν

T (yT )
) : XT = L (z±) on ∂±1 Qν

T (yT )
}− ϕhex

(
e−iθ ν

)∣∣∣ � C/T .

(ii) For all z+ = (θ+, τ+, 1), z− = (θ−, τ−, 1) ∈ Z there holds for all T > 0

1

T
min

{
E1
(
XT , Qν

T (yT )
) : XT = L (z±) on ∂±1 Qν

T (yT )
}

� ϕhex
(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)+ C/T .

Moreover, if z+ �= z−, then also

1

T
min

{
E1
(
XT , Qν

T (yT )
) : XT = L (z±) on ∂±1 Qν

T (yT )
}

� 1

2
ϕhex

(
e−iθ+ν

)+ 1

2
ϕhex

(
e−iθ−ν

)− C/T .
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Note that this lemma indeed provides a relation between ϕhex and the density
� since

�(z+, z−, ν) � lim inf
T→+∞

1

T
min

{
E1
(
XT , Qν

T (yT )
) : XT = L (z±) on ∂±1 Qν

T (yT )
}

(6.1)

for all z± ∈ Z , ν ∈ S
1, and all {yT }T . We point out that the energy density ϕhex

has already been identified in [3,20]. In our exposition, once the technical result
about reduction to two lattices (see Lemma 5.1) has been achieved, the proof of
Lemma 6.1(i) is rather simple compared to [20, Theorem 2.2]. In addition, this
version with convergence rate is a novel result and is needed in order to prove
Proposition 2.2.

The next lemma is a refinement which addresses the question under which
conditions on the difference of the rotation angles θ+ − θ− equality holds in (ii).
To formulate this statement, recall ω = 1

2 + i
2

√
3 from Section 2.2. We introduce

the set of good angles, denoted by GA, as the angles θ ∈ A which can be written as

eiθ = v1

v2
, with v1, v2 ∈ L \{0}. (6.2)

Here, the division of v1, v2 ∈ C has to be understood in the sense of complex
numbers. I.e., such angles correspond to rotations which transform one lattice point
into another one. Note that GA is clearly countable. From an algebraic standpoint,
our notion of GA coincides with those angles θ such that eiθ is a fraction of the
commutative ringL .

Lemma 6.2. (Touching lattices) Let z± = (θ±, τ±, 1) ∈ Z be such that

�(z+, z−, ν) � ϕhex
(
e−iθ−ν

)+ ϕhex
(
e−iθ+ν

)− η (6.3)

for an η > 0. Then, there exists an optimal sequence {XT }T for �(z+, z−, ν), see
(5.1), such that for all T > 0 large enough, there holds XT ⊂ L (z+T ) ∪L (z−T ),
where z±T = (θ±T , τ±T , 1) ∈ Z , and the rotation angles satisfy

θ+T − θ−T = θ+ − θ− ∈ GA for all T > 0. (6.4)

More precisely, ei(θ+−θ−) = v1/v2 for lattice vectors v1, v2 ∈ L \{0}with |v1|, |v2|
� Cη, where Cη > 0 only depends on η.

Condition (6.3) means that the surface energy between sub-lattices of L (z+)

andL (z−) can be strictly less than the sum of the surface energies corresponding
to each lattice interacting with the vacuum. This indicates that there are many atoms
(in a certain sense) in L (z+) with distance 1 to atoms in L (z−). Therefore, we
speak of lattices which have “touching points”. The lemma shows two properties
of optimal sequences: (i) they can be chosen as a subset of two lattices only, cf.
also Lemma 5.1, (ii) the difference of the corresponding rotation angles is constant
and lies in GA.

We now proceed with the proofs of the two lemmas.
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Proof of Lemma 6.1. For the whole proof, we fix ν ∈ S
1 and a sequence of centers

{yT }T .
Proof of (i). Let z = (θ, τ, 1) ∈ Z\{0}. We only prove the result for z+ = z and
z− = 0 since the argumentation for the reflected boundary conditions is the same.
We obtain the statement by showing separately the two inequalities, where one is
proved by a slicing argument and the other one in a constructive way.
Step 1: First inequality. The goal of this step is to prove

1

T
min

{
E1
(
XT , Qν

T (yT )
) : XT = L (z±) on ∂±1 Qν

T (yT )
}

� ϕhex
(
e−iθ ν

)− C/T .

Consider XT ⊂ R
2 satisfying XT = L (z) on ∂+1 Qν

T (yT ), XT = L (0) = ∅ on
∂−1 Qν

T (yT ), and

E1
(
XT , Qν

T (yT )
) = min

{
E1(X̃T , Qν

T (yT )
)
: X̃T = L (z±) on ∂±1 Qν

T (yT )
}
.

(6.5)

By Lemma 5.1, we get that XT ⊂ L (z) = eiθ (L + τ). Recall the definition
ω = 1

2 + i
2

√
3. We now perform a slicing argument: for k ∈ {1, 2, 3}, we define

for each μ ∈ R

Ik(μ) := {λeiθωk + μeiθ (ωk)⊥ : λ ∈ R
}

the line in lattice direction eiθωk passing through the line Reiθ (ωk)⊥ at point
μeiθ (ωk)⊥. We set

Ik =
{
μ ∈ R : Ik(μ) ∩L (z) �= ∅, Ik(μ) ∩ [yT − T

2 ν⊥; yT + T
2 ν⊥]

}
.

Due to the boundary conditions, up to a bounded number of times independent of
both ν and T , for each μ ∈ Ik we find x ∈ XT ⊂ L (z) such that x + eiθωk /∈ XT

or x−eiθωk /∈ XT . (Note that a bounded number of lattice lines, independent of T ,
in direction eiθωk and passing through [yT − T

2 ν⊥; yT + T
2 ν⊥] does not intersect

∂+1 Qν
T (yT ).) By (2.3) this yields

E1
(
XT , Qν

T (yT )
)

�
3∑

k=1
#Ik − C (6.6)

for a constant C > 0 independent of T . It remains to estimate #Ik . For μ ∈ R such
that Ik(μ)∩L (z) �= ∅, we get Ik(μ±

√
3/2)∩L (z) �= ∅ and Ik(μ

′)∩L (z) = ∅
for all μ′ ∈ (μ−√3/2, μ+√3/2)\{μ}. Finally, we have

L1
(
�k
([yT − T

2 ν⊥; yT + T
2 ν⊥])

)
= T

∣∣〈ν, eiθωk〉∣∣,

where �k denotes the orthogonal projection onto Reiθ (ωk)⊥. We therefore obtain

#Ik � 2T√
3

∣∣〈ν, eiθωk〉∣∣− C = 2T√
3

∣∣〈e−iθ ν, ωk〉∣∣− C. (6.7)
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By (2.18) and (6.6)–(6.7) we conclude

1

T
E1
(
XT , Qν

T (yT )
)

� 2√
3

3∑

k=1

∣∣〈e−iθ ν, ωk〉∣∣− C/T = ϕhex
(
e−iθ ν

)− C/T .

This along with (6.5) shows the first inequality.
Step 2: Second inequality. The goal of this step is to prove

1

T
min

{
E1
(
XT , Qν

T (yT )
) : XT = L (z±) on ∂±1 Qν

T (yT )
}

� ϕhex
(
e−iθ ν

)+ C/T .

(6.8)

This is achieved by constructing an explicit competitor for the minimization prob-
lem: we define X+T by

X+T =
{
L (z) in {x : 〈x − yT , ν〉 � 5},
∅ otherwise,

(6.9)

that is, X+T is a (discrete version of a) half space. We directly see that X+T = L (z)
on ∂+1 Qν

T (yT ) and X+T = ∅ on ∂−1 Qν
T (yT ). To estimate its energy, we start by

observing that for this choice of X+T equality holds in (6.6) with Ik as defined above,
up to an error of order O(1). Indeed, if x ∈ L (z)\X+T , then either x+λeiθωk /∈ X+T
for all λ ∈ N or x − λeiθωk /∈ X+T for all λ ∈ N. Then, the equalities in (6.6) and
(6.7) along with (2.18) yield

1

T
E1
(
X+T , Qν

T (yT )
)

� 2√
3

3∑

k=1

∣∣〈e−iθ ν, ωk〉∣∣+ C/T = ϕhex
(
e−iθ ν

)+ C/T .

(6.10)

This shows (6.8). For purposes of the proof of (ii) below, we note that construction
(6.9) with−ν in place of ν can be applied to obtain a configuration X−T ⊂ R

2 with
X−T = L (z) on ∂−1 Qν

T (yT ) and X−T = ∅ on ∂+1 Qν
T (yT ) which satisfies (6.10).

Proof of (ii). Fix z+ = (θ+, τ+, 1) ∈ Z and z− = (θ−, τ−, 1) ∈ Z . We show
the first inequality by an explicit construction. The second one is obtained with the
help of Lemma 5.2.
Step 1: First inequality. We define XT = X+T ∪ X−T , where

X+T =
{
L (z+) in {x : 〈x − yT , ν〉 � 5},
∅ otherwise.

,

X−T =
{
L (z−) in {x : 〈x − yT , ν〉 � −5},
∅ otherwise.

