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pathways in cancers of the lung and bladder and
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Background: We chose a set of candidate single nucleotide polymorphisms (SNPs) to investigate gene—environment
interactions in three types of cancer that have been related to air pollution (lung, bladder and myeloid leukemia).
Patients and methods: The study has been conducted as a nested case—control study within the European
Prospective Investigation into Cancer and Nutrition cohort (409 cancer cases and 757 matched controls). We included
never and ex-smokers. SNPs were in genes involved in oxidative stress, phase | metabolizing genes, phase |l
metabolizing genes and methylenetetrahydrofolate reductase (MTHFR).

Results: The most notable findings are: GSTM1 deletion and bladder cancer risk [odds ratio (OR) = 1.60; 95%
confidence interval 1.00-2.56]; CYP1A1 and leukemia (2.22, 1.33-3.70; heterozygotes); CYP1B1 and leukemia (0.47,
0.27-0.84; homozygotes); MnSOD and leukemia (1.91, 1.08-3.38; homozygotes) and NQO1 and lung cancer (8.083,
1.73-37.3; homozygotes). Other statistically significant associations were found in subgroups defined by smoking
habits (never or ex-smokers), environmental tobacco smoke or gender, with no obvious pattern. When gene variants
were organized according to the three main pathways, the emerging picture was of a strong involvement of combined
phase | enzymes in leukemia, with an OR of 5 (1.63-15.4) for those having three or more variant alleles. The
association was considerably stronger for leukemias arising before the age of 55.
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is the leading cause of several types of cancers, including
lung, bladder, upper respiratory tract cancers and myeloid
leukemias [1]. Exposure of nonsmokers to environmental
tobacco smoke (ETS) and air pollution is also associated with
an increased risk of lung cancer, and, possibly, of other forms
of cancer [2, 3]. Gene—environment interactions are believed
to play an important role in the etiology of common human
cancers. Constituents of many of the known environmental
risk factors, including ETS and ambient air pollution, are
metabolized in the organism to products that are either more
carcinogenic or are detoxified. Genetic polymorphisms have
been identified in metabolic genes, and the biological
consequence of such changes is an altered enzyme activity
which may influence the ratio between activation and
deactivation, and thus the cancer risk. One of the consequences
of carcinogen metabolism is the formation of carcinogen DNA
adducts. We have previously suggested that people with high
levels of adducts at a time when they were healthy had a
subsequent higher risk of developing lung cancer [4]. Altered
enzymic activity has also been found to influence the effect of
chemopreventive agents, e.g. isothiocyanate, and thus cancer
risk [5] .

We have hypothesized that the role of genetic susceptibility
could be greater at low levels of exposure [6, 7]. We have
chosen a set of candidate single nucleotide polymorphism
(SNP) to investigate gene—environment interactions in three
types of cancer that have been related to air pollution (lung,
bladder and myeloid leukemia). We have investigated both the
role of single genes and of pathways to which they belong.
The study has been conducted as a nested case—control study
within the large European Prospective Investigation into
Cancer and Nutrition (EPIC) cohort and included only never
and long-term ex-smokers.

candidate genes and SNPs

oxidative stress. Oxidative stress in vivo is modulated by
enzymes such as myeloperoxidase (MPO), catechol-O-
methyltransferase (COMT), manganese superoxide dismutase
(MnSOD) and NAD(P)H:quinone oxidoreductase (NQO1).
MPO is a lysosomal enzyme that activates procarcinogens in
tobacco smoke, such as benzo[a]pyrene [8]. A G to A base
transition in MPO has been identified at the SP1 binding site;
the A allele is associated with reduced messenger RNA
expression and consequently lower activity. COMT catalyzes
the methylation of various substances, preventing quinone
formation and redox cycling, and thus it protects DNA from
oxidative damage [9]. A G to A transition, which results in
amino acid change from valine to methionine at codon 108,
leads to lower COMT activity. MnSOD catalyzes the
dismutation of superoxide radicals in mitochondria by
converting anion superoxide into hydrogen peroxide and
oxygen. It plays a key role in protecting cells from oxidative
stress, especially in people with a low intake of natural
antioxidants [10]. A C to T substitution was identified in
MnSOD, which results in an amino acid change from alanine
to valine at 9 position, thus modulating MnSOD transport into
mitochondria [11]. NQOLI is an important flavoenzyme in
xenobiotic metabolism. It protects cells from oxidative damage

[12]. The 690C>T SNPs has been associated with lower
enzyme activity as compared with wild type [13, 14], and
thus a higher sensitivity against some carcinogens present
in ETS or ambient air, e.g. benzene [15].

phase | enzymes

CYP1ALl is a phase I, predominantly extrahepatic, microsomal
enzyme involved in the bioactivation of carcinogenic PAHs
including benzo(a)pyrene. Early work [16, 17] suggested that
the risk of lung cancer is linked to the inducibility of the
CYP1A1 enzyme. However, other studies failed to reproduce
the association with cancer risk [17]. The CYPIAI*2A allele
has a T to C mutation in the 3’ region, whereas an A to G
transition in exon 7 creates a second allelic variant, CYPIA1*2B
(also known as exon 7 polymorphism), which leads to an
amino acid substitution of Val for Ile in the heme-binding
region, and consequently results in an increase in microsomal
enzyme activity. The variant CYPIAI*3 has a polymorphism
in intron 7 and is African—American specific, but the
biological consequence of this polymorphism has not been
established [18]. This SNP has no effect on inducibility of
the gene or on the function of the gene product.

