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1

Chapter 1

Introduction

Aqueous colloidal suspensions play an important role in our daily lives. They ap-
pear naturally as for example milk or blood, and also find many industrial appli-
cations such as for paint, pharmaceutical products and in the oil industry. For un-
derstanding the physical properties and also the design of such colloidal systems,
the knowledge about the relevant forces is necessary, which can be incorporated in a
predictive theoretical model. In aqueous suspensions, repulsive electrostatic forces
play a major role through double layer forces even when the particles themselves
carry no charge [1]. An important omnipresent force for any colloidal systems are
the van der Waals forces [1], which are typically attractive but can be repulsive [2–4]
for certain combination of materials. These two forces are essential for understand-
ing the stability of colloids.

Colloidal suspensions are composed of nano- to micro-sized particles. The van
der Waals force between such macroscopic bodies arises through the interaction of
their constituting atoms. For distances smaller than 10 nm between the objects the
fluctuating electromagnetic interaction can be treated as instantaneous, but for larger
separations retardation effects need to be considered [5]. An early approach de-
scribing the van der Waals force relies on the pairwise summation of the interacting
dipoles [6]. Since many-body effects are neglected, the method of pair wise summa-
tion cannot be correct and can thus serve only as an approximation, which becomes
only valid for rather extreme conditions such as for dilute gases [7] or in the weak
interaction limit [8].

Later, in 1948, Hendrik Casimir showed through a quantum electrodynamical
treatment of the problem that the interaction between metal plates can be directly
linked to their optical response [9]. The theory was soon generalized for plates of ar-
bitrary materials [10] and media filling the gap between the planes [11]. This macro-
scopic theory takes retardation effects through the optical properties of the plates
into account and is used for theoretical predictions until today. Acknowledging
Casimir’s pioneering work, the retarded van der Waals force between macroscopic
bodies is often called Casimir force.

In experiments investigating aqueous colloid systems the interaction between
two spherical particles [12–14] and also the interaction between a bead and a wall
[15, 16] has been studied. These geometries have also been used to study Casimir
forces across vacuum and air [17–20]. In order to estimate the Casimir force, the finite
curvature of the spherical bodies is usually accounted for by utilizing the proximity-
force approximation (PFA), also known as Derjaguin approximation [21]. Within
the PFA, the Casimir energy is obtained by averaging the energies of parallel planes
over the local distances.

For a long time, the accuracy of the PFA has been unknown, and it was assumed
that PFA corrections are of the order of L/Reff [22] with L the surface-to-surface
distance and Reff the effective radius of curvature of the surfaces. In many Casimir
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experiments, systems with aspect ratios Reff/L ∼ 1000 or larger were studied so that
the signal of the Casimir interaction is large enough to be measured precisely [17–
19]. PFA corrections were thus assumed to be negligible.

Precise measurements of the Casimir forces are not just important to test our
fundamental understanding of dispersion forces in regard of their subtle properties
such as nonadditivity, their dependence on geometry and temperature, and the opti-
cal properties of the involved surfaces [22, 23]. They are also important in the search
for non-Newtonian gravity in the submicron distance range, as they provide bounds
on such non-Newtonian forces [24–27].

In fact, agreement between theoretical predictions and experimental data has
been reported in most cases. However, a surprising observation was made in pre-
cise experiments in the plane-sphere configuration with gold coated surfaces. It
turned out that the experimental data were better described when the optical data
for gold were extrapolated towards zero-frequency using the dissipationless plasma
model [17, 18, 20]. An extrapolation towards zero-frequency using the Drude model
would be physically better motivated, as that model takes dissipation into account
and predicts a finite conductivity at zero-frequency in accordance with experimental
facts [28]. In the just mentioned Casimir experiments the Drude model was, how-
ever, ruled out for the theoretical description of the Casimir effect. This has become
known as the so-called Drude-plasma controversy, which is still a matter of ongoing
debate.

A recent refinement in experimental techniques [29, 30] and also a new approach
using optical tweezers [13] allow the measurement of the Casimir force with higher
precision and thus at larger distances with aspect ratios Reff/L ∼ 100 or even smaller.
At such larger distances, the accuracy of the PFA becomes insufficient and, therefore,
exact methods for predicting the Casimir force are needed. The scattering theory [31,
32] for the fluctuating electromagnetic modes provides for such an exact method and
is applicable to in principle arbitrary geometries.

Exact analytical solutions within the scattering theory are rare [33–35]. Thus,
there have been efforts in finding analytical corrections to the PFA. Such corrections
can be found through asymptotic expansion of the mathematical functions appear-
ing in the scattering formalism. The method, originally developed by Bordag in
Ref. [36], was used to obtain analytical beyond the PFA in the plane-sphere [37–39]
and sphere-sphere geometry [40]. The experimentally most relevant setups for the
two geometries involving real materials at finite temperatures are, however, not cov-
ered by these works.

An alternative approach for obtaining an asymptotic expansion of the Casimir
force of curved surfaces for short distances is provided by the derivative expan-
sion approach [41–45]. The key idea of this approach is that curvature corrections
beyond the PFA are obtained by smoothly deforming the plane-plane configura-
tion. The derivative expansion approach hence assumes the Casimir interaction to
be localized around the points of closest approach of the surfaces. While the deriva-
tive expansion approach has been verified to make identical predictions as Bordag’s
asymptotic method at zero temperature [37, 38, 42, 43], it’s applicability is limited at
finite temperatures [45–47]. For instance, the derivative expansion method cannot
be applied to the zero-frequency contribution of the Casimir interaction for metals
described by the plasma model [45].

Numerical methods for computing the Casimir interaction complement analyt-
ical results beyond the PFA. They do not only serve for checking the quality of ap-
proximations, but yield exact results valid for any separation between the objects.
Within the scattering theory, a basis needs to be chosen in which the scattering and
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FIGURE 1.1: (a) The geometry of a plane and a sphere and (b) the
geometry of two spheres.

translation operators are expressed. Multipolar waves are convenient for numeri-
cal calculations since they form a complete set of basis functions which is discrete.
Spherical multipolar waves have been the choice for many numerical studies involv-
ing spheres, such as in the scattering geometries of a plane and a sphere [48–52], of
two spheres [32, 53, 54] and of a grating and a sphere [55]. For large distances, a nu-
merical evaluation of the Casimir interaction is fast, as only a few multipoles need to
be considered. The situation changes dramatically at shorter distances. In the typi-
cal distance regime of most Casimir experiments, Reff/L ∼ 1000, tens of thousands
of multipoles need to be included, which was an unfeasible numerical task until re-
cently. With symmetrization of the scattering operator and employing hierarchical
low-rank approximation techniques, the large number of multipoles could be dealt
with. In this way, a comparison between the experimental results and numerically
exact predictions became possible for the first time [56–58].

In this thesis, we explore an alternative approach utilizing the plane-wave basis
within the scattering formalism. In the examples of the plane-sphere and the sphere-
sphere geometry, depicted in Fig. 1.1, we demonstrate that the plane-wave basis is
better suited for the prediction of the Casimir interaction than the multipole basis
for typical experimental setups. We offer an analytical and a numerical approach
yielding beyond-PFA predictions.

Our analytical approach is built on the asymptotic expansion of the Casimir in-
teraction when the distance between the surfaces becomes small compared to the
radius of the sphere(s). The starting point for the asymptotic expansion is the scat-
tering formalism. In contrast to the derivative expansion approach, we do not make
assumptions on locality of the interaction. While Bordag’s method relied on an ex-
pansion of the electromagnetic modes in term of multipoles, we employ the plane-
wave basis instead, which further allows a physical interpretation of our results.
We find that the PFA arises from a geometric optical picture for plane-wave modes,
while the correction to the PFA has its largest contribution from modifications of the
geometric optical picture due to diffraction. Since our result is valid for arbitrary
materials and temperatures, we are able to provide formulas for the asymptotic ex-
pansion, which have not been given in the literature before. The derivation of the
asymptotic expansion entails an estimation of the effective interaction area between
the two surfaces, which has heuristically been found to scale as ReffL. By our cal-
culation, we can indeed confirm this scaling law for the effective area and can thus
deduce that the Casimir interaction is localized around the points of closest approach
between the two surfaces.

Moreover, we provide a comparison of the results obtained from the derivative
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expansion approach with results from our asymptotic expansion approach. We find
agreement as far as finite frequency contributions to the Casimir interaction are con-
cerned. For the zero-frequency contribution, we, however, find that the derivative
expansion does not adequately describe the Casimir interaction beyond the PFA in
aqueous colloid systems composed of dielectric objects. Our asymptotic method,
however, performs well in this case.

On the numerical side, we propose to use plane waves for an evaluation of the
scattering formula instead of the commonly employed multipolar waves. We show
that the plane-wave numerical approach has far superior convergence properties
when compared to approaches using multipolar waves. Another advantage of our
approach is that scattering operators are often already known with respect to the
plane-wave basis and that the translation between the coordinate systems of the
objects is particularly simple. The fact that the plane-wave basis is continuous might
seem to be an important drawback. Utilizing a Nyström discretization of the plane-
wave momenta, however, allows us to efficiently calculate the Casimir interaction.

We apply the new numerical method to study the Casimir interaction in aque-
ous colloid systems in the plane-sphere and sphere-sphere geometry. As examples,
we consider systems of two polystyrene bodies in water, which is typical for colloid
experiments [12, 59, 60], and systems of mercury and polystyrene in water, which
show an repulsive force for certain distances. Special attention is paid to the influ-
ence of variable salt concentrations on the Casimir interaction. For these systems,
we use numerically exact results to test the accuracy of the PFA. We find that, in par-
ticular for low salt concentrations, the PFA performs worse than is often assumed in
the literature. We further study the dependence on the effective Hamaker parameter
on the geometries for the aqueous systems.

Moreover, we study the accuracy of our result for the asymptotic expansion of
the Casimir interaction in the plane-sphere and sphere-sphere geometry by compar-
ing its predictions with exact results obtained by the plane-wave numerical method.
As expected the asymptotic expansion approach performs significantly better than
the PFA. The results of our asymptotic expansion are thus capable of making precise
predictions for the Casimir interaction in typical experimental configurations.

Finally, we study the asymptotic series of the Casimir energy between perfectly
reflecting spheres in vacuum for short distances at zero temperatures beyond the
predictions of our asymptotic expansion. We find that the next-to-next-to-leading-
order term in the series is of the form (L/Reff)

3/2. We can thereby confirm the pre-
viously found result in the plane-sphere geometry [58]. Interestingly, we find that
the coefficient of that next-to-next-to-leading-order term is constant and does not
depend on the ratio of the sphere radii. A possible mechanism explaining the emer-
gence of the fractional power is provided.

The thesis is structured as follows. In chapter 2, we study the Casimir inter-
action within the scattering approach. We derive the so-called scattering formula,
which serves as a basis for the analytical and numerical calculations in the subse-
quent chapters. In chapter 3, we apply the scattering formula to the geometry of
two planes and recover the known results by Dzyaloshinskii, Lifshitz and Pitaevskii
[10, 11]. We take the opportunity to discuss important concepts such as reflection of
plane-waves on planar interfaces and modeling of realistic dielectric functions. The
proximity-force approximation and the derivative expansion approach are outlined
in chapter 4. In chapter 5, we study electromagnetic scattering of plane waves on
spheres. In chapter 6, we derive the asymptotic expansion of the Casimir interac-
tion between two spheres. The Casimir interaction between a plane and a sphere
is obtained as a limiting case. A comparison with the derivative expansion method
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and an estimation of the effective area between two bodies is provided. In chapter
7, we discuss the plane-wave numerical approach. We start out by laying out the
approach for arbitrary geometries and show how it can be improved when the ge-
ometries exhibit a cylindrical symmetry. Then, we discuss the plane-wave approach
in the examples of the plane-sphere and sphere-sphere geometry. In chapter 8, we
apply our analytical and numerical plane-wave approaches. Using the plane-wave
numerical approach, we study aqueous colloid systems containing polystyrene and
mercury spheres. Then, we study the accuracy of the analytical approach based on
the asymptotic expansion using exact data obtained with our numerical method.
Furthermore, we study the Casimir interaction at vanishing temperatures beyond
our analytical approach using the plane-wave numerical method. Our results are
summarized in chapter 9. The appendices contain technical details supporting the
main text of this thesis.
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Chapter 2

Casimir interaction within the
scattering formalism

In this chapter, we derive the scattering formula for the Casimir interaction between
two arbitrary non-intersecting surfaces. In the derivation, a dispersive, dielectric
medium between the surfaces is assumed and the temperature is left arbitrary. The
formula for the Casimir interaction is derived from a scattering approach for the
vacuum and thermal modes. Our derivation is based on the expositions given in
Refs. [31, 61–63].

We start out by introducing the classical macroscopic electromagnetic field in the
medium. By quantizing this field, we find that the energy density of the quantum
field is infinite. This infinity gives rise to the Casimir effect, when boundary con-
ditions for the free fields are introduced. The change of the energy density, due to
the presence of the objects, can then be related to the scattering matrix of the prob-
lem. This allows us to relate the Casimir energy to the scattering properties of the
involved objects integrated over all frequencies. In practice, the integration over real
frequencies is ill-behaved. We discuss how to perform a Wick rotation to imaginary
frequencies for the zero- and finite-temperature case separately. At finite tempera-
tures, the Casimir interaction is then expressed as a sum over the imaginary Matsub-
ara frequencies. For numerical applications, there exists a more efficient summation
scheme based on the Padé spectrum decomposition. We give an outline to that al-
ternative approach. We conclude the chapter by deriving corresponding scattering
formulas for the Casimir force and force gradient.

2.1 Electromagnetic field in a dielectric medium

In the absence of sources like charges and currents, the macroscopic Maxwell equa-
tions in an infinite medium read

∇ ·D = 0 , (2.1a)
∇ · B = 0 , (2.1b)

∇× E = −∂B
∂t

, (2.1c)

∇×H =
∂D
∂t

(2.1d)

with the electric field E, the displacement field D, the magnetic field B and the mag-
netizing field H. The fields are functions of the position R = (x, y, z) and time t. We
assume an isotropic and homogeneous, dielectric medium, i.e.

D = ε0εE , B = µ0H (2.2)
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with the vacuum permittivity ε0, the relative permittivity ε and the vacuum perme-
ability µ0. Since we assume a non-magnetic medium, the relative permeability is set
to one. By combining the Maxwell equations (2.1a)-(2.1d) with Eq. (2.2), we obtain
the wave equations for the electric and magnetic field

(
∆− ε

c2
∂2

∂t2

)
E = 0 ,

(
∆− ε

c2
∂2

∂t2

)
B = 0

(2.3)

where we have used that µ0ε0 = 1/c2.
Assuming monochromatic waves with angular frequency ω and a harmonic time

dependence, E(R, t) = Re{E(R)e−iωt} and B(R, t) = Re{B(R)e−iωt}, the wave
equations (2.3) yield the Helmholtz equations

(
∆ +

εω2

c2

)
E(R) = 0 ,

(
∆ +

εω2

c2

)
B(R) = 0 .

(2.4)

The Helmholtz equations are solved by a superposition of plane waves of the form

E = E0eiK·R

B = B0eiK·R (2.5)

which satisfy the dispersion relation

|K| = nω/c (2.6)

with the refractive index n =
√

ε which is in general a complex number. Here and
in the following, we will consider the refractive index and thus also |K| to be a real
positive number, which corresponds to the case that the medium is non-dissipative.

Due to the dispersion relation (2.6), the components of the wave vector K =
(Kx, Ky, Kz) are not mutually independent. For instance, its z-component can be
expressed in terms of the remaining components:

Kz = φkz with kz ≡
√

K2 − k2 (2.7)

where φ = ± and k = (Kx, Ky, 0). The plane waves with φ = + can be interpreted as
traveling towards the positive z direction and those with φ = − as traveling in the
opposite direction. The distinction of the modes by the sign φ will be useful when
we study quasi-one dimensional scattering problems in Sec. 2.3 and 2.4.

When |K| < |k| the z-component of the wave vector Kz becomes an imaginary
number. As a consequence, those modes with φ = + decay exponentially in the
positive z direction and those with φ = − in the negative z direction. These modes
are called evanescent waves.

The Maxwell equation (2.1c) connects the field amplitudes of the electric and
magnetic plane waves through the relation

B0 =
1
ω

K× E0 . (2.8)
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The divergence equations (2.1a) and (2.1b) demand that B0 and E0 are perpendicular
to the wave vector K and thus the electromagnetic field is transverse to the direction
of propagation. It is then convenient to introduce orthogonal unit vectors, which
span the two-dimensional space perpendicular to K. These two directions give rise
to the notion of polarization. The choice of polarization basis is not unique and may
be made depending on the problem. In any case, if the unit vector for the polariza-
tion component p for a given wave vector is defined as ε̂p(K) with ε̂p(K) · K = 0,
then the other independent polarization component q is usually chosen perpendic-
ular and its unit vector is given by the cross product

ε̂q(K) = ε̂p(K)× K̂ . (2.9)

Note that here and in the following unit vectors are denoted by a hat.
The electromagnetic modes are now fully specified by their frequency ω, the

wave vector transverse to the z-axis k, the polarization p and the sign of the z-
component of the wave vector φ = sign(Kz) = ±. We thus label the modes by
m ≡ (ω, k, p) and φ and the summation over modes is described by the symbols

∑
m, φ

≡∑
p

∑
φ

∫ d2k
4π2

∫ ∞

0

dkz

2π
= ∑

p
∑
φ

∫ d2k
4π2

∫ ∞

0

dω

2πc
εω

kzc
. (2.10)

In the last equality of (2.10), we have used (2.7) to express the integral over the z-
component of the wave vector as an integral over frequencies ω. Such representation
of the summation over modes is more convenient since the frequency is conserved
within the scattering problems considered later in this chapter.

The free macroscopic fields can now be expressed as a superposition of the plane-
wave modes

E(r, z, t) = ∑
m, φ

ε̂
φ
m

[
α

φ
me−i(ωt−k·r−φkzz) +

(
α

φ
m

)∗
ei(ωt−k·r−φkzz)

]

B(r, z, t) =
n
c ∑

m, φ

β̂
φ

m

[
α

φ
mei(ωt−k·r−φkzz) +

(
α

φ
m

)∗
e−i(ωt−k·r−φkzz)

] (2.11)

with r = (x, y, 0) and β̂
φ

m = K̂× ε̂
φ
m.

A plane-wave mode expansion as given in (2.11) is known as the angular spec-
trum representation of the fields [64]. Where appropriate, the electromagnetic modes
will be represented by the kets |ω, k, φ, p〉.

2.2 Vacuum energy

For a quantum field theoretical description, the electric and magnetic fields need to
be quantized. We follow the quantization scheme for dispersive, dielectric media
presented in Refs. [65] and [66]. Because often in applications such as the Casi-
mir interaction the long-wavelength part of the spectrum compared to the prob-
lem’s characteristic length scales is important, we can regard the electromagnetic
field in the medium as macroscropic. The atoms and molecules which constitute the
medium will then only interact with the electromagnetic field in an approximative
way through the mediums dielectric function ε.
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We quantize the classical electromagnetic field as given in the previous section in
Eq. (2.11) by promoting its field amplitudes α

φ
m to operators. Dimensionless quantum-

field amplitudes can then be defined by [66]

aφ
m ≡

√
h̄ω

ε0[ε + ∂ω(ωε)]
α

φ
m (2.12)

with the partial derivative ∂ω = ∂/∂ω. The operators aφ
m and (aφ

m)
† can be inter-

preted as annihilation and creation operators obeying the canonical commutation
relations

[
aφ′

m′ , (aφ
m)

†
]
= (2π)3δ(2)(k− k′)δ(kz − k′z)δpp′δφφ′ ≡ δmm′δφφ′ ,

[
aφ′

m′ , aφ
m

]
=
[
(aφ′

m′)
†, (aφ

m)
†
]
= 0 .

(2.13)

In the ground state, which is usually called vacuum state, the electric and magnetic
field average to zero,

〈E〉vac = 〈B〉vac = 0 , (2.14)

but undergo quantum fluctuations

〈E2〉vac =
c2

ε
〈B2〉vac = ∑

m, φ

h̄ω

ε0[ε + ∂ω(ωε)]
. (2.15)

The energy density of the macroscopic electromagnetic field in a dispersive, dielec-
tric medium is given by [67, §80]

W =
1
2
[
µ0H2 + ε0∂ω(ωε)E2] . (2.16)

Earlier, it was suggested that the dispersive second term of W should be omitted
in the derivation of the Casimir interaction [68]. However, the form of the energy
density given here in (2.16) is in fact necessary to obtain the correct result [69]. The
vacuum energy density of the electromagnetic field is then given by the sum over
the modes of h̄ω/2,

Evac = 〈W〉vac = ∑
m, φ

h̄ω

2
. (2.17)

Note that the dependence of the ground-state energy density on the dispersive me-
dium was canceled out by the normalization factor in (2.12). The presence of the
medium thus does not affect the ground-state energy density and it is precisely the
same as in vacuum.

Because the number of modes is infinite, the vacuum energy density is an infinite
quantity. In quantum field theory, this infinity has often no physical meaning and
is then removed by normal ordering of the field operators [70, 71]. However, if
boundary conditions are introduced, the zero-point energy cannot be ignored and it
gives rise to the Casimir effect as we will discuss in the subsequent sections.

2.3 A determinant formula for a single scatterer

If an object is placed into the medium, the vacuum energy density changes as the
object imposes boundary conditions on the fluctuating vacuum modes. Here, we



2.3. A determinant formula for a single scatterer 11

FIGURE 2.1: (a) An object immersed in a dielectric medium described
by the scattering matrix S. (b) Schematic representation of the corre-
sponding quasi-one dimensional scattering problem. aφ and bφ refer
to the modes in the regions left and right of the scatterer, respectively.
The superscripts φ = ± indicate the direction in which the modes are
going. The plus sign is reserved for the modes going to the right, i.e.
along the positive z direction, and the negative sign for the opposite
direction. The transfer matrix T relates the modes left and right of the
scatterer.

review how a formula for this change in the vacuum energy can be established for a
single scatterer. Our approach is based on the scattering formalism and follows the
exposition given in Ref. [63]. Even though the change of vacuum energy will still be
divergent for a single scatterer, the formula will be useful for finding the scattering
formula for two scatterers.

It is worth recalling that the angular spectrum representation (2.11) for the quan-
tum fields divides the modes in those propagating in the positive and negative z-
direction. These modes are respectively labeled with φ = ±. For a single scatterer,
the z-axis can be chosen arbitrarily. For the object in the medium, which is depicted
in Fig. 2.1 (a), we can then formulate a quasi-one dimensional scattering problem
along the z-axis.