Then, XT clearly satisfies the boundary conditions XT = L (z±) on ∂±1 Qν
T (yT )

and by repeating the reasoning in (6.10) we find that

1

T
ET
(
XT , Qν

T (yT )
) = 1

T

(
E1
(
X+T , Qν

T (yT )
)+ E1

(
X−T , Qν

T (yT )
))
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� ϕhex
(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)+ C/T .

Step 2: Second inequality.Consider XT ⊂ R
2 satisfying XT = L (z±)on ∂±1 Qν

T (yT )

and

E1
(
XT , Qν

T (yT )
) = min

{
E1
(
X̃T , Qν

T (yT )
) : X̃T = L (z±) on ∂±1 Qν

T (yT )
}
.

By Lemmas 5.1 and 5.2 there holds XT = X+T ∪ X−T = Y+T ∪̇Y−T on Qν
T (y), where

Y±T = L (z±) on ∂±1 Qν
T (yT ) and

∣∣
∑

x∈∂Y±T

#(N (x) ∩ Y±T )− 4#∂Y±T
∣∣ � 2.

Since #N (x) � 5 for any x ∈ ∂Y±T (⊂ ∂ X±T ), we get

1

2

∑

x∈Y±T ∩Qν
T (yT )

(6− #N (x)) � 1

2
#∂Y±T � 1

4

∑

x∈∂Y±T

(
6− #(N (x) ∩ Y±T )

)− 1/2.

So observing that Y±T is a competitor in (Step 1 of) (i) above and using that Y+T ∩
Y−T ∩ Qν

T (yT ) = ∅, we find that

1

T
E1
(
XT , Qν

T (yT )
)

� 1

2T
E1
(
Y+T , Qν

T (yT )
)+ 1

2T
E1
(
Y−T , Qν

T (yT )
)− 1/T

� 1

2
ϕhex

(
e−iθ+ν

)+ 1

2
ϕhex

(
e−iθ−ν

)− C/T .

This concludes the proof. ��
Proof of Lemma 6.2. Let {XT }T be an optimal sequence for �(z+, z−, ν) and de-
note by {yT }T the corresponding centers of the cubes. Due to Lemma 5.1, we
may without restriction assume that XT = X+T ∪ X−T , for sub-configurations X±T
satisfying X±T ⊂ L (z±T ), where z±T = (θ±T , τ±T , 1) → z± = (θ±, τ±, 1) as
T →+∞. Moreover, the sets ∂ X± defined in (5.2) are connected, and there holds
XT = L (z±T ) on ∂±1 Qν

T (yT ). In what follows, we fix a subsequence (not relabeled)
such that by (6.3) we have

ϕhex
(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)− lim
T→+∞

1

T
E1
(
XT , Qν

T (yT )
)

� η > 0. (6.11)

Our strategy to show (6.4) lies in proving

ei(θ+T −θ−T ) = v+T
v−T

with v+T , v−T ∈ L satisfying |v+T | = |v−T | � Cη (6.12)

for all T sufficiently large, where Cη only depends on η. From this estimate, the
statement in (6.4) easily follows. In fact, given (6.12), sinceL is a discrete set and
θ±T → θ±, ei(θ+T −θ−T ) = v+T /v−T is eventually constant and we find θ+ − θ− =
θ+T − θ−T ∈ GA for all T large enough.
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Let us come to the proof of (6.12). Recall by Lemma 5.1 that XT is contained
in the two components X+T and X−T . We further define the set of touching points

T +T = {x ∈ X+T : ∃ y ∈ X−T such that |x − y| = 1},
T −T = {x ∈ X−T : ∃ y ∈ X+T such that |x − y| = 1}.

Note that T ±T ⊂ ⋃
x∈∂ X±T

({x} ∪ N (x)), see definition (5.2). (T ±T \∂ X±T �= ∅ is

possible if X+T ∩ X−T �= ∅.) By (2.2) we also observe that

#T +T /6 � #T −T � 6#T +T . (6.13)

We start with a brief outline of the proof. Steps 1–4 are devoted to some preliminary
estimates: we first show that the cardinality of the sets ∂ X±T and T ±T scales like T
by providing a lower bound for T ±T (Step 1) and an upper bound for ∂ X±T (Step 2).
Then we show that, for the majority of points in T ±T , neighborhoods contain many
points of ∂ X±T (Step 3) and also elements of T ±T (Step 4). Based on this, we can
find quadrilaterals consisting of two points in T +T and two points in T −T where two
sides have length 1 and the other two sides are parallel to lattice vectors of the form
eiθ+T w+T and eiθ−T w−T , respectively, for some w+T , w−T ∈ L with controlled norm.
From this, (6.12) can be derived (Step 5 and Step 6).
Step 1: Cardinality of touching points. We show #T ±T � η

22T for T large enough.
By (2.2), (2.3), and the fact that X±T = L (z±T ) on ∂±1 Qν

T (yT ), we obtain

E1
(
XT , Qν

T (yT )
)

� 1

2

∑

x∈X+T ∩Qν
T (yT )

(
6− #(N (x) ∩ X+T )

)

+ 1

2

∑

x∈X−T ∩Qν
T (yT )

(
6− #(N (x) ∩ X−T )

)

− 3(#T +T + #T −T ),

and therefore,

3(#T +T + #T −T ) � E1
(
X+T , Qν

T (yT )
)+ E1

(
X−T , Qν

T (yT )
)− E1

(
XT , Qν

T (yT )
)
.

We note by the definition of XT that the subconfigurations X+T and X−T are com-
petitors for the minimization problems appearing in Lemma 6.1(i). Dividing by T
and passing to the lim inf along T →+∞, by (6.11) we therefore conclude

lim inf
T→+∞

1

T
(#T +T + #T −T ) � η/3.

This yields lim infT→+∞ 1
T #T

±
T � η

21 by (6.13), and concludes Step 1.
Step 2: A priori bound on the length of the boundaries. We claim that for T > 0
large enough the boundaries ∂ X±T ⊂ Qν

T (yT ) (cf. (5.2)) satisfy

#(∂ X+T ∪ ∂ X−T ) � 8T . (6.14)
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In fact, by Lemma 5.1(ii) there holds #N (x) � 5 for all x ∈ ∂ X±T and therefore
for T sufficiently large we get by (2.3), (6.11), and the fact that ‖ϕhex‖L∞(S1) = 2
(see (2.18))

#(∂ X+T ∪ ∂ X−T ) �
∑

x∈XT∩Qν
T (yT )

(6− #N (x)) = 2 E1
(
XT , Qν

T (yT )
)

� 2T
(
ϕhex

(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

))
� 8T .

Step 3: Atomic density lower bound for ∂ X±T . We claim that there exists a universal
0 < c < 1 such that, for all T > r � 1, we have

#
(
∂ X±T ∩ Br (x)

)
� cr for all x ∈ R

2 with dist(x, ∂ X±T ) � 1. (6.15)

To prove this estimate we assume without restriction that T > 3r . Due to
Lemma 5.1(ii), ∂ X±T is connected and ∂ X±T \Br (x) �= ∅. Therefore, there has to
exist a simple path in ∂ X±T that connects some atom in ∂ X±T \Br (x) with an atom
in B1(x) and has at least cr atoms inside Br (x).
Step 4: Bounded gap between points in T ±T . Given R > 0, we introduce the set of
R-isolated points by

I±T,R :=
{

x ∈ T ±T : BR(x) ∩ T ±T ⊂ B2(x)
}
. (6.16)

We claim that there exists a universal c̄ > 0 such that for R = c̄/η and all T
sufficiently large

#I±T,R � #T ±T /2. (6.17)

To see this, note that due to (6.14), (6.15) for r = R/2 (use that dist(x, ∂ X±T ) � 1
for all x ∈ T ±T ) and Step 1 we have

#I±T,R � 2

cR

∑

x∈I±T,R

#
(
∂ X±T ∩ BR/2(x)

)
� C

cR
#∂ X±T � C

cR
T � C

cc̄
#T ±T ,

where C > 0 denotes a universal constant varying from step to step. Here, in
the second step we accounted for possible multiple counting by using that, due to
the definition of I±T,R , the intersection BR/2(x) ∩ BR/2(y), x, y ∈ I±T,RT

, can be
non-empty only if |x − y| � 2. The assertion follows if c̄ is chosen big enough.
Step 5: Bounded gap between pairs of points having the same relative position.
We choose two arbitrary lattice vectors ξ1, ξ2 satisfying e−iθ−T ξ1, e−iθ+T ξ2 ∈ B2R ∩
(L \{0}) with R > 0 given by Step 4. Define

Dξ1,ξ2
T = {(x1, y1) ∈ T −T × T −T : there exist x2, y2 ∈ T +T such that

|x1 − x2| = 1, |y1 − y2| = 1 and x1 − y1 = ξ1, x2 − y2 = ξ2
}
.

