Multi-factor dimensionality reduction applied to a large prospective investigation
on gene—gene and gene—environment interactions
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It is becoming increasingly evident that single-locus effects
cannot explain complex multifactorial human diseases
like cancer. We applied the multi-factor dimensionality
reduction (MDR) method to a large cohort study on

Abbreviations: MDR, multi-factor dimensionality reduction; CVC,
cross-validation consistency; DSBR, double-strand break repair; ETS,
environmental tobacco smoke; FPRP, false positive report probability.

gene—environment and gene-gene interactions. The
study (case-control nested in the EPIC cohort) was esta-
blished to investigate molecular changes and genetic
susceptibility in relation to air pollution and environ-
mental tobacco smoke (ETS) in non-smokers. We have
analyzed 757 controls and 409 cases with bladder cancer
(n = 124), lung cancer (n = 116) and myeloid leukemia
(n = 169). Thirty-six gene variants (DNA repair and
metabolic genes) and three environmental exposure
variables (measures of air pollution and ETS at home
and at work) were analyzed. Interactions were assessed
by prediction error percentage and cross-validation
consistency (CVC) frequency. For lung cancer, the best
model was given by a significant gene-environment
association between the base excision repair (BER)
XRCC1-Arg399GIn polymorphism, the double-strand
break repair (DSBR) BRCA2-Asn372His polymorphism
and the exposure variable ‘distance from heavy traffic
road’, an indirect and robust indicator of air pollution
(mean prediction error of 26%, P < 0.001, mean CVC of
6.60, P = 0.02). For bladder cancer, we found a significant
4-loci association between the BER APE1-Aspl148Glu
polymorphism, the DSBR RADS52-3 -untranslated region
(3’-UTR) polymorphism and the metabolic gene poly-
morphisms COMT-Vall58Met and MTHFR-677C > T
(mean prediction error of 22%, P < 0.001, mean CVC
consistency of 7.40, P < 0.037). For leukemia, a 3-loci
model including RAD52-2259C > T, MnSOD-Ala9Val and
CYP1A1-Ile462Val had a minimum prediction error of
31% (P < 0.001) and a maximum CVC of 4.40 (P = 0.086).
The MDR method seems promising, because it provides
a limited number of statistically stable interactions;
however, the biological interpretation remains to be
understood.

Introduction

Environmental carcinogens contained in air pollution and
environmental tobacco smoke (ETS) form mainly bulky
DNA adducts and also generate interstrand cross-links and
reactive oxygen species, which induce base damage, abasic
sites, single- and double-strand breaks.

Many of the known environmental risk factors are
metabolized in the organism to products that are either
more carcinogenic or are detoxified. Genetic polymorphisms
have been identified in many of these enzymes, and the
biological consequence of some of such changes is an altered
enzyme activity, which may influence the ratio between
activation and deactivation, and thus the cancer risk (1).
Enzymes involved in the biotransformation can be divided
into phase 1 enzymes, involved in oxidative processes and
phase 2 enzymes involved in the detoxification of the



primary compounds or their metabolites. Genetic poly-
morphisms in both phase 1 and phase 2 metabolic enzymes
have been shown to influence both cancer risk and the
DNA adduct levels (2). We have demonstrated previously
that people with high levels of adducts at the time they
were healthy had a subsequent higher risk of developing
cancer (3).

Unrepaired damage can result in apoptosis or may lead to
unregulated cell growth and cancer (4). Alternatively, the
damage can be repaired at the DNA level enabling the cell to
replicate as planned. Because of the importance of maintain-
ing genomic integrity in the general and specialized functions
of cells as well as in the prevention of carcinogenesis, genes
coding for DNA repair molecules have been proposed as
candidate cancer-susceptibility genes (5,6).

Studies to date indicate that variation in DNA repair and
metabolic genes may influence cancer susceptibility (7,8);
however, results are not fully consistent, and other potentially
important polymorphisms in these and other genes have not
been explored yet.

Based on the extensive reviews of the literature (8-11)
several polymorphisms of DNA repair, metabolic and other
genes potentially associated with lung cancer, bladder cancer
and myeloid leukemia have been analyzed in the context of
the GEN-AIR project, a case-control study nested in the
EPIC investigation. The aim of the present paper is to apply
the model-free multi-factor dimensionality reduction (MDR)
method (12) to a large study whose primary goals were to
investigate the role of air pollution and ETS in increasing the
risk of cancer, and to investigate gene—environment and
gene—gene interactions.