CYP1BI activates tobacco carcinogens such as PAH-
dihydrodiols [19]. A G to A polymorphism resulting in an
amino acid change from valine to leucine at codon 432 has
been identified [20] with the 432Leu allele having a lower
catalytic efficiency than the wild type [21] indicating a reduced
risk of cancer.

phase Il enzymes

Glutathione-S-transferases play important roles in the
detoxification of the activated carcinogenic form of PAH and
in the detoxification of reactive molecules formed by reactive
oxygen species. The common deletion polymorphism in
GSTM1 and GSTT1 renders these enzymes inactive. Impaired
glutathione conjugation has also been shown to alter the
mutation spectrum in P53 in bladder cancer cases [22] Two
SNPs in the GSTP1 gene that lead to an amino acid substitution
in the enzyme’s electrophile-binding site, GSTP1-105 (Ile Val)
and GSTP1-114 (Ala Val), are known to change the affinity
and activity of GSTP1 for electrophilic substances, thus
altering the risk of PAH-induced cancer [23, 24]. The role of
genetic polymorphisms in GSTM3 in cancer risk is not
entirely clear, but it has been suggested that the expression
of GSTM3 is significantly correlated with GSTM1 in the

lung [25].

Sulfotransferase 1A1 (SULT 1Al1) belongs to a gene
superfamily, that is involved in sulfate conjugation of primary
environmental toxicants, i.e. involved in the metabolism of
aromatic amines and PAH. A genetic polymorphism (G to A)
has been identified in codon 213 resulting in amino acid change
Arg to His. The His variant (SULT1A1%2/*2) has lower
thermostability and thus decreased enzyme activity [26, 27].

N-acetyltransferases (NAT) play a key role in the
detoxification of aromatic amines. Two different classes of NAT
have been identified of which the NAT2 is mostly involved
in N-acetylation. Several genetic polymorphisms have been
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identified in NAT2, some of which have been associated with
an increased cancer risk [28-30].

MTHFR

Methylenetetrahydrofolate reductase (MTHFR) provides the
methyl group required for de novo methionine synthesis, and
indirectly, for DNA methylation, therefore it controls DNA
stability and mutagenesis [31-33]. MTHER has two common
polymorphisms (677C—T and 1298A— C). For both SNPs,
the variant allele is associated with reduced enzyme activity
in vitro which, in the case of 677C—T for example, affects
the metabolism of folate, consequently increasing homocysteine
levels and the risk of cancer [31].

patients and methods
EPIC cohort

EPIC is a multicenter European study, coordinated by the International
Agency for Research on Cancer (IARC) (Lyon) (currently at Imperial
College, London), in which >520 000 healthy volunteers have been
recruited in 10 European countries (Sweden, Denmark, The Netherlands,
UK, France, Germany, Spain, Italy, Greece, Norway) [34]. The cohort
includes subjects of both genders, in the age range 35-74 at recruitment.
Recruitment took place in 1993-1998. Dietary information on the
frequency of consumption of >120 foods and drinks has been obtained
by a self-administered questionnaire, validated in a pilot phase.

At enrollment, weight, height, waist and hip circumferences have

been measured for each participant. Detailed information has

been collected on reproductive history, physical activity, smoking

and alcohol drinking history, medical history, occupation, education
level and other socioeconomic variables. A computerized central
database has been developed after checking, coding and quality-control
procedures.

Follow-up for cancer incidence and mortality is based on population
cancer registries (Denmark, Italy, The Netherlands, Norway, Spain, Sweden,
UK) and other methods such as health insurance records, pathology
registries and active contact of study subjects or next of kin (France,
Germany, Greece). In all centers, cancer diagnosis required confirmation
through comprehensive pathology review. A detailed protocol entitled
‘Guidelines for Collection of End-point Data in the EPIC study’ for the
collection and standardization of clinical and pathological data for each
cancer site have been prepared by a special EPIC working group.

GenAir is a case—control study nested within the EPIC cohort, aiming at
studying the relationship between some types of cancer and air pollution
or ETS. Cases are subjects with bladder, lung, oral, pharyngeal or laryngeal
cancer or myeloid leukemia, all newly diagnosed after recruitment.

Only never smokers or ex-smokers since at least 10 years have been
included in GenAir. The cut-off has been set at 10 years to allow

a reasonably long time as to decrease the possible confounding effect of
smoking in ex-smokers. Matching criteria were gender, age (%5 years),
smoking status, country of recruitment and time elapsed between
recruitment and diagnosis. Half of the EPIC centers (11/22) (in France,
Italy, Denmark, Sweden, The Netherlands and Potsdam, Germany)
included questions on ETS in the questionnaire.

GenAir has been approved by the Ethical Committee of the IARC,
and by all the local Ethical Committees at the participating centers. We
have identified 1662 subjects (568 cases and 1094 controls) from whom all
information and DNA were available. Here we consider only lung and
bladder cancers and myeloid leukemias (total: 409 cases, including
116 lung cancers, 124 bladder cancers and 167 myeloid leukemias and
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757 controls). Numbers of oral and pharyngeal cancers were too limited
for a meaningful analysis.

DNA extraction and purification and genotyping

DNA was isolated from blood samples (straws in liquid nitrogen) as
previously described [4] and distributed to the laboratories responsible
for the genotyping: University of Aarhus for GST, NQO1 and NAT; GRI,
Milan, for CYP1A1, CYP1B1 and MTHF; and IARC, Lyon, for MnSOD,
COMT, MPO and SULT1Al.