The set consists of pairs (x1, y1) in T −T whose difference is ξ1 and which have
corresponding neighbors in T +T with difference ξ2.
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We observe by (6.16) that for x1 ∈ T −T \I−T,R we find ξ1 ∈ BR ∩ eiθ−T L with

|ξ1| > 2 and y1 ∈ T −T such that x1 − y1 = ξ1. We denote the corresponding

neighbors in T +T by x2 and y2, respectively. Since x2, y2 ∈ eiθ+T (L + τ+T ) and

|x1 − y1| = |x2 − y2| = 1, we find ξ2 ∈ B2R ∩ eiθ+T L such that x2 − y2 = ξ2.
Clearly, ξ2 �= 0 as |ξ1| > 2. This discussion along with (6.17) implies

1

2
#T −T � #

(
T −T \I−T,R

)
�
∑

(ξ1,ξ2)

#Dξ1,ξ2
T , (6.18)

where the sum runs over all pairs (ξ1, ξ2)with e−iθ−T ξ1, e−iθ+T ξ2 ∈ B2R ∩ (L \{0}).
Choose (ζ T

1 , ζ T
2 ) ∈ (B2R ∩ eiθ−T (L \{0})) × (B2R ∩ eiθ+T (L \{0})) such that

#Dζ T
1 ,ζ T

2
T � #Dξ1,ξ2

T for all (ξ1, ξ2) ∈ (B2R∩eiθ−T (L \{0}))×(B2R∩eiθ+T (L \{0})).
Then, (6.18) and the fact that the number of pairs e−iθ−T ξ1, e−iθ+T ξ2 ∈ B2R ∩
(L \{0}) is controlled by C R4 yield

#T −T � C R4 #Dζ T
1 ,ζ T

2
T (6.19)

for a universal C > 0. We write Dζ T
1 ,ζ T

2
T = {xT

j , yT
j }MT

j=1 for some MT ∈ N. We

claim that there is a universal c′ > 0 such that for � = c′η−5

there exist j, k, l ∈ {1, . . . , MT } pairwise distinct such that xT
k , xT

l ∈ B�(xT
j ).

(6.20)

Assume that, on the contrary, � is such that each B�(xT
k )\{xT

k } contains at most

one point {xT
j }MT

j=1. Then, it is elementary to see that we can choose {x̃ T
j }�MT /2�

j=1 ⊂
{xT

j }MT
j=1 such that B�/2(x̃ T

j ) ∩ B�/2(x̃ T
k ) = ∅ for j, k ∈ {1, . . . , �MT /2�}, j �= k.

This along with (6.14), (6.15), and 2�MT /2� � #Dζ T
1 ,ζ T

2
T implies

#Dζ T
1 ,ζ T

2
T � 2

⌈MT

2

⌉
� 4

c�

�MT /2�∑

j=1
#
(
∂ X−T ∩ B�/2(x̃ T

j )
)

� 4

c�
#∂ X−T � 32T

c�
.

From (6.19), #T −T � η
22T (see Step 1), and the choice R = c̄/η in Step 4 we then

get � � c′η−5/2 for a universal c′ > 0. The assertion of (6.20) is thus guaranteed
for � = c′η−5. This concludes Step 5.
Step 6: Conclusion.Wedenote the three atoms identified in (6.20) by x11 , x21 , x31 (for
convenience, we use a different notation and labeling), and denote by y11 , y21 , y31 the

corresponding points such that (x j
1 , y j

1 ) ∈ Dζ T
1 ,ζ T

2
T for j ∈ {1, 2, 3}. In particular,

recall that

|x11 − x21 |, |x11 − x31 |, |x21 − x31 | � 2�. (6.21)

By the definition of Dζ T
1 ,ζ T

2
T , there exist (x12 , y12), (x22 , y22 ), (x32 , y32) such that |x j

1 −
x j
2 | = |y j

1 − y j
2 | = 1, ζ T

1 = x j
1 − y j

1 , and ζ T
2 = x j

2 − y j
2 for j ∈ {1, 2, 3}.
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ξ1

ξ2

ν1,1

ν1,2
ν2,1

ν2,2

ν2,1ν1,1

ξ1

ξ2

ξ2

ν2,2

ξ1

ν1,2

Fig. 12. The two possible quadrilaterals in Step 6, where ξ1, ξ2 are given unlike vectors and
ν1,1, ν2,1, ν1,2, ν2,2 denote the possible sides of length 1

Now for each j , the four points {x j
1 , x j

2 , y j
2 , y j

1 } form a quadrilateral (possibly self-
intersecting) with two edges of length one and two edges oriented in ζ T

1 and ζ T
2 ,

respectively. Now there are two cases to consider: (a) ζ T
1 = ζ T

2 and (b) ζ T
1 �= ζ T

2 .

Case (a): We have that x11 − y11 = x12 − y12 , where x11 − y11 = eiθ−T v1 and x12 − y12 =
eiθ+T v2 for v1, v2 ∈ (L \{0}) ∩ B2R . Then eiθ−T v1 = eiθ+T v2 and thus (6.12) holds
for v+T = v1 and v−T = v2 with |v+T |, |v−T | � 2R = 2c̄/η.

Case (b): Note that two of the three quadrilaterals {x j
1 , x j

2 , y j
2 , y j

1 }, j ∈ {1, 2, 3},
are necessarily translates of each other. In fact, there are only two different quadri-
laterals (up to translation) with fixed order of the sides, prescribed side-length 1 of
two opposite edges, and prescribed length and orientation of the other two edges,
see Fig. 12.

Without restriction, assume that the quadrilaterals for j = 1 and j = 2 are
translates of each other. Then we get x11 − x12 = x21 − x22 . We write x j

1 = eiθ−T (b j
1 +

τ−T ) and x j
2 = eiθ+T (b j

2 + τ+T ) for suitable b j
1 , b j

2 ∈ L for j ∈ {1, 2}. (Note
that the lattice vectors depend on T which we do not include in the notation for
convenience.) Then x11 − x12 = x21 − x22 implies eiθ−T (b11 − b21) = eiθ+T (b12 − b22).
Since x11 �= x21 we have b11 − b21 �= 0 and thus also b12 − b22 �= 0, and therefore,

ei(θ+T −θ−T ) = b11 − b21
b12 − b22

.

Due to (6.21), we obtain |b11−b21| = |x11−x21 | � 2� and, since |b11−b21| = |b12−b22|,
also |b12 − b22| � 2�. As we clearly also have b11 − b21, b12 − b22 ∈ L , we derive
that (6.12) holds for v+T := b11 − b21 and v−T := b12 − b22 with |v+T |, |v−T | � 2� =
2c′η−5. As explained below (6.12), (6.12) implies (6.4), and therefore the proof is
concluded. ��

7. Cell Formula Part II: Relation of Converging and Fixed Boundary Values

In this final section about cell formulas we show that converging boundary con-
ditions as in the cell formula�, see (4.1), can be replaced by fixed boundary values.
Moreover, we show Proposition 2.2 and the properties of ϕ stated in Theorem 2.5.
We introduce the auxiliary function

ϕ̄(z+, z−, ν) := lim inf
T→+∞

1

T
inf
{

E1
(
XT , Qν

T (yT )
) : yT ∈ R

2,
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XT = L (z±) on ∂±1 Qν
T (yT )

}
(7.1)

for z± ∈ Z and ν ∈ S
1. The main goal of this section is to prove the following two

statements:

Lemma 7.1. For each z+, z− ∈ Z and ν ∈ S
1 it holds that

�(z+, z−, ν) = ϕ̄(z+, z−, ν). (7.2)

Moreover, for z± = (θ±, τ±, 1) ∈ Z with {(x, y) ∈ L (z+)×L (z−) : |x − y| =
1} = ∅, we have ϕ̄(z+, z−, ν) = ϕhex

(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)
.

Proposition 7.2. For every z+, z− ∈ Z , ν ∈ S
1, and every sequence {yT }T ∈ R

2

there exists

ϕ̄(z+, z−, ν) = lim
T→+∞

1

T
min

{
E1
(
XT , Qν

T (yT )
) : XT = L (z±) on ∂±1 Qν

T (yT )
}

(7.3)

and is independent of {yT }T . In particular, we get ϕ ≡ ϕ̄, and the statement of
Proposition 2.2 holds.

We point out that Lemma 7.1, Proposition 7.2, and Lemma 4.1 conclude the
proof of Proposition 3.4. Section 7.1 is devoted to the proof of Lemma 7.1. After-
wards, in Section 7.2, we show Proposition 7.2 (which particularly yields Propo-
sition 2.2) and we prove further properties of the density ϕ stated in Theorem 2.5.
Then, all proofs of our main results announced in Section 2.3 are concluded.

