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Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America, 17 Julius Center for Health Sciences and Primary Care,

University Medical Center Utrecht, Utrecht, The Netherlands, 18 Department of Oncology, McGill University, Montreal, Quebec, Canada, 19 Department of Epidemiology

and Public Health, Imperial College, London, United Kingdom, 20 Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark, 21 Cancer Research UK

Epidemiology Unit, University of Oxford, Oxford, United Kingdom, 22 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States

of America, 23 Cancer Registry Azienda Ospedaliera ‘‘Civile M.P. Arezzo’’, Ragusa, Italy, 24 Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI),

US National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, United States of America

Abstract

IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to
mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic
variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk
within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). This analysis included 6,912 breast cancer cases and
8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses) comprised primarily of
Caucasian women drawn from six large cohorts. Linkage disequilibrium and haplotype patterns were characterized in the
regions surrounding IGF1 and the genes coding for two of its binding proteins, IGFBP1 and IGFBP3. In total, thirty haplotype-
tagging single nucleotide polymorphisms (htSNP) were selected to provide high coverage of common haplotypes; the
haplotype structure was defined across four haplotype blocks for IGF1 and three for IGFBP1 and IGFBP3. Specific IGF1 SNPs
individually accounted for up to 5% change in circulating IGF-I levels and individual IGFBP3 SNPs were associated up to 12%
change in circulating IGFBP-3 levels, but no associations were observed between these polymorphisms and breast cancer
risk. Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1,
or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer,
body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor
status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to
substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women.
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Introduction

The insulin-like growth factor-I (IGF-I) signaling pathway

stimulates cell proliferation and inhibits apoptosis [1,2]. The

bioavailability of IGF-I in circulation and tissues is determined by

the amount of free ligand that circulates unattached to binding

protein. There are six IGF binding proteins. Approximately 75–

90% of IGF-I binds to IGFBP-3, limiting its bioavailability.

IGFBP-1 also modulates IGF-I bioavailability, and is inversely

regulated by insulin [3]. IGF-I has been shown to promote

proliferation of normal epithelial breast cells [1,2,4]. The IGF

pathway has been linked to mammary carcinogenesis in animal

models [5], and consequently, it has been extensively examined in

relation to breast cancer pathogenesis.

Previous epidemiologic studies have suggested that high

circulating levels of IGF-I and low levels of IGFBP-3 are associated

with increased risk of premenopausal breast cancer [6,7].

Numerous recent epidemiologic studies (reviewed in [6]) have

begun to examine variation in the genes encoding IGF1, IGFBP1,

and IGFBP3 in relation to breast cancer risk. The most extensively

examined polymorphisms in IGF1 has been the 59 simple tandem

repeat that lies 1-kb upstream from the IGF1 gene transcription

start site (the most common allele in Caucasians is the 19 CA

repeat) and an A/C polymorphism 59 to IGFBP3 at nucleotide

2202 (rs2854744) [6]. Some studies report that these or other IGF

polymorphisms modestly affect circulating levels of IGF-I and

IGFBP-3 [6,8,9,10,11,12], but there is limited support for a direct

effect on breast cancer risk. Most recently, comprehensive analyses

of common genetic variation across the IGF1, IGFBP1, and

IGFBP3 genes were conducted in two prospective cohorts [8,9,11],

but no association with breast cancer risk was observed.

To comprehensively examine the role of common genetic

variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to

circulating IGF-I and IGFBP-3 levels and breast cancer risk, we

conducted a haplotype-based analysis in the NCI Breast and

Prostate Cancer Cohort Consortium (BPC3) [13]. The large size

of this study (cases = 6,912/controls = 8,891) enabled us to detect

modest genetic effects, explore gene-environment interactions, and

examine potentially important subclasses of tumors, such as those

defined by stage or hormone receptor status.

