

Murine CD8 α + DCs and human CD141+ DCs produce large amounts of IFN- λ in response to dsRNA or DNA viruses [Abstract]

H. Lauterbach, Stefanie Gilles, Claudia Traidl-Hoffmann, Christian Luber, Gyorgy Fejer, Marina Freudenberg, Gayle Davey, David Vremec, Axel Kallies, Li Wu, Ken Shortman, Paul Chaplin

Angaben zur Veröffentlichung / Publication details:

Lauterbach, H., Stefanie Gilles, Claudia Traidl-Hoffmann, Christian Luber, Gyorgy Fejer, Marina Freudenberg, Gayle Davey, et al. 2011. "Murine CD8 α + DCs and human CD141+ DCs produce large amounts of IFN- λ in response to dsRNA or DNA viruses [Abstract]." *Cytokine* 56 (1): 65. https://doi.org/10.1016/j.cyto.2011.07.166.

CC BY-NC-ND 4.0

PS2-006

Murine CD8 α + DCs and human CD141+ DCs produce large amounts of IFN- λ in response to dsRNA or DNA viruses

Lauterbach H, Barbara Bathke ^a, Stefanie Gilles ^b, Claudia Traidl-Hoffmann ^b, Christian A. Luber ^c, György Fejer ^d, Marina A. Freudenberg ^d, Gayle M. Davey ^e, David Vremec ^f, Axel Kallies ^f, Li Wu ^f, Ken Shortman ^f, Paul Chaplin ^a, Mark Suter ^{a,g}, Meredith O'Keeffe ^{a,h}, Hubertus Hochrein ^a, ^a Department of Research Immunology, Bavarian Nordic, Martinsried, Germany, ^bZAUM, Center for Allergy & Environment, Technical University Munich/Helmholtz Center, Munich, Germany, ^c Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany, ^d Max-Planck-Institute of Immunology, Freiburg, Germany, ^e Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia, ^f The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia, ^g University of Zurich, Zurich Switzerland, ^h Centre for Immunology, Burnet Institute, Melbourne, Australia

Dendritic cells (DCs) can be segregated into various subsets based on phenotypic and functional differences. Whereas plasmacytoid DCs are known for their type I interferon (IFN) producing capacity, conventional (c) DCs are better known for their roles in T cell homeostasis and priming. Among cDCs the CD8 α + subset is especially efficient in producing IL-12p70 and the induction of immunity against various pathogens and cancer. Here, we reveal a new hallmark function of murine CD8α+ cDCs and their human CD141+ (BDCA3+) counterparts, namely the production of large amounts of IFN-lambda (IFN-\(\lambda\), also termed IL-28/29) upon stimulation with the dsRNAs poly (I:C) or poly(A:U). IFN-\(\lambda\)s are potent immunomodulatory and antiviral cytokines. We demonstrate that the production of IFN-λ upon poly(I:C) injection in vivo depends on hematopoietic cells and the presence of toll-like receptor (TLR)3, interferon regulatory factor (IRF)3, IRF7, IFN-IR, Fms-related tyrosine kinase 3 ligand (FL) and IRF8 but not on myeloid differentiation factor 88 (MyD88), Rig like helicases or lymphocytes. Furthermore, we show that both CD8x+ cDCs and plasmacytoid DCs produce large amounts of IFN- λ in response to HSV-1 or parapoxvirus. Thus, IFN- λ production in response to dsRNA is a novel hallmark function of mouse CD8 α + cDCs and their human equivalents.

doi:10.1016/j.cyto.2011.07.166