In fact, it is becoming increasingly evident that single-
locus effects cannot explain complex multifactorial human
diseases like cancer. Recent reviews and meta-analyses have
demonstrated the difficulties associated with replicating main
effect results. Thus, when the single polymorphism effect is
not present alone or is not strong enough, the identification
and characterization of susceptibility genes for cancer risk
require the understanding of gene—gene interactions.

Materials and methods

Subjects

European Prospective Investigation into Cancer and Nutrition (EPIC) is a
multicenter European study, coordinated by the International Agency for
Research on Cancer (Lyon), in which more than 500 000 healthy volunteers
were recruited in 10 European countries (France, Denmark, Germany,
Greece, Italy, The Netherlands, Norway, Spain, Sweden and UK)
corresponding to 23 recruitment centers. The cohort includes subjects of
both genders, mostly in the age range 35-74 at recruitment. Recruitment took
place between 1993 and 1998. Detailed dietary and lifestyle histories
collected mainly through self-administered questionnaires, plus a 24 h
dietary recall through person-to-person interview (in a 10% sample),
anthropological measurements and a 30—40 ml blood sample are available.
All questionnaire information is available in a computerized format. Signed
informed consent forms were collected from all participants (except a
sub-group of the Oxford cohort who gave consent on postal questionnaires).

Gen-Air is a case-control study nested within the EPIC cohort, aiming
at studying the relationship between some types of cancer and air pollution
or ETS. Cases are subjects with bladder, lung, oral, pharyngeal or laryngeal
cancers and leukemia, all newly diagnosed after recruitment. Also deaths
from respiratory diseases (COPD and emphysema) were identified and
included. Only non-smokers or ex-smokers since at least 10 years have
been included in Gen-Air. We have matched three controls per case for
exposure assessment and the analysis of questionnaire data, and two
controls per case for laboratory analyses. Matching criteria were gender, age
(5 years), smoking status (never or former smoker), country of recruitment,

and follow-up time. Mean follow-up was 89 months (minimum 51 and
maximum 123).

Gen-Air has been approved by the Ethical Committee of the International
Agency for Research on Cancer, and by the local Ethical Committees of the
23 centres.

We have identified 4051 subjects (1074 cases and 2977 controls) in EPIC
who met the Gen-Air protocol criteria. The distribution of cases by cancer
site or cause of death was as follows: bladder cancer 227, lung cancer 271,
oral, pharyngeal cancer 73, laryngeal cancer 58, leukemias 311, deaths from
respiratory diseases 134. Of these subjects, 2410 had blood samples
(846 cases and 1564 controls). The Malmo center has decided not to allow
the use of their blood samples and the Umea center did not allow genetic
analyses, but they participate in the rest of the project.

In the present study, we have analyzed 409 cases of bladder cancer
(n = 124), lung cancer (n = 116), leukemia (n = 169) and 757 controls with
available blood samples and successful DNA extraction and genotype
analysis. The remaining endpoints were not analyzed as the methods used
in this paper require a large number of subjects. Our approach did not keep
the matching between cases and controls.

In addition to several gene variants (see below) we also included in the
analyses three exposure variables, air pollution (as indirectly measured by
the distance from a heavy traffic road) and exposure to ETS at work and at
home. For details on these exposures and the ways they were measured see
our previous publications (13,14).

DNA extraction and genotype analysis

The choice of the relevant polymorphisms (Table I) has been made on the
basis of an extensive review of the literature (8—11) and encompasses genes
involved directly or indirectly in DNA repair and metabolic genes.

DNA was extracted from 200-300 pl of buffy coats in Genova and
Florence laboratories. DNA was isolated and purified as described in Peluso
et al. (15).

Genotyping has been performed with Light Cycler at IARC by
Dr Malaveille (genes: MnSOD, COMT, MPO, SULT-1A1), with Tagman
at the ISI Foundation in Torino by Dr Matullo (XPD, XRCCI1, PCNA,
ERCC1, MGMT, OGG1) and at the University of Cambridge by Dr Dunning
(BRCAI1 and 2, NBSI, RAD51-52, XRCC2, LIG4, TP53), with a PCR-
RFLP based assay at the University of Aarhus by Dr Autrup (GSTMI,
GSTM3, GSTT1, GSTP, NQOI1) and at the Genetics Research Institute in
Milan by Dr Garte (NAT2, CYP1AL, CYP1B1, MTHFR).