7.1. Converging and Fixed Boundary Values

This subsection is devoted to the proof of Lemma 7.1. By definition it is clear
that �(z+, z−, ν) � ϕ̄(z+, z−, ν) for all z+, z− ∈ Z and ν ∈ S

1. To see (7.2), it
therefore suffices to prove the opposite inequality

�(z+, z−, ν) � ϕ̄(z+, z−, ν). (7.4)

Moreover, we observe that if z+ = 0 or z− = 0, then Lemma 6.1(i) and the
continuity of ϕhex imply �(z+, z−, ν) = ϕ̄(z+, z−, ν) = ϕhex(e−iθ ν), where θ is
the angle corresponding to z+ or z−, respectively. Therefore, it suffices to treat the
case z± = (θ±, τ±, 1) ∈ Z . To this end, it is crucial that converging boundary
values as in (4.1) can be replaced by fixed ones. We split the analysis into two steps
by first addressing the rotations and then the translations.We start with the rotations.
In view of Lemma 6.2, we may without restriction assume that θ+−θ− ∈ GA since
otherwise �(z+, z−, ν) � ϕhex(e−iθ+ν) + ϕhex(e−iθ−ν) and (7.4) follows from
Lemma 6.1(ii). Lemma 6.2 already implies that the difference of rotations θ+T −θ−T
is constant in T . The next lemma shows that also θ+T and θ−T can be chosen to be
constant.
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Lemma 7.3. (Fixed rotations) Consider z±T = (θ±T , τ±T , 1) ∈ Z such that θ+T −
θ−T = θ+ − θ− for all T > 0 for some θ+, θ− ∈ A and θ±T → θ±. Let ν ∈ S

1.
Then, there holds

lim inf
T→+∞

1

T
inf
{

E1
(
XT , Qν

T (yT )
) : yT ∈ R

2, XT = L (z±T ) on ∂±1 Qν
T (yT )

}

� lim inf
T→+∞

1

T
inf
{

E1
(
XT , Qν

T (yT )
) : yT ∈ R

2, XT = L (ẑ±T ) on ∂±1 Qν
T (yT )

}
,

where ẑ±T := (θ±, τ±T , 1).

We defer the proof and proceed with the properties of translations. Again consider
z± = (θ±, τ±, 1) ∈ Z with θ+ − θ− ∈ GA. Recall by (6.2) that there holds
ei(θ+−θ−) = v1

v2
for v1, v2 ∈ L ∩C with |v1| = |v2|. We consider the coincidence

site lattice

eiθ+L ∩ eiθ−L = { ja + kb : j, k ∈ Z}, (7.5)

where a, b ∈ eiθ+L ∩ eiθ−L are spanning vectors of minimal length. Then, for
later purposes, we define the fundamental parallelogram of eiθ+L ∩ eiθ−L by

Pθ+,θ− =
{
λ1a + λ2b : 0 � λ1 < 1, 0 � λ2 < 1

}
. (7.6)

We will use the following uniform closedness property of the set of touching points
between sequences of translates of two perfect lattices.

Lemma 7.4. (Closedness of touching points) Consider z±n = (θ±, τ±n , 1) ∈ Z for
n ∈ N and z± = (θ±, τ±, 1) ∈ Z such that θ+ − θ− ∈ GA and τ±n → τ±. For
x ∈ L (z+), y ∈ L (z−) we set

x+n = x + eiθ+(τ+n − τ+) ∈ L (z+n ), y−n = y + eiθ−(τ−n − τ−) ∈ L (z−n ).

Then, there is an n0 ∈ N such that for all n � n0 and all x ∈ L (z+), y ∈ L (z−)

the following implications are verified:

(i) |x − y| < 1 "⇒ |x+n − y−n | < 1 and

(ii) |x − y| > 1 "⇒ |x+n − y−n | > 1.

In particular, |x+n − y−n | = 1 for some n � n0 implies |x − y| = 1.

We again defer the proof and now proceed with the proof of Lemma 7.1.

Proof of Lemma 7.1. Let z+, z− ∈ Z , ν ∈ S
1. Recalling the discussion at the be-

ginning of the subsection,we note that it suffices to show inequality (7.4).Moreover,
we can assume that z± = (θ±, τ±, 1) and that θ+ − θ− ∈ GA.

Let {XT }T be an optimal sequence for � with corresponding centers {yT }T of
the cubes, that is,

lim inf
T→+∞

1

T
E1
(
XT , Qν

T (yT )
) = �(z+, z−, ν) < +∞. (7.7)
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By applying Lemma 6.2, we can suppose that XT = X+T ∪ X−T with X±T ⊂ L (z±T )

and XT = L (z±T ) on ∂±1 Qν
T (yT ), where z±T = (θ±T , τ±T , 1) → z±. By (6.4)

and Lemma 7.3 we can also assume that θ±T = θ± for all T . We distinguish the
two cases (a) {(x, y) ∈ L (z+) × L (z−) : |x − y| = 1} = ∅ and (b) {(x, y) ∈
L (z+)×L (z−) : |x − y| = 1} �= ∅.
Case (a): {(x, y) ∈ L (z+)×L (z−) : |x − y| = 1} = ∅. By Lemma 7.4 we can
assume that {(x, y) ∈ L (z+T )×L (z−T ) : |x − y| = 1} = ∅ for all T . Thus, we get
N (x) ∩ X−T = ∅ for all x ∈ X+T and viceversa. Therefore, by (2.3) we obtain

�(z+, z−, ν) = lim inf
T→+∞

1

T
E1
(
XT , Qν

T (yT )
) = lim inf

T→+∞

( 1
T

E1
(
X+T , Qν

T (yT )
)

+ 1

T
E1
(
X−T , Qν

T (yT )
))

.

Note that X±T = L (z±T ) = L (θ±, τ±T , 1)on ∂±1 Qν
T (yT ) and X±T = ∅on ∂∓1 Qν

T (yT ).
By Lemma 6.1(i), the energy on each sublattice X+T on X−T can be estimated sepa-
rately, and we obtain

�(z+, z−, ν) � ϕhex
(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)
. (7.8)

Then,Lemma 6.1(ii) and (7.1) imply�(z+, z−, ν) � ϕ̄(z+, z−, ν) and ϕ̄(z+, z−, ν)

= ϕhex
(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)
. This concludes the proof of (7.4) in case (a). We

also point out that the property stated below (7.2) holds. (In case θ+ − θ− /∈ GA,
(7.8) is immediate from (6.3).)
Case (b): {(x, y) ∈ L (z+)×L (z−) : |x − y| = 1} �= ∅. Our goal is to construct
a new competitor X̃T = X̃+T ∪ X̃−T such that X̃±T ⊂ L (z±), X̃±T = L (z±) on
∂±1 Qν

T+22(yT ), and

E1
(
X̃T , Qν

T+22(yT )
)

� E1
(
XT , Qν

T (yT )
)+ C. (7.9)

Once this is established, by (7.1) and (7.7) we clearly get

�(z+, z−, ν) = lim inf
T→+∞

1

T
E1
(
XT , Qν

T (yT )
)

� lim inf
T→+∞

1

T + 22
E1
(
X̃T , Qν

T+22(yT )
)

� ϕ̄(z+, z−, ν).

To construct X̃T , we first extend XT to X̂T by

X̂T =

⎧
⎪⎨

⎪⎩

XT on Qν
T+10(yT )\AT ,

L (z±T ) on {x : ± 〈ν, x − yT 〉 � 2} ∩ (Qν
T+34(yT )\(Qν

T+10(yT ) ∪ AT )
)
,

∅ on AT ∪
(
R
2\Qν

T+34(yT )
)
,

(7.10)

where AT = Qν
10(yT + (T/2)ν⊥) ∪ Qν

10(yT − (T/2)ν⊥) ∪ ({|x : 〈ν, x − yT 〉| <
2}\Qν

T+10(yT )). By definition, we get E1(X̂T ) < +∞ since |x − y| � 1 for all

x, y ∈ X̂T , x �= y. Note that we can write X̂T = X̂+T ∪̇X̂−T , where X̂±T ⊂ L (z±T )

and X̂±T = L (z±T ) on ∂±1 Qν
T+22(yT ). We claim that

E1
(
X̂T , Qν

T+32(yT )
)

� E1
(
XT , Qν

T (yT )
)+ C. (7.11)
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In fact, if there exists x ∈ X̂T ∩Qν
T (yT ) such that #(N (x)∩ X̂T ) < #(N (x)∩XT ),

then necessarily x ∈ (AT )1 ∩ Qν
T (yT ). However, L2((AT ∩ Qν

T (yT ))2) � C and
therefore, due to Lemma 3.1(v), we get

#
{

x ∈ X̂T ∩ Qν
T (yT ) : #(N (x) ∩ X̂T ) < #(N (x) ∩ XT )

}
� C. (7.12)

In a similar fashion, if x ∈ X̂T ∩(Qν
T+32(yT )\Qν

T (yT )) such that #(N (x)∩ X̂T ) <

6, then necessarily x ∈ (AT )1 ∩ Qν
T+32(yT ). Thus, again by Lemma 3.1(v), only

a bounded number of atoms in Qν
T+32(yT )\Qν

T (yT ) independently of T has less
than six neighbors. This along with (7.12) and (2.3) yields (7.11).

Let us now define X̃T .We recall the notation in (2.4) and define X̃T = X̃+T ∪ X̃−T
by

X̃+T =
(
X̂+T + eiθ+(τ+ − τ+T )

)
, X̃−T =

(
X̂−T + eiθ−(τ− − τ−T )

)
.