GSTT1 and GSTM1 deletion polymorphisms as well as a SNP in the
GSTP1 gene resulting in an amino acid substitution at codon 105
(Ile—Val) were determined by PCR-based assays as previously described
[35]. The 3 base deletion in intron 6 of GSTM3 was detected by
PCR-restriction fragment length polymorphism (RFLP) as previously
described [36]. The NAT2 genotypes were categorized into fast and slow
acetylators as described by Okkels et al. [37]. The 638G — A
polymorphism of SULTA1 was detected as described by Ozawa et al.
[38]. Light Cycler was used at IARC, Lyon, and PCR-RFLP at GRI in
Milan and at the Aarhus University.

statistical analysis

Odds ratios (ORs) and 95% confidence intervals (Cls) were computed
using conditional logistic regression models for matched pairs. Analyses of
each polymorphism stratified by gender, passive smoking (ETS) and
previous smoking (never or former smokers) were carried out. Information
on air pollution was available for a subset of the cases and controls [2].
Interaction under the multiplicative model between gender, smoking
(ETS and former versus never smokers) and each genotype was tested by
including an interaction term in the logistic regression analysis. Also
chi-square tests for heterogeneity were carried out. All analyses were
carried out by the SAS package for personal computers (SAS Inc.,

Cary, NC).

results

The general characteristics of the study population are shown in
Table 1. The genotypes were all in Hardy—Weinberg
equilibrium.

Table 2 shows ORs and ClIs for the genes involved in
oxidative stress, Table 3 for phase I genes, Table 4 for phase II
genes and MTHEFR. In spite of a large number of comparisons,
we find few statistically significant associations. The most
notable ones are: GSTM1 deletion and bladder cancer risk
(OR = 1.60; 95% CI 1.00-2.56); CYP1A1 and leukemia (2.22,
1.33-3.70; heterozygotes); MnSOD and leukemia (1.91,
1.08-3.38; homozygotes); NQO1 and lung cancer (8.03,
1.73-37.3; homozygotes) and a protective effect of CYP1B1 for
leukemia (0.47, 0.27-0.84; homozygotes).

The investigated NAT2 SNPs were used to classify individuals
into NAT2 fast and NAT2 slow phenotypes. The NAT2 slow
phenotype, however, was not associated with any of the cancers
we have considered (Table 4).

Subgroup analyses have been carried out. An increased
risk for GSTM1 was indicated in ex-smokers for lung cancer
(1.66, 95% CI 0.84-3.31; P=0.15) and for bladder cancer
(1.47, 95% CI 0.76-2.84; P=0.25). Although not statistically
significant, a higher risk of lung cancer was observed for
GSTM1 in people exposed to ETS compared with people not
exposed (5.55, 95% CI 0.62-49.7) versus 1.27 95% CI 0.33—4.87,
P for interaction 0.41). GSTM3 showed a stronger association



Table 1. Cases and controls stratified by country, gender, educational
level and smoking status (cases and controls were matched)

Cases Controls
(n = 409) (n=757)
(%) (%)
Age (mean * SD) 60.3 = 7.7 60.7 = 7.7
Country
France 9 (2.2) 17 (2.3)
Italy 47 (11.5) 96 (12.7)
Spain 34 (8.3) 70 (9.3)
UK 131 (32) 203 (26.8)
The Netherlands 35 (8.6) 69 (9.1)
Greece 21 (5.1) 40 (5.3)
Germany 76 (18.6) 141 (18.6)
Sweden 1 (0.2) 1 (0.1)
Denmark 55 (13.5) 120 (15.9)
Gender
Male 196 (47.9) 367 (48.5)
Female 213 (52.1) 390 (51.5)
Highest school level
None 18 (4.4) 45 (5.9)
Primary school 138 (33.7) 231 (30.5)
completed
Technical/professional 104 (25.4) 201 (26.6)
school
Secondary school 55 (13.5) 108 (14.3)
University degree 67 (16.4) 134 (17.7)
Not specified 22 (5.4) 31 (4.1)
Missing 5 (1.2) 7 (0.9)
Smoking status
Never 227 (55.5) 424 (56)
Former 182 (44.5) 333 (44)

SD, standard deviation.

with bladder cancer among never smokers (OR = 4.90,
95% CI 1.15-20.9 for homozygotes) than in ex-smokers.
An association of COMT with leukemia was limited to
ex-smokers, with much higher ORs (4.77, 95% CI 1.28-17.8,
for heterozygotes; 3.88, 0.99-15.3 for homozygotes) than in
never smokers (0.91 and 0.74, respectively). Also CYP1B1
showed a stronger, protective, association with leukemia in
ex-smokers (OR = 0.26, 95% CI 0.08-0.86 for homozygotes).
No interaction was identified with indicators of traffic-related
air pollution.