Methods

Study Population
The BPC3 has been described in detail elsewhere [13]. Briefly, the

consortium includes large well-established cohorts assembled in the

United States or Europe that have DNA for genotyping and extensive

questionnaire data from cohort members. This analysis includes

6,912 cases of invasive breast cancer and 8,891 matched controls

from six cohorts: the American Cancer Society Cancer Prevention

Study-II (CPS-II; [14]), the European Prospective Investigation into

Cancer and Nutrition (EPIC) cohort [15], the Harvard Nurses’

Health Study (NHS; [16]), the Harvard Women’s Health Study

(WHS; [17]), the Hawaii-Los Angeles Multiethnic Cohort Study

(MEC; [18]), and the Prostate, Lung, Colorectal, and Ovarian

Cancer Screening Trial cohort (PLCO; [19]). With the exception of

MEC, most women in these studies are Caucasian. Written informed

consent was obtained from all subjects, and each cohort has been

approved by the following institutional review boards: Emory

University (CPS-II), International Agency for Research on Cancer

(IARC) and each EPIC recruitment center (EPIC), Harvard

University (NHS and WHS), University of Hawaii and University

of Southern California (MEC), and the U.S. National Cancer

Institute and the 10 study screening centers (PLCO).

Cases were initially identified in each cohort by self-report and

subsequently verified from medical records or tumor registries

and/or linkage with population-based cancer registries. In all

cohorts, questionnaire data were collected prospectively before the

cancer diagnosis. Controls were matched to cases by age, ethnicity

(except in PLCO), and in some cohorts additional matching

criteria were utilized (e.g. date of blood draw).

SNP Selection and Genotyping
The details of IGF1, IGFBP1 and IGFBP3 characterization and

selection of haplotype-tagging SNPs (htSNPs) have been described

elsewhere [9,20]. Briefly, coding regions of IGF1, IGFBP1, and

IGFBP3 were sequenced in a panel of 95 advanced breast cancer

cases from the MEC (19 from each of the five ethnic groups;

African American, Latina, Japanese, Native Hawaiian, and

Caucasian). SNPs were also selected from public databases to

capture the genetic diversity of regions from ,20 kb upstream to

,10 kb downstream of each gene. Haplotype blocks (regions of

strong linkage disequilibrium) were defined using the method of

Gabriel et al. [21]. Haplotype tagging SNPs (htSNPs) were

selected to predict the common haplotypes among Caucasians that

meet a criterion of rh
2.0.80.

For genetic characterization of IGF1, 154 SNPs were genotyped

a multiethnic panel of 349 individuals with no history of cancer

(18). Of the 154 SNPs genotyped, 53 were identified as

monomorphic and 37 had poor genotyping results (i.e., genotyped

#75% of samples or out of Hardy-Weinberg equilibrium [one-

sided P,.01] in more than one ethnic group)—these 90 SNPs

were eliminated from further analysis. The remaining 64 SNPs

were used for genetic characterization and had an average density

of one SNP for every 2.4 kb over a 156-kb region. Fourteen

htSNPs were selected using the expectation-maximization algo-

rithm [22] to predict the common haplotypes among Caucasians

(rh
2.0.85). For genetic characterization of IGFBP1 and IGFBP3

(which are located contiguously in a 35kb region of chromosome

7), 56 SNPs were genotyped in the multiethnic panel (18). Of the

56 SNPs genotyped, 17 were identified as monomorphic and 3

had poor genotyping results (as discussed above)—these 20 SNPs

were eliminated from analysis. The remaining 36 SNPs were used

for genetic characterization, having an average density of one SNP

for every 2 kb over a 71-kb region. Twelve htSNPs were selected

to predict the common haplotypes among Caucasians (rh
2.0.99).