For convenience, we denote the atoms of X̂T by {x j
T } j and the corresponding atoms

of X̃T by {x̃ j
T } j , that is, x̃ j

T = x j
T + eiθ±(τ± − τ±T ) if x j

T ∈ X̂±T . By (7.10) and the
choice of X̂T , it is obvious that X̃±T ⊂ L (z±) and X̃±T = L (z±) on ∂±1 Qν

T+22(yT )

for T large enough. Here, the extension X̂T = L (z±T ) on {x : ±〈ν, x− yT 〉 � 2}∩
(Qν

T+34(yT )\(Qν
T+10(yT )∪ AT )) is crucial in order to ensure that these boundary

conditions hold for X̃T . (The value 2 is for definiteness only. Every value less than
5 works, provided T is sufficiently large.) To show (7.9), we prove

E1
(
X̃T , Qν

T+22(yT )
)

� E1
(
X̂T , Qν

T+32(yT )
)
.

Then, the result follows from (7.11). To this end, we need to check the following
for large T :

(i) |x j
T − xk

T | = 1 "⇒ |x̃ j
T − x̃ k

T | = 1, and (ii) |x̃ j
T − x̃ k

T | � 1 for all j, k, j �= k.

(7.13)

In fact, due to (7.13)(ii), X̃T is a configurationwith finite energy.Moreover, (7.13)(i)
shows that xk

T ∈ N (x j
T ) implies x̃ k

T ∈ N (x̃ j
T ), and therefore the energy can only

decrease, see (2.3).
Let us finally check (7.13). If both atoms are in X̂−T or X̂+T , then it is clear by

the definition of X̃T that x j
T − xk

T = x̃ j
T − x̃ k

T , which gives (i) and (ii) due to (7.7)

and (7.11). Otherwise, if x j
T ∈ X̂−T and xk

T ∈ X̂+T or vice versa, (i) follows from
Lemma 7.4, whereas (ii) follows from Lemma 7.4(i), (7.7) and (7.11). ��

To conclude the proof of Lemma7.1, it remains to give the proofs of Lemmas 7.3
and 7.4.

Proof of Lemma 7.3. Let z±T = (θ±T , τ±T , 1) ∈ Z and ν ∈ S
1 be given as in the

statement.
Step 1: Rotation to boundary conditions with fixed rotation angles.Choose ỹT ∈ R

2

and X̃T ⊂ R
2 satisfying X̃T = L (z±T ) on ∂±1 Qν

T (ỹT ) such that

E1
(
X̃T , Qν

T (ỹT )
)

� inf
{

E1
(
XT , Qν

T (yT )
) : yT ∈ R

2, XT
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= L (z±T ) on ∂±1 Qν
T (yT )

}+ 1/T . (7.14)

We define X rot
T := ei(θ+−θ+T ) X̃T , νT := ei(θ+−θ+T )ν, yrotT := ei(θ+−θ+T ) ỹT , and

ẑ± := (θ±, τ±T , 1). Then, by Lemma 3.1(i) and θ+T − θ−T = θ+ − θ− for all T ,
there holds X rot

T = L (ẑ±T ) on ∂±1 QνT
T (yrotT ) and

E1
(
X̃T , Qν

T (ỹT )
) = E1

(
X rot

T , QνT
T (yrotT ))

� inf
{

E1
(
XT , QνT

T (yT )
) : yT ∈ R

2, XT = L (ẑ±T ) on ∂±1 QνT
T (yT )

}

for all T > 0. Therefore, in view of (7.14), to show the statement it suffices to
prove

lim inf
T→+∞

1

T
inf
{

E1
(
XT , QνT

T (yT )
) : yT ∈ R

2, XT = L (ẑ±T ) on ∂±1 QνT
T (yT )

}

� lim inf
T→+∞

1

T
inf
{

E1
(
XT , Qν

T (yT )
) : yT ∈ R

2, XT = L (ẑ±T ) on ∂±1 Qν
T (yT )

}
.

(7.15)

Note that the difference of the two formulas lies only in the fact that ν is replaced
by νT , where νT → ν as T →+∞.
Step 2: Proof of (7.15). Fix δ > 0 and let T > 0 be sufficiently large such that
|νT − ν| < δ. We choose ỹT ∈ R

2 and X̃T ⊂ R
2 satisfying X̃T = L (ẑ±T ) on

∂±1 QνT
T (ỹT ) such that

E1
(
X̃T , QνT

T (ỹT )
)

� inf
{

E1
(
XT , QνT

T (yT )
) : yT ∈ R

2,

XT = L (ẑ±T ) on ∂±1 QνT
T (yT )

}+ δ. (7.16)

Recall (2.4) and (2.5). We set Tδ = (1+ 2δ)T and define

Aδ
T =

([
ỹT − T

2
ν⊥T ; ỹT − Tδ

2
ν⊥
]
∪
[

ỹT + T

2
ν⊥T ; ỹT + Tδ

2
ν⊥
])

κT δ

\
(
∂+1 Qν

Tδ
(ỹT ) ∪ ∂−1 Qν

Tδ
(ỹT )

)
,

where κ > 1 is chosen sufficiently large later.We define the configuration X̂T ⊂ R
2

by

X̂T =

⎧
⎪⎨

⎪⎩

X̃T in QνT
T (ỹT ),

∅ in Aδ
T \QνT

T (ỹT ),

L (ẑ±T ) in {x : ± 〈ν, (x − ỹT )〉 � 5}\(Aδ
T ∪ QνT

T (ỹT )
)
.

(7.17)

Here, κ > 1 is chosen large enough (independently of T ) such that |x−y| � 1 for all
x, y ∈ X̂T , x �= y. In principle, |x−y| < 1may occur for points x ∈ X̃T ∩QνT

T (ỹT )

and y ∈ R
2\QνT

T (ỹT ) if x ∈ QνT
T (ỹT )\QνT

T−2(ỹT ), ±〈νT , (x − ỹT )〉 � −5 and
±〈ν, (y − ỹT )〉 � −5, but for κ big enough such pairs of points are contained in
Aδ

T .
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We note that ∂±1 Qν
Tδ

(ỹT ) ∩ Qν
T (ỹT ) = ∅ for T large enough since νT → ν

as T → +∞. Thus, by construction we get X̂T = L (ẑ±T ) on ∂±1 Qν
Tδ

(ỹT ) for T
sufficiently large. Therefore, we obtain

inf
{

E1
(
XT , Qν

Tδ
(yT )

) : yT ∈ R
2, XT = L (ẑ±T ) on ∂±1 Qν

Tδ
(yT )

}

� E1
(
X̂T , Qν

Tδ
(ỹT )

)
. (7.18)

We claim that

E1
(
X̂T , Qν

Tδ
(ỹT )

)
� E1

(
X̃T , QνT

T (ỹT )
)+ CκδT (7.19)

for a universal C > 0. We defer the proof of this estimate to Step 3 below and
conclude the proof of (7.15). Dividing (7.19) by Tδ and letting T → +∞, we
derive

lim inf
T→+∞

1

Tδ

E1
(
X̂T , Qν

Tδ
(ỹT )

)
� lim inf

T→+∞
1

T
E1
(
X̃T , QνT

T (ỹT )
)+ Cκδ.

This along with (7.16) and (7.18), and the fact that δ > 0 was arbitrary shows
(7.15). It thus remains to prove (7.19).
Step 3: Proof of (7.19). We divide the proof into the two estimates

E1
(
X̂T , QνT

T (ỹT )
)

� E1
(
X̃T , QνT

T (ỹT )
)+ CκδT, and (7.20)

E1
(
X̂T , Qν

Tδ
(ỹT )\QνT

T (ỹT )
)

� CκδT, (7.21)

for a universal C > 0. Clearly, (7.20)–(7.21) and Lemma 3.1(iv) imply (7.19). We
first prove (7.20). Recall by (7.17) and the boundary values of X̃T that X̂T = X̃T

in QνT
T+2(ỹT )\(Aδ

T \QνT
T (ỹT )). Thus, x ∈ QνT

T (ỹT ) can have less neighbors in X̂T

than in X̃T only if x ∈ (Aδ
T )1 ∩ (QνT

T (ỹT )\QνT
T−2(ỹT )). As diam(Aδ

T ) � CκδT
and therefore L2(((Aδ

T )1 ∩ (QνT
T (ỹT )\QνT

T−2(ỹT )))1) � CκδT , this implies by
Lemma 3.1(v) that a number of atoms x ∈ QνT

T (ỹT ) bounded by CκδT have less
neighbors in X̂T than in X̃T . This shows (7.20) by (2.3). To see (7.21), again
due to (7.17), all atoms x ∈ X̂T ∩ (Qν

Tδ
(ỹT )\(QνT

T (ỹT ) ∪ (Aδ
T )1) have six neigh-

bors. Hence, their energy contribution is zero. As X̂T = ∅ in Aδ
T \QνT

T (ỹT ) and
L2(((Aδ

T )1\Aδ
T )1) � CκδT , this implies, as before, that

#
(

X̂T ∩
(
(Aδ

T )1 ∩ Qν
Tδ

(ỹT )
)\QνT

T (ỹT )
)

� CL2(((Aδ
T )1\Aδ

T )1) � CκδT .