MDR analysis

The common analytical tool to analyse gene—gene interactions under
a multiplicative model is logistic regression analysis. Unfortunately,
parametric and model-based statistical methods require specific hypotheses
to be tested; in high-dimensional analysis such as in the investigation of all
potential interactions, the number of hypotheses is inflated to a great extent.
To address this issue it has been suggested that model-free, data-based
exploratory methods are more flexible and powerful.

A MDR reduction method with related open-source software has been
developed by Ritchie et al. (12) to detect and characterize high-order
gene—gene and gene—environment interactions in studies with relatively small
sample sizes.

The goal of MDR is to find the main factor and the combinations of
2,..., N factors that are more frequently associated with case than with
control status (adjusted for the ratio between them). The MDR method was
applied as described previously (12,16-22). Briefly, to search for the best
n-loci model (with n = 1,..., N), the dataset is randomly divided into
10 equal parts. A training set of 9/10 of the data are used to search for the
best model, i.e. to classify each genotype combination as a high-risk or a
low-risk pattern, depending on the number of cases and controls that present
that combination. In Figure 1 each box represents a particular combination of
genotypes for a 4-loci model (Figure 1A) and a 3-loci model (Figure 1B).
If the box is dark, the combination is a high-risk pattern, i.e. we observe
that the particular combination of genotypes for these polymorphisms is
more frequently associated with the case status than with the control status.
In Figure 1B the box representing the combination of the w/w genotype
(w = wild-type, m = mutant) in CYP1A1-Ile462Val polymorphism, the w/m
genotype in RAD52-2259C > T and the m/m genotype in MnSOD-Ala9Val
is labelled as high-risk, although the number of cases is only 13 and that of
controls is 22. The reason is that their ratio (13/22 = 0.59) is greater than the
ratio of the number of cases to the number of controls for the leukemia
dataset (169/305 = 0.55). The remaining 1/10 of the data are the testing set,
used to control the goodness-of-fit of the model. This procedure is repeated
10 times, in order to use all the possible testing sets.

For each n-loci model the MDR method gives two scores, a mean
prediction error percentage and the cross-validation consistency (CVC)
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Table 1. Gene variants included in the MDR model

Gene Function® Polymorphism Genotype frequency (%)*

wiw w/m m/m
DNA repair
ERCC2/XPD NER Asp312Asn 38.4 453 16.2
ERCC2/XPD NER Lys751GIn 35.7 46.1 18.2
PCNA BER 6084 G > C (3'-UTR) 80 18.9 1.1
XRCCl1 BER Argl194Trp 87.6 12.2 0.3
XRCCl1 BER Pro206Pro 30.9 46 23.1
XRCC1 BER Arg399GIn 44.8 43.6 11.6
XRCC3 DSBR 17893 A > G (IVS6-14) 511 40.1 8.9
XRCC3 DSBR Thr241Met 34.6 49.8 15.6
APEI BER Aspl48Glu 29.3 482 225
ERCC1 NER Asnl18Asn 35.6 46.8 17.6
MGMT DRR Leu84Phe 73.6 24.6 1.8
hOGG1 BER Ser326Cys 62.6 32 5.4
BRCA1 DSBR Pro871Leu 42.5 477 9.8
BRCA2 DSBR Asn372His 51.6 413 7.1
NBS1 DSBR Glul85GIn 49.2 40.2 10.6
RADS1 DSBR 135G > C (5-UTR ) 87 12.7 0.3
RAD512 DSBR 172G > T (5-UTR ) 338 48.7 17.5
RAD52 DSBR 2259 C>T (3-UTR ) 33.7 46.8 19.4
XRCC2 DSBR Arg188His 83.2 16 0.9
LIG4 DSBR Ala3Val 88.7 7.7 35
LIG45 DSBR Thr9Ile 72.1 25 2.8
TP53 Cell cycle/apoptosis Arg72Pro 57.5 36.5 5.9
Metabolic
MnSOD Oxidative scavenger Ala9Val 25.2 52.7 22.1
NQO1 Oxidative scavenger Pro187Ser 65 314 3.6
COMT Phase 1 Vall58Met 24.8 52.1 23.1
MPO Phase 1 G > A SPI1 site 60.3 354 4.2
SULTIAL Phase 2 Arg213His 44.7 435 11.8
GSTM3 Phase 2 3 bp deletion (¥*A,*B) 68.7 28.4 3
GSTP1 Phase 2 Ile105Val 441 441 11.8
GSTP1 Phase 2 Alall4Val 83.9 15 1.1
CYPIALI Phase 1 Tle462Val 83.6 154 1
CYPIBI Phase 1 Val432Leu 16.4 48.6 35
MTHRF Pholate/nucleotide 677C>T 42.7 44.1 13.2

wiw w/m + m/m
GSTT1 Phase 2 Gene deletion (*1, *2/%2) 75.5 24.5
GSTM1 Phase 2 Gene deletion (*2/%2, *1) 55.6 44.4
NAT2 Phase 2 Slow/rapid acetylator 42.7 57.3

“w = Wild-type allele, m = mutant allele.