The scattering problem is schematically represented in Fig. 2.1 (b) where the scat-
tering matrix S associated to the object relates the in-going and out-going modes on
its left and right in terms of the relation

(
b+

a−

)
= S

(
a+

b−

)
(2.18)

with

S =

(
S11 S12
S21 S22

)
≡
(

S++ S+−

S−+ S−−

)
(2.19)

and aφ and bφ are vectors containing all modes of fixed frequency labeled with the
sign φ to the left and right of the scatterer, respectively. Here, we use the same con-
vention for the scattering matrix as in [62], which is commonly used in quantum field
theory. Note that in Ref. [63], b+ and a− in (2.18) are interchanged and thus there,
the diagonal entries of the our scattering matrix are on the off-diagonal instead.

Reference [72] establishes a connection between the change of the density of
states ∆D in a quasi-one dimensional scattering problem to its scattering matrix at a
given energy E:

∆D(E) =
1

2πi
∂

∂E
tr log (S(E)) . (2.20)
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Since in our problem the energy of the vacuum modes is E = h̄ω/2, we can make
use of this relation to express the change of vacuum energy due to presence of the
object as

∆Evac =
∫ ∞

0
dE E∆D(E) =

∫ ∞

0
dω

h̄ω

2
1

2πi
∂

∂ω
tr log (S(ω)) . (2.21)

By partial integration and using the matrix identity

tr log(S) = log det(S) , (2.22)

we then obtain the determinant formula

∆Evac = −h̄
∫ ∞

0

dω

2π

1
2i

log det (S(ω)) . (2.23)

Note that the determinant formula (2.23) corresponds to the shift in the vacuum
energy due to the presence of the object at a vanishing temperature. At finite tem-
peratures, thermal fluctuations would need to be taken into account which yield a
mean number of photons per mode different than one. Because then the thermal
effect would enter as a multiplicative function of ω inside the integral in Eq. (2.23), it
would only play a minor role in the following derivation of the scattering formula.
We will come back to the thermal effect later in Sec. 2.6.

In order to find an expression for the effective scattering matrix for two scatterers,
it is useful to introduce the transfer matrix T which relates the modes left and right
of the scatterer by (

b+

b−

)
= T

(
a+

a−

)
(2.24)

with the block matrix

T =

(
T11 T12
T21 T22

)
. (2.25)

The scattering properties of two or more objects can then be conveniently expressed
in terms of the product of their transfer matrices.

As shown in appendix B.2, the scattering and transfer matrix are related to one
another by the identities

T =

(
S/S22 S12S−1

22
−S−1

22 S21 S−1
22

)
(2.26)

and

S =

(
T/T22 T12T−1

22
−T−1

22 T21 T−1
22

)
(2.27)

where the block-matrix elements of S and T are defined in (2.19) and (2.25), respec-
tively, and

X/X22 = X11 − X12X−1
22 X21 (2.28)

for X = S, T is the Schur complement of the block X22 in X.

2.4 The effective scattering matrix for two scatterers

We now consider the situation where two objects 1 and 2 are placed inside the
medium at a distance L. The two objects are described by their respective scattering
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FIGURE 2.2: (a) Two objects 1 and 2 immersed in a dielectric medium
separated by a distance L. The effective scattering matrix S of the
problem can be decomposed into the scattering matrices for the two
objects S1 and S2, respectively, and the scattering matrix SL resulting
from the translation over their separation L. (b) Schematic represen-
tation of the quasi-one dimensional scattering problem.
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matrices S1 and S2. This setup is depicted in Fig. 2.2 (a). Note that in contrast to
what is depicted in the figure, the two objects do not necessarily need to be compact.
They may also be infinite surfaces such as, for instance, a grating or a plane.

By choosing the coordinate system such that the two objects are aligned along the
z axis, we can formulate a corresponding quasi-one dimensional scattering problem
which is schematically represented in Fig. 2.2 (b).

Due to the spatial separation between the objects, the plane waves going out of
object 1 and going in on object 2, or vice versa, are subject to a phase shift. This phase
shift can be described by the scattering matrix

SL =

(T21 0
0 T12

)
(2.29)

where T21 denotes the translation matrix for the modes from object 1 to 2 and vice
versa for T12. The translation matrices are diagonal, and because the + modes are
translated in positive z direction and the−modes in negative z direction, the matrix
elements of both translation matrices contain the same phase factors exp(ikzL):

T21 |ω, k,+, p〉 = eikz L |ω, k,+, p〉 ,

T12 |ω, k,−, p〉 = eikz L |ω, k,−, p〉 .
(2.30)

Making use of Eq. (2.26), we find the corresponding transfer matrix

TL =

(T21 0
0 T −1

12

)
. (2.31)

In view of Fig. 2.2 (b) we can now write down the problem’s effective transfer matrix

T = T2TLT1 . (2.32)

Using Eqs. (2.26) and (2.27), it is a straightforward task to find an expression for
the effective scattering matrix S in terms of the entries of the scattering matrices for
the two objects and for the translation. We find

S++ = S++
2 D2T21S++

1 , (2.33a)
S+− = S+−

2 + S++
2 T21S+−

1 D1T12S−−2 , (2.33b)
S−+ = S−+1 + S−−1 T12S−+2 D2T21S++

1 , (2.33c)
S−− = S−−1 D1T12S−−2 (2.33d)

where the two matrices

D1 =
(
1− T12S−+2 T21S+−

1

)−1 , (2.34a)

D2 =
(
1− T21S+−

1 T12S−+2
)−1 (2.34b)

account for an arbitrary number of round trips between the two scatterers which can
be seen by expressing them in terms of their series expansion, for instance,

D1 = 1 +M+M2 +M3 + . . . (2.35)

with the round-trip matrix

M = T12S−+2 T21S+−
1 . (2.36)
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FIGURE 2.3: Schematic representation of the (a) S++ block and (b)
S−+ block of the effective scattering matrix S as given in Eqs. (2.33a)
and (2.33c), respectively. The other blocks (2.33b) and (2.33d) can be
obtained by interchanging the two objects.

In Fig. 2.3 the relations (2.33a) and (2.33c) are visualized. The other relations are
obtained by interchanging object 1 and 2.

2.5 The scattering formula at zero temperature

With Eq. (2.33), we have found an expression which relates the effective scattering
matrix to the scattering properties of the two objects. The next step is to use the
determinant formula (2.23) to relate those scattering properties of the two objects to
the change of the vacuum energy.

Applying the formula [63, Eq. (A7)]

det(S) =
det(S−−)
det(S++)∗

(2.37)

to the determinant of the effective scattering matrix, we find that

det(S) =
det(S−−1 )det(D1)det(T12)det(S−−2 )

det(S++
2 )∗ det(D2)∗ det(T21)∗ det(S++

1 )∗
. (2.38)

with the asterisk indicating complex conjugation. Since (2.37) applies to any unitary
matrix, we can use that formula for the scattering matrices S1, S2 and SL as well, and
we obtain

det(S) = det(S1)det(S2)det(SL)
det(D1)

det(D2)∗
. (2.39)
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FIGURE 2.4: Schematic representation of the roundtrip operator M
consisting of the reflection operators R1 and R2 (where the refer-
ence point for the respective reflection is indicated by the dot) and
the translation operators T12 and T12.

The first two factors depend only on the respective properties of the objects, and
not on their distance L. They will thus not contribute to the Casimir interaction.
The middle part, det(SL), which is associated to the translation between the objects,
obviously depends on that distance. However, if we set the scattering matrices of the
two objects to be the identity matrix, which corresponds to the limit of transparent
objects, the contribution of SL still remains. In order to have a meaningful formula
for the Casimir interaction, we discard this contribution as well.

By using Sylvester’s determinant identity [73], we have det(D1) = det(D2). In
view of the determinant formula (2.23), we then obtain the scattering formula for the
Casimir energy at zero temperature

ECas(L) = h̄
∫ ∞

0

dω

2π

1
2i
[
log det (1−M)− log det (1−M)∗

]
(2.40a)

= h̄
∫ ∞

0

dω

2π
Im log det (1−M) . (2.40b)

It is convenient to write the round-trip operator as

M = T12R2T21R1 (2.41)

where R1 and R2 are the reflection operators of the respective objects. From our
derivation we have R2 = S−+2 and R1 = S+−

1 . With the expression (2.41), the
round-trip operator does not explicitly depend on the orientation of z-axis, which
emphasizes that the Casimir interaction does not depend on such choice either.

In practice, the reference point for describing the scattering at an object is often
conveniently placed on its inside. For example, the scattering of electromagnetic
waves on spheres, called Mie scattering, is usually described with respect to a coor-
dinate system with origin at the sphere’s center. The scattering formula (2.40) does
not depend on the choice of the reference points for the objects, as long as T21 ac-
counts for the translation from the reference point at object 1 to the reference point
of object 2 and vice versa for T12 (cf. Fig. 2.4).

At this point, we want to mention that the scattering formula as of Eq. (2.40) is
valid also for a more general setup, for instance, for a dispersive magnetic medium
[74] or even when the medium is dissipative [63].

Even though we have used plane-wave modes for its derivation, the scattering
formula (2.40) is independent of the basis in which the electromagnetic fields are
expanded. This is due to the fact that the determinant is invariant under similarity
transforms. For a given problem, it makes sense to choose a basis for which at least
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FIGURE 2.5: The complex ω-plane a) for vanishing temperatures with
the contour γ1 and b) for a finite temperature with contour γ2. The
red crosses correspond to the Matsubara frequencies iξn.

one of the operators constituting the round-trip operator becomes diagonal. The
geometry of two planes is quite special in this regard since for plane waves both re-
flection and translation operators are diagonal. When spheres are involved, it seems
natural to use the basis of spherical multipoles, since then the reflection operator at
the sphere is diagonal. However, the translation operator is not diagonal when using
the multipole basis. Because the translation operator is diagonal for plane waves, it
would appear to be equally natural to use plane waves when spheres are involved.
In fact, for this reason plane waves might be a good choice for geometries of two
arbitrary objects for which the scattering matrices are known.

For numerical purposes, formula (2.40) is not very practical since log det(1−M)
is a highly oscillatory complex function. At imaginary frequencies, however, it is real
and well-behaved. A rotation to imaginary frequencies is thus desired. Such Wick
rotation can be performed by considering an integration contour γ1 in the complex
ω-plane as shown in Fig. 2.5 (a) for the first term in (2.40a). Due to causality and
passivity conditions, its integrand has no poles in the upper complex plane [31].
By Cauchy’s theorem, the integral over the contour γ1 thus vanishes. Because of
high-frequency transparency of real materials, the arc connecting the contour on the
real and imaginary axis yields a vanishing contribution in the limit |ω| → ∞. The
integral along the real-axis can then be expressed in terms of the integral along the
imaginary axis. Because the determinant of the round-trip operator is real along the
imaginary axis, the contributions for the two terms in (2.40a) are then identical and
we find

ECas(L) = h̄
∫ ∞

0

dξ

2π
log det (1−M(iξ)) (2.42)

with the imaginary frequency ξ = −iω.
Note that for a more rigorous derivation of the scattering formula branch points

which are introduced by the square-root in (2.7) and possible poles on the real-
frequency axis need to be considered [75].

2.6 Matsubara sum formula for finite temperatures

At finite temperatures, one needs to account for thermal fluctuations besides the
quantum fluctuations of the electromagnetic fields. In addition to the vacuum en-
ergy, each mode at temperature T contributes with the thermal energy n̄(ω)h̄ω where

n̄(ω) =

[
exp

(
h̄ω

kBT

)
− 1
]−1

. (2.43)
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is the mean number of thermal photons per mode.
Accounting for this additional thermal energy for each mode, one can write the

Casimir free energy at temperature T as [76, 77]

FCas(L) = h̄
∫ ∞

0

dω

2π
C(ω)

1
2i
[
log det (1−M)− log det (1−M)∗

]
(2.44a)

= h̄
∫ ∞

0

dω

2π
C(ω) Im log det (1−M) . (2.44b)

with

C(ω) = 1 + 2n̄(ω) = coth
(

h̄ω

2kBT

)
. (2.45)

In the limit of vanishing temperature, the function C goes to one and formula (2.40)
is recovered.

The Wick rotation is a bit more involved when the temperature is finite. The
reason is that the function C now introduces poles at iξn with ξn = 2πnkBT/h̄ for
n ∈ Z which are known as the Matsubara frequencies. The poles are simple and
equally spaced along the imaginary axis. Because in particular there are now poles
in the upper ω-plane, we need to follow a different strategy for the Wick rotation.

First, we note that since the electromagnetic field is real, a complex conjugation
of the fields is the same as flipping the sign of the angular frequency, i.e.

E(−ω) = E∗(ω) , B(−ω) = B∗(ω) . (2.46)

Because this applies to all in- and out-going modes with respect to the round-trip,
we have that

det (1−M(−ω)) = det (1−M(ω))∗ . (2.47)

Using (2.47) in (2.44a), we can extend the integration domain over the angular fre-
quencies to the whole real line and write

FCas =
∫ +∞

−∞
dω f (ω) (2.48)

with
f (ω) =

h̄
4πi

C(ω) log det (1−M(ω)) . (2.49)

Due to the n = 0 Matsubara pole, the integrand in (2.48) has a pole at ω =
0, which should be avoided in the integration. The integral (2.48) should thus be
understood as the Cauchy principal value. The contour γ2 in the complex ω-plane
as depicted in Fig. 2.5 (b), applied to the integrand of (2.48) will now be helpful to
perform the Wick rotation.

On the one hand, as the radius of the outer arc goes to infinity, the integral over
the contour γ2 yields a sum over the residues of all Matsubara frequencies in the
upper complex plane by the residue theorem,

∫

γ2

dω f (ω) = 2πi
∞

∑
n=1

Res[ f , iξn] = kBT
∞

∑
n=1

log det (1−M(iξn)) . (2.50)

On the other hand, because the contribution of this outer arc then goes to zero due to
the high-frequency transparency of real materials, the contour integral can be alter-
natively written as the contribution of the integral along the real line plus the small
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arc around the origin. Sending the radius of that small arc to zero, we then find
∫

γ2

dω f (ω) = FCas − πi Res[ f , 0] = FCas −
1
2

log det (1−M(0)) . (2.51)

Note that the residue contribution of the zero-Matsubara frequency is weighted by
a factor of 1/2 because the curve is a semi-circle. Due to the orientation of the curve,
the sign is negative.

Equating (2.50) and (2.51), we obtain the Matsubara summation formula for the
Casimir free energy

FCas(L) = kBT
∞

∑
n=0

′ log det (1−M(iξn)) , (2.52)

where the primed sum indicates that the n = 0 term is taken with a factor of 1/2, i.e.

∞

∑
n=0

′Φ(iξn) =
1
2

Φ(0) +
∞

∑
n=1

Φ(iξn) . (2.53)

At this point, it shall be noted that by a careful examination of the Wick rota-
tion in the plane-plane configuration, the zero-frequency contribution of the TE-
polarized mode gets canceled by the contributions due to poles associated to Fou-
cault currents when the materials are described by the lossless plasma model [78]. As
a consequence, the standard Lifshitz-Matsubara sum formula, which corresponds to
Eq. (2.52) in the plane-plane geometry, could not be recovered.

In numerical applications, the Matsubara sum needs to be truncated. The trans-
lation factor between the two surfaces, which reads exp(−2ξnL/c) for large n pro-
vides a frequency cut-off. Convergence will thus be reached when the number of
terms included in the Matsubara sum becomes of the order of λT/L with the ther-
mal wavelength λT = h̄c/kBT. This scaling holds also for dielectric media, but the
converge may then also depend on the material properties.

Since Eq. (2.52) is an expansion in terms of the Matsubara spectrum, we may also
denote it as the Casimir free energy from the Matsubara spectrum decomposition
(MSD). Alternatively one can express the Casimir free energy in terms of the Padé
spectrum decomposition (PSD) which is a more efficient sum-over-poles scheme.
We will outline this alternative approach in the following section.

2.7 Padé spectrum decomposition

For the PSD, one starts out by expanding the function C in Eq. (2.44) in terms of a
Padé approximation [79]. With C̃(x) = C(ω) for x = h̄ω/kBT the Padé approxima-
tion reads

C̃(x) ≈ 2
x
+ 1 + 2x

PN−1(x2)

QN(x2)
(2.54)

where PN−1 and QN are polynomials of order N − 1 and N, respectively. Alterna-
tively, C̃ can then be expressed in terms of a sum over its simple poles

C̃(x) ≈ 2
x
+ 1 + 2

N

∑
j=1

(
ηj

x + iχj
+

ηj

x− iχj

)
, (2.55)
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FIGURE 2.6: The PSD frequencies χ are displayed as a function of the
order N of the Padé approximation. The center of the circle indicates
the position of the pole while the area of the circle is proportional to
the weight η associated with the pole. (Taken from Ref. [80].)

where the PSD frequencies χj are determined by the roots of QN . In practice, those
PSD frequencies can be computed via the eigenvalues, {λj ≡ ±2/χj}, of the sym-
metric tridiagonal matrix [79]

Λjk =
δj,k±1√

(2j + 1)(2k + 1)
, j, k = 1, . . . , 2N . (2.56)

The PSD weights ηj are given by [79]

ηj =
PN−1(z)
2Q′N(z)

∣∣∣∣
z=−χ2

j

(2.57)

where the prime indicates a z-derivative. The polynomials PN−1(z) and QN(z) can
be efficiently computed through a recursive relation. For the starting values A1(z) =
1/4, A2(z) = 5/4, B1(z) = 3, B2(z) = 15 + z/4, the recursion

XM≥3(z) = (2M + 1)XM−1(z) +
z
4

XM−2(z) (2.58)

for both X = A, B can be used to find [79]

PN−1(z) = A2N(z) , QN(z) = B2N(z) . (2.59)

In order to obtain Q′N(z) one needs to additionally use the corresponding recursion
for B′M which can be found by taking the derivative of (2.58).

Figure 2.6 visualizes the PSD frequencies χ as a function of the order of the Padé
approximation N. The center of the circles represent the position of the poles and the
circle area is proportional to the associated weights. For small enough frequencies,
the PSD frequencies are close to the regularly spaced Matsubara frequencies. For
larger frequencies, the spacing between the PSD frequencies increases and so does
their associated weight. Due to the irregular spacing of the poles, the PSD order has
to be fixed beforehand.
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The Wick rotation can then be performed in the same way as in the derivation
of the Matsubara sum formula. The integration over the contour γ2 as depicted in
Fig. 2.5 (b) then yields the sum over the residues of the finite number of PSD poles
instead. Any subtleties regarding the contour integration remain unchanged with
respect to the MSD. In particular, a discussion of the zero-frequency contribution
would be exactly the same, since the pole at x = 0 in (2.55) is identical to the n = 0
Matsubara frequency.

Within the PSD, the Casimir free energy then reads

F =
kBT

2

[
Φ(0) + 2

N

∑
j=1

ηjΦ(ikBTχj/h̄)

]
(2.60)

with
Φ(ω) = log det(1−M(ω)) . (2.61)

Though the computation of the PSD frequencies and weights is considerably more
complicated than for the MSD, the PSD scheme comes with the reward of a faster
convergence of the frequency sum. Namely, as we show in Appendix B.3 conver-
gence will be typically reached when the PSD order scales only as N ∝

√
λT/L.

Thus, the PSD is superior to the MSD, in particular, for non-planar surfaces at exper-
imentally relevant distances.

2.8 Scattering formula for the Casimir force and force gradi-
ent

So far, we have only considered the Casimir free energy. The Casimir force can be
obtained from the Casimir energy by taking the negative derivative with respect to
the distance between the objects. In numerical applications, one could compute the
force by calculating the numerical derivative. Depending on the numerical differ-
entiation scheme, this would require the computation of several Casimir energies
around a given distance, to obtain the force at a single distance. Because the evalua-
tion of the Casimir (free) energy may be computationally demanding for non-trivial
geometries (cf. Ch. 6), a formula which gives the force directly would be more effi-
cient.

Using Jacobi’s formula,

∂L log det (1−M) = − tr
(

∂LM
1−M

)
, (2.62)

we obtain a scattering formula for the force at finite temperatures,

FCas = kBT
∞

∑
n=0

′ tr
(

∂LM
1−M

)
. (2.63)

The force gradient of the Casimir interaction is a quantity which is often experimen-
tally investigated. Taking another derivative of the Casimir force, the force gradient
reads

F′Cas = kBT
∞

∑
n=0

′ tr

[
∂2

LM
1−M +

(
∂LM

1−M

)2
]

. (2.64)

Note that in (2.63) and (2.64) the dependence of the round-trip operatorM on the
imaginary frequencies iξn was dropped for brevity.
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By the replacement

kBT
∞

∑
n=0

′ → h̄
∫ ∞

0

dξ

2π
. (2.65)

in (2.63) and (2.64), the corresponding formulas for a vanishing temperature can be
obtained.
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Chapter 3

Casimir interaction between
parallel planes

The prime example for the Casimir effect is the setup which was considered by Hen-
rik Casimir in his pioneering work: two perfectly conducting, parallel planes in vac-
uum at zero temperature. In fact, due to its theoretical simplicity, the setup of two
parallel planes is the most studied geometry for the Casimir interaction. On the ex-
perimental side, however, due to the issue of parallelism between the planes, the
geometry of a sphere and plane has been most commonly studied. Recently, the
geometry of two spheres has gained more attention. The theoretical prediction of
the Casimir interaction in those geometries is a challenging task. Thus, almost ex-
clusively the proximity force approximation (PFA) is employed for the analysis of
experiments. Within the PFA, the Casimir energy is expressed as the average of the
plane-plane Casimir energy over the local distances between two surfaces. In this
way, the Casimir interaction between two parallel planes plays an important role for
the Casimir interaction even when non-planar surfaces are involved.

In this chapter, the Casimir interaction for the geometry of two parallel planes is
studied. This gives us the opportunity to familiarize ourselves with the scattering
formalism in a particularly simple example. In fact, this geometry is one of few
examples where both the reflection and translation operators are diagonal in the
same basis. For this geometry, this basis is composed of plane waves. We start out by
discussing the reflection of plane waves on a planar interface. We then introduce the
dielectric function and discuss important models for dielectrics and metals. The low-
frequency limit of the reflection coefficients on the plane depends on the material
model and we find expressions for it. Finally, we derive the formulas for the plane-
plane interaction and recover the well-known Lifshitz formula for the Casimir free
energy and the force.