Again, in view of (2.3), this implies (7.21), and concludes the proof. ��
Proof of Lemma 7.4. Suppose first that y ∈ Pθ+,θ− with Pθ+,θ− defined in (7.6).
Then (i) follows from x+n → x , y−n → y, and the observation that there are only
finitely many pairs (x, y) ∈ L (z+) × (Pθ+,θ− ∩L (z−)) with |x − y| < 1. The
same argument applies to show that (ii) holds true for all pairs (x, y) ∈ ((Pθ+,θ−)3∩
L (z+)) × (Pθ+,θ− ∩L (z−)) for large n. Choosing n so big that |τ±n − τ±| < 1
also gives (ii) for all (x, y) ∈ L (z+)× (Pθ+,θ− ∩L (z−)).

Now, consider a general y ∈ L (z−). One finds v ∈ eiθ+L ∩ eiθ−L such
that y − v ∈ Pθ+,θ− . The assertion then follows by applying the special case
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described above to x − v and y − v, and by observing that (x − v)+n = x+n − v

and (y − v)−n = y−n − v. Finally, the implication |x+n − y−n | = 1 ⇒ |x − y| = 1
follows from (i) and (ii) by contraposition. ��

7.2. Well Definedness and Properties of the Energy Density ϕ

Thisfinal subsection is devoted to the proofs ofProposition7.2 andTheorem2.5.
Our proofs in this subsection follow standard strategies.Due to the discrete character
of our model, however, careful constructions are needed. As a preliminary step, we
show that in (7.1) the sequence T → +∞ can be chosen independently of the
centers of the cells.

Proposition 7.5. For each z+, z− ∈ Z and ν ∈ S
1 there exists a sequence {Tj } j

such that Tj →+∞ as j →+∞ and for all {y j } j ⊂ R
2 it holds that

1

Tj
min

{
E1
(
X, Qν

Tj
(y j )

) : X = L (z±) on ∂±1 Qν
Tj

(y j )
}

� ϕ̄(z+, z−, ν)+ η j ,

where {η j } j ⊂ (0,+∞) is a null sequence which depends on z± and ν, but is
independent of {y j } j .

Proof. First, if z+ = 0 or z− = 0, the statement follows from Lemma 6.1(i) and
the definition of ϕ̄ in (7.1) for any sequence {Tj } j . Now consider z± = (θ±, τ±, 1).
If θ+− θ− /∈ GA, the statement follows from Lemma 6.1(ii), (6.1), and Lemma 6.2
for any sequence {Tj } j . Therefore, it remains to treat the case θ+ − θ− ∈ GA.

Consider a sequence S j → +∞, {x j } j ⊂ R
2, and configurations {X j } j ⊂ R

2

satisfying X j = L (z±) on ∂±1 Qν
S j

(x j ) such that

ϕ̄(z+, z−, ν) = lim
j→+∞

1

S j
E1
(
X j , Qν

S j
(x j )

)
. (7.22)

By Lemma 5.1 it is not restrictive to assume that X j ⊂ L (z±) for all j ∈ N. Our
goal is to find a sequence l j → 1 such that for all {y j } j there are configurations
{X̃ j } j ⊂ R

2 satisfying X̃ j = L (z±) on ∂±1 Qν
l j S j

(y j ) such that

E1
(
X̃ j , Qν

l j S j
(y j )

)
� E1

(
X j , Qν

S j
(x j )

)+ C (7.23)

for a constant C > 0 only depending on z± and ν. Once this is achieved, we obtain
the statement as follows: we introduce the sequence Tj := l j S j , divide (7.23) by
Tj , and use (7.22) to get

1

Tj
min

{
E1
(
X, Qν

Tj
(y j )

) : X = L (z±) on ∂±1 Qν
Tj

(y j )
}

� 1

Tj
E1
(
X̃ j , Qν

l j S j
(y j )

)

� 1

l j S j
E1
(
X j , Qν

S j
(x j )

)+ C

Tj
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� ϕ̄(z+, z−, ν)+ η j ,

where {η j } j is a null sequence only depending on z+, z−, ν, and {Tj } j , but inde-
pendent of the centers {y j } j .

Consider any sequence of centers {y j } j . We now construct X̃ j and confirm
(7.23). We choose ȳ j ∈ (L (z+) ∩L (z−)) + x j such that |y j − ȳ j | � κ , where
κ := |a| + |b| + 5 only depends on the spanning vectors a, b in (7.5), but is
independent of j . Let l j := 1+ 4κ/S j . We set

A j =
([

y j −
S j

2
ν⊥; y j − l j S j

2
ν⊥
])

4κ
∪
([

y j +
S j

2
ν⊥; y j + l j S j

2
ν⊥
])

4κ
.

Note that ∂±1 Qν
l j S j

(y j ) ∩ Qν
S j

(ȳ j ) = ∅ since S j l j − S j = 4κ , |y j − ȳ j | � κ , and

κ � 5. We define X̃ j ⊂ R
2 by

X̃ j =

⎧
⎪⎪⎨

⎪⎪⎩

X j + ȳ j − x j in Qν
S j

(ȳ j )\A j ,

∅ in A j\
(
∂+1 Qν

l j S j
(y j ) ∪ ∂−1 Qν

l j S j
(y j )

)
,

L (z±) in
({±〈ν, x − y j 〉 � 5}\(A j ∪ Qν

S j
(ȳ j )

)) ∪ ∂±1 Qν
l j S j

(y j ).

Bydefinition, X̃ j attains the correct boundary conditions, and therefore it remains to
check (7.23). First, as x j− ȳ j ∈ L (z+)∩L (z−) and X j = L (z±) on ∂±1 Qν

S j
(x j ),

we observe that X̃ j = L (z±) on (∂±1 Qν
S j

(ȳ j ) ∩ Qν
S j

(ȳ j ))\A j . This along with

the definition of A j implies |x − y| � 1 for all x, y ∈ X̃ j , x �= y, and thus
E1
(
X̃ j , Qν

l j S j
(y j )

)
< +∞. Moreover, by Lemma 3.1(i) we obtain

E1
(
X̃ j , Qν

S j
(ȳ j )

)
� E1

(
X j , Qν

S j
(x j )

)+ C. (7.24)

Here, the extra term C > 0 is due the fact that we take into account the interactions
of points x ∈ X̃ j ∩ Qν

S j
(ȳ j ) ∩ (A j )1 . Since L2((A j )2) � Cκ for Cκ depending

only κ and E1(X̃ j ) < +∞, by Lemma 3.1(v), the cardinality of these points can
be controlled by Cκ . Then, by (2.3) we indeed get (7.24). Additionally, it holds that

E1

(
X̃ j , Qν

l j S j
(y j )\Qν

S j
(ȳ j )

)
� C, (7.25)

whereC again only depends on κ . In fact, all points x ∈ X̃ j ∩(Qν
l j S j

(y j )\Qν
S j

(ȳ j ))

with dist(x, A j ) > 1 satisfy #N (x) = 6 and therefore they do not contribute to the
energy. Again due to Lemma 3.1(v), the cardinality of x ∈ X̃ j with dist(x, A j ) � 1
can be estimated by Cκ . This gives (7.25). Now, (7.24)–(7.25) along with
Lemma 3.1(iv) imply (7.23). This concludes the proof. ��
Proof of Proposition 7.2. We first show that, once (7.3) has been established, the
result in Proposition 2.2 follows. Indeed, given x0 ∈ R

2 and ρ > 0, estimate (2.16)
readily follows from (7.3) for the sequence of centers yT = (T/ρ)x0 and a scaling
argument, see Proposition 3.1(ii) for ε = ρ/T , λ = T/ρ, and A = Qν

ρ(x0).
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It remains to prove (7.3). Let z± ∈ Z , ν ∈ S
1, and a sequence {yT }T ⊂ R

2 be
given. In view of the definition of ϕ̄, see (7.1), it suffices to show that

lim sup
T→+∞

1

T
min

{
E1
(
XT , Qν

T (yT )
) : XT = L (z±) on ∂±1 Qν

T (yT )
}

� ϕ̄(z+, z−, ν).

(7.26)

Step 1: Comparison via construction. Consider 1 � S � T . Without restriction,
we can assume that S ∈ {Tj } j , where {Tj } j is the sequence identified in Proposition
7.5. For simplicity, if S = Tj , we will write ηS instead of ηTj for the null sequence
given by Proposition 7.5. Define NS,T := �T/S�. For j ∈ {1, . . . , NS,T } we set
x j = yT + (−T/2 − S/2 + j S)ν⊥. We choose X j ⊂ R

2 such that X j = L (z±)

on ∂±1 Qν
S(x j ) and

E1
(
X j , Qν

S(x j )
) = min

{
E1
(
X, Qν

S(x j )
) : X = L (z±) on ∂±1 Qν

S(x j )
}

� S
(
ϕ̄(z+, z−, ν)+ ηS

)
, (7.27)

where the inequality follows from Proposition 7.5. For j = 1, . . . , NS,T , we intro-
duce the set A j = Qν

10(x j + (S/2)ν⊥)∪Qν
10(x j − (S/2)ν⊥) and let XT be defined

by

XT =

⎧
⎪⎨

⎪⎩

X j in Qν
S(x j )\A j , j ∈ {1, . . . , NS,T },

∅ in {x : |〈ν, x − yT 〉| < 5}\Q∗,
L (z±) in {x : ± 〈ν, x − yT 〉 � 5}\Q∗,

where for brevity we have set Q∗ :=⋃NS,T
j=1 (Qν

S(x j )\A j ). Note that XT = L (z±)

on ∂±1 Qν
T (yT ). For an illustration of the construction, we refer to Fig. 13. We will

show that

E1
(
XT , Qν

T (yT )
)

� �T/S� S
(
ϕ̄(z+, z−, ν)+ ηS

)+ CT/S + C S (7.28)

for a universal constant C > 0. Once this is achieved, we divide by T , take first
the lim sup as T →+∞, and then the limit as S →+∞ (with S chosen from the
sequence {Tj } j given by Proposition 7.5). As ηS → 0, this yields (7.26) and thus
the statement of the proposition.
Step 2: Proof of (7.28). It remains to prove (7.28). First, by construction, the
definition of A j , and the boundary values of the configurations X j , we get |x− y| �
1 for all x, y ∈ XT , x �= y, and therefore E(XT ) < +∞. By Lemma 3.1(iv) and
(7.27) it holds that

E1
(
XT , Qν

T (yT )
) =

NS,T∑

j=1
E
(
XT , Qν

S(x j )
)+ E

(
XT , Qν

T (yT )\
NS,T⋃

j=1
Qν

S(x j )
)

� �T/S�
(

S
(
ϕ̄(z+, z−, ν)+ ηS

)+ C
)
+ E

(
XT , Qν

T (yT )\
NS,T⋃

j=1
Qν

S(x j )
)
.