Additionally, two genic SNPs in IGFBP3 that were not part of a

haplotype block were examined (rs6670, rs2453839), and two

additional IGFBP3 SNPs (rs2132570, and rs2960436) were

included. Thus, a total of 16 SNPs across IGFBP1 and IGFBP3

were evaluated. Genotyping of breast cancer cases and controls

was performed in four laboratories (University of Southern

California, Los Angeles, CA USA, Harvard School of Public

Health, Boston, MA USA, International Agency for Research on

Cancer, Lyon, France, National Cancer Institute Core Genotyp-

ing Facility, Gaithersburg, MD USA) using a fluorescent 59

endonuclease assay and the ABI-PRISM 7900 for sequence

detection (Taqman). Initial quality control checks of the SNP

assays were done at the manufacturer (ABI, Foster City, CA); an

additional 500 test reactions were run by the BPC3. Assay

characteristics for the IGF1, IGFBP1, and IGFBP3 htSNPs are

available on a public website (http://www.uscnorris.com/mecge-

netics/CohortGCKView.aspx). To assess interlaboratory varia-

tion, each genotyping center ran assays on a designated set of 94

samples from the Coriell Biorepository (Camden, NJ) (22). The

completion and concordance rates were each .99%[23]. The

internal quality of genotype data at each genotyping center was
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assessed by typing 5–10% blinded samples in duplicate or greater,

depending on study.

IGF-I and IGFBP-3 Measurements
IGF-I and IGFBP-3 levels were measured by enzyme-linked

immunosorbent assays among non-users of postmenopausal

hormones (and non-users of oral contraceptives in EPIC). Detailed

laboratory methods for these studies have been previously reported

[24,25,26]. Blood samples analyzed in this study include all

cohorts with the exception of the CPS-II and WHS cohorts, where

most specimens were collected after diagnosis (CPS-II) or hormone

assays were not performed (WHS). Thus, these analyses included

6,410 women for IGF-I and 6,275 women for IGFBP-3.

Statistical Analysis
In our hormone analyses, circulating IGF-I and IGFBP-3 values

were naturally log-transformed to provide approximate normal

distributions. Geometric mean levels of IGF-I and IGFBP-3 for

IGF1 and IGFBP3 SNPs were calculated using linear regression

analysis while adjusting for age at blood draw, assay laboratory

and batch for circulating IGFs, BMI, race/ethnicity, and country

within EPIC cohort. Additional regression analyses were conduct-

ed simultaneously adjusted for all other IGF1 and IGFBP SNPs to

determine the best fit model of circulating levels.

In our breast cancer analysis, we examined both single SNP and

haplotype effects on breast cancer risk. For single SNP analyses,

we used conditional multivariate logistic regression to estimate

odds ratios (ORs) for breast cancer using a linear (log-odds

additive) scoring for 0, 1 or 2 copies of the minor allele of each

SNP. For the haplotype analyses, we calculated haplotype

frequencies and subject-specific expected haplotype counts

separately for each cohort, by country within EPIC, and by

ethnicity within the MEC. An expectation-substitution approach

was used to assign expected haplotype counts based on unphased

genotype data and to account for uncertainty in assignment [27].

The most common haplotype was used as the referent group. Rare

haplotypes (those with estimated individual frequencies ,5%)

were combined into a single category.

To test the global null hypothesis of no association between

variation in IGF1, IGFBP1, or IGFBP3 haplotypes and risk of

breast cancer (or subtypes defined by receptor status), we used a

likelihood ratio test comparing a model with additive effects for

each common haplotype (treating the most common haplotype as

the referent) to the intercept-only model. To test for heterogeneity

across cohorts and ethnic groups, we used the Wald X2 for the

htSNPs and a likelihood ratio test for the haplotypes.

We considered conditional models both without and with

adjustment for known breast cancer risk factors. These included

menopausal status (premenopausal, postmenopausal), age at

menopause (,50, 50+, age unknown), BMI (,25, 25-,30, 30+,

missing), parity (ever, never, missing), use of postmenopausal

hormones (ever, never, missing), first-degree family history of

breast cancer (yes, no, unknown), age at menarche (,13, 13–14,

15+, missing), and use of oral contraceptives (ever, never, missing).