3.1 Scattering at a plane

Consider two half-spaces filled with dielectric media of refractive indices n1 and n2.
The z-axis is chosen perpendicular to the interface plane. This setup is illustrated
in Fig. 3.1. The plane of incidence, also sometimes called Fresnel plane, is spanned
by the incidence wave vector K and the normal vector to the interface (here: z). We
consider the two polarizations for the fields: the electric field perpendicular and par-
allel to the plane of incidence. These polarizations are commonly called transverse
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FIGURE 3.1: Reflection and transmission of an incident electric wave
on a plane boundary between two media with respective refractive
index n1 and n2 for (a) the transverse electric (TE) and (b) the trans-
verse magnetic (TM) field components.

electric (TE) and transverse magnetic (TM) and they can be defined as

ε̂TE(K) =
ẑ× K̂
|ẑ× K̂| ,

ε̂TM(K) = ε̂TE × K̂
(3.1)

with unit vectors denoted by a hat. The field components with respect to this choice
of polarization are conserved for reflection and transmission on the plane interface.
This means that reflected and transmitted field of a TE-polarized incident wave are
also TE-polarized. And the same is true for a TM-polarized incident field.

The Fresnel reflection coefficients rTE and rTM describe the relative amplitudes
of TE- and TM-polarized plane waves reflected on the interface between the two
media, respectively. Using the law of specular reflection, θi = θr, and Snell’s law,

n1 sin(θi) = n2 sin(θt) (3.2)

the Fresnel reflection coefficients can be solely expressed in terms of the incidence
angle [81]

rTE(θi) =
cos(θi)−

√
ε− 1 + cos2(θi)

cos(θi) +
√

ε− 1 + cos2(θi)
, (3.3)

rTM(θi) =
ε cos(θi)−

√
ε− 1 + cos2(θi)

ε cos(θi) +
√

ε− 1 + cos2(θi)
(3.4)

where ε = ε2/ε1 = n2
2/n2

1.
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The incidence angle can be expressed in terms of the incidence wave vector
through the relation

cos θi =
kz

K
. (3.5)

At imaginary frequencies ξ = −iω, this relation becomes

cos θi =
κ

K (3.6)

with the axial wave vector after Wick rotation

κ =
√
K2 + k2 (3.7)

and the imaginary wave number

K = n1(iξ)ξ/c . (3.8)

At imaginary frequencies, the Fresnel coefficients can then be expressed in terms of
the imaginary wave number and the magnitude of the in-plane wave number k:

rTE(iξ, k) =
κ −

√
(ε− 1)K2 + κ2

κ +
√
(ε− 1)K2 + κ2

,

rTM(iξ, k) =
εκ −

√
(ε− 1)K2 + κ2

εκ +
√
(ε− 1)K2 + κ2

.

(3.9)

where ε = ε(iξ) = ε2(iξ)/ε1(iξ). In the special case of a perfectly reflecting interface,
i.e. ε2 → −∞, the Fresnel reflection coefficients become

r(PR)
TE = −1 , r(PR)

TM = 1 . (3.10)

Due to specular reflection, the in-plane wave vector k is conserved upon reflec-
tion on the plane. Since, in view of the angular spectrum representation, only the
sign φ changes, the action of the reflection operator of the planeRP on a plane-wave
mode can be written as

RP |k, p,+〉 = rp |k, p,−〉 . (3.11)

If we interchange the two half-spaces and have an incident plane-wave traveling in
negative z-direction, the Fresnel reflection coefficients are identical, and the action
of the reflection operator on the corresponding plane-wave modes reads

RP |k, p,−〉 = rp |k, p,+〉 . (3.12)

3.2 Dielectric function

In the last section, the reflection matrix elements for a plane were derived. We have
seen that the Fresnel reflection coefficients depend on the dielectric function which
generally depends further on the frequency. In order to evaluate the Casimir inter-
action by means of an integral or sum along the imaginary frequency axis, we then
also need to know how the dielectric function transforms under the Wick rotation.

Due to causality, the dielectric function, ε(ω) = ε′(ω) + iε′′(ω) with real part
ε′ and imaginary part ε′′, is required to be analytic in the upper complex ω-plane.
The real and imaginary parts are then connected by the Kramers-Kronig relations
[67]. These relations allow one to link the dielectric function for real and imaginary
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frequencies through the expression

ε(iξ) = 1 +
2
π

∫ ∞

0

ωε′′(ω)

ξ2 + ω2 dω . (3.13)

In principle, one can now find the dielectric function along the imaginary frequency
axis using tabulated experimental data. There are, however, practical limitation as
experimental data are known only for a finite frequency window ωmin < ω < ωmax.
Below ωmin and above ωmax an extrapolation using appropriate models for the di-
electric function is required. A detailed description on this approach, which is com-
monly used for metals such as gold, can be found for instance in Ref. [82].

For dielectrics, a different approach is usually used, and an oscillator model is
fitted to the experimental data set instead. Once the fitting parameters have been ob-
tained, one then simply evaluates the dielectric function within the oscillator model
on the imaginary frequency axis [83–85].

In the following, we will discuss the commonly employed oscillator model for di-
electrics, the Drude and plasma model for solid metals, and the Drude-Smith model
for liquid metals. In Chapter 7, where we apply the numerical and analytical meth-
ods developed in this thesis, we will use these models to describe the materials.

Dielectrics

The optical response of dielectrics is well described by the Debye and damped oscil-
lator model [23]

ε(ω) = 1 + ∑
d

cd

1− iωτd
+ ∑

j

cjω
2
j

ω2
j − iωγj −ω2

(3.14)

As pointed out above, the parameters cd, τd, cj, ωj and γj are determined by fitting
the dielectric function obtained from tabulated experimental data.

The individual oscillators contributing to the dielectric function may have a phys-
ical origin. For instance, the Debye oscillators, cd/(1− iωτd), describe polarization
by rotation of permanent dipoles with relaxation time τd [86], and the damped oscil-
lators, cjω

2
j /(ω2

j − iωγj − ω2) with resonance frequency ωj and damping constant
γj, describe polarization due to excitation of quantum states where cj is related to
the transition probability between states [85]. Two distinct regimes can be typically
identified for the damped oscillators: the IR spectrum corresponding to excitation
in vibration states, and the UV spectrum corresponding to electronic excitations. In
general, one should however not overinterpret the fitting parameters for they are
obtained from a formal mathematical fitting procedure [83, 84].

In the static limit, ω → 0, the dielectric function goes to a constant value deter-
mined by the coefficients cd and cj,

ε(0) = 1 + ∑
d

cd + ∑
j

cj . (3.15)

At imaginary frequencies, the oscillator model reads

ε(iξ) = 1 + ∑
d

cd

1 + ξτd
+ ∑

j

cjω
2
j

ω2
j + ξγj + ξ2

. (3.16)
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FIGURE 3.2: The dielectric function for imaginary frequencies ξ for
various materials. The vertical dashed line indicates the n = 1 Mat-
subara frequency at room temperature.

In this thesis, the oscillator model without Debye terms will be used for poly-
styrene using the fitting parameters of data set 1 from Ref. [84]. For water, we will
use two different models. One model is based on the fitting parameters from Zwol et
al. (c.f. Ref. [84]) where no Debye terms are used and the static value of the dielectric
function is set to ε(0) = 78.7. The other model has two Debye terms with fitting
parameters from Fiedler et al. (cf. Ref. [85]).

The dielectric function of polystyrene and the two models of water is depicted in
Fig. 3.2 as a function of the imaginary frequency ξ.

Metals

Plasma model

The lossless plasma model for the dielectric function is given by

ε(ω) = 1−
ω2

p

ω2 (3.17)

with plasma frequency ωp, and captures the optical properties of metals at high
frequencies. Despite missing physical motivation, the low-frequency extrapolation
of the Casimir interaction based on this model agrees very well with experimental
results.

At imaginary frequencies, the plasma model reads

ε(iξ) = 1 +
ω2

p

ξ2 . (3.18)

When we use this model for gold, we take the plasma frequency at 9 eV/h̄. The
corresponding dielectric function is depicted in Fig. 3.2.
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The conductivity σ(ω) is related to the dielectric function by the relation

ε(ω) = 1 + i
σ(ω)

ε0ω
. (3.19)

This implies that conductivity diverges like ∝ 1/ω as ω → 0 for the plasma model.
However, real metals have a finite dc conductivity. A simple model which takes the
finite dc conductivity into account is the Drude model.

Drude model

The dielectric function for the Drude model is given by

ε(ω) = 1−
ω2

p

ω(ω + iγ)
(3.20)

with the plasma frequency ωp and damping coefficient γ. At imaginary frequencies,
this dielectric function reads

ε(iξ) = 1 +
ω2

p

ξ(ξ + γ)
. (3.21)

A typical value for the damping coefficient for gold is 0.035 eV/h̄. The dielectric
function for gold based on the Drude model is shown Fig. 3.2.

Drude-Smith model

Liquid metals such as mercury display a qualitatively different conductivity from
the one predicted by the Drude model [87, 88]. Namely, a peak at infrared frequen-
cies was observed. To account for this observation Smith proposed to modify the
Drude model as [89]

ε(ω) = 1−
ω2

p

ω(ω + iγ)

[
1 +

∞

∑
n=1

inγncn

(ω + iγ)n

]
(3.22)

where the coefficients cn describe the persistence of the velocity of the conduction
electrons. When cn = 0 for all n, the Drude model is recovered. At imaginary
frequencies, the Drude-Smith model reads

ε(iξ) = 1 +
ω2

p

ξ(ξ + γ)

[
1 +

∞

∑
n=1

γncn

(ξ + γ)n

]
. (3.23)

For mercury, we use the parameters as given in Ref. [90] where only the first
value of the coefficients cn contributes, c1 = −0.49. The value of the plasma fre-
quency and the damping coefficient is ωp = 13 eV/h̄ and γ = 1.084 eV/h̄, respec-
tively. The dielectric function of mercury along the imaginary frequency axis is de-
picted in Fig. 3.2.

3.3 Fresnel coefficients in the low-frequency limit

When computing the Casimir interaction at finite temperatures, we need to know the
matrix elements of the reflection operators at finite imaginary frequencies and also
in the zero-frequency limit. When planes are involved, one needs to know how the
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Fresnel reflection coefficients behave in that limit. In fact, there are different results
for the low-frequency limit for the Fresnel coefficients depending on the material
model under consideration.

Here, it will be assumed that the medium is dielectric and thus its dielectric func-
tion takes a constant value εm(0) for vanishing frequencies. Depending on whether
the plane is dielectric or a metal described by the plasma or Drude model, we will
derive expressions for the Fresnel coefficients in the low-frequency limit.

Dielectric half-space

When the half-space is a dielectric, its permittivity εd assumes also a constant value
εd(0) at a vanishing frequency. In this limit, the Fresnel coefficients (3.9) become

rTE(0, k) = 0 ,

rTM(0, k) =
ε(0)− 1
ε(0) + 1

(3.24)

where ε(0) = εd(0)/εm(0).

Drude model

Within the Drude model the dielectric function behaves like ε ∝ 1/ξ as ξ → 0. The
TE Fresnel coefficient thus vanishes as for the dielectric plane, and the TM Fresnel
coefficient becomes perfectly reflecting,

rTE(0, k) = 0 ,
rTM(0, k) = 1 .

(3.25)

Because the Drude-Smith model has the same low-frequency behavior as the Drude
model, the Frensel coefficients take the same limit as given in Eq. (3.25).

Plasma model

When the dielectric function of the metallic plane is described by the plasma model,
the relative permittivity diverges for low frequencies as ε ∝ 1/ξ2. The TM Fresnel
coefficient then takes the same limit as for the Drude model. However, the TE Fresnel
coefficient is now different and it depends on the in-plane wave number k and the
plasma frequency ωp. In the low-frequency limit, the Fresnel coefficients thus read

rTE(0, k) =
k−

√
K2

p + k2

k +
√

K2
p + k2

,

rTM(0, k) = 1

(3.26)

with the plasma wave number Kp = ωp/c.

3.4 Lifshitz formula

Now, we are ready to evaluate the scattering formula for two planes. The setup is
depicted in Fig. 3.3. Due to the translational invariance of the setup in the direction
parallel to the planes, the Casimir free energy expressed through scattering formula
(2.52) needs to be understood per unit area.
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FIGURE 3.3: The plane-plane geometry consisting of two dielectric
half-spaces with respective relative permittivities ε1 and ε2. The two
planes are at a distance L. In between there is a dielectric medium
with relative permittivity εm.

Because the reflection and translation operators are diagonal for plane waves, the
round-trip operator is also diagonal. Using the identity for the translation matrices
(2.30) at imaginary frequencies, and (3.11) and (3.12) for the reflection operators at
the two planes, we can express the action of the round-trip operator on a plane-wave
mode as

M|k, p,−〉 = r(1)p (iξ, k)r(2)p (iξ, k)e−2κL |k, p,−〉 . (3.27)

The determinant in the scattering formula then factorizes and we find

log det(1−M(iξ)) = ∑
p∈{TE,TM}

∫ d2k
(2π)2 log

(
1− r(1)p (iξ, k)r(2)p (iξ, k)e−2κL

)
. (3.28)

It is now convenient to express the in-plane momenta k in polar coordinates, since
then the angular integration can be performed yielding a factor of 2π. Consequently,
the Casimir free energy per unit area between two parallel planes becomes

FPP = kBT
∞

∑
n=0

′ ∑
p∈{TE,TM}

∫ ∞

0

dk
2π

k log
(

1− r(1)p (iξn, k)r(2)p (iξn, k)e−2κL
)

. (3.29)

The pressure, i.e. force per unit area, between the two planes is obtained by taking
the negative derivative with respect to the distance and we find

FPP = −2kBT
∞

∑
n=0

′ ∑
p∈{TE,TM}

∫ ∞

0

dk
2π

κk
r(1)p r(2)p e−2κL

1− r(1)p r(2)p e−2κL
. (3.30)

The expressions (3.29) and (3.30) are known as the Lifshitz formulas for the free
energy per unit area and the pressure, respectively [10, 11].
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Chapter 4

Approximation methods for
non-planar surfaces

Approximation methods are usually used to estimate the Casimir interaction for
non-planar surfaces at short distances. One reason is that hardly any exact analytical
results are known. Another reason is that the numerically exact computation of the
interaction is a challenging task.

The most popular approximation method is the proximity-force approximation
(PFA). It has been employed for almost all experiments reported in the literature
so far. The PFA is applicable when the interacting surfaces are smooth and it be-
comes valid when the distance between the surfaces is much smaller than the radii
of curvature of the surfaces. In the literature the PFA is often also called Derjaguin
approximation (DA). The derivative expansion (DE) approach is a related approxi-
mation method which can be understood as a generalization of the PFA. As such it
yields asymptotic corrections to the PFA for small distances.

Another approximation method of the Casimir interaction is the pairwise sum-
mation (PWS) method. This method is built on expressing the Casimir force between
the two macroscopic bodies in terms of a sum over the forces acting between their
constituents, which can be atoms or molecules. The PWS is known to become pre-
cise only in rather extreme cases, for example, for weakly interacting atoms [8] or
when the materials involved are infinitely dilute [7]. In the experimentally relevant
cases, it was shown that the PWS does not match with the exact Casimir forces for
the atom-plane, plane-plane and plane-sphere geometry [91].

In this chapter we focus on the DA, the PFA and the DE. In order to avoid con-
fusion, we will not use the acronyms DA and PFA interchangeably. We will rather
define the PFA as the leading order asymptotic term of the DA for short distances.
In Sec. 4.1, the common heuristic derivation of the DA is outlined in the example of
two spheres. We then find the leading order contribution the PFA. Then, in Sec. 4.2,
DE approach is discussed which can be understood as a systematic way of improv-
ing on the DA and thus also on the PFA. The DE is then illustrated for two dielectric
spheres in the high temperature limit. The corresponding results for the PFA and
DE in the plane-sphere geometry can be obtained as the limiting case for one sphere
radius going to infinity.

4.1 Proximity-force approximation

Derjaguin proposed to determine the Casimir free energy between two non-planar
surfaces by averaging the plane-plane free energy over the local distances [21]. With
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FIGURE 4.1: Within the DA the Casimir energy is expressed in terms
of the energy of parallel planes averaged over the local distances H(x)
between the two non-planar surfaces.

the local-distance function H(x) the DA free energy is given as

FDA =
∫

Σ
d2xFPP(H(x)) , (4.1)

where Σ is the area in the x-y-plane for which H(x) is defined and FPP is the Casimir
free energy per unit area between parallel planes as given in (3.29). In Fig. 4.1, the
DA is illustrated for the example of two spheres with radii R1 and R2, respectively.

Due to rotational symmetry around the z-axis in the example of two spheres, it is
convenient to parametrize the surface Σ in polar coordinates with radial component
ρ and angular component φ. The radial component then runs from 0 to the smaller
sphere radius. The local-distance function is independent of the angle and given by

H(ρ) = L + R1

[
1−

√
1− (ρ/R1)2

]
+ R2

[
1−

√
1− (ρ/R2)2

]
. (4.2)

Introducing the distance variable l = H(ρ) and expanding the local-distance func-
tion around ρ = 0,

H(ρ) ≈ L +
1

2Reff
ρ2 +O(ρ4) (4.3)

with the effective radius
Reff =

R1R2

R1 + R2
, (4.4)

yields the well-known PFA free energy for two spheres [92]

FPFA(L) = 2πReff

∫ ∞

L
dlFPP(l) . (4.5)

Note that the upper integration limit was set to infinity here. In doing so, we account
only for the leading order contribution in the limit of large radii. The integral can be
performed and we obtain

FPFA(L) = −Reff
kBT

2

∞

∑
n=0

′ ∑
p∈{TE,TM}

∫ ∞

0
dk

k
κ

Li2

(
r(1)(iξn, k)r(2)(iξn, k)e−2κL

)
(4.6)

with the dilogarithm Li2 (see Appendix A.3). The PFA force is then given by

FPFA(L) = 2πReffFPP(L) . (4.7)
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It is worth mentioning that one could also choose a curved surface as Σ such as
the surface of either of the two surfaces. The pairs of infinitesimal surface elements
are then not mutually parallel anymore. In the example of a plane and a sphere, it
has been shown that the DA result depends on such choice, but the leading order
PFA result does not [93]. In fact, the choice of a plane Σ which was made here is
the base for the derivative expansion approach which we will discuss in the next
section.

It is clear that the DA can only be an approximation to the Casimir interaction
since the curvature of the surfaces is only partly taken into account through the
distance function. The exact Casimir interaction should also take diffraction into
account. Indeed diffraction effects are neglected within the DA since it involves
only the interaction of parallel planes for which only specular reflection is consid-
ered. As a further consequence of the plane-plane geometry, polarization mixing is
suppressed within the DA, which may in general give a contribution to the exact
Casimir interaction.

Despite these shortcomings and the fact that the Casimir interaction is non-addi-
tive [22], it is remarkable that the PFA yet provides the correct leading order asymp-
totic behavior of the exact Casimir interaction. Starting from the exact scattering
formula, we will prove in Sec. 6.3 that this is indeed true for the plane-sphere and
the sphere-sphere geometry.

4.2 Derivative expansion

The derivative expansion approach has been first suggested to be used for the Casi-
mir interaction in Ref. [41] where corrections to the Casimir energy for scalar fields
obeying the Dirichlet boundary condition have been computed. The results agreed
with those obtained from an asymptotic expansion of the exact Casimir energy in
the plane-cylinder [36] and plane-sphere geometry [94]. The derivative expansion
approach was soon generalized for the electromagnetic field where corrections to
the Casimir interactions have been obtained for perfectly reflecting objects [42] and
real materials [43]. A concise overview over the DE approach is given in [44] where
also applications to nuclear and colloidal physics are discussed.

In Ref. [45] the DE approach was studied for the zero-frequency Matsubara con-
tribution to the Casimir free energy which corresponds to the high temperature limit.
It was found that the DE is applicable in this case only if the dielectric function of
at least one of the two surfaces times the frequency squared goes to zero in the limit
of vanishing frequencies, i.e. if ω2ε(ω) → 0 as ω → 0. This means that the DE is
applicable for dielectrics and metals described by the Drude model, but not to two
perfectly reflecting objects or metallic surfaces described by the plasma model.

More recently, Bimonte has suggested to use the DE for the calculation of the fi-
nite imaginary frequency contributions while using exact results or numerical meth-
ods for the evaluation of the zero-frequency contributions for metallic surfaces [46,
47, 95].

In this section, the DE approach will be described in more detail. First, we pro-
vide an outline of the method which will be rather formal. Then, we apply the
DE approach to the Casimir free energy between two dielectric spheres in the high-
temperature limit. In section 6.8, the results obtained here will be compared to an
asymptotic expansion of the Casimir interaction between two spheres with radii
much larger than the surface-to-surface distance.
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FIGURE 4.2: Parametrization of two opposing, gently curved surfaces
with respect to a reference plane Σ. The distance of closest approach
between the surfaces is denoted as L.

Outline of the method

We outline the DE approach following the expositions in Refs. [42–44, 46]. We con-
sider two surfaces which are described by the smooth height profiles z = H1(x) and
z = H2(x). Here, x = (x, y) are the coordinates spanning some reference plane Σ
and the z-axis is chosen perpendicular to Σ (see Fig. 4.2). Because the two surfaces
do not intersect, we can always assume that H2(x) < H1(x).

The Casimir free energy between the two surfaces can be expressed as a func-
tional of the two height profiles, F [H1, H2]. The idea behind the DE is that for
surfaces of small slopes, |∇Hi| � 1 for i = 1, 2, the functional F [H1, H2] can be
expanded in derivatives of the height profiles [41]. Considering that F [H1, H2] be
invariant under simultaneous rotations and translations of H1 and H2 in the refer-
ence plane Σ, the most general expression for the derivative expansion up to second
order in the derivatives of the height profiles takes the form [42, 46]

F [H1, H2] =
∫

Σ
d2x
[
FPP(H) + α1(H)(∇H1)

2 + α2(H)(∇H2)
2

+ α×(H)∇H1 · ∇H2 + α−(H)(∇H1 ×∇H2) · ẑ
]

(4.8)

where the difference between the height functions is denoted by H ≡ H1−H2. Note
that here, FPP and the α’s can only be a function of H and not the individual height
profiles to ensure that the F [H1, H2] is invariant under translation of the reference
plane Σ along the z-direction.

The first term in (4.8) is precisely the DA as defined in Eq. (4.1). The integrals
in (4.8) proportional to the α’s represent curvature corrections beyond the DA. Note
that for consistency and in order to find the correction to the PFA, we need to include
the subleading term within the DA here and cannot neglect it like we did in Sec. 4.1.