None of the tests for heterogeneity (by smoking status,
gender or ETS exposure) was statistically significant.

analysis by pathways

In Table 5 we show the effects of the combination of gene
variants belonging to different metabolic pathways (oxidative
damage scavenging, phase I or phase II). We have postulated
a codominant effect, i.e. a dose-response relationship of at
risk alleles (as defined a priori). A recessive model was also
tested; it gave results that were overall weaker than those
shown here. The results show a strong effect of phase I gene
variants on the risk of myeloid leukemia, with an OR of 5
(1.63-15.4) for those having three or more variant alleles in

the pathway, and a clear dose-response relationship (Figure 1).
The association was considerably stronger for leukemias
arising before the age of 55 (Table 5).

discussion

Genetic polymorphisms in several genes coding for enzymes
involved in biotransformation of environmental toxicants and
defense against oxidative stress have been associated with
increased risks for various cancers [39, 17]. Most of the
previous studies have been limited case—control studies
including both smokers and nonsmokers, whereas this study
focused on cancers in nonsmokers (defined as never smokers
and people who had not smoked for at least 10 years before
joining the cohort). The aim of the study was to verify the
hypothesis that genetic susceptibility could be more relevant
at low exposure levels than at high levels, and to study the
contribution of gene variants according to metabolic
pathways [6, 7].

oxidative stress

Free radicals, which are produced naturally in the body, can
cause oxidative damage of DNA, lipids, proteins and other cell
constituents, contributing to the onset of cancer and other
chronic diseases [40]. Several enzymes, including MnSOD,
NQO1, MPO and COMT, are involved in the scavenging of
free radicals and prevention of oxidative damage. We have
found an association between genetic polymorphisms in
MnSOD and myeloid leukemia, and between NQO1

and lung cancer, indicating that oxidative stress can play

a role in both types of cancer. Some evidence for an
involvement of oxidative stress is available for hemopoietic
malignancies [41]. The evidence is stronger, however, for
lung cancer [42].

phase | genes

Studies on the association between lung cancer and CYPIAI
polymorphisms have been published [43, 44], with overall
positive results. The sparse literature on bladder cancer
suggests no association with CYP1A1 polymorphisms [45],
while the studies on myeloid leukemias are conflicting
[46-49]. In one study on lung cancer among nonsmokers
[50], an interaction of CYP1Al polymorphism and ETS has
been observed in ETS-exposed people [51]. CYP1B1
Leu432Val was significantly associated with lung cancer
susceptibility (OR for at least one valine allele = 2.87, 95%
CI 1.63-5.07), while no association was found in another
study [52].

The reasons for involvement of the phase I bioactivating
enzymes in leukemogenesis are not clear, but it can be
hypothesized that leukemias in the nonsmoking population
could be due to compounds in the environment that
undergo such metabolic pathways, e.g. aromatic compounds
as benzene. Exposure to benzene occurs both in ETS and
through filling of cars. Our observation indicates that
future studies should look in more detail into the
gene—environment interactions between the phase I
pathway and environmental exposures in leukemia.
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Table 2. Genes involved in oxidative stress—odds ratios for matched pairs and 95% CI from logistic regression

MnSOD
Smoking status
All
Het
Var
Ex-smokers
Het
Var

Never smokers

Het
Var
Gender
Females
Het
Var
Males
Het
Var

MPO
Smoking status
All
Het
Var
Ex-smokers
Het
Var

Never smokers

Het
Var
Gender
Females
Het
Var
Males
Het
Var

COMT
Smoking status
All
Het
Var
Ex-smokers
Het
Var

Never smokers

Het
Var
Gender
Females
Het
Var
Males
Het
Var

Lung (116)*

1.41 (0.76-2.65)
1.21 (0.61-2.4)

1.17 (0.54-2.51)
0.68 (0.28-1.64)

2.27 (0.7-7.38)
3.11 (0.92-10.5)
1.15 (0.48-2.78)

1.87 (0.71-4.98)

1.9 (0.76-4.79)
0.75 (0.27-2.07)

Lung (116)*

0.97 (0.58-1.61)
1.08 (0.36-3.23)

1.03 (0.53-2.02)
1.08 (0.33-3.57)

0.89 (0.4-1.97)
1.3 (0.07-23.15)
0.7 (0.36-1.38)

0.96 (0.2-4.59)

1.58 (0.69-3.6)
1.51 (0.32-7.19)

Lung (116)*

0.99 (0.57-1.72)
0.99 (0.49-1.99)

0.86 (0.39-1.9)
0.74 (0.29-1.9)

1.13 (0.52-2.49)
1.44 (0.5-4.14)
1.15 (0.54-2.44)

1.47 (0.56-3.86)

0.81 (0.35-1.86)
0.63 (0.22-1.79)

Bladder (124)*

0.79 (0.46-1.37)
0.77 (0.4-1.47)

0.89 (0.42-1.91)
0.81 (0.35-1.92)

0.7 (0.32-1.54)
0.71 (0.26-1.92)
1.1 (0.44-2.78)

0.89 (0.28-2.75)

0.66 (0.33-1.31)
0.71 (0.32-1.57)

Bladder (124)*

0.64 (0.39-1.04)
0.78 (0.23-2.66)

0.82 (0.43-1.58)
1.01 (0.23-4.37)

0.45 (0.21-0.98)
0.49 (0.05-4.95)
0.43 (0.18-1.04)

0.48 (0.05-4.9)

0.78 (0.43-1.41)
0.98 (0.23-4.23)

Bladder (124)*

0.53 (0.3-0.94)
0.73 (0.4-1.34)

0.43 (0.2-0.94)
0.48 (0.2-1.13)

0.66 (0.27-1.59)
1.17 (0.48-2.83)
0.36 (0.13-0.98)

0.57 (0.21-1.55)

0.65 (0.32-1.32)
0.85 (0.39-1.83)

Leukemia (167)*

1.11 (0.69-1.8)
1.91 (1.08-3.38)

1.4 (0.55-3.6)
1.85 (0.63-5.46)

1.03 (0.58-1.81)
1.93 (0.99-3.77)
1.06 (0.59-1.92)

1.97 (0.94-4.1)

1.21 (0.53-2.77)
1.89 (0.76-4.7)