Because results remained virtually unchanged regardless of the

model used, we present results from the conditional models

adjusting for matching factors only. We also evaluated BMI,

family history of breast cancer, and use of postmenopausal

hormones for possible interaction effects using likelihood ratio

testing (LRT). Models with the main effect of genotype and the

covariate of interest were compared to models with the main

effects of genotype and the covariate of interest, plus a

multiplicative interaction term of the two variables. We also

examined whether the associations between IGF1, IGFBP1, or

IGFBP3 htSNPs or haplotypes and breast cancer differed by

menopausal status (pre- versus post-menopausal), stage (in situ

versus localized versus regional or distant metastasis) or hormone

receptor (ER and PR) status.

Lastly, this analysis includes a portion of the previously

published data from the MEC [9,11] and EPIC [8] cohorts

(n = 2,522 breast cancer cases). Thus, all associations were

examined in sub-analyses that excluded the MEC and EPIC

cohort participants.

Results

The genomic structure of IGF1 is shown in Fig. 1 and that of

IGFBP1 and IGFBP3 is shown in Fig. 2. The IGF1 locus was

characterized into four haplotype blocks. IGFBP1 and IGFBP3 loci

are 19kb apart and were characterized by three haplotype blocks.

The genotyping success rate was $95% for all SNPs at each

genotyping center. No deviation from Hardy-Weinberg equilibri-

um was observed among the controls overall (at the p,0.01 level).

The frequencies of individual SNPs and common haplotypes

within each LD block were consistent across all cohorts (data not

shown).

Study characteristics of each cohort (except PLCO) have been

published previously [28]. Briefly, case and control characteristics

were comparable across all cohorts and most women were

postmenopausal (n = 5,474 cases and 9,732 controls) and Cauca-

sian. As there was no heterogeneity in results across cohorts for

any main effects analyses, we only reported results from pooled

analyses across all cohorts combined. Additionally, haplotype

analyses did not contribute additional information beyond

individual SNP results, thus we reported only results for all

individual SNPs within each haplotype block.

SNPs in IGF1 (Table 1) and IGFBP3 (Table 2) were associated

with circulating IGF-I and IGFBP-3 levels, respectively, in women

not taking postmenopausal hormones. SNPs in IGF1 block 1 were

most closely associated with circulating levels; the variant alleles

were significantly associated with higher circulating IGF-I levels

(trend p = 0.0075 for rs7965399 and p = 0.0262 for rs35767).

However, these SNPs (wild type vs. variant homozygote)

individually accounted for less than a 5% change in mean IGF-I

levels. Results did not differ after simultaneously adjusting for all

other IGF1 and IGFBP SNPs in the regression analysis (data not

shown). The strongest relationships for IGFBP-3 were observed

with five SNPs in IGFBP3 block 3: rs3110697, rs2854746,

rs2854744, rs2132570, rs2960436 (trend p,0.001 for all).

Rs2854746 remained significantly associated with IGFBP-3 levels

(p,0.0001) after adjusting for all other IGF1 and IGFBP SNPs

simultaneously in the regression analysis. These SNP associations

account for a change in mean circulating IGFBP-3 levels ranging

from 6% (rs2132570) to 12% (rs2854746).

None of the IGF1 and IGFBP3 SNPs associated with circulating

IGF-I and IGFBP-3 levels were significantly associated with breast

cancer risk (Tables 3 and 4 for IGF1 and IGFBP1/3, respectively),

nor were other SNPs or haplotypes consistently associated with

risk. When examining these associations among invasive breast

cancer only, by stage, or by hormone-receptor status, we did not

observe any associations between variation in these genes and

disease risk (data not shown). Results did not differ when

examining associations separately for pre- and post-menopausal

women or when restricting the analysis to only white women (data

not shown). No consistent interactions were observed among

variants in the IGF1, IGFBP1, and IGFBP3 genes with any of the

following: first-degree family history of breast cancer, ever oral

contraceptive use, use of postmenopausal hormones, and BMI

Polymorphism and Breast Cancer
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(,25, 25-,30, 30+). We observed no interactions resulting in sub-

group associations with disease risk (data not shown).

Across all statistical tests performed in relation to disease status,

we observed fewer significant findings than those expected by

chance alone (15 findings significant at p,0.05; 40 expected by

chance alone). None of these findings provided clear evidence for

main effect or subgroup associations for any of the SNPs or

common haplotypes. Thus we believe these sporadic associations

may reflect chance. Finally, we repeated all analyses excluding

subjects from the MEC and EPIC cohorts, and found no

meaningful differences in associations when compared to overall

findings (data not shown).