The coefficients α are further constrained due to the invariance of F [H1, H2] with
respect to tilting the reference plane Σ [42]:

2 [α1(H) + α2(H) + α×(H)] + H
∂FPP

∂H
−FPP = 0 ,

α−(H) = 0 .
(4.9)

Using the above relations, we can eliminate α× and α− in (4.8). The interaction
between the two surfaces thus reduces to the simpler problem of a curved surface
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in front of a plane for which case the coefficients α1 and α2 are determined (c.f. the
derivation of α below).

We now make a simplification of the problem and assume both surfaces to be
made of the same materials. Then

α1(H) = α2(H) ≡ α(H) . (4.10)

Using (4.9) and (4.10) the DE can be recast into the form

F [H1, H2] = FDA +
∫

Σ
d2x α(H)(∇H)2

+
1
2

∫

Σ
d2x

(
FPP − H

∂FPP

∂H

)
∇H1 · ∇H2 . (4.11)

where FDA is the Casimir free energy within the DA as given in (4.1).
The remaining unknown in the above expression is the coefficient α(H). It can be

determined by a comparison of (4.11) with a perturbative expansion of the functional
F [H, 0] with H(x) = L+ h(x), which is the functional for a curved surface in front of
a plane, to second order for small deformation amplitudes h(x). Note that while this
latter expansion relies on small amplitudes h(x)/L � 1, the DE as given in (4.11)
assumes that the slopes of the surfaces are small. Nevertheless, both expansions can
be shown to be formally equivalent by resumming the pertubative expansion for
small in-plane momenta [44].

To second order in h, the perturbative expansion of the free energy is given by

F [L + h(x), 0] = AFPP(L) + µ(L)h̃(0) +
∫ d2k

(2π)2 G̃(k; L)|h̃(k)|2 (4.12)

where A is the surface area and k is the in-plane wave vector and h̃(k) is the Fourier
transform of h(x). In order for the DE to work, it is now required that the kernel G̃
can be expanded up to second order in k,

G̃(k; L) = γ(L) + δ(L)k2 + o(k2) . (4.13)

If the second-order derivative in k of the kernel exists, we can obtain α(L) by match-
ing (4.11) with (4.12) which yields

F ′PP(L) = µ(L) , F ′′PP(L) = 2γ(L) , α(L) = δ(L) (4.14)

where the prime indicates a derivative with respect to the distance L.
Now, we have successfully reduced the problem of determining α(L) to the prob-

lem of finding the kernel G̃. At first sight, that may not seem like progress, but in
fact the kernel can be determined using the scattering formalism for a gently curved
surface in front of a plane. The matrix elements of the reflection operator on the
gently curved surface can be expanded in powers of the height profile h as [43, 96]

〈k′, p′,−|R(1)|k, p,−〉 = (2π)2δ(k− k′)δpp′r
(1)
p (iξn, k)

+ κκ′
[
− 2Bpp′(k, k′)h̃(k− k′)

+
∫ d2k′′

(2π)2 (B2)pp′(k, k′; k′′)h̃(k− k′′)h̃(k′′ − k′) + . . .
]

. (4.15)
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The coefficients Bpp′(k, k′) and (B2)pp′(k, k′; k′′) depend on the relative orientation
of the in-plane wave vectors k and k′, on the corresponding k and κ, and on the
dielectric functions itself. Note that in Ref. [96] a slightly different notation is used:
Bpp′ → B22

αα0
and (B2)pp′ → i(B2)22

αα0
. The coefficient Bpp′ is given in Eq. (4.15) in

Ref. [96] and an expression for (B2)pp′ can be found in the Appendix D in Ref. [96].
Substituting the above expansion into the scattering formula (2.52), one obtains

[43]

G̃(k; L) = kBT
∞

∑
n=0

′
∫ d2k′

(2π)2
fn(k′, k′ + k) + fn(k′, k′ − k)

2
(4.16)

where

fn(k′, k′′) = −∑
p

κ′r(2)p (k′)
gp(k′)

e−2κ′L
[
(B2)pp(k′, k′; k′′)

+ 2 ∑
p′

κ′′r(2)p′ (k
′′)

gp′(k′′)
e−2κ′′LBpp′(k′, k′′)Bp′p(k′′, k′)

]
(4.17)

with gp(k) = 1 − r(1)p r(2)p exp(−2κL). For brevity, the explicit dependence on iξn
of several quantities was dropped. Now that we have found an expression for the
kernel G̃(k; L), the coefficient α(L) can be found by evaluation of the second order
derivative

α(L) =
1
2

∂2G̃
∂k2

∣∣∣∣
k=0

=
kBT

2

∞

∑
n=0

′
∫ d2k′

(2π)2
∂2 fn(k′, k′ + k)

∂k2

∣∣∣∣
k=0

. (4.18)

Note that an alternative approach on deriving the kernel G̃ is provided in Ref. [97]
where roughness effects in the plane-plane geometry were studied.

Application to two dielectric spheres at high temperatures

Derivation of α and FPP/A for dielectrics

In the limit of high temperatures only the zero-Matsubara frequency contributes.
For dielectrics, the TE contribution vanishes and the relevant scattering coefficients
are then [45, Eq. (A4)]

BTM,TM(k, k′) = − rTM

ε + 1

(
ε +

k · k′
kk′

)

(B2)TM,TM(k, k; k′) =
2rTM

(ε + 1)k2

[
rTM

k′
(

εk2k′2 − (k · k′)2
)
+

4εk
ε + 1

k · k′
] (4.19)

with relative permittivity ε = ε(0) and the Fresnel coefficient (see Sec. 3.3)

rTM =
ε− 1
ε + 1

. (4.20)

With that at hand, we can evaluate the n = 0 Matsubara contribution for α(L) in
(4.18).
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For convenience, we choose a coordinate system such that k is aligned with the
x-axis. Using polar coordinates we can then write

k′ · (k′ + k) = k′2 + kk′ cos(θ) ,

|k′ + k| =
√

k′2 + k2 + 2kk′ cos(θ) ,
(4.21)

where θ is the polar angle of k′. We carry the following calculation out using Math-
ematica [98].

After computing the second derivative of f0 defined in (4.17) with subsequent
evaluation at k = 0, the integral over θ can be carried out. By introducing the
rescaled variable q = Lk′, we find

α(L) = − kBT
8πL2 a(ε) (4.22)

with

a(ε) = r3
TM

∫ ∞

0
dq q e−2q 1 + 2rTM

(
2q2 − 3q− rTM

)
e−2q + r3

TM

(
4q2 + 6q + rTM

)
e−4q

(
1− r2

TMe−2q
)4 .

(4.23)
In the limit of ε→ ∞, i.e. rTM → 1, the integral becomes

a(D) =
∫ ∞

0
dq q e−2q 1 + 2

(
2q2 − 3q− 1

)
e−2q +

(
4q2 + 6q + 1

)
e−4q

(1− e−2q)
4 =

1 + 6 ζ(3)
24

.

(4.24)
In this limit, the known result for a Dirichlet scalar field is recovered [45, 99]

α(D)(L) = − kBT
192πL2 [1 + 6 ζ(3)] ≈ −0.0136

kBT
L2 . (4.25)

However, we find that the limit of ε → ∞ does not yield the same expression if
taken after computing derivative expansion. This can be seen in Fig. 4.3 (a) where
α is plotted as a function of the relative permittivity. In the figure, α(ε → ∞) ≈
−0.0120 kBT/L2, which is different from α(D) corresponding to the dashed line. Note
that this finding does not agree with the results from Ref. [45] where α (called Zs
there) converges to the Dirichlet value as ε → ∞. We will see in Sec. 7.2, however,
that our result obtained here matches with the results from numerical calculations.

In the opposite limit, ε → 0, the field obeys the Neumann boundary conditions
for which the DE is known to break down [45, 99]. This can also be seen in Fig. 4.3 (b)
by the fact that α diverges in this limit.

To find the correction beyond PFA with the DE, we will also need an expres-
sion for the Casimir free energy between two parallel dielectric planes in the high-
temperature limit. In view of (3.29), we have

FPP =
kBT

2

∫ ∞

0

dk
2π

k log
(

1− r2
TMe−2kL

)
. (4.26)

Since rTM does not depend on k, we can carry out the integration to find

FPP = − kBT
16πL2 Li3(r2

TM) , (4.27)

where Li3 is the trilogarithm.
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FIGURE 4.3: The function α in the high temperature limit for two
identical dielectrics as a function of the relative permittivity for (a)
ε > 1 with the dashed line being the limiting case for the Dirichlet
scalar field and (b) ε < 1.

Correction to the PFA for two spheres

Since we now have found expressions for α and FPP/A, we are fully equipped to
find the DE for any smooth geometry of two dielectric bodies in the high-temperature
limit. Here, we will focus on the geometry of two spheres which includes the geom-
etry of a plane and a sphere as a limiting case.

The remaining task is to evaluate the integrals in (4.11). Since α and FPP/A are
both proportional to H−2, the integrals which need to be solved are of the form

∫

Σ
d2x

1
H2 ,

∫

Σ
d2x

(∇H)2

H2 ,
∫

Σ
d2x
∇H1 · ∇H2

H2 . (4.28)

It is convenient to use polar coordinates due to the axial symmetry of the problem.
Then, the integration over the polar coordinates yields a factor of 2π. We choose the
reference plane Σ at the point on the surface of sphere 2, which is closest to sphere 1,
such that the surfaces can be parametrized in terms of the radial coordinate ρ:

H1(ρ) = L + R1

[
1−

√
1− (ρ/R1)2

]
,

H2(ρ) = −R2

[
1−

√
1− (ρ/R2)2

]
.

(4.29)

For the integration over the radial component ρ we cannot perform the integration
up to the smaller radius R1 since then the derivative of the height profiles would
diverge. The integration interval thus needs to be bounded by some ρmax < R1.
Fortunately, the leading and subleading order term within the DE will not depend
on the value of ρmax.

Assuming that the Casimir interaction is localized near the point of closest ap-
proach, we expand the gradients of the height profiles for small ρ:

(∇H)2 ∼ ρ2

R2
eff

, ∇H1 · ∇H2 ∼ −
ρ2

R1R2
. (4.30)

In fact, if we would take the exact expressions for the gradients, the integrals would
not yield a finite value. Using (4.30) with the exact expression for the height profile
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H = H1 − H2, we find
∫

Σ
d2x

1
H2 ∼ 2π

[
Reff

L
− (1− 3u) log

(
Reff

L

)]
,

∫

Σ
d2x

(∇H)2

H2 ∼ 4π log
(

Reff

L

)
,

∫

Σ
d2x
∇H1 · ∇H2

H2 ∼ −4πu log
(

Reff

L

)
(4.31)

with the dimensionless quantity

u =
R2

eff
R1R2

=
R1R2

(R1 + R2)2 . (4.32)

The individual contributions to (4.11) are then

FDA ∼ −
kBT

8
Li3(r2

TM)

[
Reff

L
− (1− 3u) log

(
Reff

L

)]
,

∫

Σ
d2xα(H)(∇H)2 ∼ − kBT

2
a(ε) log

(
Reff

L

) (4.33)

and

1
2

∫

Σ
d2x

(
FPP − H

∂FPP

∂H

)
∇H1 · ∇H2 ∼

3kBT
8

Li3(r2
TM)u log

(
Reff

L

)
. (4.34)

The final result for the Casimir free energy between two dielectric spheres then reads

F ∼ FPFA +F1 (4.35)

with the PFA
FPFA = − kBT

8
Li3(r2

TM)
Reff

L
(4.36)

and the first correction to the PFA

F1 =
kBT

8
[
Li3(r2

TM)− 4a(ε)
]

log
(

Reff

L

)
. (4.37)

Interestingly, like for the PFA, the dependence on u drops out for the correction and
it only depends on the sphere radii through the effective radius Reff. When we send
ε→ ∞, the result is consistent with a short-distance expansion of the exact result for
two spheres with Dirichlet boundary condition [46].

The result for the plane-sphere geometry can be obtained by formally sending
one sphere radius to infinity. The effective radius then becomes the radius of the
remaining sphere, Reff → R.
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Chapter 5

Scattering at a sphere

The goal of the subsequent chapters is to study the Casimir interaction in the sphere-
sphere and the plane-sphere geometry within the scattering formalism. The scat-
tering formula requires the reflection matrix elements for a sphere, which will be
derived in this chapter.

We start out by introducing the sphere scattering matrix elements for planar
waves. These scattering matrix elements involve the well-known Mie scattering
amplitudes. The exact reflection matrix elements are then given for imaginary fre-
quencies and expressions in the low-frequency limit are worked out. For the asymp-
totic expansion of the Casimir interaction between two spheres for short distances
in Ch. 6, the asymptotics of the reflection matrix elements for large radii are needed.
The asymptotics of the Mie scattering amplitudes in the real frequency domain is
known from the literature. The leading order term in the asymptotic expansion can
be derived within a WKB approximation allowing an interpretation within a geo-
metric optical picture, while the first correction takes diffraction into account.

After a brief review of these results from the literature, it is shown that the lead-
ing order WKB approximation evaluated at imaginary frequencies agrees with the
asymptotic expressions derived from the scattering amplitudes at imaginary fre-
quencies. While this is also true for the first correction to the WKB approximation
when the sphere is perfectly reflecting, our results for the correction for general di-
electric spheres differ from the ones found in the literature. The chapter is concluded
by giving the expression of the reflection matrix elements for large spheres at imag-
inary frequencies.

5.1 Scattering matrix elements

Consider a plane wave with wave vector K(in) and electric field E(in) incident on a
sphere with radius R and a scattered plane wave with wave vector K(sc) and electric
field E(sc). The pair of wave vectors (K(in), K(sc)) forms the scattering plane. The
angle between the two vectors in that scattering plane is the scattering angle Θ. The
setup is depicted in Fig. 5.1. Note that the scattering plane is not defined if Θ = 0
and π that is when the vectors a collinear.

To describe the scattering of plane waves on a sphere, it is convenient to make
use of a polarization basis which is defined with respect to the scattering plane.
The polarization components can then be defined to be parallel or perpendicular
to that plane. The perpendicular polarization vector is identical for the incident
and scattered wave, but the parallel polarization vector is in general different. The
polarization unit vectors are shown for the incident and scattered wave vector in
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FIGURE 5.1: Schematic representation of an incident and scattered
plane wave on a sphere. The wave vectors of the incident and scat-
tered plane waves, K(in) and K(sc), respectively, define a scattering
plane. The angle between the two wave vectors is the scattering an-
gle Θ. The polarization basis {ε̂‖, ε̂⊥} is defined with respect to the
scattering plane.
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Fig 5.1. Specifically, we define

ε̂
(in)
⊥ = ε̂

(sc)
⊥ =

K̂(sc) × K̂(in)

|K̂(sc) × K̂(in)| ,

ε̂
(in)
‖ = ε̂

(in)
⊥ × K̂(in) ,

ε̂
(sc)
‖ = ε̂

(sc)
⊥ × K̂(sc) .

(5.1)

The three vectors (ε̂‖, ε̂⊥, K̂) then form a right-handed triad. One can now decom-
pose the electric field vectors E(in) and E(sc) with respect to the polarization basis
(5.1). A similar decomposition can be found for the magnetic field vectors.

The linearity of the Maxwell’s equations implies that the scattering process mixes
the field components E⊥ and E‖ in a linear way. The relation between incident and
scattered fields can then be written in matrix form. If the origin of the coordinate
system is placed at the sphere center, this relation reads [81, 100]

(
E(sc)
‖

E(sc)
⊥

)
=

eiK|R|

−iK|R|

(
S2 0
0 S1

)(
E(in)
‖

E(in)
⊥

)
. (5.2)

where |R| =
√

x2 + y2 + z2. The scattering matrix is diagonal for the polarization
basis perpendicular and parallel to the scattering plane. The scattered field is a
spherical wave where the amplitudes in each direction is modulated by the scat-
tering amplitudes S1 and S2 which are functions of the size parameter KR and the
scattering angle Θ. The scattering amplitudes are defined in terms of the expansion
of partial waves with angular momentum ` and read [81, 100]

S1 =
∞

∑
`=1

2`+ 1
`(`+ 1)

[a`(KR)π`(cos(Θ)) + b`(KR)τ`(cos(Θ))] ,

S2 =
∞

∑
`=1

2`+ 1
`(`+ 1)

[a`(KR)τ`(cos(Θ)) + b`(KR)π`(cos(Θ))] .
(5.3)

Here, a` and b` are the partial-wave scattering amplitudes, called Mie coefficients,
for electric and magnetic polarization, respectively. Explicit expressions for the Mie
coefficients for imaginary frequencies will be given in Sec. 5.2. The angular distribu-
tion of the scattered radiations is described by the functions [81]

π`(z) = P` ′(z)

τ`(z) = −(1− z2)P` ′′(z) + zP` ′(z) ,
(5.4)

where P`(z) are Legendre polynomials and the prime indicates a derivative with
respect to the argument z = cos(Θ). The functions π`(z) and τ`(z) are thus usually
called angular functions.

Within the angular spectrum representation, the scattering angle Θ is defined
through the relation

cos(Θ) =
1

K2

(
k(in) · k(sc) + φ(in)φ(sc)k(in)z k(sc)

z

)
. (5.5)
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FIGURE 5.2: The Fresnel plane for the incoming wave vector K(in) in
general does not coincide with the scattering plane. The two planes
are at an angle χ(in). The corresponding Fresnel plane for the scat-
tered wave vector K(sc) is not shown. (from [104])

Using Weyl’s identity [101], the spherical wave can be expanded in terms of the
angular spectrum representation for planar waves [102, §2.2.2]

eiKr

−iKr
= −

∫ d2k
(2π)2

2π

Kkz
ei(k·r+φkzz) , (5.6)

which also includes evanescent waves. Note that for evanescent waves the scatter-
ing angle Θ defined by (5.5) does not correspond to an actual angle like it does for
propagating waves.

Within the angular spectrum representation, the matrix elements of the sphere
scattering matrix SS can now be identified as [103]

〈k(sc), φ(sc), ‖ |SS|k(in), φ(in), ‖〉 = − 2π

Kk(sc)
z

S2 ,

〈k(sc), φ(sc),⊥ |SS|k(in), φ(in),⊥〉 = − 2π

Kk(sc)
z

S1 .
(5.7)

Note that, because the frequency ω is conserved upon scattering, it was dropped in
the notation of the plane-wave basis elements.

For the purpose of applying these results to the Casimir effect, the polarization
basis (5.1) is not convenient as it depends on both the incident and scattered wave
vector. The TE-TM polarization basis defined in Eq. (3.1) is better suited because
once the z-axis is fixed, the polarization components only depend on the wave vec-
tor itself. Obviously, this choice is convenient for plane-sphere geometry because
scattering at the plane is already diagonal with respect to this polarization basis.
When two spheres are involved, the TE-TM polarization basis is also very practical
for describing the round trip because then the scattered mode from one sphere is
identical to the incident mode on the other sphere. Inspired by the scattering on a
plane, we denote the plane spanned by the wave vector and the z-axis as Fresnel
plane.
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In order to express the scattering matrix elements (5.7) in terms of the TE-TM-
polarization basis, we need to perform the rotation

(
ε̂TM
ε̂TE

)
=

(
cos(χ) − sin(χ)
sin(χ) cos(χ)

)(
ε̂‖
ε̂⊥

)
(5.8)

on both the incident and scattered modes. Noting that the field components then
transform with the inverse rotation matrix, the scattering matrix elements with re-
spect to the TE and TM polarization can be expressed as

〈k(sc), φ(sc), TM|SS|k(in), φ(in), TM〉 = − 2π

Kk(sc)
z

(AS2 + BS1) , (5.9a)

〈k(sc), φ(sc), TE|SS|k(in), φ(in), TE〉 = − 2π

Kk(sc)
z

(AS1 + BS2) , (5.9b)

〈k(sc), φ(sc), TM|SS|k(in), φ(in), TE〉 = +
2π

Kk(sc)
z

(CS1 + DS2) , (5.9c)

〈k(sc), φ(sc), TE|SS|k(in), φ(in), TM〉 = − 2π

Kk(sc)
z

(CS2 + DS1) , (5.9d)

where the rotation between the polarization bases is described by the coefficients

A = cos(χ(sc)) cos(χ(in)) ,

B = sin(χ(sc)) sin(χ(in)) ,

C = − sin(χ(sc)) cos(χ(in)) ,

D = cos(χ(sc)) sin(χ(in))

(5.10)

with χ(in) and χ(sc) being the angles between the Fresnel and scattering plane for the
incident and scattered wave vectors, respectively. Note that χ(in) and χ(sc) depend
on both wave vectors K(in) and K(sc), but explicit expressions for the angles will not
be needed. However, expressions for the coefficients A, B, C and D as functions of
the incident and scattered wave vectors will be needed. Those are worked out in
Appendix C.1.

The effect of TE-TM polarization mixing is controlled by the angles χ(in) and χ(sc)

and only appears when those angles do not vanish.
The scattering matrix elements at the sphere are not all mutually independent as

they need to fulfill reciprocity relations [55, 105, 106]. To check for consistency, we
now verify that the reciprocity relations are fulfilled. These relations read

k(sc)
z 〈k(sc), φ(sc), p(sc)|SS|k(in), φ(in), p(in)〉

= (−1)p(sc)+p(in)k(in)z 〈−k(in),−φ(in), p(in)|SS| − k(sc),−φ(sc), p(sc)〉 (5.11)

where (−1)p(sc)+p(in) is +1 if the polarizations are equal and −1 otherwise. When
(K(sc), K(in)) is mapped to (−K(in),−K(sc)) the angles between the incident and scat-
tering plane change as

χ(sc) → −χ(in) ,

χ(in) → −χ(sc) .
(5.12)
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Then, the polarization transformation coefficients are mapped as

A→ A ,
B→ B ,
C → D ,
D → C .

(5.13)

Because moreover the scattering angle Θ stays invariant under such transformation,
the reciprocity relations are readily verified for the scattering matrix elements (5.9).