(7.29)
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S

T

ν S

ν1 ν2

T

A−

A+

ν

Fig. 13. Illustration of the construction for the existence of the limit on the left as well as
the convexity in the third variable on the right. On the white region XT = L (z−), on the
light gray region XT = L (z+), and on the dark gray region XT = ∅. The dark gray cubes,
that are cut out in order to ensure that XT has finite energy, are illustrated on the left, but
they are also present in the construction on the right. In the gray cubes, we set XT equal to
the minimizer with boundary conditionsL (z±). For illustration purposes, we suppose that
w = 0 in (7.34)

Here, the addend C in the brackets is due to the fact that there may be x ∈ XT ∩
Qν

S(x j ) with more neighbors in X j than in XT . This, however, can only occur
for atoms in x ∈ Qν

S(x j ) such that x ∈ (∂ Qν
S(x j ))6 ∩ ({y : 〈y − x j , ν〉 = 0})6.

Since E(XT ) < +∞, we can apply Lemma 3.1(v) and get that their cardinality is
controlled by some universal constant C .

It remains to estimate the energy outside the union of the smaller cubes. We
claim that

E
(

XT , Qν
T (yT )\

NS,T⋃

j=1
Qν

S(x j )
)

� C S. (7.30)

To see this, note that an atom x ∈ XT ∩(Qν
T (yT )\⋃NS,T

j=1 Qν
S(x j )) can contribute to

the energy only if |〈x− yT , ν〉| � 6. Since E(XT ) < +∞, applying Lemma 3.1(v),
we obtain

#
{

x ∈ XT ∩
(

Qν
T (yT )\

NS,T⋃

j=1
Qν

S(x j )
)
: |〈x − yT , ν〉| � 6

}
� C (T − S �T/S�)

� C S,

where T − S�T/S� controls the length of the rightmost dark gray region in the left
part of Fig. 13. In view of (2.3), this implies (7.30). Combining (7.29) and (7.30)
we obtain (7.28), which concludes the proof. ��

As a final preparation for the proof of Theorem 2.5, we characterize the trans-
lations of lattices with touching points. To this end, we introduce the following
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notation: for given θ = θ+ − θ− ∈ GA, we say eiθ+τ+ − eiθ−τ− is a good trans-
lation and write eiθ+τ+ − eiθ−τ− ∈ GT(θ), whenever (τ+, τ−) ∈ T

2 are such
that there exist x ∈ L (θ+, τ+, 1) and y ∈ L (θ−, τ−, 1) with |x − y| = 1. (By
rotational invariance this does indeed only depend on the difference θ = θ+−θ−.)

Lemma 7.6. (Properties of translations) Suppose that θ = θ+ − θ− ∈ GA. Then
GT(θ) is contained in a finite union (of arcs) of spheres of radius 1, namely

GT(θ) ⊂
⋃

x ′,y′
∂ B1(y′ − x ′),

where the union is taken over the all x ′ ∈ eiθ+L ∩ (Pθ+,θ−)5 and y′ ∈ eiθ−L ∩
Pθ+,θ− , where Pθ+,θ− is the fundamental parallelogram defined in (7.6). (Recall
also notation (2.4).)

Proof. Consider x ∈ L (θ+, τ+, 1) and y ∈ L (θ−, τ−, 1) with |x − y| = 1. We
find a shifting vector v ∈ eiθ+L ∩ eiθ−L such that y′ := y − v − eiθ−τ− ∈
eiθ−L ∩ Pθ+,θ− . By defining x ′ := x − v − eiθ+τ+ ∈ eiθ+L we clearly get

1 = |y − x | = ∣∣(y′ − x ′
)− (eiθ+τ+ − eiθ−τ−

)∣∣.

The latter identity along with |τ±| �
√
3 < 2 (see (2.8)) yields x ′ ∈ eiθ+L ∩

(Pθ+,θ−)5 as well as eiθ+τ+ − eiθ−τ− ∈ ∂ B1(y′ − x ′). ��
We close this subsection with the proof of Theorem 2.5.

Proof of Theorem 2.5. Proof of (i),(ii). The proof of (i) follows from the definition
of ϕ and Lemma 6.1(i). For (ii), we use Lemma 6.1(ii) to obtain the inequality

1

2
ϕhex

(
e−iθ+ν

)+ 1

2
ϕhex

(
e−iθ−ν

)
� ϕ(z+, z−, ν) � ϕhex

(
e−iθ+ν

)+ ϕhex
(
e−iθ−ν

)

(7.31)

for all (z+, z−) ∈ (Z\{0})2, z+ �= z−. By Lemma 6.2, ϕ = � (see Lemma 7.1 and
Proposition 7.2), Lemma 7.1, and the definition of GT(θ+ − θ−), the inequality in
(7.31) can be strict only if θ+ − θ− ∈ GA and eiθ+τ+ − eiθ−τ− ∈ GT(θ+ − θ−).
Clearly, GA ⊂ A is countable, see (6.2), and GT(θ+ − θ−) ⊂ R

2 is contained in a
finite union of spheres by Lemma 7.6.
Proof of (iii). Let ν1, ν2 ∈ S

1, λ ∈ (0, 1). Our goal is to prove

ϕ(z+, z−, λν1 + (1− λ)ν2) � λϕ(z+, z−, ν1)+ (1− λ)ϕ(z+, z−, ν2). (7.32)

Assume that λν1 + (1 − λ)ν2 �= 0 (otherwise the statement is trivial) and define
ν = λν1+(1−λ)ν2|λν1+(1−λ)ν2| ∈ S

1. By the positive 1-homogeneity of ϕ, (7.32) is equivalent to

ϕ(z+, z−, ν) � λ1ϕ(z+, z−, ν1)+ λ2ϕ(z+, z−, ν2), (7.33)

where λ1 = λ
|λν1+(1−λ)ν2| , λ2 = 1−λ

|λν1+(1−λ)ν2| > 0. In the following, we will prove
(7.33).
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Step 1: Convexity via construction. We construct competitors for the problem
ϕ(z+, z−, ν), and refer to Fig. 13 for an illustration. Fix n ∈ N such that λ1, λ2 �
n/2. Let 1 � S � T . As before, we assume that S ∈ {Tj } j , where {Tj } j is the
sequence identified in Proposition 7.5. For simplicity, if S = Tj , we will write ηS

instead of ηTj for the null sequence given by Proposition 7.5.
Define N j (S, T ) := ⌊λ j (T − (10n + 5)S)/(nS)

⌋
for j ∈ {1, 2}. In the follow-

ing, the indices i , j , and k are always chosen from j ∈ {1, 2}, i ∈ {0, . . . , N j (S, T )},
and k ∈ {0, . . . , n − 1} without further notice. As usual, the orthonormal vectors
to ν, ν1, ν2 obtained by clockwise rotation about π/2 are denoted by ν⊥, ν⊥1 , ν⊥2 ,
respectively. From ν = λ1ν1 + λ2ν2 and the definition of N j (S, T ) we get

N1(S, T )ν⊥1 + N2(S, T )ν⊥2 = Mν⊥ − w, (7.34)

where M = (T − (10n + 5)S)/(nS) and w = α1ν
⊥
1 + α2ν

⊥
2 for suitable 0 �

α1, α2 < 1, in particular, |w| � 2. We set

x1,ki = (− T/2+ 5S + S(M + 10)k
)
ν⊥ + i Sν⊥1 ,

x2,ki = x1,kN1(S,T ) + 5Sν⊥ + i Sν⊥2 ,

and let X j,k
i ⊂ R

2 be defined as a minimizer of the problem

min
{

E1
(
X, Q

ν j
S (x j,k

i )
) : X = L (z±) on ∂±1 Q

ν j
S (x j,k

i )
}

. (7.35)

We recall notation (2.4)–(2.5) and define

U = ([− T
2 ν⊥; x1,00 ])