Leukemia (167)*

1.06 (0.7-1.61)
1.69 (0.63-4.48)

0.62 (0.27-1.39)
0.33 (0.03-3.56)

1.29 (0.79-2.13)
2.62 (0.86-7.99)
0.98 (0.57-1.68)

0.99 (0.24-4.04)

1.21 (0.62-2.37)
3.12 (0.71-13.7)

Leukemia (167)*

1.26 (0.77-2.07)
1.04 (0.58-1.84)

4.77 (1.28-17.8)
3.88 (0.99-15.3)

0.91 (0.52-1.61)
0.74 (0.37-1.45)
1.02 (0.54-1.9)

0.76 (0.37-1.58)

1.78 (0.77-4.14)
1.74 (0.67-4.54)
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Table 2. (Continued)

NQO1
Smoking status Lung (108)*
All
Het 0.79 (0.45-1.38)
Var 8.03 (1.73-37.3)
Ex-smokers
Het 1.07 (0.48-2.37)
Var 562 (0.6-52.8)
Never smokers
Het 0.57 (0.25-1.31)
Var 10.5 (1.25-87.8)
Gender
Females
Het 0.71 (0.34-1.51)
Var 6.01 (1.23-29.35)
Males
Het 0.91 (0.38-2.15)
Var -

Bladder (119)*

0.61 (0.34-1.09)
0.65 (0.2-2.11)

0.55 (0.24-1.25)
0.6 (0.16-2.27)

0.68 (0.3-1.54)

0.89 (0.08-9.92)

0.36 (0.12—1.09)
-)

0.78 (0.39-1.55)
0.84 (0.25-2.84)

Leukemia (160)*

1.09 (0.72-1.66)
0.55 (0.15-2.06)

0.94 (0.39-2.24)

1.14 (0.7-1.86)
2.14 (0.42-10.8)

0.94 (0.54-1.63)

0.65 (0.13-3.27)

1.36 (0.7-2.65)
0.44 (0.05-4.06)

“Number of cases. When not specified otherwise, the reference category is the wild type.

CI, confidence interval; Het, heterozygous; Var, variant homozygous.

phase Il genes

Meta-analyses indicate that the deletion of GSTM1 and GSTT1
is associated with a slightly increased risk of lung cancer

[53, 54] and acute leukemia [24]; bladder cancer has been
clearly associated with GSTM1 [28], but not GSTT1 deletions
[55, 56]. The effect of some of these genotypes appears to be
dependent on the exposure levels, but the evidence is
controversial [36, 57, 58]. In a previous investigation in never
smokers, the GSTT1 and GSTM1 genotype had no overall
effect, but in people exposed to high levels of environmental
tobacco smoke [50], the GSTM1*2/*2 genotype was associated
with an increased risk.

In one study, the association of the expression of GSTM3
with the GSTM1 polymorphism was dependent on smoking
habits, being higher in GSTM1*1 subjects who were smokers,
compared with GSTM1*2/*2 smokers [59]. This effect was not
seen in long-term nonsmokers, as is the case in this study.

In our study, a slightly increased risk of bladder cancer was
associated with the GSTM3*2/*2 genotype, similar to the
observation by Schnakenberg et al. [60].

The NAT?2 slow genotype was associated in several studies
with an increased risk for bladder cancer, a risk that was
especially pronounced in current smokers [61] and former
smokers [28], the latter result being similar to the present
observation. A higher, but not statistically significant risk for
lung cancer was seen in our study for the NAT2 slow genotype
in subjects exposed to ETS. In contrast to our results, a recent
Taiwanese study showed that the risk of lung cancer in never
smokers was increased in the NAT?2 fast genotype [62]. Adult
acute leukemia has been associated with exposure to tobacco
smoke, but no interaction was evident between NAT2
acetylator status and smoking [63]. In the present study we
did not detect, in fact, any association between NAT2 and any
type of cancer.

Sulfotransferase IA1 plays an important role in the
detoxification of hydroxylated metabolites of PAHs and
aromatic amines. Both NAT2 and SULT1A1 are involved in the
metabolism to genotoxic metabolites of 3-nitrobenzanthrone,
one of the carcinogenic compounds found in diesel exhaust
[64]. No clear role for the Sulfotransferase IA1 polymorphism
was seen in our study. An increased risk of lung cancer was
previously linked to the variant allele especially in current
smokers [65].

MTHFR

Only few studies have been carried out on the cancer types
included in the present analyses, e.g. lung and bladder cancers
and the data are conflicting. The 1298CC genotype was
associated with a significantly increased risk of lung cancer in
women in one study [66]. In another study, three SNPs
(Ala360Ala, 222Val, Pro232Pro) were associated with increased
risk of lung cancer in both sexes [67], while the polymorphisms
677C—T and 1298A— C SNP did not show any association
[68]. No evidence of an effect of 677C — T variants on bladder
cancer was found in two studies [55, 69]; however, the same
variants appeared protective in a third investigation [56]. A
significantly 3.51-fold increased risk of bladder cancer (95% CI
1.59-6.52 was described in subjects with the variant genotype
(CT or TT) reporting a low folate intake) [70]. In the case of
myeloid leukemias, previous studies are consistent in showing
a protective effect of MTHEFR variants. In an investigation in
Korea, 1298A — C variants significantly decreased the risks of
acute lymphoblastic leukemia (ALL) and chronic myeloid
leukaemia (CML) compared with 1298AA. ORs and 95% ClIs of
1298AC and 1298AC + CC were 0.53 (0.31-0.93) and 0.54
(0.31-0.93) in ALL and 0.34 (0.14-0.80) and 0.40 (0.18-0.89)
in CML, respectively, compared with 1298AA [71]. Similar
results were reported from a study in Caucasian adults [72].
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Table 3. Phase I genes—odds ratios for matched pairs and 95% CI from logistic regression