5.2 Reflection matrix elements at imaginary frequencies

The evaluation of the scattering formula requires the matrix elements for a reflec-
tion on the sphere. Those reflection matrix elements are obtained from the scattering
matrix elements for which the direction of propagation along the z-axis changes be-
tween the incident and scattered wave vector, i.e. φ(in) and φ(sc) have opposite sign.
At imaginary frequencies, the reflection matrix elements read

〈k(sc),∓, TM|RS|k(in),±, TM〉 = 2π

Kκ(sc)
(AS2 + BS1) , (5.14a)

〈k(sc),∓, TE|RS|k(in),±, TE〉 = 2π

Kκ(sc)
(AS1 + BS2) , (5.14b)

〈k(sc),∓, TM|RS|k(in),±, TE〉 = − 2π

Kκ(sc)
(CS1 + DS2) , (5.14c)

〈k(sc),∓, TE|RS|k(in),±, TM〉 = 2π

Kκ(sc)
(CS2 + DS1) . (5.14d)

In polar coordinates, k(in) = (k(in), ϕ(in)) and k(sc) = (k(sc), ϕ(sc)), the polarization
transformation coefficients derived in appendix C.1 are given by

A =
K4 cos(ϕ)− [k(in)k(sc) cos(ϕ)− κ(in)κ(sc)][k(in)k(sc) − κ(in)κ(sc) cos(ϕ)]

K4 − [k(in)k(sc) cos(ϕ)− κ(in)κ(sc)]2
,

B = − K2k(in)k(sc) sin2(ϕ)

K4 − [k(in)k(sc) cos(ϕ)− κ(in)κ(sc)]2
,

C = ±K sin(ϕ)
k(in)k(sc)κ(in) cos(ϕ) + (k(in))2κ(sc)

K4 − [k(in)k(sc) cos(ϕ)− κ(in)κ(sc)]2
,

D = ∓K sin(ϕ)
k(in)k(sc)κ(sc) cos(ϕ) + (k(sc))2κ(in)

K4 − [k(in)k(sc) cos(ϕ)− κ(in)κ(sc)]2
,

(5.15)

where ϕ = ϕ(sc) − ϕ(in). The upper sign in the coefficients C and D is taken for an
incident plane wave traveling in positive z-direction, while the lower sign is reserved
for incident plane waves traveling in the opposite direction.
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Corresponding expressions for the coefficients A, B, C and D for Cartesian coor-
dinates, k(in) = (k(in)x , k(in)y ) and k(sc) = (k(sc)

x , k(sc)
y ), can be found by replacing

k(in/sc) =

√(
k(in/sc)

x

)2
+
(

k(in/sc)
y

)2
,

cos(ϕ) =
k(in)x k(sc)

x + k(in)y k(sc)
y

k(in)k(sc)
,

sin(ϕ) =
k(in)x k(sc)

y − k(sc)
x k(in)y

k(in)k(sc)
.

(5.16)

At imaginary frequencies, the angular functions π` and τ` appearing in the Mie
scattering amplitudes (5.3) are evaluated at

cos(Θ) = − 1
K2

(
k(in) · k(sc) + κ(in)κ(sc)

)
. (5.17)

For homogeneous dielectric spheres, the electric and magnetic Mie coefficients
are given by [50, 107]

a`(ix) = (−1)`
π

2
n2s(a)

` − s(b)`

n2s(c)` + s(d)`

,

b`(ix) = (−1)`+1 π

2
s(b)` − s(a)

`

s(c)` + s(d)`

,

(5.18)

respectively, with the imaginary size parameter x = −iKR = KR and

s(a)
` = I`+ 1

2
(nx)

[
xI`− 1

2
(x)− `I`+ 1

2
(x)
]

,

s(b)` = I`+ 1
2
(x)
[
nxI`− 1

2
(nx)− `I`+ 1

2
(nx)

]
,

s(c)` = I`+ 1
2
(nx)

[
xK`− 1

2
(x) + `K`+ 1

2
(x)
]

,

s(d)` = K`+ 1
2
(x)
[
nxI`− 1

2
(nx)− `I`+ 1

2
(nx)

]
.

(5.19)

Here, n = nsphere/nmedium is the relative refractive index, and the functions I` and
K` are the modified Bessel function of first and second kind, respectively.

In the limit of a perfectly reflecting sphere, n→ i∞, the Mie coefficients become

a(PR)
` (ix) = (−1)`

π

2
xI`−1/2(x)− `I`+1/2(x)

xK`−1/2(x) + `K`+1/2(x)
,

b(PR)
` (ix) = (−1)`+1 π

2
I`+1/2(x)
K`+1/2(x)

.
(5.20)

5.3 Low-frequency limit

To compute the contribution of the round trip operator at ξ0 = 0 in the Matsubara
sum, the low-frequency limit of the reflection matrix elements (5.14) is required.
Even though the scattering amplitudes vanish in the limit ξ → 0, this is not the
case for the reflection matrix elements. Therefore, we need to keep terms linear in ξ
in the low-frequency expression for the scattering amplitudes.
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model Amodel
` Bmodel

`

perfect reflectors 1 − `

`+ 1

Drude model 1 0

plasma model 1 − `

`+ 1

[
1− 2`+ 1

α

I`+1/2(α)

I`−1/2(α)

]

dielectrics
ε(0)− 1

ε(0) + 1 + 1
`

0

TABLE 5.1: The coefficients Amodel
` and Bmodel

` depending on the
material model under consideration. For the plasma model, the
variable α = ωpR/c was introduced and, for dielectrics, ε(0) =
εsphere(0)/εmedium(0) denotes the relative dielectric function in the
static limit.

We start by expanding the angular functions π` and τ`. According to (5.17),
cos(Θ) diverges like 1/ξ2 at low frequencies. Thus, we can employ the asymptotics
of the angular functions for large arguments (A.22) and find

π`

(
cos(Θ)

)
∼ (2`)!

2`(`− 1)!`!
cos`−1(Θ) ∝

1
ξ2`−2 ,

τ`
(

cos(Θ)
)
∼ (2`)!

2`[(`− 1)!]2
cos`(Θ) ∝

1
ξ2` .

(5.21)

As a consequence, among the four combinations of these two functions and the two
Mie coefficients a` and b`, only those involving τ` can potentially lead to contribu-
tions linear in ξ. Terms involving π` yield an additional factor ξ2 and can thus be
disregarded.

At low frequencies, the Mie coefficient are of the form (see [51, §7] for a detailed
discussion)

a`(ix) = (−1)`
(`+ 1)(`!)2

2`(2`+ 1)[(2`)!]2
Amodel

` (2x)2`+1 +O(x2`+2) ,

b`(ix) = (−1)`
(`+ 1)(`!)2

2`(2`+ 1)[(2`)!]2
Bmodel
` (2x)2`+1 +O(x2`+2) ,

(5.22)

where x = nξR/c and the coefficients Amodel
` and Bmodel

` depend on the model used
for the material under consideration. In Table 5.1 these coefficients are listed for a
sphere made of a perfectly reflecting material, a metal described by either the Drude
or the plasma model, or a dielectric material.

With the low-frequency asymptotics (5.21) and (5.22), the scattering amplitudes
in the low-frequency limit read

S1 = x
∞

∑
`=1
Bmodel
`

y2`

(2`)!
,

S2 = x
∞

∑
`=1
Amodel

`

y2`

(2`)!
,

(5.23)
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where y =
√
−2x2 cos(Θ) = R

√
2(k(in) · k(sc) + k(in)k(sc)).

Because the imaginary wave numberK contained in the prefactor x in (5.23) can-
cels with the one in the matrix elements, it is convenient to define scaled scattering
amplitudes as S̃p = Sp/x in the low-frequency limit. Noting that for ξ = 0 the
polarization transformation coefficients evaluate to

A = 1 , B = C = D = 0 , (5.24)

the reflection matrix elements become

〈k(sc),∓, TM|RS|k(in),±, TM〉 = 2πR
k(sc)

S̃2 ,

〈k(sc),∓, TE|RS|k(in),±, TE〉 = 2πR
k(sc)

S̃1

(5.25)

with the scaled scattering amplitudes

S̃1 =
∞

∑
`=1
Bmodel
`

y2`

(2`)!
,

S̃2 =
∞

∑
`=1
Amodel

`

y2`

(2`)!
.

(5.26)

For perfect reflectors, the sum over ` can be performed yielding

S̃(PR)
1 = −y2 cosh(y)− 2y sinh(y) + 2 cosh(y)− 2

y2 ,

S̃(PR)
2 = cosh(y)− 1 .

(5.27)

5.4 Scattering at a large sphere

In order to find an asymptotic expansion of the Casimir free energy for R1, R2 � L,
we need asymptotic expressions for the matrix elements (5.14). For this purpose, it is
convenient to express the scattering amplitudes (5.3) in terms of the so-called Debye
expansion. Within this Debye expansion, the scattering amplitudes are decomposed
in an infinite series of terms representing multiple internal reflections of the spherical
waves [108]:

Sp = Sp,0 +
N

∑
n=0

Sp,n + ∆Sp,N (5.28)

for p = 1, 2 where Sp,0 and Sp,1 represent the direct reflection and transmission am-
plitude, respectively. The terms Sp,n for n ≥ 2 correspond to transmission into the
sphere followed by (n− 1) internal reflections and ∆Sp,N is a remainder term.

Except for the case when resonances are involved, the Debye expansion yields
a rapidly converging series in contrast to performing the summation over ` in (5.3).
Moreover, within the expansion many optical effects for water droplets in air can
be explained. For instance, the primary bow of the meteorological rainbow can be
explained with the third term of the Debye expansion Sp,2 [108, 109].

For the Casimir interaction only the direct reflection term contributes to the as-
ymptotic expansion. This is because higher order terms contain phase factors as-
sociated to propagation over the sphere’s radius which become exponentially small
after Wick rotation. For large size parameters KR � 1, the asymptotic expansion of
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the direct reflection term reads

Sp ∼ S(WKB)
p

(
1 + sp

i
KR

+O((KR)−2)

)
(5.29)

with
S(WKB)

p = − iKR
2

rp((π −Θ)/2) exp(−2iKR sin(Θ/2)) (5.30)

where rp are the Fresnel coefficients (3.3) for which p = 1, 2 corresponds to TE and
TM modes, respectively. Expressions for the correction sp can be found in Ref. [110]
or [111]. While the results from the two references agree for perfect reflectors,

s(PR)
1 =

1
2

cos(Θ)

sin3(Θ/2)
,

s(PR)
2 = −1

2
1

sin3(Θ/2)
,

(5.31)

they are not consistent for transparent spheres.
The asymptotic expansion of the direct reflection term of the scattering ampli-

tudes (5.29) is derived from the WKB approximation for the Mie coefficients and
angular functions by taking the saddle-point approximation and its correction for
the integral over angular momenta [110, 112]. For a given scattering angle Θ, the
main contribution to the scattering amplitudes (5.3) comes from the neighbordhood
of the angular momentum value ` = KR cos(Θ/2) [113]. In the semiclassical ap-
proximation, the localization principle [100] connects waves with angular momen-
tum ` � 1 to localized rays defining an impact parameter b = `/K. Thus, the
leading order WKB approximation (5.30) defines rays corresponding to the impact
parameter b = R cos(Θ/2) shown in Fig. 5.3. Such rays hit the sphere surface with
an incidence angle of (π − Θ)/2, which is precisely the value required for obtain-
ing the scattering angle Θ from the condition of specular reflection at the tangent
plane indicated in the figure. Comparing the reflection at the tangent plane (thick
lines) and at the sphere with its center as a reference point, one finds a difference
in path length amounting to 2(ωR/c) sin(Θ/2). In this way, the last two factors of
(5.30) find their natural explanation. The first factor is responsible for providing the
correct scattering cross section proportional to R2.

While the leading order term in (5.29) is described by geometrical optics, the
subleading term takes diffraction into account.

In view of the expression (5.29) one would expect the WKB expansion to break
down when the first order correction becomes larger than the leading order term.
Indeed this is the case when the scattering angle is close to the forward direction,
Θ ≈ 0. In fact, it was shown that the result holds uniformly for (KR)−1/3 � Θ ≤ π,
i.e. all scattering directions except close to the forward direction [110].

For the Casimir effect, we expect that the near forward direction plays a minor
role in the asymptotic expansion since the corresponding amplitude for the round-
trip would be small. Thus, in order to find the asymptotic expression for the scat-
tering amplitudes along the imaginary axis, we can simply evaluate the asymptotics
(5.29) at imaginary frequencies. To double check that this is indeed true, we in-
dependently derive the asymptotic expansion corresponding to (5.29) for imaginary
frequencies by starting out with the representation of the exact scattering amplitudes
for imaginary frequencies. In the derivation, which is given in Appendix C.2, it is
assumed that cos(Θ) does not take values close to −1. In Sec. 7.5, we will verify that
our result is correct for any values of cos(Θ).
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R sin(Θ/2)

b

Θ

π − Θ
2 π − Θ

2

z

FIGURE 5.3: Geometrical optics limit for the direct reflection by a
sphere of radius R. Within the WKB approximation, a given scat-
tering angle Θ defines the impact parameter b = R cos(Θ/2). Seen
from the tangent plane to the sphere, the angle of incidence is given
by (π − Θ)/2. The missing phase of a ray with frequency ω re-
flected on the sphere’s surface with respect to a corresponding ray
passing via the sphere’s center before being deflected amounts to
2(ωR/c) sin(Θ/2). (from Ref. [114])

For large imaginary size parameters x � 1, we find

Sp ∼ S(WKB)
p

(
1 + sp

1
x
+O(1/x2)

)
(5.32)

with
S(WKB)

p =
x
2

rp((π −Θ)/2) exp(2x sin(Θ/2)) (5.33)

and

s1 = s(PR)
1 +

1/s
c2 + s

√
n2 − c2

− 2n2 − c2

2(n2 − c2)3/2 ,

s2 = s(PR)
2 +

1/s
c2 − s

√
n2 − c2

− c2

s3
2n4s2 − n2c2(1 + s2 − s4) + c6

(n2 − c2)(n2s2 − c2)2

+
n2

2(n2 − c2)3/2
2n4 − n2c2(1 + c2)− c4

(n2s2 − c2)2 .

(5.34)

In the formulas (5.34), we have made use of the abbreviations

s = sin(Θ/2) , c = cos(Θ/2) . (5.35)

In fact, while we were able to reproduce the correction in the perfect reflector limit,
the correction for transparent spheres does not agree with any of the two results in
Ref. [110] or [111]. For a comparison, we give the two different expressions in Eqs.
(C.28) and (C.29), respectively.

When applying the asymptotics of the scattering amplitudes (5.32) to the Casimir
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effect, it is useful to express the trigonometric functions of Θ with respect to cos(Θ)
for which an expression at imaginary frequencies is given in (5.17). For instance,

sin(Θ/2) =

√
1− cos(Θ)

2
, (5.36)

cos2(Θ/2) = 1− sin2(Θ/2) =
cos(Θ) + 1

2
. (5.37)

The asymptotic expansion of the Mie scattering amplitudes (5.32) does a priori
not cover the zero-frequency case because the requirement x � 1 cannot be met
when ξ = 0. In Appendix C.2, the asymptotics of the scaled scattering amplitudes
(5.26) for large radii is derived. The result valid at vanishing frequencies is found to
be

S̃1 ∼
1
2
Bmodel

y/2 ey ,

S̃2 ∼
1
2
Amodel

y/2 ey .
(5.38)

where y = R
√

2(k(in) · k(sc) + k(in)k(sc)) is assumed to be the large parameter and

the coefficientsAmodel
` and Bmodel

` are given in Table 5.1. As shown in Appendix C.2,
to leading order they agree with the leading order term in (5.32) taken at ξ = 0.
However, the correction to the WKB result is now different. In the special case of
perfect reflectors (including Drude and plasma-type metals), the asymptotics of S̃2
in (5.38) contains only the leading order asymptotic term. In view of the exact result
(5.27), the subleading terms are exponentially small in the large parameter y.

It is worth noting that, for the application of computing the asymptotic expan-
sion of the Casimir interaction involving spheres, it is important to keep the asymp-
totics (5.38) for the zero-frequency contribution in this form. The correction to the
PFA can only be obtained in this way. Otherwise, if the coefficientsAmodel

y/2 and Bmodel
y/2

are expanded for large y, the NTLO term would give rise to infrared divergences.

5.5 Reflection matrix elements for large spheres

The matrix elements of the reflection operator at the sphere can be obtained by using
the asymptotic expansion of the scattering amplitudes given in Sec. 5.4 in the exact
reflection matrix elements. Here, we summarize the asymptotics of the reflection
matrix elements for finite and vanishing frequencies. These results will be used in
the following chapter.

For finite imaginary frequencies, (5.14) with (5.34) yields

〈k(sc),∓, p(sc)|RS|k(in),±, p(in)〉 ∼ πR
κ(sc) exp

(
2x sin

(
Θ
2

))
ρp(out),p(in) (5.39)

where

2x sin
(

Θ
2

)
= R

√
2(K2 + k(in) · k(sc) + κ(in)κ(sc)) (5.40)
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and
ρTE,TE ∼ (ArTE + BrTM) + (ArTEs1 + BrTMs2)

1
x
+O

(
x−2)

ρTM,TM ∼ (ArTM + BrTE) + (ArTMs2 + BrTEs1)
1
x
+O

(
x−2)

ρTM,TE ∼ − (CrTE + DrTM)− (CrTEs1 + DrTMs2)
1
x
+O

(
x−2)

ρTE,TM ∼ (CrTM + DrTE) + (CrTMs2 + DrTEs1)
1
x
+O

(
x−2) .

(5.41)

The Fresnel coefficients rTE and rTM as given in (3.3) are evaluated at the incidence
angle (π−Θ)/2, the coefficients in the WKB correction s1 and s2 are given in (5.34),
and the polarization transformation coefficients A, B, C and D can be found in (5.15).

In the zero-frequency limit, (5.25) with (5.38) yields

〈k(sc),∓, TM|RS|K(in),±, TM〉 ∼ πR
k(sc)
Amodel

y/2 ey ,

〈k(sc),∓, TE|RS|K(in),±, TE〉 ∼ πR
k(sc)
Bmodel

y/2 ey
(5.42)

with y = R
√

2(k(in) · k(sc) + k(in)k(sc)) and the coefficients Amodel
` and Bmodel

` are
given in Table 5.1.
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Chapter 6

Asymptotic expansion of the
Casimir interaction between two
spheres

In this chapter, we determine the first two terms in the asymptotic expansion of
the Casimir interaction between two spheres, when the radii of the spheres R1 and
R2 become large compared to the surface-to-surface distance L. In contrast to the
derivative expansion approach presented in Sec. 4.2, we start out from the exact Ca-
simir interaction in terms of the scattering formula without making any assumptions
on locality.

In the literature, such asymptotic expansions have been calculated exclusively
by utilizing a multipole representation of the fields. This multipole-based method,
originally developed by Bordag in [36] for a cylinder in front of a plane, has been em-
ployed for the plane-sphere [37, 94] and sphere-sphere geometry [40] for scalar and
electromagnetic fields with perfectly reflecting boundary conditions. For the plane-
sphere geometry, the results have been generalized to the electromagnetic field with
boundary conditions imposed by real materials [38]. In all of these works, the PFA
was obtained as the asymptotic leading order term for short distances.

The setups for which the PFA correction have been obtained for the electromag-
netic case in the literature are summarized in Tab. 6.1. In the table, we distinguish
between (A) the plane-sphere and (B) the sphere-sphere geometry, between van-
ishing (T = 0) and finite temperature (T > 0) and between idealized objects with
perfectly reflecting boundary condition and objects made of real materials. Drude-
type metals are not considered in the table since exact results for zero-frequency
Matsubara contribution to the Casimir interaction are known for both geometries
[33–35]. Note that, although in Ref. [39] the PFA correction has been obtained for the
zero-frequency contribution of the Casimir interaction between a perfectly reflect-
ing plane and sphere, the result can be combined with the PFA correction at finite
frequencies given in [104] to find the PFA correction at finite temperatures.

In contrast to the method developed by Bordag, we perform the asymptotic ex-
pansion using the representation of the electromagnetic field in terms of plane waves
further allowing for a physical interpretation of the calculated results. We prove that
the PFA provides the correct leading-order term in the small-distance limit for arbi-
trary materials and temperatures. Moreover, we obtain explicit expressions for the
PFA correction for arbitrary materials and temperatures, thus completing table 6.1.
As special cases, we recover the results for the plane-sphere geometry known from
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TABLE 6.1: Known results in the literature for PFA correction from an
asymptotic expansion of the exact Casimir interaction in the plane-
sphere and sphere-sphere geometry.

(A) plane-sphere geometry

T = 0 T > 0
perfect reflectors [37] [39]

real materials [38] –

(B) sphere-sphere geometry

T = 0 T > 0
perfect reflectors [40] –

real materials – –

the literature [37, 38, 42], and the sphere-sphere result for perfect reflectors at van-
ishing temperatures [40, 42]:

E ∼ EPFA

[
1 +

(
1
3
− 20

π2 − u
)

L
Reff

+ . . .
]

(6.1)

with the PFA result

EPFA = − h̄cπ3Reff

720L2 , (6.2)

the dimensionless parameter u defined in (4.32) and the effective radius Reff as de-
fined in (4.4). When real materials at finite temperatures are involved, we demon-
strate that within our approach the PFA correction is valid even in situations where
the derivative expansion approach fails or becomes non-applicable.

The chapter starts out by introducing the saddle-point method for an asymptotic
expansion of integrals. A formula which goes beyond the commonly employed lead-
ing order saddle-point approximation is provided. The Casimir free energy is then
expressed in terms of a trace over round trips for which the saddle-point method
can be applied. The leading order contribution due to the saddle-point integral is
derived where the cases of finite and vanishing frequencies are treated separately.
The leading order saddle-point approximation of the trace over round trips contains
the PFA to leading order and a subleading term due to diffraction. The remaining
PFA correction is calculated using the next-to-leading-order term in the saddle-point
method. It is shown that the correction is consistent with (6.1) in the perfect reflec-
tor limit at vanishing temperatures. Taking the plane-sphere limit from the sphere-
sphere result we obtain the result found by Teo [40]. We then compare the results
obtained by means of the asymptotic expansion with the derivative expansion ap-
proach. As an application, we analyze the relative contributions entering the PFA
correction. Finally, we estimate the effective interaction area on the two spheres
contributing to the leading two terms in the asymptotic expansion of the Casimir
interaction.