κ
∪

n−1⋃

k=0

([x1,kN1(S,T ); x2,k0 ])
κ
∪

n−2⋃

k=0

([x2,kN2(S,T ); x1,k+10 ])
κ

∪ ([x2,n−1N2(S,T ); T
2 ν⊥])

κ
,

where κ > 1 is chosen later. Note that U consists of 2n + 1 tubular neighbor-
hoods of segments whose maximal length is bounded by C S. (Apart from the
segment [x2,n−1N2(S,T ); T

2 ν⊥], this follows directly from the choice of the points x j,k
i

and (7.34). For [x2,n−1N2(S,T ); T
2 ν⊥], it follows from x2,n−1N2(S,T ) = (−T/2 + S(M +

10)n) ν⊥ − Sw = (T/2 − 5S) ν⊥ − Sw, where |w| � 2.) We also observe that
Qν

T \(
⋃

i, j,k Q
ν j
S (x j,k

i )∪U ) consists of two connected components. The connected

component intersecting ∂+1 Qν
T is denoted by A+ and the other one is denoted by

A−. Note that the cubes Q
ν j
S (x j,k

i ) do not intersect ∂±1 Qν
T . We introduce the sets

A j,k
i = Q

ν j
10(x j,k

i + (S/2)ν⊥j ) ∪ Q
ν j
10(x j,k

i − (S/2)ν⊥j ) and let XT be defined by

XT =

⎧
⎪⎪⎨

⎪⎪⎩

X j,k
i in Q

ν j
S (x j,k

i )\A j,k
i ,

∅ in
(

U\
(⋃

i, j,k Q
ν j
S (x j,k

i ) ∪ ∂−1 Qν
T ∪ ∂+1 Qν

T

))
∪⋃i, j,k A j,k

i ,

L (z±) in A± ∪ ∂±1 Qν
T .

(7.36)
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For an illustration of the sets and the configuration XT we refer to Fig. 13. Clearly,
we have XT = L (z±) on ∂±1 Qν

T .
Step 2: Energy estimate on XT . We now estimate the energy of XT . First, due to
the boundary conditions X j,k

i = L (z±) on ∂±1 Q
ν j
S (x j,k

i ), one can check that for
κ big enough there holds |x − y| � 1 for all x, y ∈ XT , x �= y and therefore
E1(XT ) < +∞. We now prove the following two sub-estimates:

E1

(
XT ,

(
A+ ∪ A− ∪ ∂+1 Qν

T ∪ ∂−1 Qν
T

) ∩ Qν
T

)
� CnS (7.37)

and

E1

⎛

⎝XT ,
⋃

i, j,k

Qν
S(x j,k

i ) ∪ (U\(∂−1 Qν
T ∪ ∂+1 Qν

T )
)
⎞

⎠

�
2∑

j=1

λ j T

S

(
S
(
ϕ(z+, z−, ν j )+ ηS

)+ C
)
, (7.38)

where {ηS}S denotes a sequence with ηS → 0 as S →+∞. ��
Proof of (7.37). For x ∈ XT ∩ (A+ ∪ A− ∪ ∂+1 Qν

T ∪ ∂−1 Qν
T ) ∩ Qν

T such that
dist(x, U ) > 1, there holds #N (x) = 6. This follows from the boundary conditions
of X j,k

i on every cube Q
ν j
S (x j,k

i ) and the fact that XT = L (z±) in A± ∪ ∂±1 Qν
T .

Therefore, in order to obtain (7.37), it suffices to estimate the cardinality of the
atoms x ∈ XT lying in (U )1. As U consists of 2n + 1 tubular neighborhoods of
segments whose length is bounded by C S, we get L2((U )2) � CnS. Therefore,
employing Lemma 3.1(v), we obtain #(XT ∩ (U )1) � CnS. By (2.3) this implies
(7.37). ��
Proof of (7.38):. In view of (7.36), in order to obtain (7.38), it suffices to estimate
the energy contribution of atoms in

⋃
i, j,k(Q

ν j
S (x j,k

i )\A j,k
i ). For each i, j, k, it

holds that XT = L (z±) on
(
∂ Q

ν j
S (x j,k

i )
)
5\
{

x : ± 〈x − x j,k
i , ν j 〉 � Cκ

}
,

with a constant C > 0 only depending on ν1, ν2 and ν. This shows that the car-
dinality of XT ∩ Q

ν j
S (x j,k

i ) ∩ ((A j,k
i )1 ∪ (U )1), which contains all atoms x ∈

XT ∩ Q
ν j
S (x j,k

i ) for which possibly #(N (x) ∩ XT ) < #(N (x) ∩ X j,k
i ), is uni-

formly controlled due to Lemma 3.1(v). We thus obtain E
(
XT , Q

ν j
S (x j,k

i )
)

�
E
(
X j,k

i , Q
ν j
S (x j,k

i )
) + C by (2.3). Thus, using (7.35), Propositions 7.2 and 7.5

we get

E
(
XT , Q

ν j
S (x j,k

i )
)

� E
(
X j,k

i , Q
ν j
S (x j,k

i )
)+ C � S

(
ϕ(z+, z−, ν j )+ ηS

)+ C.

(7.39)

For j ∈ {1, 2}, we find that

#
{
(i, k) : i = 0, . . . , N j (S, T ), k = 0, . . . , n − 1

}
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= n

(⌊
λ j (T − (10n + 5)S)

nS

⌋
+ 1

)
� λ j T

S
.

This, along with (7.39), yields (7.38).
Step 3: Conclusion. Noting that

min
{

E1(X, Qν
T ) : X = L (z±) on ∂±1 Qν

T

}
� E1(XT , Qν

T ),

and using (7.37)–(7.38) as well as Lemma 3.1(iv), we have

min
{

E1(X, Qν
T ) : X=L (z±) on ∂±1 Qν

T

}
�λ1T

(
ϕ(z+, z−, ν1)+ ηS

)+ Cλ1T/S

+ λ2T
(
ϕ(z+, z−, ν2)+ ηS

)+ Cλ2T/S + CnS.

Dividing by T , letting first T → +∞, and then S → +∞, we obtain (7.33) by
Proposition 7.2, where we also use ηS → 0. This concludes the proof of (iii). ��
Proof of (iv). Let z± = (θ±, τ±, 1), ν ∈ S

1, and θ ∈ A. Our goal is to prove

ϕ
(
(θ+ + θ, τ+, 1), (θ− + θ, τ−, 1), eiθ ν

)

= ϕ
(
(θ+, τ+, 1), (θ−, τ−, 1), ν

)
. (7.40)

Due to Proposition 7.2, for every T > 0 we can choose XT ⊂ R
2, such that

XT = L ((θ±, τ±, 1)) on ∂±1 Qν
T and such that

lim
T→+∞

1

T
E1
(
XT , Qν

T

) = ϕ
(
(θ+, τ+, 1), (θ−, τ−, 1), ν

)
. (7.41)

We set X θ
T = eiθ XT . Then X θ

T = L ((θ±+θ, τ±, 1)) on ∂±1 Qνθ

T , where νθ = eiθ ν.
Applying Proposition 7.2, Lemma 3.1(i), and (7.41), we obtain

ϕ((θ+ + θ, τ+, 1), (θ− + θ, τ−, 1), eiθ ν) � lim inf
T→+∞

1

T
E1(X θ

T , Qνθ

T )

= lim
T→+∞

1

T
E1(XT , Qν

T ) = ϕ((θ+, τ+, 1), (θ−, τ−, 1), ν).

This implies one inequality in (7.40). The other inequality follows by repeating
the argument for (θ̃±, τ±, 1) = (θ± + θ, τ±, 1), ν̃ = eiθ ν, and θ̃ = −θ . This
concludes the proof of (iv). ��
Proof of (v). Let z± = (θ±, τ±, 1), ν ∈ S

1, and τ ∈ T. Our goal is to prove

ϕ
((

θ+, τ+ + e−iθ+τ, 1
)
,
(
θ−, τ− + e−iθ−τ, 1

)
, ν
)

= ϕ
(
(θ+, τ+, 1), (θ−τ−, 1), ν

)
. (7.42)

Due to Proposition 7.2, for every T > 0 we can choose XT ⊂ R
2 , such that

XT = L ((θ±, τ±, 1)) on ∂±1 Qν
T and such that (7.41) holds. We set X τ

T = XT +τ .

Then X τ
T = L ((θ±, τ± + e−iθ±τ, 1)) on ∂±1 Qν

T (τ ). Applying Proposition 7.2,
Lemma 3.1(i), and (7.41), we get

ϕ
((

θ+, τ+ + e−iθ+τ, 1
)
,
(
θ−, τ− + e−iθ−τ, 1

)
, ν
)
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� lim inf
T→+∞

1

T
E1(X τ

T , Qν
T (τ )) = lim

T→+∞
1

T
E1(XT , Qν

T )

= ϕ
(
(θ+, τ+, 1), (θ−, τ−, 1), ν

)
.

This yields one inequality of (7.42). The other inequality follows by repeating the
argument for (θ±, τ̃±, 1) = (θ±, τ±+e−iθ±τ, 1) and τ̃ = −τ . This concludes the
proof of (v). ��
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