CYPI1A1
Smoking status
All

Lung (110)*

Het 1.03 (0.53-2)

Var 3.02 (0.5-18.2)
Ex-smokers

Het 0.67 (0.28-1.64)

Var 2 (0.13-31.97)

Never smokers

Het 1.94 (0.69-5.45)
Var 5.2 (0.45-60.5)
Gender

Females
Het 1.22 (0.48-3.11)
Var 2.11 (0.29-15.21)

Males
Het 0.86 (0.34-2.19)
Var -

CYPIBI1

Smoking status
All

Lung (111)*

Het 1.03 (0.5-2.12)

Var 1.18 (0.55-2.56)
Ex-smokers

Het 1.29 (0.51-3.26)

Var 1.23 (0.45-3.37)

Never smokers

Het 0.72 (0.22-2.31)
Var 1.09 (0.33-3.65)
Gender
Females
Het 0.65 (0.22-1.92)
Var 0.62 (0.20-1.91)
Males
Het 1.57 (0.57-4.33)
Var 2.18 (0.71-6.69)

Bladder (119)*

1.23 (0.67-2.26)

2.31 (1.02-5.2)

0.49 (0.17-1.4)

0.55 (0.2-1.5)

2.22 (0.98-5.03)

Bladder (119)*

0.94 (0.5-1.77)
0.75 (0.38-1.5)

1.18 (0.51-2.74)
0.73 (0.29-1.86)

0.69 (0.26-1.8)
0.78 (0.27-2.2)
1.07 (0.33-3.44)

0.62 (0.18-2.13)

0.89 (0.42-1.9)
0.84 (0.36-1.95)

Leukemia (166)*

2.22 (1.33-3.7)

1.14 (0.42-3.11)

2.78 (1.52-5.06)

1.64 (0.86-3.1)

3.75 (1.54-9.11)

Leukemia (163)*

0.59 (0.35-1)
0.47 (0.27-0.84)

0.3 (0.1-0.92)
0.26 (0.08-0.86)

0.73 (0.4-1.36)
0.57 (0.29-1.12)
0.87 (0.45-1.68)

0.57 (0.28-1.16)

0.28 (0.11-0.72)
0.31 (0.11-0.88)

“Number of cases. When not specified otherwise, the reference category is the wild type.

CI, confidence interval; Het, heterozygous; Var, variant homozygous.

strengths and limitations

Our study has several strengths. Since the a priori hypothesis
was that genetic susceptibility from low-penetrant gene variants
could be larger among people exposed to low levels of
environmental exposure, we were able to identify >400 cases of
cancer (suspected of an association with ETS or traffic-related
air pollution) among nonsmokers. The design is particularly
strong because the case—control study nested in the cohort
guarantees that the estimates of association are not biased
due to case or control selection, a very common phenomenon
in usual (hospital- or population-based) case—control

studies. Weaknesses include the relatively small number of cases
for each cancer type, and the even smaller numbers with
information on ETS and air pollution. This limited the
possibility of investigating interactions. According to our power
calculations, we had 80% power to detect a statistically
significant OR of 1.5 for the main effect of common gene
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variants, but much lower for the study of interactions (although
this is one of the largest studies in nonsmokers).

conclusions

Among many comparisons we have made, the only firm
associations that we found with single genes, in accordance
with previous investigations, were between GSTM1 and bladder
cancer and between CYP1B1 and leukemias, whereas the
association between leukemia and CYP1AL1 has been conflicting
in the literature. Another observation that has been repeatedly
suggested in the literature is the association between CYP1A1
and lung cancer; we found an OR of 5.2 in never smokers
(not statistically significant). New associations that we have
detected include MnSOD and leukemias and NQO1 and lung
cancer, both indicating a role of oxidative stress in such cancer

types.



Table 4. Phase II genes and MTHFR—odds ratios for matched pairs and 95% CI from logistic regression

GSTM1 deletion
Smoking status
All
Ex-smokers
Never smokers
Gender
Female
Male

GSTM3 (GSTM3*1/*1 =
reference category)
Smoking status

All

172

172
Ex-smokers

172

2/2
Never smokers

1/2

2/2

Gender

Female

172

2/2
Male

1/2

2/2

GSTT1 deletion
Smoking status

All

Ex-smokers

Never smokers
Gender

Female

Male

GSTP1 (codon 105) (reference

GSTP1*1/*1 = 1)
Smoking status
All
*1/*2
*2/2
Ex-smokers
*1/*2
*2/2
Never smokers
*1/%2
*2/2
Gender
Female
*2/2
*2/2
Male
*2/2
*2/2

Lung (114)*

1.14 (0.69-1.87)
1.66 (0.84-3.31)
0.72 (0.34-1.50)

0.85 (0.44-1.62)
1.73 (0.78-3.84)

Lung (109)*

0.63 (0.36-1.09)
0.42 (0.09-1.99)

0.68 (0.33-1.42)
0.45 (0.05-4.04)

0.55 (0.23-1.32)
0.38 (0.04-3.53)

0.63 (0.30-1.28)
0.58 (0.12-2.92)

0.60 (0.25-1.47)

Lung (114)°

0.82 (0.46-1.46)
0.86 (0.40-1.84)
0.77 (0.32-1.87)