6.1 Asymptotic expansion of integrals: the saddle-point ap-
proximation

Consider a d-dimensional integral of the form

I(λ) =
∫

Rd
dx g(x)e−λ f (x) (6.3)

with the differentiable functions f and g. We assume that f has a unique minimum at
xsp called saddle-point, which is determined by the saddle-point condition∇ f (x) =
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0, and the Hessian matrix of f

H ≡
(

∂2 f
∂xi∂xj

)

i,j=1,...,d
(6.4)

has no vanishing eigenvalues, i.e. it is non-singular.
We are interested in the asymptotic behavior of such integrals for large values

of λ. Away from the saddle-point xsp, the integrand becomes exponentially small.
Thus, the main contribution of the integral comes from a close neighborhood around
xsp. A Taylor expansion of the functions f and g around that point then allows one to
find an asymptotic expansion of I(λ) for large λ. Due to the saddle-point condition,
the first order term in the Taylor expansion of f vanishes. Expanding f up to second
order and g to zeroth order, the integral can be identified as a Gaussian integral and
can thus be evaluated. This yields the leading order asymptotic behavior of I(λ) as
λ→ ∞.

To obtain the next-to-leading-order term in the expansion, one has to expand f
to fourth and g to second order. Keeping the second order term of f in the exponent,
the evaluation of the integrals of Gaussian form multiplied by polynomials yields
the formula [115, 116]

I(λ) ∼
(

2π

λ

)d/2 e−λ fsp

√
detH

(
gsp +

1
2λ

[
gijH

ij − 1
4
(gsp fijkl + 4 fijkgl)H

ijHkl

+
gsp

12
fijk flmn

(
3HijHklHmn + 2HilHjmHkn

)])
. (6.5)

Here, the subscript “sp” denotes the evaluation of the function at x = xsp. A deriva-
tive with respect to the i-th component of x with subsequent evaluation at the saddle-
point is represent by a lower index i: fi ≡ ∂ f /∂xi|x=xsp or equivalently for g. Like-
wise, higher order derivatives are denoted by multiple lower indices. Two upper
indices denote the matrix elements of the inverse matrix, Hij ≡ (H−1)i,j, and, finally,
repeated indices are summed over the values from 1 to d.

In the special case of d = 1, we have [117, 118]

I(λ) ∼
(

2π

λ f ′′sp

)1/2

gspe−λ fsp

(
1 +

1
2λ

[
g′′sp

gsp f ′′sp
−

g′sp f ′′′sp

gsp( f ′′sp)
2 −

1
4

f ′′′′sp

( f ′′sp)
2 +

5
12

( f ′′′sp)
2

( f ′′sp)
3

])

(6.6)
where the prime denotes a derivative.

6.2 Expansion in round trips

In order to facilitate the asymptotic expansion of the Casimir free energy, we use
the identity (2.22) to express the logarithm of the determinant as the trace of the
logarithm in the scattering formula (2.52). The Casimir free energy then becomes

F = kBT
∞

∑
n=0

′F (ξn) with F (ξ) = tr log(1−M(iξ)) (6.7)

and the Matsubara frequencies ξn. Here, M is the round-trip operator defined in
(2.41). Without loss of generality, we assume a finite temperature for the asymptotic
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FIGURE 6.1: The geometry of two spheres with radii R1 and R2 at
a surface-to-surface distance L. The coordinate system’s origin is
placed at the center of sphere 1 and the z-axis is chosen such that
it connects the two sphere centers. The center of sphere 2 is located at
z = L.

expansion. The zero temperature result can always be obtained by replacing the
Matsubara sum by an integral over the imaginary frequencies as in (2.65).

Expanding the logarithm in a Mercator series,

F (ξ) = −
∞

∑
r=1

1
r

trMr , (6.8)

the Casimir free energy can be interpreted in terms of contributions of a single
round-trip within the cavity imposed by the two spheres, up to an infinitely large
number of round-trips.

The trace of the r-th power of the round-trip operator then reads

trMr = ∑
p0,...,p2r−1

∫ dk0 . . . dk2r−1

(2π)4r

r−1

∏
j=0

e−(κ2j+κ2j−1)L

× 〈k2j+1,+, p2j+1|R1|k2j,−, p2j〉
× 〈k2j,−, p2j|R2|k2j−1,+, p2j−1〉 .

(6.9)

Within the round-trip expansion a scattered plane wave from one sphere becomes
the incident plane wave for the subsequent reflection on the other sphere. For this
reason, we have dropped the superscripts (in) and (sc) in (6.9) and labeled different
modes with different indices instead. Note that we have used the convention of
cyclic indices p2r ≡ p0 and k2r ≡ k0.

Since within Mie scattering, the reflection at the spheres is described with respect
to a coordinate system with origin at the sphere centers, the translation operators
(2.30) are required over the distance L = L + R1 + R2. At imaginary frequencies, the
matrix elements of the translation operators read e−κL with the axial wave vector
after Wick rotation κ as given in (3.7).

With the asymptotics of the reflection matrix elements for spheres with large
radii (5.39) and (5.42), the trace of the r-th round trip can be expressed as

trMr =

(
R1R2

16π2

)r ∫
dk0 . . . dk2r−1 g(k0, . . . , k2r−1) exp (− f (k0, . . . , k2r−1)) .

(6.10)



6.3. Leading saddle-point approximation and the PFA 59

At finite frequencies, the function in the exponent of (6.10) is given by

f (k0, . . . , k2r−1) =
r−1

∑
j=0

(
R1η2j,2j+1 + R2η2j−1,2j

)
(6.11)

where the terms proportional to Rs are contributions from sphere s = 1, 2 and

ηj,j+1 = κj + κj+1 −
√

2
[
K2 + κjκj+1 + kj · kj+1

]
. (6.12)

The corresponding function of f for vanishing frequencies can be simply obtained
by taking the low-frequency limit in (6.12), i.e. replacing K → 0 and κj → k j. The
situation is different for the function g and the cases of a finite and a vanishing
frequency have to be considered separately. At finite frequencies, the function g
reads

g|ξ>0(k0, . . . , k2r−1) = ∑
p0,...,p2r−1

r−1

∏
j=0

e−(κ2j+κ2j−1)L

κ2jκ2j−1
ρ
(1)
p2j+1,p2j(k2j+1, k2j)ρ

(2)
p2j,p2j−1(k2j, k2j−1)

(6.13)
where ρp,p′ is defined in (5.41). The superscript (s) denotes that the relative refractive
index in the reflection matrix elements corresponds to the one of the sphere s = 1, 2.
Also, for sphere 1 the lower sign in the coefficients C and D, given in (5.15), has to
be chosen and for sphere 2 the upper sign.

On the other hand, at vanishing frequencies the function g is expressed as

g|ξ=0(k0, . . . , k2r−1) = ∑
X=A,B

r−1

∏
j=0

e−(k2j+k2j−1)L

k2jk2j−1
X (1)

R1σ2j+1,2j
X (2)

R2σ2j,2j−1
(6.14)

with
σj,j+1 =

√
(kj · kj+1 + k jk j+1)/2 (6.15)

and the functions A and B as given in Tab. 5.1. Similar to the finite frequency case,
the superscript (s) denotes that the functions A and B are to be chosen depending
on the modeling of the material properties of sphere s.

Even though a large parameter has not been explicitly factored out in the expo-
nent of (6.10), the expression for the trace of the r-th round trip is now suitable for
a saddle-point approximation. In principle either of the two radii, or a combination
of both, could be used as the larger parameter while keeping the ratio of the sphere
radii fixed. In order to make the formulas appearing in the calculations of the cor-
rection of the saddle-point approximation more transparent, we will not make an
explicit choice for the large parameter here and use the saddle-point formula (6.5)
with the large parameter λ being absorbed into the function f .

6.3 Leading saddle-point approximation and the PFA

We compute the asymptotics of the trace of the r-th round trip (6.10) for large radii
by means of the leading order saddle-point approximation in (6.5). The cases of a
finite and a vanishing frequency are considered separately. The derivation is based
on Refs. [104, 114].
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FIGURE 6.2: Specular reflection at (a) the tangent planes at the bottom
and top of the spheres, respectively, (b) and (c) at a slightly tilted tan-
gent plane on one of the two spheres and (d) at tilted tangent planes
on both spheres.

Finite frequencies

In order to employ the asymptotic expansion of the saddle-point integral, we first
need to determine the saddle-points of the 4r-dimensional integral over the mo-
menta transverse to the z-axis as given in (6.10). In fact, as shown in appendix D.1,
there exists a unique family of saddle points,

k0 = · · · = k2r−1 ≡ ksp , (6.16)

parametrized by ksp.
The saddle-point manifold implies that within the leading order geometric opti-

cal picture of the Mie scattering amplitudes discussed in Sec. 5.4, the plane-waves are
reflected at tangent planes perpendicular to the z-axis as depicted in Fig. 6.2 (a). As
a consequence, the scattering plane and the Fresnel planes for the incident and scat-
tered plane waves coincide, and the angle between those planes vanishes, χ(in) =
χ(sc) = 0. In this case, according to (5.10), the polarization transformation coeffi-
cients evaluate to

A = 1 , B = C = D = 0 , (6.17)

for each reflection at the two spheres. Then, the polarization mixing reflection matrix
elements vanish as ρ

(s)
p,p′ |sp = 0 if p 6= p′ for both spheres s = 1, 2 and the polarization

preserving matrix elements contribute additively. Using that ρ
(s)
p,p|sp = r(s)p for p =

TM, TE and s = 1, 2, the function g evaluated at the saddle-point manifold (6.16) can
be decomposed as

gsp = gTE + gTM (6.18)

with

gp ∼
(

r(1)p r(2)p e−2κspL

(κsp)2

)r [
1 +

r
K

(
s(1)p |sp

R1
+

s(2)p |sp

R2

)]
. (6.19)

Here and in the following, the Fresnel reflection coefficients rp as of (3.9) are evalu-
ated at (iξ, ksp). Expression (6.19) results from a sequence of r reflections on the two
spheres with at most one of them picking the diffractive WKB correction in (5.32).
Terms for which the diffractive correction is picked up more than once would con-
tribute to higher order corrections to the PFA which are not considered here.
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The function f vanishes when evaluated at the saddle-point manifold,

fsp = 0 , (6.20)

and, by arranging rows and columns in the order of (k0,x, . . . , k2r−1,x, k0,y, . . . , k2r−1,y),
the Hessian matrix can be brought to block-diagonal form

H =

(
Hxx 0

0 Hyy

)
. (6.21)

The matrix blocks are given by the second derivative of f evaluated at the saddle
point

(
Hxx
)

ij =
∂2 f

∂ki,x∂k j,x

∣∣∣∣
sp

(6.22)

with a corresponding expression for Hyy. Due to the block structure of the Hessian
matrix, we can perform the integrations over the x- and y-components of the wave
vectors separately.

An explicit calculation shows that the blocks of the Hessian matrix can be ex-
pressed as Hxx = Hyy = (1/2κsp)Γr with the 2r× 2r matrix

Γr =




R1 + R2 −R1 −R2
−R1 R1 + R2 −R2

−R2
. . . . . .
. . . . . . −R1

−R2 −R1 R1 + R2




, (6.23)

where the matrix elements not shown are zero. In the special case of a single round-
trip, r = 1, the two off-diagonal matrix elements add up yielding

Γ1 = (R1 + R2)

(
1 −1
−1 1

)
. (6.24)

The eigenvalues of the matrix Γr are found as

λj,± = R1 + R2 ±
√
(R1 + R2)2 − 4R1R2 sin2

(
π j
r

)
(6.25)

for j = 0, . . . , r− 1.
With λ0,− = 0, both blocks Hxx and Hyy have a vanishing eigenvalue correspond-

ing to the saddle-point manifold (6.16). In order to employ the saddle-point formula,
it is necessary to first transform the integration variables kj in such a way, that the
direction corresponding to the vanishing eigenvalues can be singled out. Then, the
multidimensional integral over the perpendicular directions can be evaluated by
means of the saddle-point method, while the integration over the saddle-point man-
ifold needs to be performed exactly.

If we choose the transformation to be unitary, the coordinate corresponding to
the direction of the vanishing eigenvalues is

v0 =
1√
2r
(k0 + k1 + . . . + k2r−1) . (6.26)
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The variables corresponding to the perpendicular directions depend on the details
of the transformation, which do not need to be specified at this point. When the
saddle-point condition (6.16) is met, the zero eigenvalue coordinates (6.26) evaluate
to v0|sp =

√
2rksp. Changing the integration variable from v0 to ksp then yields a

factor of 2r.
With the variable change to the coordinates vj the Hessian matrix also trans-

forms. Here, we do not need to know the exact form of the transformed Hessian,
since all we need is its determinant. The determinant of the transformed Hessian
is identical to the product of the non-vanishing eigenvalues of the singular Hessian
H. Such a quantity is also known as a pseudo-determinant of H denoted by pdet(H)
[119, p. 529].1

The leading order saddle-point approximation for the trace of the r-th round trip
now reads

trMr ∼ r
π

(
R1R2

4

)r ∫
dksp

gsp√
pdet(H)

e− fsp . (6.27)

We are left with the evaluation of the pseudo-determinant. Since we know the eigen-
values of the Hessian with (6.25), the square root of the pseudo-determinant can be
expressed as

√
pdet(H) =

(
∏
λ 6=0

λ

)1/2

=

(
1

2κsp

)2r−1

λ0,+

r−1

∏
j=1

λj,−λj,+ . (6.28)

By first evaluating the product λj,−λj,+, we can make use of the identity

r−1

∏
j=1

sin
(

π j
r

)
=

r
2r−1 (6.29)

to find √
pdet(H) =

4r2κsp

Reff

(
R1R2

4κ2
sp

)r

. (6.30)

When we change the integration variable in (6.27) to polar coordinates ksp = (ksp, ϕsp),
the integration over the angular component ϕsp can be carried out yielding a factor
of 2π. The trace of the r-th round trip then becomes

trMr ∼ Reff

2r

∫ ∞

K
dκsp ∑

p=TM, TE

[
r(1)p r(2)p e−2κspL

]r
[

1 +
r
K

(
s(1)p |sp

R1
+

s(2)p |sp

R2

)]
,

(6.31)
where we have used κspdκsp = kspdksp to change the integration over the radial
component ksp to κsp.

1Alternatively, the pseudo-determinant of a n× n matrix A can be computed through its definition
[119, p. 529]

pdet(A) = lim
α→0

det (A+ α1)
αn−rank(A)

,

where rank(A) denotes the rank of A.
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The sum over round trips (6.8) can now be expressed in terms of polylogarithms
and we find

F (ξ) ∼ −Reff

2 ∑
p=TM, TE

∫ ∞

K
dκsp

[
Li2
(
Φp
)
− 1
K

(
s(1)p |sp

R1
+

s(2)p |sp

R2

)
log
(
1−Φp

)
]

(6.32)
for ξ > 0 where

Φp = r(1)p r(2)p e−2κspL . (6.33)

Vanishing frequencies

The calculations above leading up to Eq. (6.27) carry over for a vanishing frequency,
only that now κsp is replaced by ksp in the square root of the pseudo-determinant
(6.30) and that gsp is obtained from (6.14) by evaluation at the saddle-point mani-
fold. Like in the finite-frequency case with (6.18), the contributions due to the two
polarizations

gTM =
e−2kspLr

(ksp)2r

[
A(1)

R1ksp
A(2)

R2ksp

]r
,

gTE =
e−2kspLr

(ksp)2r

[
B(1)

R1ksp
B(2)

R2ksp

]r
(6.34)

contribute additively to gsp. The trace of the r-th round trip then becomes

trMr ∼ Reff

2r

∫ ∞

0
dksp ∑

X=A,B

[
X (1)

R1ksp
X (2)

R2ksp
e−2kspL

]r
. (6.35)

Performing the summation over the round trips, we obtain

F (0) ∼ −Reff

2 ∑
X=A,B

∫ ∞

0
dksp Li2

(
X (1)

R1ksp
X (2)

R2ksp
e−2kspL

)
. (6.36)

For Drude-type metals, we find from Tab. 5.1 that A(Drude) = 1 and B(Drude) = 0.
In this case, expression (6.36) is identical to the PFA and thus does not provide a
correction to the PFA. In all other cases, the PFA and the PFA correction is implicitly
contained in (6.36).

PFA as the leading order contribution

In Sec. 5.4, we have discussed that the functions A and B in (6.36) are asymptotic to
the low-frequency expressions of the Fresnel coefficients rTM and rTE, respectively,
when the sphere radii are large compared to the distance. Together with the leading
order term in (6.32), the leading order asymptotics of the Casimir free energy then
becomes

F ∼ − kBTReff

2

∞

∑
n=0

′ ∑
p=TM, TE

∫ ∞

Kn

dκsp Li2

(
r(1)p r(2)p e−2κspL

)
(6.37)

where Kn =
√

εmξn/c. The expression (6.37) is precisely the PFA for two spheres
given in (4.6). Without assumptions on locality, we have thus proven that the PFA
corresponds to the leading order asymptotics of the exact Casimir free energy for
arbitrary materials. It is straightforward to extend this result to the zero temperature
case. The result is also valid in the plane-sphere limit where the effective radius Reff
is replaced by the sphere radius.
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While for low frequencies expression (6.36) already contains PFA corrections, the
expression for finite frequencies only contains corrections to the PFA due to diffrac-
tion. This diffractive contribution to the corrections reads

Fd =
kBTReff

2

∞

∑
n=1

∑
p=TM, TE

∫ ∞

Kn

dκsp
1
Kn

(
s(1)p |sp

R1
+

s(2)p |sp

R2

)
log
(

1− r(1)p r(2)p e−2κspL
)

.

(6.38)
Due to the evaluation at the saddle-point manifold (6.16), expression (6.38) can still
be interpreted as arising from reflections localized at the points of closest approach
on the two spheres as depicted in Fig. 6.2 (a). These reflections are, however, not
specular as the finite curvature of the spheres are taken into account.

The remaining contributions to the PFA correction at finite frequencies are due to
the next-to-leading-order term in the saddle-point approximation (6.5). The deriva-
tion of this contribution will be discussed in the following section.

6.4 Geometric optical correction to PFA

For the remaining PFA correction due to the subleading term in the saddle-point
approximation, we need to consider only the leading order asymptotic contributions
of the function g|ξ>0 in (6.13). As the subleading terms in g|ξ>0 are proportional
to the the inverse radii, they would contribute to higher order corrections to the
PFA when included here. Since the leading order term in g|ξ>0 describes specular
reflections on the two spheres, the contribution to the PFA correction calculated here
can be given an interpretation within geometrical optics. In the following part of
this section, the frequency ξ will always be finite and thus the subscript ξ > 0 will
be dropped for the function g|ξ>0. The derivation in this section is partly based on
the exposition in Ref. [104] where the PFA correction was calculated for a perfectly
reflecting plane and sphere.

Variable transformation and the Hessian matrix

Since for the subleading term in the saddle-point formula (6.5) the calculation of
derivatives and the Hessian matrix is required, we now need to specify a transfor-
mation which singles out the saddle-point manifold and thus leads to formula (6.27).
It is convenient to use a discrete Fourier transform to perform such transformation.
The transformed variables v are then defined by

k j,α =
2r−1

∑
l=0

Wj,lvl,α (6.39)

for α = x, y, where the Fourier matrix is given by

Wj,l =
1√
2r

exp
(

2πi
2r

jl
)

. (6.40)

Indeed, the direction of the saddle-point manifold is then given by v0 as in (6.26).
Because the Fourier matrix is unitary, all other directions are in particular orthogonal
to v0. The saddle-point approximation is now applied to the integrals with respect
to the variables vj for j = 1, . . . , 2r− 1.
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FIGURE 6.3: Schematic representation of the Hessian matrix after
Fourier transform. The numbers on the left and top label the row
and column indices, respectively. The matrix elements in grey are the
only non-vanishing ones. The dotted lines highlight the sub-block of
the matrix associated to the index l.

With the discrete Fourier transform, the non-vanishing diagonal blocks of the
Hessian matrix transform as

Hαα → WTHααW (6.41)

for α = x, y. In appendix D.2, it is shown that after the transformation the Hessian
matrix becomes the anti-diagonal block matrix

(WTHααW)j,k =
1

κsp





i(R2 − R1) sin(πk/2r) cos(πk/2r) for j + k = r, 3r
(R2 + R1) sin2(πk/2r) for j + k = 2r
0 else

(6.42)

for α = x, y.
The αα-blocks of the transformed Hessian are schematically represented in fig-

ure 6.3. The matrix elements in grey represent those which are non-zero. The first
row and column of the matrix is zero and corresponds to the variable v0. The re-
maining part of the Hessian will be required for the saddle-point method. It corre-
sponds to the Hessian with respect to the variables vj for j > 0 and will be denoted
as (H̃αα)jk for α = x, y and j, k = 1, . . . , 2r− 1. Apart from H̃r,r = (R1 + R2)/κsp, the
non-vanishing entries of the transformed Hessian matrix form 2× 2 blocks along the
anti-diagonal, which can be expressed as

(
H̃l,r−l H̃l,2r−l
H̃r+l,r−l H̃r+l,2r−l

)
=

1
κsp

(−i(R1 − R2)slcl (R1 + R2)s2
l

(R1 + R2)c2
l i(R1 − R2)slcl

)
(6.43)

for l = 1, . . . , r− 1 where

sl = sin
(

πl
2r

)
and cl = cos

(
πl
2r

)
. (6.44)
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The inversion of the Hessian can be performed block-wise and we find
(

H̃−1
l,r−l H̃−1

l,2r−l

H̃−1
r+l,r−l H̃−1

r+l,2r−l

)
=

(
H̃r−l,l H̃r−l,r+l
H̃2r−l,l H̃2r−l,r+l

)−1

=
κsp

4R1R2

(−i(R1 − R2)/slcl (R1 + R2)/s2
l

(R1 + R2)/c2
l i(R1 − R2)/slcl

) (6.45)

for l = 1, . . . , r− 1 and
H̃−1

r,r = κsp/(R1 + R2) . (6.46)

Geometric optical contribution to the trace over round trips

Having found an expression for the inverse Hessian, we can now evaluate the sub-
leading term of the saddle-point formula (6.5). A closer analysis reveals that two of
the terms in this subleading term vanish because the functions g and f are symmet-
ric with respect to their arguments. For instance, after employing the chain rule, the
first derivative of the function g reads

∂g
∂vi,α

∣∣∣∣
sp

=
2r−1

∑
l=0

Wi,l
∂g

∂kl,α

∣∣∣∣
sp

, (6.47)

where i 6= 0, i.e. the derivative is not taken along the saddle-point manifold. Because
of the symmetry of g just mentioned, the derivative on the right-hand side evaluated
at the saddle point is independent of l. The resulting sum over the Fourier factors
(6.40) vanishes, so that gi = 0. For the same reason the derivative with respect
to vi,α in fijkH̃

jk evaluates to zero. Because this argument will be used more often
when calculating the contribution of the term proportional to gij, we summarize it
as Lemma 1.2 in Appendix E.5.