Discussion

Our study is by far the largest to examine genetic variation in

the IGF1, IGFBP1, and IGFBP3 genes in relation to both

circulating IGF-I and IGFBP-3 levels and breast cancer risk.

Several genetic variants in IGF1 and IGFBP3 predicted circulating

levels of IGF-I and IGFBP-3, respectively, but no associations

between these variants and breast cancer, overall or in subgroups,

were seen. It is thus unlikely that these polymorphisms and their

associated hormone levels substantially affect breast cancer risk.

There was also no evidence of effect modification by selected

breast cancer risk factors or subgroup effects, including meno-

pausal status. While some previous epidemiologic studies have

shown stronger support for a role of the IGF-I signaling pathway

in premenopausal breast cancer [6], but we did not observe an

association among premenopausal women alone.

Our findings are consistent with two previous studies that

comprehensively examined the role of IGF1, IGFBP1, and IGFBP3

genetic variation in relation to circulating IGF-I and IGFBP-3

levels and breast cancer risk [8,9,11]. Cases and controls from

these two studies (EPIC and MEC) were included in the pooled

analysis. However, sensitivity analyses that excluded these studies

also found an association with circulating hormone levels. Other

Figure 1. IGF1 SNPs and linkage disequilibrium. 64 SNPs were identified covering a 56-kb region. Of these, 14 htSNPs defined the common
haplotypes among Caucasians.
doi:10.1371/journal.pone.0002578.g001
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studies have primarily examined individual variants in IGF1,

IGFBP1, or IGFBP3 in relation to breast cancer with mixed results

[6,29,30,31]. The most extensively studied variant in IGF1 is the

(CA)n repeat polymorphism that lies 1-kb upstream of the IGF1

transcriptional start site [6,31]. Some previous studies observed an

association between this polymorphism and circulating IGF-I

levels (reviewed in [6]); however, most did not observe a

corresponding association with breast cancer risk. While we did

not genotype IGF1 (CA) n polymorphism, we used data from a

prior study [24] and determined that the less common repeat

length for this polymorphism is in LD with the minor alleles of

htSNPs in block 1, rs7965399 and rs35767. Thus, our reported

Figure 2. IGFBP1 and IGFBP3 SNPs and linkage disequilibrium. 36 SNPs were identified covering a 71-kb region. Of these, 12 htSNPs defined
the common haplotypes among Caucasians.
doi:10.1371/journal.pone.0002578.g002
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Table 1. Associations between IGF1 SNPs and mean circulating IGF-I and IGFBP-3 levels in the BPC3.

SNP (position) Genotype N (n = 6,410)
mean
IGF1 diff p-trend % change N (n = 6,410)