"NER = nucleotide excision repair, BER = base excision repair, DSBR = double-strand break repair, DRR = direct reversal repair.

frequency. The former is the proportion of subjects for whom an incorrect
class prediction was made, while the latter is the number of times a particular
combination of loci (model) is identified in each possible testing set. The best
model is that with lower prediction error and maximum CVC. We repeated
the complete analysis 10 times, using different random seeds to reduce the
probability of biased results due to the chance divisions of the data in
training and testing sets.

To evaluate the magnitude of the prediction error and the CVC, we
permutated the status of cases and controls in the dataset and repeated the
analysis 1000 times, obtaining for each n-loci model the prediction error and
the CVC distributions under the null hypothesis of no association.
Comparing the results and these distributions we obtained the P-values
associated with each prediction error and CVC.

For each model, we computed the associated odds ratio (Table II).
The reference group (unexposed) is formed by subjects presenting the
combination of genotypes labelled as low-risk, while the exposed group is
that with subjects that present the combination labelled as high-risk.

Limitations of MDR

Although MDR overcomes some of the limitations of the generalized linear
model, there are also some other limitations to consider (12,19). First, MDR
is computationally intensive for high-order models and would require genetic
search algorithms to find solutions in a limited time. Second, MDR results
are difficult to interpret. If a strong main effect is present, it is not simple to
understand the importance of the other polymorphisms in the model. More
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generally, there is no information on the relations between the polymor-
phisms involved in each model; e.g. if the best model is a four-way
interaction, it is not clear if it is the sum of two separate two-way interactions
or a two-way interaction and two main effects, etc. Third, high dimen-
sionality and a small dataset may lead to many multi-factor cells with either
a small number of subjects or no subjects. It is not clear how the model
sensitivity changes with the dimension of the dataset. For example, a source
of noise is given by missing values. The proportion of missing values can
vary among cases and controls and thus affect the results. In our dataset, the
mean differences in percentage of missing values between cases and controls
are <3%. Finally, MDR assumes that there is no genetic heterogeneity. If a
group of cases are explained by a combination of loci different from the one
that explains another group of cases, the MDR method can fail in finding the
correct models.

Hypotheses tested

The main advantage of using a data-based statistical method like MDR is the
ability to analyse a dataset without the need to hypothesize an a priori model
(model free analysis). At the same time, it can be useful to test for some
hypotheses, such as specifying the recessive or dominant model of
inheritance. To simplify the analysis, we have searched for scenarios in
which all the gene variants show a recessive or a dominant behaviour. In
these analyses, we have assigned the genotypes with the highest frequency as
wild-type for each polymorphism and used them as the reference group.
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Fig. 1. Genotype combinations labelled as high-risk and low-risk for bladder cancer and leukemia. In each box the left and the right bars represent the
number of cases and controls for each combination of genotypes. If the ratio of cases to controls exceeds a threshold (the ratio of total number of cases
to total number of controls in the present analysis), the combination is labelled as high risk (dark boxes). (A) Bladder cancer. (B) Leukemia.

False positive report probability (FPRP)
Reports of associations between polymorphisms and complex diseases are
greatly affected by the risk of being false positives. To estimate the
magnitude of this probability we used the method described by
Wacholder (23) and recently applied in some epidemiological studies
(24-26). To compute the FPRP, we used the odds ratios from MDR
models, in which we consider the given classification of high risk and
low-risk genotype combinations, the P-values and the power to detect ORs of
2 and 4. The P-values are calculated from the comparison of the proportion
of correct predictions of the model and the distribution of randomized
datasets.

As there are many factors influencing the prior probability that
the association between a genetic variant and a disease is real (27), the
FPRP is commonly computed for prior probabilities ranging in a wide

interval [1.E-5 to 0.25 in Wacholder (23), 0.001 to 0.50 in Hung (24) and
Matullo (25,26)]. Considering the lack of information on the interactions
between genes and environmental variables, in our study we have considered
a wider interval for prior probabilities, with bottom and top values lower than
those used in other studies, i.e. from 1.E-6 to 0.10.