0.94 (0.47-1.90)
0.63 (0.23-1.71)

Lung (114)*

1.37 (0.82-2.31)
1.84 (0.86-3.94)

0.94 (0.33-1.42)
2.31 (0.82-6.53)

2.07 (0.97-4.42)
1.31 (0.40-4.32)
1.19 (0.61-2.32)

1.60 (0.57-4.55)

1.69 (0.75-3.84)
2.16 (0.70-6.64)

Bladder (123)*

1.60 (1.00-2.56)
1.47 (0.76-2.84)
1.75 (0.89-3.43)

1.43 (0.69-2.96)
1.73 (0.93-3.23)

Bladder (121)*

0.90 (0.53-1.54)
1.45 (0.49-4.28)

0.61 (0.30-1.27)

1.89 (0.78-4.60)
4.90 (1.15-20.9)

1.45 (0.59-3.56)
3.12 (0.55-17.81)

0.68 (0.35-1.33)
0.76 (0.17-3.45)

Bladder (123)*

1.17 (0.68-2.02)
0.95 (0.42-2.13)
1.40 (0.67-2.94)

1.21 (0.47-3.12)
1.15 (0.59-2.24)

Bladder (123)*

0.80 (0.49-1.30)
0.76 (0.35-1.68)

0.70 (0.35-1.38)
0.75 (0.28-2.01)

0.92 (0.45-1.85)
0.78 (0.21-2.92)
0.76 (0.34-1.69)

1.00 (0.28-3.63)

0.81 (0.44-1.50)
0.66 (0.25-1.79)

Leukemia (168)*
1.25 (0.82-1.89)
1.26 (0.59-2.70)
1.24 (0.75-2.04)

0.96 (0.57-1.64)
1.86 (0.94-3.68)

Leukemia (163)*

0.84 (0.52-1.36)
1.29 (0.36-4.59)

1.07 (0.49-2.36)

0.74 (0.41-1.36)
1.50 (0.40-5.63)

0.72 (0.38-1.36)
2.74 (0.46-16.55)

1.08 (0.52-2.24)
0.50 (0.06-4.51)

Leukemia (169)*

0.84 (0.53-1.33)
0.77 (0.34-1.73)
0.88 (0.51-1.52)

1.14 (0.64-2.03)
0.52 (0.24-1.11)

Leukemia (166)*

0.83 (0.54-1.25)
1.04 (0.58-1.87)

1.50 (0.67-3.33)
1.66 (0.51-5.48)

0.65 (0.40-1.08)
0.88 (0.45-1.74)
0.85 (0.50-1.46)

0.66 (0.30-1.44)

0.77 (0.39-1.50)
2.12 (0.81-5.53)
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Table 4. (Continued)

GSTP1-114
Smoking status
All
Het
Var
Ex-smokers
Het
Var
Never smokers
Het
Var
Gender
Females
Het
Var
Males
Het
Var

SULT1A1 (SULT1A1*1/*%1 =
reference category)
Smoking status

All
*1/*2
*2/*2
Ex-smokers
*1/*2
*2/*2
Never smokers
*1/*2
*2/*2
Gender
Female
*1/%2
*2/%2
Male
*1/%2
*2/*2

NAT?2 genotype (NAT?2 rapid =
reference category)
Smoking status
All
Ex-smoker
Never smokers
Gender
Female
Male

MTHFR
Smoking status
All
Het
Var
Ex-smokers
Het
Var
Never smokers
Het
Var

Lung (115)*

0.97 (0.49-1.95)
0.55 (0.06-5.38)

0.88 (0.33-2.38)

1.19 (0.44-3.2)

0.79 (0.32-1.94)
0.96 (0.09-10.7)

1.4 (0.46-4.3)

Lung (116)*

0.93 (0.55-1.57)
0.97 (0.45-2.07)

0.74 (0.35-1.55)
0.70 (0.24-2.07)

1.20 (0.57-2.54)
1.38 (0.46-4.08)

0.71 (0.35-1.42)
0.83 (0.32-2.17)

1.32 (0.61-2.88)
1.21 (0.35-4.24)

Lung (114)*

0.85 (0.53-1.36)
1.00 (0.54-1.85)
0.67 (0.31-1.44)

0.80 (0.42-1.53)
0.91 (0.45-1.85)

Lung (113)?

0.8 (0.46-1.38)
1.51 (0.75-3.02)

0.8 (0.38-1.7)
2.3 (0.83-6.4)

0.79 (0.35-1.79)
1.04 (0.39-2.77)

Bladder (124)*

0.83 (0.42-1.67)

0.53 (0.17-1.66)

1.16 (0.47-2.87)

1 (0.35-2.88)

0.73 (0.29-1.84)

Bladder (124)*

0.88 (0.55-1.43)
0.73 (0.35-1.54)

0.85 (0.44-1.66)
0.32 (0.08-1.30)

0.87 (0.43-1.75)
1.09 (0.45-2.65)

0.88 (0.38-2.04)
2.21 (0.71-6.88)

0.85 (0.47-1.52)
0.30 (0.10-0.95)

Bladder (118)*

0.97 (0.62-1.53)
0.79 (0.42-1.47)
1.23 (0.63-2.43)

1.72 (0.8-3.70)
0.70 (0.39-1.25)

Bladder (116)*

1.03 (0.6-1.76)
1.55 (0.75-3.18)

0.86 (0.41-1.78)
1.42 (0.54-3.75)

1.28 (0.56-2.92)
1.75 (0.59-5.18)