In the subleading term of the saddle-point formula (6.5) only three terms remain.
The geometric optical correction can then be expressed as (6.27) with gsp being re-
placed by the subleading terms in (6.5), containing the derivatives with respect to f
and g. Making use of (6.20) and (6.30), the corresponding expression for the trace of
the r-th round trip becomes

(trMr)go =
Reff

4r

∫ ∞

K
dκspκ2r

sp

[
gijH̃

ij − 1
4

gsp fijklH̃
ijH̃kl +

1
6

gsp fijk flmnH̃
ilH̃jmH̃kn

]

(6.48)
where we use a similar convention as in Sec. 6.1. A lower index, say i, represents
derivatives with respect to vi,α evaluated at the saddle-point manifold, and multiple
lower indices correspond to higher order derivatives. H̃ij is the matrix element of the
inverse Fourier transformed Hessian with row index i and column index j. Repeated
indices are summed over the values from 1 to 2r− 1 and a summation over α = x, y
for each index pair is implicit as well.

The calculation of the terms in the square bracket in (6.48) is somewhat involved.
Technical details are provided in Appendix E. There, it is shown that the square
bracket in (6.48) can be split into the two terms U(i) and U(ii).

In the first term, U(i), derivatives are taken of all functions but the polarization
transformation coefficients (5.15) appearing in (5.41) through (6.13). As shown in
Sec. 6.3, the PFA result (6.37) arises from ray-optical specular reflections at the points
of closest approach between the two spheres, i.e. scattering channel (a) in Fig. 6.2.
The correction due to U(i) can still be understood within geometrical optics, but now
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the specular reflections may also occur at tangent planes slightly tilted with respect
to the x-y-plane, as illustrated by channels (b)-(d) in Fig. 6.2.

We find its explicit contribution as

U(i) = U(i,0) + ∑
p=TM,TE

(
U(i,1)

p + U(i,2)
p

)
(6.49)

with

U(i,0) = −gsp
rLκsp(κ2

sp +K2) +K2

3rκ3
sp

(
r2 − 1

Reff
+

3
R1 + R2

)
(6.50)

and
U(1/2)

p = 2rgp

[
d(0)Q(1/2)

p,0 + d±(1)Q
(1/2)
p,1

]
. (6.51)

Here, gp is the leading order term in (6.19),

d(0) =
κsp

2r

(
1

R1 + R2
+

r2 − 1
3Reff

)
,

d±(1) =
κsp

2r

(
− 1

R1 + R2
± (r− 1)

R1 − R2

R1R2
+

(r− 1)(r− 2)
3Reff

) (6.52)

and

Q(s)
TE,0 = Q(s)

TE,1 +
k2

sp

κ3
spκsp

,

Q(s)
TE,1 =

k2
sp − 2κ2

sp

2κspκ3
sp

,

Q(s)
TM,0 = Q(s)

TM,1 −
n2

s k2
spK2

κ3
spκsp(κ2

sp + n2
s k2

sp)
,

Q(s)
TM,1 = n2

sK2 k2
sp(n2

s k2
sp − 3κ2

sp) + 2κ4
sp

2κspκ3
sp

(
κ2

sp + n2
s k2

sp

)2

(6.53)

with the relative refractive index ns for sphere s and

κsp =
√

n2
sK2 + k2

sp . (6.54)

For the second contribution to the square bracket, U(ii), derivatives are only
taken of the polarization transformation coefficients. Its contribution may thus be
interpreted due to scattering channels, which experience a tilt between the Fresnel
and scattering planes of successive reflections (see Fig. 5.2). The contribution due to
U(ii) thus also takes the effect of polarization mixing into account.

The calculation of U(ii) is outlined in appendix E.4. We find

U(ii) = U(ii,0) + ∑
p=TM,TE

(
U(ii,1)

p + U(ii,2)
p

)
(6.55)
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where the first term reads

U(ii,0) =
K2 exp(−2rκspL)

k2
spκ2r+1

sp

1
R1 + R2

×


2∆r(1)∆r(2)Y− X




[
∆r(1)

]2

r(1)TE r(1)TM

R2

R1
+

[
∆r(2)

]2

r(2)TE r(2)TM

R1

R2





 (6.56)

with
X =

xr
TExTM − xr

TMxTE

xTE − xTM
,

Y =
xr

TE − xr
TM

xTE − xTM

(6.57)

for xp = r(1)p r(2)p , and

∆r(1/2) = r(1/2)
TE − r(1/2)

TM . (6.58)

The remaining terms in (6.55) can be expressed as

U(1/2)
p = −gp

K2

k2
spκsp

(
r + (r− 1)

R2/1

R1/2

)
1

R1 + R2

r(1/2)
p − r(1/2)

p̄

r(1/2)
p

, (6.59)

where p̄ = TE if p = TM and vice versa, and gp as above.
In the special case of two perfectly reflecting spheres, only the term U(i,0) con-

tributes to the geometric optical correction as the derivatives on the Fresnel coeffi-
cients appearing in U(i,1/2)

p vanish. As shown in the final part of Appendix E.4, the
term U(ii) entirely cancels out in this case. Thus, the effect of a possible tilt between
the scattering and Fresnel planes does not enter the PFA correction. Since such tilt
gives rise to polarization mixing scattering channels, it follows that polarization mix-
ing has no effect on the PFA correction. This does not carry over to spheres made
of real materials for which U(ii) has a finite contribution and polarization mixing
scattering channels contribute to the Casimir interaction.

Geometric optical contribution to the free energy

With (6.48), where the expression in the bracket can be expressed as a sum of the two
contributions U(i) and U(ii) given in (6.49) and (6.55), respectively, we have obtained
an expression for the r-th round trip due to the correction of the saddle-point inte-
gral. Expressing the sum over round trips (6.8) in terms of polylogarithms, we can
write the geometric optical correction to the Casimir free energy as

Fgo = F (i)
go +F (ii)

go (6.60)

with F (i/ii)
go being the contribution to the free energy due to U(i/ii) defined in (6.49)

and (6.55), respectively.
In analogy to (6.49), we subdivide those contributions as

F (i)
go = kBT

∞

∑
n=1

[
F (i,0)

go (ξn) +F (i,1)
go (ξn) +F (i,2)

go (ξn)
]

, (6.61)
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where

F (i,0)
go (ξ) =

1
12

∫ ∞

K
dκsp

1
κ3

sp
∑

p=TM,TE

{
Lκsp(κ

2
sp +K2)[Li0(Φp) + (3u− 1)Li2(Φp)]

+K2[Li1(Φp) + (3u− 1)Li3(Φp)]
}

(6.62)

with the dimensionless parameter u as defined in (4.32) and

F (i,1/2)
go (ξ) = − 1

12

∫ ∞

K
dκspκsp ∑

p=TM,TE
[q(0)p Q(1/2)

p,0 + q(1/2)
p Q(1/2)

p,1 ] (6.63)

with the coefficients Q given above in (6.53) and

q(0)p = Li0(Φp) + (3u− 1)Li2(Φp) ,

q(1/2)
p = Li0(Φp) + 3

(
−1± R1 − R2

R1 + R2

)
Li1(Φp) +

(
2− 3u∓ 3

R1 − R2

R1 + R2

)
Li2(Φp) .

(6.64)
The second term in (6.60) reads

F (ii)
go = kBT

∞

∑
n=1

[
F (ii,0)

go (ξn) +F (ii,1)
go (ξn) +F (ii,2)

go (ξn)
]

(6.65)

with

F (ii,0)
go (ξ) = −u

4

∫ ∞

K
dκsp

K2

k2
spκsp

1
xTE − xTM

{
2∆r(1)∆r(2) [Li2(ΦTE)− Li2(ΦTM)]

−
(
[∆r(1)]2

r(1)TE r(1)TM

R2

R1
+

[∆r(2)]2

r(2)TE r(2)TM

R1

R2

)
[xTM Li2(ΦTE)− xTE Li2(ΦTM)]

}
(6.66)

and

F (ii,1/2)
go (ξ) =

u
4

∫ ∞

K
dκsp

K2

k2
spκsp

∑
p=TM,TE

r(1/2)
p − r(1/2)

p̄

r(1/2)
p

×
[(

1 +
R2/1

R1/2

)
Li1(Φp)−

R2/1

R1/2
Li2(Φp)

]
. (6.67)

With (6.32), (6.36) and (6.60), we now have found the first two terms in the
asymptotic expansion of the Casimir free energy for two dielectric spheres at a finite
temperature T. Expressions for a vanishing temperature can be found by replacing
the Matsubara sum by means of (2.65). We thus have found asymptotic expansion
for the remaining cases in Tab. 6.1 (B), which have not been derived in the literature
before.

In the special case of two spheres made of identical materials, the PFA correction
depends only on the radii of the spheres through the effective radius Reff and the
dimensionless parameter u. This can be seen by using

R1

R2
+

R2

R1
=

1
u
+ 2 (6.68)

in the contributions constituting F (i)
go in (6.61) and noting that the dependence on
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(R1 − R2)/(R1 + R2) through q(1)p and q(2)p defined in (6.64) drops out in (6.61) be-

cause Q(1)
p,1 = Q(2)

p,1.

6.5 Perfect reflecting spheres at a vanishing temperature

For perfectly reflecting spheres in vacuum at a vanishing temperature, the expres-
sions for the asymptotics of the finite-frequency contributions simplify considerably.
In this section, we reproduce the corresponding result (6.1) known from the litera-
ture. The results obtained in this section will also be important for the analysis of
the PFA corrections beyond expression (6.1), which will be discussed in Sec. 8.3.

For the calculations in this section, it is convenient to rescale the imaginary wave
number K = ξ/c and introduce the dimensionless variable

s = rLK (6.69)

with the round-trip index r and the surface-to-surface distance L. When the Casi-
mir energy is expressed in terms of the round-trip expansion (6.8), the integral over
imaginary frequencies can be written as an integral over s. The Casimir energy then
reads

E = − h̄c
2πL

∫ ∞

0
ds

∞

∑
r=1

1
r2 trMr . (6.70)

For perfect reflectors, the Fresnel coefficients are rTM = −rTE = 1 and the coeffi-
cients (5.31), appearing in the WKB correction of the Mie scattering amplitudes, can
be expressed as

s(PR)
1

∣∣∣
sp

=
K(K2 − 2κ2

sp)

2κ3
sp

,

s(PR)
2

∣∣∣
sp

= − K
3

2κ3
sp

.

(6.71)

In analogy to (6.69), we introduce another dimensionless variable defined as

t = rLκsp . (6.72)

The contribution to the trace over the r-th round trip due to the leading order saddle-
point approximation as given in (6.31) can then be expressed in terms of the new
variables s and t. After summation over the two polarization contributions, we find

(trMr)LO =
1
r2

∫ ∞

s
dt e−2t

(
Reff

L
− r2

2t

)
. (6.73)

In the same way, we obtain an expression for the trace of the r-th round trip due to
the subleading contribution to the saddle-point approximation (6.48):

(trMr)NTLO = − 1
6r2

∫ ∞

s
dt e−2t t(t2 + s2) + s2

t3

(
r2 + 3u− 1

)
(6.74)

Here, we have used that, for perfect reflectors, only (6.50) contributes to the square
bracket in (6.48).
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Finally, inserting (6.73) and (6.74) in (6.70) yields the first two terms in the asymp-
totic expansion of the Casimir energy

E ∼ EPFA + E1 , (6.75)

where the leading order asymptotic term is associated with the PFA and given by
the leading term in (6.73):

EPFA = − h̄cReff

2πL2

∫ ∞

0
ds
∫ ∞

s
dt e−2t

∞

∑
r=1

1
r4 = − h̄cReffπ

3

720L2 . (6.76)

In the last equality of (6.76) we have used that the integrals over s and t evaluate to
1/4 and the sum over r is given by

∞

∑
r=1

1
r4 =

π4

90
. (6.77)

The subleading term in (6.75) is given by

E1 =
h̄c

24πL

(
4

∞

∑
r=1

1
r2 + (3u− 1)

∞

∑
r=1

1
r4

)
= EPFA

(
1
3
− 20

π2 − u
)

L
Reff

, (6.78)

where in the first equality the integrals over s and t yield the values

∫ ∞

0
ds
∫ ∞

s
dt

e−2t

t
=

1
2

,
∫ ∞

0
ds
∫ ∞

s
dt e−2t t(t2 + s2) + s2

t3 =
1
2

.
(6.79)

In the second equality of (6.78), we have evaluated the sum over round trips using
(6.77) and

∞

∑
r=1

1
r2 =

π2

6
. (6.80)

With the asymptotic expansion of the Casimir energy for two perfectly reflecting
spheres in vacuum at a vanishing temperature as given in (6.75), we have now re-
produced the result (6.1) known from the literature.

6.6 Plane-sphere limit

The plane-sphere geometry can be obtained as a limiting case from the geometry of
two spheres. If we take the limit R1 → ∞, the surface of sphere 1 becomes a plane.
We denote the radius of the remaining sphere as R = R2. In this limit, the effective
radius becomes the sphere radius, Reff → R, and the parameter u defined in (4.32)
goes to zero as R2/R1.

The asymptotics of the zero-frequency contribution (6.36) then becomes

F (0) ∼ −R
2 ∑
X=A,B

∫ ∞

0
dksp Li2

(
r(1)p (0, ksp)X (2)

R2ksp
e−2kspL

)
, (6.81)

where p = TM when X = A, and p = TE when X = B. Here, we used that
AR1ksp → rTM(0, ksp) and BR1ksp → rTE(0, ksp) as R1 → ∞.
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For finite frequencies, the result from the leading order saddle-point approxima-
tion (6.32) is now given

F (ξ) ∼ −R
2 ∑

p=TM, TE

∫ ∞

K
dκsp

[
Li2
(
Φp
)
− s(2)p |sp

R
log
(
1−Φp

)
]

(6.82)

with Φp as given in (6.33). The terms constituting the geometric optical contribution
to the correction through (6.61) become in the plane-sphere limit

F (i,0)
go (ξ) =

1
12

∫ ∞

K
dκsp

1
κ3

sp

{
Lκsp(κ

2
sp +K2)[Li0(Φp)− Li2(Φp)]

+K2[Li1(Φp)− Li3(Φp)]
}

(6.83)

and
F (i,1/2)

go (ξ) = − 1
12

∫ ∞

K
dκspκsp[q0

pQ(1/2)
p,0 + q(1/2)

p Q(1/2)
p,1 ] (6.84)

where the coefficients Q are given above in (6.53) and

q(0)p = q(1)p = Li0(Φp)− Li2(Φp) ,

q(2)p = Li0(Φp)− 6 Li1(Φp) + 5 Li2(Φp) .

The terms constituting (6.65) are now given by

F (ii,0)
go (ξ) =

1
4

∫ ∞

K
dκsp

K2

k2
spκsp

xTM Li2(ΦTE)− xTE Li2(ΦTM)

xTE − xTM

[∆r(2)]2

r(2)TE r(2)TM

(6.85)

and

F (ii,2)
go (ξ) =

1
4

∫ ∞

K
dκsp

K2

k2
spκsp

∑
p=TM,TE

r(2)p − r(2)p̄

r(2)p

[Li1(Φp)− Li2(Φp)] . (6.86)

The remaining term F (ii,1)
go (ξ) vanishes as the reflection matrix on the plane is given

by the Fresnel coefficients and thus does not contain the polarization transformation
coefficients.

Consistent with the results for two spheres, the contributions F (ii)
go drop out in

the perfect reflector limit. At T = 0, the PFA correction agrees with the results
given in Ref. [38]. The result given here yields the PFA correction also for finite
temperatures which has not been derived in the literature before. Therefore, we
complete Tab. 6.1 (A).

6.7 Asymptotic expansion for the Casimir force and force gra-
dient

So far, we have found the first two terms of the asymptotic expansion of the Casimir
free energy for two spheres and a sphere in front of a plane. In Casimir experiments,
commonly the Casimir force F and force gradient F′ are measured [20, 22]. The
asymptotic expansion of those quantities can be obtained from the free energy by
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taking derivatives with respect to the distance L:

F = −∂F
∂L

F′ = −∂2F
∂L2 .

(6.87)

Apart from the expression (6.62) and (6.83) for the sphere-sphere and plane-sphere
geometry, respectively, the asymptotic expansion of the Casimir free energy depends
on the distance L only through the argument of the polylogarithms

Φp = r(1)p r(2)p e−2κspL (6.88)

for p = TE, TM. Using the identity for the derivative of the polylogarithm (A.16),
we can express the derivatives with respect to the distance as

−∂ Lis(Φp)

∂L
= 2κsp Lis−1(Φp)

−∂2 Lis(Φp)

∂L2 = −4κ2
sp Lis−2(Φp) .

(6.89)

The corresponding expression of (6.62) for the force is then obtained as

− ∂

∂L
F (i,0)

go (ξ) =

1
12

∫ ∞

K
dκsp

1
κ2

sp
∑

p=TM,TE

{
2Lκsp(κ

2
sp +K2)[Li−1(Φp) + (3u− 1)Li1(Φp)]

− k2
sp[Li0(Φp) + (3u− 1)Li2(Φp)]

}
. (6.90)

The corresponding expression for the force gradient reads

− ∂2

∂L2F
(i,0)
go (ξ) =

1
3

∫ ∞

K
dκsp ∑

p=TM,TE

{
κsp[Li−1(Φp) + (3u− 1)Li1(Φp)]

− L(κ2
sp +K2)[Li−2(Φp) + (3u− 1)Li0(Φp)]

}
(6.91)

The result for the plane-sphere geometry is obtained by setting u = 0 in the above
expressions.

In the remaining terms, a short-distance formula for the Casimir force is obtained
from the formula for the Casimir free energy by the replacement

Lis(Φp)→ 2κsp Lis−1(Φp) (6.92)

and similarly one obtains a formula for the Casimir force gradient by the replace-
ment

Lis(Φp)→ −4κ2
sp Lis−2(Φp) . (6.93)

This replacement rule can also be used to obtain the force and force gradient con-
tribution in the zero-frequency limit. In (6.36) and (6.81), the polylogarithms can
be replaced with the same rule above except that the function arguments would be
different and κsp would be replaced by ksp instead.
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6.8 Comparison with the derivative expansion

The derivative expansion (DE) approach, which was discussed in Sec. 4.2, is an alter-
native approach for obtaining an asymptotic expansion of the Casimir interaction.
For electromagnetic fields, it is only applicable for obtaining the first two terms in
the asymptotic expansion. It is not possible to obtain any higher order asymptotic
terms since the kernel G̃ in (4.16) is non-analytic and cannot be expanded beyond
second order [44, 120]. In this section, we make a closer comparison between the
results for the asymptotic expansion (AE), which were obtained in this chapter, with
the DE.

In the literature, no explicit results are given for the DE of the Casimir interaction
between two spheres. There, a direct comparison on the analytical level is not pos-
sible. In Ref. [38], Teo has compared her result for the asymptotic expansion in the
plane-sphere geometry with the corresponding results from the DE, given in [43],
numerically and has found good agreement.

For metallic spheres, the DE is not very useful. Although it is applicable for
Drude-type metals yielding a logarithmic PFA-correction, subleading logarithmic
terms dominate the leading PFA correction at distances which are typical for ex-
periments [33]. Thus, in Refs. [46, 47, 95], Bimonte proposes to use exact results or
numerical methods to evaluate the zero-frequency contribution. For finite Matsub-
ara frequencies, n > 0, he proposes to use the DE to compute the Casimir interaction.
Within the DE, the PFA correction can be expressed as

F1,n>0

FPFA,n>0
= − [θ(L) + uκ(L)]

L
Reff

(6.94)

for the Casimir force, and

F′1,n>0

F′PFA,n>0
= −

[
θ̃(L) + uκ̃(L)

] L
Reff

, (6.95)

for the force gradient with the effective radius Reff and the dimensionless parameter
u defined in (4.4) and (4.32), respectively. The functions θ, κ, θ̃ and κ̃ depend only
on the distance, the material properties of the objects and the temperature T. As
detailed in [47], they can be expressed in terms of the function α given in (4.18) and
the plane-plane energy FPP given in (3.29). Bimonte gives the values of those func-
tions for gold in vacuum in the distance range of 0.1 µm to 2 µm in [47]. To model
the dielectric function of gold, tabulated optical data [121] were used. In order to
yield the dielectric function at imaginary frequencies, the optical data has been suit-
ably extrapolated towards zero frequency using the Drude (with plasma frequency
ωp = 9 eV/h̄ and damping constant γ = 0.035 eV/h̄) or the plasma prescription.

In Fig. 6.4, we compare Bimonte’s tabulated results from [47] with our AE result
using the same optical data with the Drude prescription. We assume two spheres
with equal radii R1 = R2 = 30 µm. Figure 6.4 (a) shows the comparison for the Casi-
mir force and (b) for the force gradient. Bimonte’s result for the DE is represented by
the circles, while the crosses represent our AE result. We find good agreement with
the results from the derivative expansion for both the force and the force gradient.
The relative difference between our results and the DE results is within the accuracy
to which the functions θ, κ, θ̃ and κ̃ in Ref. [47] were given, which is about 3 digits.

For the zero-frequency contribution, we compare the DE with the AE for di-
electrics, as both methods are applicable in this case. We have worked out the DE
result with (4.35). The AE result for the zero-frequency contribution is given in (6.36)
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FIGURE 6.4: Comparison of the asymptotic expansion (AE) and
derivative expansion (DE) approach for two gold spheres with equal
radii R1 = R2 = 30 µm in Vacuum. The PFA-correction from both
methods is depicted relative to the PFA as a function of the distance
L for (a) the Casimir force and (b) the force gradient. For the quanti-
ties involved, the Matsubara sum runs over all non-zero frequencies,
n > 0, at T = 300 K.
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and (6.81) for the sphere-sphere and plane-sphere geometry, respectively. Since the
DE and AE result produce rather different predictions when the relative refractive
index of the object is smaller than one, we compare these predictions with exact
numerical results obtained by the method which will be developed in chapter 7.

In Fig. 6.5 (a) and (b) the relative error made by the DE (dash-dotted lines), the
AE (solid lines) and the PFA (dashed lines) is shown for polystyrene in vacuum in
the plane-sphere and sphere-sphere geometry, respectively. In Fig. 6.5 (c) and (d) the
corresponding results are shown for polystyrene in water.

For polystyrene in vacuum, which has a relative dielectric function of about
ε(0) = 2.37, the DE and AE yield very similar results for both geometries. Both
methods improve on the PFA by almost an order of magnitude in the relative error
at shorter distances. The situation is different for polystyrene in water, which has
a relative dielectric function of ε(0) = 0.030. While the AE again improves signifi-
cantly on the PFA, the DE does not do as well as the AE.