Validation and interpretation of the results using information gain and
interaction graphs

The results obtained with the MDR method were validated using an approach
based on measures of information and entropy. Jakulin and Bratko (28) have
provided a generalization of McGill’s interaction information (29) to
evaluate the information gain (IG) related to a class variable (e.g. case-
control status) by merging several attributes together, over the information
provided by the attributes independently.
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Table II. Results of MDR for lung and bladder cancers and leukemia

Lung

Model free Prediction® P-value CvC P-value
NQO1 0.68 0.015 9.60 0.030
NQO1 cyplal 0.70 0.002 5.50 0.131
road XRCC1_28152 BRCA2 0.74 <0.001 6.60 0.023
XRCC3_18067 TP53 GSTP1_105 MTHFR 0.78 <0.001 2.30 0.537

Recessive model
NQO1 0.68 0.040 8.80 0.224
NQO1 BRCA2 0.69 0.004 4.30 0.382
ERCC1 RAD52 NQO1 0.72 <0.001 5.80 0.087
ERCC1 BRCA2 RADS52 NQO1 0.73 0.001 4.20 0.096

Dominant model
GSTM1 0.67 0.034 2.40 0.885
NQO1 cyplal 0.69 0.009 6.60 0.111
XPD_1 TP53 cyplal 0.70 0.002 2.60 0.517
BRCA2 TP53 GSTM3 cyplal 0.73 <0.01 2.30 0.380

Bladder

Model free Prediction® P-value CvVC P-value
GSTM3 0.45 1.000 2.40 0.946
LIG45 GSTM1 0.58 0.653 3.50 0.412
RAD52 COMT MTHFR 0.70 <0.001 2.60 0.550
APEI RADS52 COMT MTHFR 0.78 <0.001 7.40 0.013-0.037

Recessive model
MGMT 0.65 0.139 9.00 0.213
MGMT TP53 0.65 0.063 0.90 1.000
APE1 LIG4 MTHFR 0.67 0.006 1.78 0.949
ETS APE1 RADS52 COMT 0.69 <0.001 1.30 0.930

Dominant model
MTHFR 0.50 1.000 2.90 0.943
COMT MPO 0.66 0.026 3.50 0.493
ETS XRCC2 GSTP1_114 0.63 0.061 1.50 0.941
ETS XRCC3_2 NBS1 NQO1 0.72 <0.001 1.60 0.890

Leukemia

Model free Prediction® P-value CvC P-value
NQO1 0.56 0.999 2.60 0.951
cyplal nat2 0.65 0.029 4.00 0.203
RADS52 mnSOD cyplal 0.69 <0.001 4.40 0.086
Road APEI1 RADS512 cyplbl 0.73 <0.001 1.90 0.920

Recessive model
NQO1 0.65 0.112 6.90 0.502
XRCCI1_3 cyplbl 0.66 0.016 4.90 0.345
XRCCI1_3 NQO1 cyplbl 0.67 0.005 2.90 0.545
ETS XRCC1_3 mnSOD MTHFR 0.56 0.950 4.20 0.120

Dominant model
NQO1 0.65 0.032 5.80 0.292
cyplal nat2 0.64 0.081 3.00 0.468
PCNA cyplal nat2 0.64 0.029 1.00 0.905
ETS RADS512 GSTP1_114 cyplal 0.70 <0.001 322 0.170

The first P-value is for the proportion of subjects for whom a correct prediction was made; CVC is the number of times a particular combination of loci/
variables (model) was identified in each possible testing set, with the corresponding P-value. The best model is the one with the lowest prediction error
and maximum CVC. In the recessive model for lung cancer, the four-loci model has been regarded as the best model as it has lower false positive

report probabilities than the three-loci model.
ETS = environmental tobacco smoke.

Road = distance from heavy traffic road.
“Proportion of correct predictions.

Let H(X) be the Shannon entropy of X (29). In the case with two
attributes A, B and a class label C, the IG of A, B and C can be written as
IG(A;B;C) = I(A;BIC) — I(A;B), where I(A;BIC) = H(AIC) + H(BIC) —
H(A,BIC) and I(A;B) = H(A) + H(B) — H(A,B). I(A;B) is the mutual
information between A and B, while I(A;BIC) is the conditional
mutual information and measures the relationship between A and B in the
context of C.