mean
IGFBP-3 diff p-trend % change

Block 1

rs7965399 TT 5620 26.8 0 5495 122.1 0

(101394153) TC 530 28.0 0.008 4.4 522 119.9 0.075 21.8

CC 41 28.1 4.8 41 112.7 28.3

rs35767 GG 4184 26.9 0 4100 121.5 0

(101378036) GA 1704 27.4 0.026 1.8 1662 120.6 0.049 20.7

AA 209 27.9 3.7 205 115.3 25.4

Block 2

rs12821878 GG 3830 27.1 0 3751 121.6 0

(101370134) GA 2039 26.8 0.187 21.3 1993 122.1 0.164 0.4

AA 326 26.8 21.3 317 125.2 3

rs1019731 CC 4826 27.2 0 4718 121.5 0

(101366892) CA 1312 27.1 0.915 20.5 1288 121.4 0.856 20.1

AA 103 28.1 3.3 101 123.5 1.6

rs2195239 CC 3754 26.8 0 3673 121.3 0

101359169 CG 2182 27.4 0.028 2.3 2134 121.3 0.932 0

GG 330 27.2 1.7 326 121.2 0

Block 3

rs10735380 AA 3397 26.8 0 3327 122.1 0

(101346703) AG 2363 27.5 0.042 2.5 2310 121.5 0.847 20.5

GG 454 27.1 1 444 122.6 0.4

rs2373722 GG 5405 27.1 0 5292 121.9 0

(101342924) GA 809 27.8 0.071 2.4 787 120 0.256 21.6

AA 41 27.7 2 42 122.5 0.5

rs5742665 CC 4690 27.1 0 4601 121.6 0

(101326017) CG 1394 27.3 0.288 0.8 1355 121.1 0.532 20.4

GG 120 27.9 3.1 113 119.8 21.5

rs1549593 GG 4703 27.0 0 4598 121.2 0

(101299258) GT 1350 26.8 0.754 20.8 1325 122.7 0.541 1.2

TT 99 27.7 2.5 95 117.4 23.2

rs1520220 CC 4068 26.8 0 3976 122.4 0

(101298989) CG 1902 27.7 0.007 3.1 1868 121 0.157 21.2

GG 253 27.2 1.3 249 120.5 21.6

Block 4

rs2946834 GG 2771 26.5 0 2714 122.7 0

(101290281) GA 2716 27.4 0.007 3.2 2658 121 0.076 21.4

AA 704 27.1 2.2 685 120.5 21.8

rs4764876 GG 3259 26.9 0 3187 121.5 0

(101261169) GC 2460 27.2 0.218 1.2 2408 121.1 0.812 20.3

CC 461 27.1 1.1 451 121.4 20.1

rs4764695 GG 1592 27.3 0 1559 121.9 0

(101259580) GA 3122 27.1 0.190 20.9 3049 121.2 0.875 0.6

AA 1529 26.9 21.6 1500 122.2 0.2

rs1996656 AA 4307 27.00 0 4215 120.5 0

(101254429) AG 1718 27.2 0.605 0.8 1678 120.9 0.882 0.3

GG 185 26.9 20.3 182 119.9 20.5

doi:10.1371/journal.pone.0002578.t001
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Table 2. Associations between IGFBP1 and IGFBP3 SNPs and mean circulating IGF-I and IGFBP-3 levels in the BPC3.

SNP Genotype N (n = 6,275) mean IGF1 diff p-trend % change N (n = 6,275) mean IGFBP-3 diff p-trend % change