Leukemia (167)*

1.40 (0.8-2.44)
2.74 (0.45-16.7)

1.33 (0.47-3.79)

1.42 (0.74-2.72)
1.77 (0.24-12.9)

1.47 (0.66-3.24)
0.83 (0.07-9.61)

1.3 (0.6-2.83)

Leukemia (167)*

0.84 (0.56-1.28)
0.84 (0.43-1.63)

1.09 (0.49-2.47)
0.52 (0.16-1.68)

0.78 (0.48-1.27)
1.13 (0.49-2.58)

0.81 (0.46-1.41)
0.86 (0.38-1.94)

0.89 (0.48-1.65)
0.79 (0.25-2.47)

Leukemia (165)*
0.73 (0.48-1.11)
1.01 (0.48-2.12)
0.63 (0.38-1.05)

0.84 (0.50—1.40)
0.57 (0.28-1.17)

Leukemia (165)*

0.84 (0.55-1.3)
1.31 (0.7-2.46)

0.81 (0.36-1.8)
1.26 (0.42-3.75)

0.86 (0.51-1.44)
1.34 (0.62-2.88)
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Table 4. (Continued)

Gender
Females
Het
Var
Males
Het
Var

0.93 (0.44-1.95)
0.97 (0.36-2.6)

0.69 (0.3-1.6)
2.34 (0.83-6.65)

1.34 (0.53-3.44)
1.09 (0.33-3.62)

0.87 (0.45-1.7)
2.08 (0.82-5.29)

0.91 (0.53-1.56)
1.15 (0.51-2.61)

0.74 (0.36-1.52)
1.58 (0.6-4.19)

“Number of cases. When not specified otherwise, the reference category is the wild type.

CI, confidence interval; Het, heterozygous; Var, variant homozygous.

Table 5. Cumulative effect of gene variants according to metabolic pathway (a codominant model is assumed; odds ratios and 95% CI from conditional

logistic regression)

Phase II enzymes
Trend®
No. of variant alleles
0-1 (ref)
2
3
4+
Phase I enzymes
Trend
No. of variant alleles
0 (ref)
1
2
3+
Phase I enzymes, age <55
Trend
No. of variant alleles
0 (ref)
1
2
3+
Oxidative damage scavengers
Trend
No. of variant alleles
0-3 (ref)
4
5
6+

Lung

0.96 (0.76-1.21)

1
0.81 (0.38-1.75)
1.01 (0.49-2.08)
0.70 (0.26-1.87)

1.02 (0.73-1.43)

1
0.81 (0.42-1.56)
1.06 (0.49-2.33)
0.97 (0.23-4.19)

1.28 (0.50-3.21)

1
1.79 (0.32-10.40)
2.66 (0.30-22.43)
=)

1.21 (0.97-1.51)

1
1.08 (0.57-2.07)
1.57 (0.69-3.55)
2.31 (0.95-5.60)

Bladder

1.06 (0.86-1.31)

1
0.92 (0.45-1.89)
0.88 (0.42-1.83)
1.25 (0.57-2.76)

1.22 (0.90-1.65)

1
0.89 (0.49-1.61)
1.27 (0.64-2.52)
3.09 (0.80-12.0)

1.03 (0.41-2.42)
1

0.74 (0.20-3.43)
0.91 (0.09-7.56)

1.26 (0.11-34.12)

0.89 (0.74-1.07)

1
0.58 (0.31-1.06)
0.73 (0.38-1.39)
0.46 (0.19-1.10)

Myeloid leukemia

1.00 (0.82-1.21)

1.07 (0.59-1.92)
1.12 (0.62-2.01)
0.77 (0.35-1.67)

1.54 (1.19-2.0)

1
0.97 (0.56-1.66)
1.88 (1.03-3.42)
5.00 (1.63-15.4)

3.40 (1.39-8.20)

1

0.39 (0.11-2.23)
21.00 (0.93-496)
1052 (1.90—inf)

1.06 (0.88-1.26)

1
0.85 (0.49-1.49)
2.00 (1.12-3.54)
0.74 (0.31-1.76)

?0dds ratio for a unit increment of variant alleles.
CI, confidence interval.

A common problem in the literature about low-penetrant
genes is the small size that does not allow a full investigation of
gene—environment interactions. Although we collected data on
ETS and air pollution, the study of the interactions between
gene variants and such exposures was limited by the small
numbers of cases. This can also explain the extreme variability
of estimates in subgroups in the literature. We believe that
subgroup analysis is not particularly informative in this like in
most of the previous studies.

More rewarding than an analysis by single genes (that is
affected by instability of the estimates) was an analysis by
pathways, that strongly indicates an involvement of phase I
gene variants in myeloid leukemia, with on OR of 5
(1.63-15.4) for those having three or more variant alleles in the
pathway. The association was considerably stronger for
leukemias arising before the age of 55, a finding which is
consistent with a role of genetic susceptibility in carcinogenesis.
As suggested before, the analysis of the combined effect of gene
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Figure 1. Odds ratios for each unit increment in variant alleles for
phase I metabolic genes and risk of leukemia. Vertical bars are
confidence intervals.

variants is likely to contribute to the understanding of genetic
susceptibility to cancer more than the analysis of single
genes [73].

Our analysis by pathway indicates that the distribution of
susceptibility to carcinogens in the population should be
considered by combining multiple genes and/or multiple SNPs.
Under particular circumstances, people with rare combinations
of common gene variants have a high risk of cancer and could
be assimilated to subjects with highly penetrant mutations.
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