Generalizing from formulas in (29), Jakulin and Bratko define the k-way
interaction information for k = 3, 4 to an arbitrary k as:

IG(s) = — > (= DA = 1(5\W%]X) - 1(5\X). X € 5,
Tes

where A={X|, X5,..., X,} is a set of n attributes (e.g. the variables
measured in the study) and S C A is a subset of k attributes.
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As the softwares used to implement these formulas do not permit missing
values, their values have been randomly imputed 10 times respecting the
genotype proportions in the data. The results reported are the mean values
obtained from the analyses performed using each of the 10 datasets.

Computing the interaction information for all the possible combi-
nations of k attributes chosen in a set of 40 variables (exposures and
SNPs) is a time consuming process for k > 3 at the current speed of
computers. To address this issue we used a two-step procedure following
the indications given by Moore et al. (30). First a subset of more infor-
mative attributes to analyse is selected. To do this, the IG is estimated
for each individual attribute and each pairwise combination of attributes.
Pairs of attributes are sorted and those with the highest IG, or percentage
of entropy removed, are selected for further consideration. The selection of
the cut-off to exclude the attributes is made considering the distribution of
the IG values for each pairwise combination. Usually, these distributions



Table III. False positive report probabilities and odds-ratios for the best models

Odds-ratio Power" Expected OR = 2 Expected OR = 4
(95% CI)
Prior probability Prior probability
1E-01 1E-02 1E-03 1E-04 1E-05 1E-06 1E-01 1E-02 1E-03 1E-04 1E-05 1E-06
Lung model free
road 6.22 (3.69-10.47) 0.001 0.006 0.067 0421 0.879 0986 0.999 0.116 0.000 0.001 0.007 0.063 0.404 0.871
XRCC1_28152 P-value = 7.90E-07
BRCA2
Lung recessive model
ERCC1 6.55 (3.46-12.40) 0.004 0.061 0418 0.879 0986 0.999 1.000 0.137 0.002 0.022 0.184 0.693 0.957 0.996
BRCA2 P-value = 3.10E-05
RADS2
NQO1
Bladder model free
APEIL 11.81 (6.99-19.95)  0.000002 0.001 0.008 0.077 0.456 0.894 0.988 0.003 0.000 0.000 0.000 0.001 0.007 0.070
RADS2 P-value = 2.00E-10
COMT
MTHFR
Bladder model free
RADS2 3.88 (2.51-6.00) 0.001 0.000 0.000 0.000 0.004 0.036 0.270 0.556 0.000 0.000 0.000 0.000 0.000 0.001
mnSOD P-value = 4.2E-10
cyplal

Each P-value is calculated from the proportion of correct predictions of the model and the distribution of randomized data sets. Bold type indicates the false

positive report probabilities lower than 0.20.

“Estimation of the statistical power to detect the expected OR with a level equal to the reported P-value.

have a Gaussian-like shape, with only few interactions standing out from
the crowd. In the second step, the IG is estimated for each attribute and
each combination of two, three and four attributes using only the selected
subset.

Measures of IG for main and interaction effects are useful to plot
interaction graphs that can give indications to interpret the relationship
between attributes. In the interaction graphs nodes and connections indicate
the percentage of entropy in case-control status removed by each variable
(main effect) and by each pairwise combination of attributes (interaction
effect). A positive entropy indicates interaction while a negative entropy
indicates redundancy.

Software

All MDR computations to find and test the models have been performed
using the open-source java software MDR v.1.0.0rcl. FPRP results are
calculated with the Excel spreadsheet distributed at http://jncicancer
spectrum.oupjournals.org/jnci/content/vol96/issue6 (23). The formulas from
Jakulin and Bratko have been implemented in R, v.2.2.1 (R Foundation for
Statistical Computing, Vienna, Austria). The Orange software package (31)
has been used to test the routines written in R and to build the interaction
graphs.

Results

Table II shows for each cancer site and each number of loci/
exposure variables evaluated (up to 4), the average CVC, the
average prediction error and the associated P-values obtained
from the randomized analysis of lung and bladder cancer, and
leukemia datasets.

For lung cancer, the best result (model free analysis) is
provided by a significant gene—environment interaction
between XRCC1-Arg399GIn, BRCA2-Asn372His polymor-
phisms and the exposure variable ‘heavy traffic road’ (mean
prediction error of 26%, P < 0.001, and mean CVC of 6.60,
P = 0.02). The exposure variable represents distance from a
heavy traffic road and is an indirect and robust indicator of
air pollution. Moreover, a 4-loci interaction under a recessive
model (ERCCI1-Asnl18Asn, BRCA2-Asn372His, RADS52-
2259C > T and NQO1-Pro187Ser polymorphisms) showed

also significant results (Table II, P < 0.001 for mean
prediction error and P = 0.096 for CVC). The 4-loci
interaction was regarded as a better model than the
encapsulated 3-loci model (that showed comparable reliabil-
ity for mean prediction error and CVC) because had lower
FPRP values (Table III).