Block 1

rs10228265 AA 3035 26.9 0 2981 122.5 0

(45649695) AG 2654 27.3 1.4 2587 121 21.2

GG 599 27.3 0.108 1.7 585 120.3 0.083 21.8

rs1553009 GG 4061 27.1 0 3976 121.5 0

(45649774) GA 1998 27.6 2 1953 122.1 0.5

AA 235 26.5 0.285 22 232 124.4 0.270 2.4

rs35539615 CC 3640 27.2 0 3560 121.4 0

(45653244) CG 2269 27.1 20.2 2223 121 20.3

GG 327 27.3 0.995 0.6 319 121.5 0.788 0.1

rs2201638 GG 5854 27.2 0 5729 122.1 0

(45663690) GA 413 27.6 1.7 404 120.2 21.6

AA 17 27.7 0.349 2 17 113.1 0.209 28

rs1065780 GG 2358 27.0 0 2309 122 0

(45668457) GA 2966 27.3 1.1 2902 121.8 20.2

AA 923 27.3 0.262 1.1 903 121.2 0.663 20.7

Block 2

rs4988515 CC 5753 27.1 0 5625 121.7 0

(45673380) CT 522 27.2 0.5 515 121.1 20.5

TT 19 26.1 0.909 23.8 19 113.9 0.532 26.8

rs4619 AA 2662 27.0 0 2608 122.3 0

(45673449) AG 2839 27.2 0.5 2774 121.3 20.8

GG 735 27.5 0.243 1.8 719 122 0.543 20.2

rs1908751 CC 3113 27.2 0 3047 122.2 0

(45676299) CT 2586 27.0 20.7 2526 120.6 21.3

TT 560 27.1 0.568 20.3 552 122.6 0.486 0.3

rs2270628 CC 4121 27.3 0 4038 122.8 0

(45690350) CT 1850 27.1 20.6 1804 120.1 22.2

TT 239 27.1 0.543 20.7 234 116.4 0.001 25.5

Block 3

rs3110697 GG 2203 27.4 0 2145 125.4 0

(45695809) GA 2929 27.1 21.1 2877 122.2 22.6

AA 1083 27.9 0.392 1.8 1059 115.2 ,0.0001 28.9

rs2854746 GG 2010 27.3 0 1970 114.7 0

(45701425) GC 2950 27.00 20.9 2884 123 7.2

CC 1168 27.2 0.741 20.1 1139 128.5 ,0.0001 12

rs2854744 GG 1586 27.6 0 1550 115.6 0

(45701855) GT 3226 27.1 22.1 3169 121.5 5.1

TT 1427 27.6 0.745 20.3 1388 127.7 ,0.0001 10.5

Additional SNPs

rs6670 TT 3841 27.3 0 3764 121.6 0

(45693034) TA 2146 26.8 22.1 2091 120.1 21.2

AA 278 26.6 0.022 22.8 275 125.2 0.935 3

rs2453839 TT 4046 27.3 0 3964 122.3 0

(45694353) TC 1961 27.2 20.5 1917 121 21.1

CC 250 27.5 0.901 0.9 242 121.4 0.264 20.7

rs2132570 GG 3948 27.1 0 2855 122.4 0

(45703243) GT 1972 27.1 20.2 1933 118.9 22.9

TT 291 27.5 0.812 1.3 289 115.3 ,0.0001 26.2

rs2960436 GG 1645 27.6 0 1607 115 0

(45718062) GA 3074 27.1 21.7 3021 122.5 6.5

AA 1547 27.3 0.431 20.9 1506 127.2 ,0.0001 10.6

doi:10.1371/journal.pone.0002578.t002
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associations with htSNPs in block 1 and circulating IGF-I levels

appear consistent with previous literature, that genetic variation

influences circulating IGF-I levels, but not at a level substantial

enough to impact breast cancer risk.

The A/C polymorphism at nucleotide 2202 in IGFBP3

(rs2854744), and located in haplotype block 3, has been the most

extensively examined polymorphism in the IGF binding pro-

teins[6,8,9,29,30,31]. Some [6,29,30,31] but not all previous

studies [6,8,9,29,30,31] have reported an association with breast

cancer . This polymorphism has also been associated with

circulating levels of IGFBP-3 [26,30]. Our study confirms the

previously reported findings with circulating IGFBP-3 levels, but

neither the polymorphism (within Block 3 of IGFBP3 gene) nor the

haplotype block were associated with breast cancer risk in our

data.

Strengths of the BPC3 include its size and the comprehensive

characterization of variation around the IGF1, IGFBP1, and

IGFBP3 loci. The latter allows our analysis to provide powerful

null evidence against a main effect association between breast

cancer risk and variants in these genes that are common among

Caucasian women as well as in defined subgroups of the study

population.

In summary, results from this large collaborative study support

previous evidence that specific genetic variants in IGF1 and

IGFBP3 genes significantly influence circulating levels of IGF-I and

Table 3. Association of tagging SNPs of IGF1 and breast
cancer risk in the BPC3.

SNP Genotype
Cases
(n = 6,912)

Controls
(n = 8,891) OR* (95% CI) p-trend

Block 1

rs7965399 TT 5668 7214 1.00 (ref.)

TC 825 1095 0.94 (0.86–1.02)

CC 76 105 0.91 (0.71–1.16) 0.12

rs35767 GG 4230 5359 1.00 (ref.)

GA 1876 2468 0.96 (0.90–1.03)

AA 251 378 0.87 (0.76–1.01) 0.06

TG 5317 6767 1.00 (ref.)