For bladder cancer, we found a significant 4-loci
interaction between APE1-Aspl148Glu, RAD52-2259C > T
and the metabolic gene polymorphisms COMT-Vall58Met
and MTHFR-677C > T (mean prediction error of 22%,
P < 0.001 and mean CVC of 7.40, P = 0.013-0.037).

For leukemia, a 3-loci interaction including RADS52-
2259C > T, MnSOD-Ala9Val and CYP1A1-Ile462Val, had
a minimum prediction error of 31% (P < 0.001) and a
maximum CVC of 4.40 (P = 0.086). For both bladder
cancer and leukemia, the recessive and dominant models did
not yeld any significant results.

Table III reports the FPRP values calculated using the
statistical power to detect ORs of 2 and 4 with o level equal
to the observed P value. Results show an excellent reliability
for the bladder 4-loci and leukemia 3-loci models, even
assuming very low prior probabilities (<0.001). Figure 1A
and B show the detailed models.

On the other hand, the two interaction models found for
lung cancer seem to indicate false positive reports (as shown
in Table III for OR = 2), since unrealistic prior probabilities
are necessary to obtain FPRP values below 0.2.

In the two-step validation method, all the attributes
involved in the MDR models for lung cancer, bladder cancer
and leukemia were present in the more informative subset of
variables selected by the IG method when used for main and
interaction effects. In the second step, the lung cancer and
leukemia models did not obtain high IG values, i.e. there
were many models with other attributes (more than 10)
reporting higher IGs. The bladder cancer model, on the other
side, resulted to be the best model also for the IG method.
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Fig. 2. Orange canvas interaction graph. Nodes and connections indicate
the percentage of entropy in case-control status removed by each variable
(main effect) and by each pairwise combination of attributes (interaction
effect). The values are all positive, indicating a positive interaction
between all the polymorphisms of the model.

The percentage of entropy removed by each variable and by
each pairwise combination of attributes is shown in Figure 2.
The values are all positive, indicating a positive interaction
between all the polymorphisms included the model.

Discussion

In the present study, we investigated the possible combined
contribution of genetic and environmental factors to deter-
mining complex cancer risk patterns through gene—gene and
gene—environment interactions. We applied a robust and
validated method to reduce the complexity of multi-factor
analysis in a large prospective investigation on air pollution,
ETS and cancer. The results were validated using a
generalization to many attributes of the mutual information
method, a well-established approach to evaluate interactions
between two variables. The attributes selected in the lung
cancer and leukemia models were factors in the subset of the
more informative variables, while the MDR best model was
confirmed by the IG method as the best 4-way interaction for
bladder cancer (Figure 2). The patterns we have identified
need further biological investigation for interpretation beyond
their statistical significance. The biological plausibility of the
interpretation is in fact a test of the viability of multidimen-
sion reduction methods.

The first consideration about the emerging patterns is
that DNA repair genotypes seem to play an important role

420

in increasing cancer risk. Amongst the genes that seem to
be involved in the risk of lung and bladder cancer and
of leukemia, RAD52 emerges repeatedly in our analysis,
followed by XRCCI1, BRCA2 and APEl. Although we
investigated a limited number of DNA repair genes/
polymorphisms, it seems that impaired base excision repair
(APE1 and XRCC1) and double-strand break repair (RADS52
and BRCA?2) could be common pathways leading to different
forms of cancer. Unfortunately the literature on DNA repair
gene variants and cancer risk is still scanty and unclear,
reporting often contrasting results (8,32,33). The involvement
of proximity to a heavy traffic road is the only environmental
factor that interacts significantly with gene variants, and it is
coherently associated with lung cancer (13). Distance from a
heavy traffic road is an indirect and robust indicator of air
pollution. In bladder cancer, APE1 and RAD52 DNA repair
gene variants strongly interacted with some metabolic genes,
namely COMT and MTHFR, in increasing the risk. APEI is
the major 5 AP endonuclease of mammalian cells that is
responsible for the incision of baseless lesions in DNA
during BER. Although the APEI-Aspl148Glu variant allele
seems to have a small effect on AP endonuclease and DNA-
binding activities (34) an increased risk of chromosomal
aberration has been observed for this polymorphism (35).
RADS?2 is involved in DSBR through homologous recombi-
nation and facilitates strand exchange reaction catalysed
by RADS51. Although the RAD52 gene could be a good
candidate due to the high number of aberrations and allelic
losses in different chromosomes observed in bladder cancer
cells, for the RAD52-2259C > T polymorphism insufficient
information has been published for any conclusion about its
functional consequences to be drawn.

COMT catalyses the methylation of various endobiotic and
xenobiotic substances preventing quinone formation and
redox cycling, and therefore might protect DNA from
oxidative damage (1). A G to A transition, which results in
amino acid change from valine to methionine at codon 108,
leads to a lower COMT activity in a co-dominant manner
(36). In a previous study we have analyzed the tumour
biopsies of 45 patients with bladder cancer for p53 mutations
by direct sequencing. All p53 mutations occurred in subjects
with the COMT variant allele (P = 0.03) (37). Although, a
recent study on bladder cancer did not find an association
with the COMT variant (38), a role of this enzyme in bladder
cancer is likely, as supported also by the concomitant use
of a soluble isoform of COMT, calreticulin and gamma-
synuclein as urinary markers to improve the diagnosis of
bladder cancer (39). MTHFR is an enzyme that plays a key
role in the metabolism of folate and in DNA synthesis,
and common polymorphisms seem to affect its functional pro-
perties (40). The MTHFR-677 variant genotypes (CT or TT)
are common in the population. The studies on MTHFR and
bladder cancer risk are inconsistent, with negative results in
three studies (41-43), while a complex pattern was apparent
in another investigation, in which individuals carrying the
variant genotypes (CT or TT) and reporting a low folate
intake were at a significantly 3.5-fold increased risk of
bladder cancer (95% CI: 1.6-6.5) (44). In contrast, individu-
als carrying a variant genotype and reporting a high folate
intake were at a 1.4-fold increased risk (95% CI: 0.7-2.7),
and wild-type homozygotes reporting a low folate intake
were at only 1.6-fold increased risk (95% CI: 0.8-3.0). The
interaction between genetic polymorphisms and folate intake



was significant on the multiplicative scale (P = 0.01) (44).
The role of folate in inducing bladder cancer is biologically
plausible, as suggested by the protective effect of fruit and
vegetables on bladder cancer (45), but the hypothesis of an
involvement of MTHEFR is still uncertain.

Less clear is the lack of involvement (even in terms of
interactions) of metabolic gene polymorphisms, such as
NAT-2 and GSTMI1, that are established genetic risk factors
for bladder cancer as shown in recent large case-control
studies (46). However, this difference may be due to the
fact that our population includes only non-smokers. Similar
considerations can also apply to the results on lung cancer
and leukemia. In particular, for lung cancer we have not
confirmed the involvement of XRCCI1-Argl94Trp and
of hOGG1-Ser326Cys polymorphisms, as recently suggested
(24,32). However, we have identified a possible weak
interaction of NQO1-Prol187Ser polymorphism in combina-
tion with ERCC1-Asnl18Asn, BRCA2-Asn372His, RAD52-
2259C > T polymorphisms; a positive association with lung
cancer has been recently reported for NQO1-Prol87Ser
polymorphism (47).

For leukemia, the involvement of a DSBR gene, i.e.
RADS?2, is plausible as suggested in different studies, since
chromosomal translocations are very common genetic
abnormalities in this disease (48,49), with evidence of loss
of heterozygosity for a chromosomal segment including
the RADS52 locus in T cell prolymphocytic leukaemia (50).
Less clear is the involvement of a free radical scavenger
such as MnSOD, although there are several studies repor-
ting on down-regulation of this enzyme after treatment
of leukaemic cells with different chemotherapeutic agents
(51,52). However, no study investigated the relationship
between leukaemia and MnSOD polymorphisms. On the
other hand, CYPIA1l polymorphisms have been largely
investigated in different types of leukaemias, showing
positive associations in childhood leukaemia (53), and acute
adult lymphoblastic leukaemia (54,55). A previously descri-
bed interaction with the NAT-2 and GSTM1 genes (56) has
not been confirmed in our study.

In summary, the method of multifactor-dimensionality
reduction, even with the limitations previously discussed,
seems promising. In fact, it provides a limited number of
statistically stable associations among genes and between
genes and the environment that have been validated by an
alternative and well documented method. However, the lack
of clear biological background knowledge hampers a clear
interpretation of the findings.
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