TA 855 1148 0.97 (0.91–1.03)

CG 100 129 1.00 (0.84–1.20)

CA 390 531 0.92 (0.85–1.00) 0.20

Block 2

rs12821878 GG 4073 5343 1.00 (ref.)

GA 2090 2544 1.05 (0.99–1.12)

AA 299 400 0.98 (0.85–1.12) 0.38

rs1019731 CC 5092 6639 1.00 (ref.)

CA 1404 1688 1.05 (0.98–1.13)

AA 97 145 0.87 (0.68–1.10) 0.57

rs2195239 CC 3699 4819 1.00 (ref.)

CG 2440 3121 1.00 (0.94–1.06)

GG 434 532 1.03 (0.91–1.15) 0.83

GCC 3582 4691 1.00 (ref.)

GCG 1671 2121 1.01 (0.96–1.06)

ACC 799 983 1.03 (0.96–1.10)

AAC 594 757 1.02 (0.95–1.10)

Haplotype
Freq ,5%

16 22 0.99 (0.61–1.62) 0.93

Block 3

rs10735380 AA 3658 4716 1.00 (ref.)

AG 2502 3088 1.03 (0.97–1.10)

GG 425 595 0.93 (0.83–1.05) 0.92

rs2373722 GG 5845 7475 1.00 (ref.)

GA 757 978 1.00 (0.92–1.10)

AA 26 47 0.82 (0.52–1.30) 0.82

rs5742665 CC 5133 6566 1.00 (ref.)

CG 1282 1674 1.01 (0.94–1.09)

GG 107 131 1.12 (0.89–1.42) 0.52

rs1549593 GG 4994 6455 1.00 (ref.)

GT 1416 1734 1.03 (0.96–1.11)

TT 114 146 0.98 (0.78–1.22) 0.57

rs1520220 CC 4048 5277 1.00 (ref.)

CG 2207 2707 1.03 (0.97–1.10)

GG 329 440 0.96 (0.85–1.10) 0.73

AGCGC 3171 4127 1.00 (ref.)

AGCGG 322 395 0.99 (0.90–1.09)

AGCTC 697 858 1.04 (0.96–1.12)

AGGGC 766 991 1.03 (0.96–1.10)

GGCGC 434 574 0.99 (0.90–1.09)

SNP Genotype
Cases
(n = 6,912)

Controls
(n = 8,891) OR* (95% CI) p-trend

GGCGG 719 893 1.03 (0.96–1.10)

GACGG 406 541 1.00 (0.91–1.09)

Haplotype
Freq ,5%

147 196 0.93 (0.79–1.09) 0.88

Block 4

rs2946834 GG 2857 3673 1.00 (ref.)

GA 2898 3705 1.01 (0.95–1.07)

AA 845 1054 1.03 (0.94–1.12) 0.61

rs4764876 GG 3315 4230 1.00 (ref.)

GC 2560 3395 0.97 (0.92–1.04)

CC 643 739 1.08 (0.98–1.20) 0.47

rs4764695 GG 1832 2373 1.00 (ref.)

GA 3188 4087 1.02 (0.95–1.09)

AA 1541 1977 1.01 (0.93–1.09) 0.81

rs1996656 AA 4512 5753 1.00 (ref.)

AG 1773 2320 0.98 (0.91–1.04)

GG 199 241 1.04 (0.88–1.23) 0.72

GGAA 2753 3506 1.00 (ref.)

GGGA 1006 1340 0.96 (0.90–1.02)

GGGG 429 567 0.97 (0.89–1.07)

AGAA 395 531 0.96 (0.88–1.06)

ACGA 1134 1411 1.02 (0.96–1.08)

ACGG 666 860 0.98 (0.91–1.05)

Haplotype
Freq ,5%

279 360 1.01 (0.90–1.13) 0.75

*Adjusted for age, race/ethnicity, and country within EPIC cohort.
doi:10.1371/journal.pone.0002578.t003
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IGFBP-3, respectively, but have no measurable effect on breast

cancer risk. Given the large size of our study, it is unlikely that

these loci contribute substantially to breast cancer risk among

white, primarily postmenopausal, women, at the population level.
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