The reason why the DE does not perform as well as the AE for polystyrene in
water is that the DE does not provide the correct asymptotics for the PFA correction.
When ε(0) = 0, the Casimir free energy is equivalent to the TE contribution for
perfect reflectors for which the DE is not applicable. Bimonte has shown that the
correction in this case is proportional to log2(L/R) for the plane-sphere geometry
[39]. It seems plausible that a correction of such form dominates over the logarithmic
correction predicted by the DE when ε(0) is small. In contrast to the DE, the AE
provides the correct asymptotics which is uniformly valid for any value of ε(0).

6.9 The role of diffraction

For a perfectly reflecting plane and sphere in vacuum at zero temperature, it was
found that the correction to the PFA is dominated by the term associated to diffrac-
tion as it contributes with almost 90% [104]. With the correction to the PFA obtained
in Secs. 6.3 and 6.4, we can now study how the results from Ref. [104] carry over
to the geometry of two spheres made of a perfectly reflecting or real materials. For
simplicity, we assume a vanishing temperature, T = 0, and the two spheres be made
of an identical non-dispersive dielectric with relative permittivity ε.

The total PFA correction F1 is then composed of the diffractive contribution Fd

given in (6.38) and the geometric optical contribution Fgo = F (i)
go + F (ii)

go . The term

F (i)
go , which measures the influence of the tilting of the tangent planes on which the

modes are reflected, is given in (6.61). The other term, F (ii)
go , amounts to the con-

tribution to the correction due to a tilt between the scattering planes for multiple
reflections during the round trips. It is given in (6.65). Expressions for zero temper-
ature can be obtained from these by replacing the sum over the positive Matsubara
frequencies with an integral over imaginary frequencies as

kBT
∞

∑
n=1
→ h̄

∫ ∞

0

dξ

2π
. (6.96)

In Fig. 6.6 (a), the diffractive contribution Fd along with the geometric optical
contribution F (i)

go is depicted as a function of the ratio of the radii R1/R2 from 1 to

100. Figure 6.6 (b) shows the geometric optical contribution F (ii)
go . The individual

contributions are depicted relative to the total contribution F1 = Fd + F (i)
go + F (ii)

go .
The chosen values for the relative permittivities are taken as the low-frequency limit
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FIGURE 6.5: The relative error of the proximity-force approximation
(PFA), the derivative expansion (DE) and the asymptotic expansion
(AE) is shown as a function of the the aspect ratio L/R where L
is the surface-to-surface distance and R the radius of the sphere(s).
The radius of the sphere(s) is taken to be 1 µm. The four subfig-
ures differ in the medium materials and geometry: polystyrene in
vacuum for (a) the plane-sphere and (b) the sphere-sphere geometry,
and polystyrene in water for (c) plane-sphere and (d) sphere-sphere
geometry.
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FIGURE 6.6: The contributions to the PFA correction between two
spheres with radii R1 and R2 and relative permittivity ε as a function
of the ratio of the radii, R1/R2. The temperature is assumed to be
zero and the contributions are given relative to the total correction
F1 = Fd + F (i)

go + F (ii)
go . (a) The contribution due to diffraction Fd

and the geometric optical contribution F (i)
go . (b) The geometric optical

contribution F (ii)
go . Note the difference in scale of the vertical axis.

for polystyrene in water (ε = 0.030) and polystyrene in vacuum (ε = 2.37). The
result for perfectly reflecting spheres is indicated by the black line. Note that, for
non-dispersive dielectrics at T = 0, the relative contributions do not depend on the
surface-to-surface distance L.

We observe that also for two spheres, the diffractive correction contributes the
most to the total correction. In the plane-sphere limit R1/R2 � 1, its contribution
exceeds the value for perfect reflectors of 90% when the relative permittivity is finite.
The relative diffractive contribution monotonically decreases as the sphere radii be-
come equal, but it still amounts to the largest contribution.

The geometric optical term F (ii)
go contributes typically to less than one percent

to the PFA correction. F (i)
go makes the second largest contribution, which is largest

for two spheres with equal radii, and decreases monotonically as one sphere radius
becomes larger than the other (see ε = 2.37 in Fig 6.6). When the relative permittivity
ε approaches zero, the geometric optical contribution F (ii)

go may become much larger

and may even exceed the contribution of F (i)
go .
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For dispersive dielectrics, we find qualitatively similar result for which an addi-
tional dependence on the distance between the two spheres can be observed.

6.10 Effective interaction area

The most precise Casimir experiments employ spherical lenses [122] or coated mi-
crospheres attached to a cantilever beam [123–126] instead of whole spherical sur-
faces. Since the experimental data are analyzed with the help of the PFA, it is impor-
tant to understand what section of the spherical surface actually contributes to the
leading asymptotics. For instance, in the case of a spherical lens, such analysis would
define the minimum transverse lens size required for equivalence with a complete
spherical surface. Here, we estimate the size of the sphere section relevant not just
for the PFA but also for the correction derived in the previous parts of this chapter.2

We proceed in two steps. First, we employ our saddle-point calculation to estimate
the typical change in the projection of the wave vector onto the x-y-plane during
reflection at one of the spheres. Second, we use geometric arguments to obtain the
corresponding size of the sphere section in real space.

Even though we first consider the reflection at a single sphere, this reflection is
still to be taken in the context of the sphere-sphere setup. Therefore, we keep the
saddle-point manifold (6.16) obtained in Sec. 6.3. Considering only a single reflec-
tion, we denote the incident and scattered wave vectors as K(in) and K(sc), respec-
tively, as indicated in Fig. 6.7. For simplicity, we take k(in)y = k(sc)

y = ky,sp and con-
centrate on kx. As the x-axis is arbitrary, we replace kx by the modulus of k in the
following. From (6.10) and (6.11), the Gaussian contribution of a single reflection at
a sphere with radius Rj, j = 1, 2 can then be identified as

exp
(
−ηRj

)
= exp

(
− Rj

4κsp
(k(in) − k(sc))2

)
. (6.97)

Here, η is defined in analogy to (6.12) with the two wave-vector components re-
placed by k(in) and k(sc).

Neglecting numerical factors of order one, the width around the saddle-point
manifold is thus δk(j) ∝

√
κsp/Rj. The typical scale of κsp is set by the integral on the

right-hand side of (6.31), finally leading to the change of the projection of the wave
vector onto the x-y-plane

δk(j) = |k(sc) − k(in)| ∝ (LRj)
−1/2 . (6.98)

As expected, the scattering at the smaller sphere provides the larger deviations from
the saddle-point manifold. Thus, the effective area contributing to the Casimir inter-
action is fixed by the smaller radius which we refer to as R1 in the following.

We now explore the implications of (6.98) in real space based on specular reflec-
tion. The saddle-point manifold (6.16) corresponds to reflections between the points
on the two spheres corresponding to the closest distance L (cf. Fig. 6.7). Deviations
from the saddle-point manifold as allowed by the Gaussian (6.97) implicate the sur-
roundings of these two points in the scattering process. We estimate the dimension
of the spherical cap on the surface of the smaller sphere 1 by considering the scatter-
ing of propagating waves in the real frequency domain with the help of Fig. 6.7.

2The analysis in this section is taken from Ref. [114].
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FIGURE 6.7: Estimation of the effective area contributing to the Ca-
simir interaction between two spheres. K(in) and K(sc) denote the in-
cident and scattered wave vectors, respectively. To be definite, the
reflection is shown at the smaller sphere of radius R1. Specular reflec-
tion at the tangent plane π(ϑ) entails that the projections of K(in) and
K(sc) on π(ϑ) are equal. On the other hand, the wave vector projec-
tions on the x-y-plane are generally different: δk = |k(sc) − k(in)| ≈
2ϑkz for ϑ � 1. We can estimate the angular sector effectively con-
tributing to the Casimir interaction from the width δk of the Gaus-
sian integrand in the saddle-point approximation (see text). (from
Ref. [114])

As above, we assume k(in) and k(sc) to be parallel and for simplicity omit the
index j = 1 when writing δk = |k(sc)− k(in)|. As shown in Sec. 5.4, the WKB approx-
imation for the direct reflection term amounts to a specular reflection at a tangent
plane π(ϑ) making an angle ϑ with the x-y-plane. For parallel vectors and small val-
ues of δk, a simple relation between ϑ and δk can be derived by noting that while the
projection of the wave vector onto the plane π(ϑ) is conserved during a scattering
process, this is not the case for the projection onto the x-y-plane for non-vanishing
values of ϑ. Assuming ϑ� 1, we find

δk ≈ 2ϑkz . (6.99)

This relation together with the scaling kz ∝ 1/L allow us to estimate the width of the
angular sector effectively contributing to the Casimir interaction from the Gaussian
width (6.98).

We find that the spherical cap around the point of closest distance corresponds
to the angular sector bounded by the angle ϑ ∝ (L/R1)

1/2 � 1. As indicated by
Fig. 6.7, its transverse size is d ≈ R1ϑ ∝ (R1L)1/2 � R1 < R2. The same scaling was
found by an heuristic geometric argument [127]. The area of the spherical surface
effectively contributing to the interaction is then A ∝ R1L, which coincides, except
for a numerical factor of order one, with the ratio between the Casimir force for
two spheres within PFA and the Casimir pressure for parallel planes, as long as the
interaction obeys a power law.3

3Since we have neglected numerical factors of order one, we are unable to distinguish between the
smallest radius R1 and the effective radius Reff defined in (4.4), given that their ratio is bounded by
1 < R1/Reff ≤ 2.
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Although the discussion above holds for arbitrary temperatures, we show in the
remaining part of this section that the effective area for the thermal corrections scales
in a different way in the low-temperature regime. The difference arises from the
typical scale for κsp, which is no longer set by 1/L, but rather by 1/λT, where λT =
h̄c/kBT is the thermal wavelength. In order to illustrate this property, we consider
the thermal correction of the Casimir force δF ≡ F(L, T)− F(L, 0) as an example. We
start from Eqs. (4.7) with (3.29) and employ the Poisson summation formula [77] to
write

δF = 2h̄ Reff

∞

∑
m=1

∑
p

∫ ∞

0
dξ cos(mλTξ/c)

∫ ∞

ξ/c

dκ

2π
κ log

(
1− r(1)p r(2)p e−2κL

)
. (6.100)

In the low-temperature limit, L � λT, the exponential exp(−2κL) can be taken to
be approximately constant and does not provide a cutoff for the κ integration in
(6.100). For instance, in the case of plasma metals, the correction δF can be written
in terms of simple integrals involving trigonometric functions of mλTκ, which are
similar to the expressions derived for the Casimir pressure between parallel planes
in Ref. [77]. The derivation of the low-temperature limit of (6.100) for Drude metals
is more involved [128], but 1/λT also provides the typical scale of κ in this case.

As a consequence, the effective area contributing to the thermal correction δF is
found to be of the order of A(T) ∝ R1λT and thus much larger than the area relevant
for F(L, T), which is dominated by the zero-temperature (vacuum) contribution in
the low-temperature limit. This result is consistent with the numerical examples for
a scalar field presented in Ref. [129].

The thermal correction to the Casimir force has been measured in the plane-
sphere geometry by employing a coated lens with R1 = 15.6 cm [122]. The results
were analyzed with the help of the PFA, which can be expected to provide an accu-
rate description of the thermal correction if the transverse size of the lens is much
larger than

√
R1λT ∝ 1 mm. If our estimate valid for L � λT applies to the ex-

periment where L . 0.4 λT, we can conclude that the lens was indeed of sufficient
size.

In most Casimir force measurements, thermal corrections are typically very small.
Nevertheless, our estimation of an enlarged effective area is still relevant for ther-
modynamic quantities vanishing in the zero-temperature limit, in particular for the
Casimir entropy.





83

Chapter 7

Plane-wave numerical approach

For the numerical evaluation of the scattering formula, usually a multipole basis
is employed. Spherical multipolar waves have been applied to the geometries of
a plane and a sphere [48–52], two spheres [32, 53, 54], and a sphere and a grating
[55]. Bispherical multipolar waves have also found numerical application in the
plane-sphere and the sphere-sphere geometry [39, 47]. The approaches using bi-
spherical multipoles show an improved convergence rate compared to approaches
using spherical multipoles. They, however, are only limited to the evaluation of the
zero-frequenciy contributing to the high temperature limit of the Casimir interac-
tion. This is because bispherical coordinates solve only the Laplace equation and
not the more general Helmholtz equation [130].

In this chapter, we propose to employ the plane-wave basis for a numerical eval-
uation of the scattering formula. It turns out that the convergence properties of
the plane-wave numerical approach are superior over the method using spherical
multipoles. In the examples of the plane-sphere and sphere-sphere geometry, the
convergence properties of the plane-wave approach are similar to those observed in
the method utilizing bispherical multipoles. The plane-wave approach is, however,
applicable for all frequencies and thus useful for making predictions of the Casimir
interaction at any temperature.

We start out by explaining the plane-wave numerical approach for arbitrary ge-
ometries. The key idea for the method is the Nyström discretization of the plane-
wave momenta. For geometries which exhibit cylindrical symmetry, we explain that
the method can be improved using a discrete Fourier transform. Then, the plane-
wave numerical approach is applied to the plane-sphere and the sphere-sphere ge-
ometry, which both are cylindrical symmetric. Finally, we address numerical issues
appearing in the numerical calculations with special focus on the numerical evalua-
tion of the Mie scattering amplitudes. Most parts of this chapter were adapted from
Ref. [80].

7.1 Arbitrary geometry

Within the continuous plane-wave basis, the operators constituting the round-trip,
and thus also the round-trip operator itself, are integral operators. As such, the
action of the round-trip operator (2.41) on a given plane-wave basis elements can be
expressed as

M|k, p〉 = ∑
p′

∫ d2k′

(2π)2 KM(k′, p′; k, p) |k′, p′〉 (7.1)
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with its kernel function

KM(k′, p′; k, p) = e−κ′L∑
p′′

∫ d2k′′

(2π)2 KR2(k
′, p′; k′′, p′′)e−κ′′LKR1(k

′′, p′′; k, p) , (7.2)

where KRj is the kernel of the reflection operator Rj for j = 1, 2 and κ′ as well as
κ′′ are defined according to (3.7). Note that we have dropped the dependence of
the plane-wave basis elements on the sign φ, representing the propagation of the
plane waves with respect to the z-axis, as it is the same before and after the round
trip. Note also that the kernel functions depend also on the frequency ξ which is
suppressed in the arguments to not overload the notation. In the continuous case,
the kernel functions can be identified with the matrix elements of the corresponding
operators.

For numerical purposes, a Nyström discretization needs to be applied to the inte-
gral appearing in (7.1). The discrete matrix elements of the round trip operator then
differ from its kernel function by a numerical factor as we will see in the following.
With the Nyström discretization, the action of the round-trip operator is expressed
in terms of

M|kα, p〉 = ∑
p′,α′

wα′

(2π)2 KM(kα′ , p′; kα, p) |kα′ , p′〉 (7.3)

with the nodes kα and weights wα of a quadrature rule for the two-dimensional
integral. Later, when carrying out the integration over k in polar coordinates, it will
be appropriate to use two different one-dimensional quadrature rules for the radial
and the angular integration.

Within this approximation the matrix elements of the round-trip operator be-
come the corresponding kernel function multiplied by the quadrature weights [131]

〈kα′ , p′|M|kα, p〉 = wα′

(2π)2 KM(kα′ , p′; kα, p) . (7.4)

After discretization the matrix elements thus form a block matrix with respect to the
index α and the polarization p. The Casimir free energy an then be approximated by
replacing the round-trip operatorM in (2.52) by the finite matrix (7.4). Likewise, an
approximation for the Casimir force and force gradient can be found doing the same
replacement in the formulas (2.63) and (2.64), respectively.

In general, the reflection operators pertaining to the two objects are non-diagonal
in the plane-wave basis as is the case for example in the geometry of two spheres.
The integral over k′′ appearing inside the kernel of the round-trip operator (7.2) can
usually not be performed analytically. Thus, for numerical applications this integral
needs to be discretized as well where the quadrature rule with indices α′′ may differ
from the one chosen in (7.3). The summation over α′′ and p′′ then allows the round-
trip matrix to be expressed in terms of a product of two block matrices representing
the reflection operators.

7.2 Geometry with cylindrical symmetry

Casimir and van der Waals experiments are often carried out in set-ups with a certain
symmetry. The cylindrical symmetry is particularly common as it appears in the
plane-sphere and sphere-sphere geometries. At first sight, the spherical-wave basis
appears to be better adapted for those geometries since the azimuthal number m
is conserved through the round trip, yielding a block-diagonal round-trip matrix.
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However, this symmetry can also be exploited in the plane-wave basis as will be
explained in the following.

For a cylindrically symmetric geometry it is natural to express the transverse
wave vector k in polar coordinates with radial component k and angular component
ϕ, where the latter is relevant for the following considerations. A suitable quadrature
rule for the integration over ϕ is the trapezoidal rule which at order M has nodes at
ϕj = (2π/M)j with constant weights wj = 2π/M where j = 1, . . . , M. In fact, the
trapezoidal rule converges exponentially fast for periodic functions as given here
[132, 133].

Due to the cylindrical symmetry, the kernel functions depend only on the differ-
ence of the angular components ∆ϕ = ϕ′− ϕ. Because the weights of the trapezoidal
rule are constant and its nodes proportional to the indices, the discretized block ma-
trix then depends through the difference of the angles only on the difference of the
indices, i.e. ∆ϕi,j = ∆ϕi−j. Such a block matrix is called circulant and can be block-
diagonalized by a discrete Fourier transform. The blocks on the diagonal then corre-
spond to the contributions for each azimuthal number starting from m = 0,±1, . . .
up to ±(M − 1)/2 when M is odd or M/2 when M is even. Note that opposite
signs in the azimuthal number contribute equally. This is due to the fact that az-
imuthal numbers of opposite signs are connected through the Fourier transform by
the transformation ∆ϕ→ −∆ϕ. Such a transformation, however, leaves the Casimir
interaction unchanged, since it corresponds to a flip in the sign of the z-coordinates.

The reflection operators of the two objects may in general be non-diagonal as
it is the case in the geometry of two spheres. In Sec. 7.1 it was argued that the
discretized round-trip matrix can then be written in terms of a product of two block
matrices. In order to exploit the cylindrical symmetry, the quadrature rule of the
angular component of the k′′-integral in (7.2) needs to be a trapezoidal rule of the
same order M as above. Only then both block matrices become circulant such that
after the discrete Fourier transform their block matrix product can be simplified to a
product of block-diagonal matrices.

It is possible to perform the discrete Fourier transform analytically, which opens
the possibility for a hybrid numerical method in which the matrix elements are con-
structed by discretizing the radial transverse momentum k for each angular mo-
mentum index m. At first sight, one might favor such a hybrid approach over the
pure plane-wave approach discussed above, since one can save on the computa-
tion time of the discrete Fourier transform. In practice, however, the time needed
for the discrete Fourier transform in the plane-wave approach is dominated by the
computation of the matrix elements. Numerical tests on the plane-sphere geometry
indicate that the hybrid approach is slower than the plane-wave approach. Details
on the hybrid approach in the example of the plane-sphere geometry can be found
in appendix F.

In the following, we apply the plane-wave numerical method in the examples of
the plane-sphere and the sphere-sphere geometry. Both geometries are cylindrically
symmetric so that the simplification discussed in this section applies.

7.3 Plane-sphere geometry

As a first example to which we apply the plane-wave method described above, we
consider a sphere with radius R above a plane at a surface-to-surface distance L. The
cylindrically symmetric geometry is depicted in Fig. 7.1. The kernel of the round-trip
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FIGURE 7.1: Geometry of a sphere with radius R in front of a plane at
a surface-to-surface distance L.

operator is given by

KM(k, p; k′, p′) = rp(iξ, k)e−(κ+κ′)(L+R)KRS(k, p; k′, p′) (7.5)

with the Fresnel coefficients rp given in (3.9) and, in view of the matrix elements
(5.14), the kernel of the reflection operator at the sphere KRS reads

KRS(k
′, ϕ′, TM; k, ϕ, TM) =

2πk
Kκ′

[AS2 + BS1] ,

KRS(k
′, ϕ′, TE; k, ϕ, TE) =

2πk′

Kκ′
[AS1 + BS2] ,

KRS(k
′, ϕ′, TM; k, ϕ, TE) = −2πk′

Kκ′
[CS1 + DS2] ,

KRS(k
′, ϕ′, TE; k, ϕ, TM) =

2πk′

Kκ′
[CS2 + DS1] ,

(7.6)

with the Mie scattering amplitudes (5.3) and the polarization transformation coeffi-
cients (5.15). For convenience, the factor k′ arising from the integration measure in
polar coordinates has been absorbed into the kernel functions.

In (7.5), we chose the reference point of the sphere at its center and the reference
point of the plane as the point on its surface closest to the sphere. The exponential
function in (7.5) corresponds to the translation of the plane waves from the plane’s
surface to the sphere center and back.

In the multipole method, a symmetrization of the round-trip operator is impor-
tant for a fast and stable numerical evaluation of the Casimir interaction because
otherwise the matrices appearing in the calculation are ill-conditioned [57]. This
symmetrization is not as crucial in the plane-wave method where it merely gives a
factor of two in run-time speed-up because only half of the matrix elements need to
be computed.

It is however important to write the translation over the sphere radius in (7.5)
symmetrically with respect to the two momenta κ and κ′. Only then the matrix
elements in the plane-wave method are well-conditioned and take their maximum
around k = k′. This can be understood by examining the asymptotic behavior of
the round-trip operator when R� L.

Following the line of reasoning from the discussion of the effective interaction
area in Sec. 6.10 around Eq. (6.97), the Gaussian contribution of the reflection at the
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sphere can be identified as

exp
(
− R

4κ

[
(k− k′)2 + k2(ϕ− ϕ′)2]

)
. (7.7)

Its main contribution comes from k = k′ and ϕ = ϕ′ where the exponent vanishes.
When the translation operator is not expressed symmetrically with respect to the
momenta, the kernel would grow exponentially with κ and decrease exponentially
with κ′ or vice versa, resulting in an ill-conditioned matrix.

Quadrature rule for radial wave vector component

Before the Casimir interaction can be determined numerically, the quadrature rule
for the integration over the radial component of the transverse wave vectors in (7.3)
needs to be specified. In principle, any quadrature rule for the semi-infinite interval
[0, ∞) can be used. The Fourier-Chebyshev scheme described in Ref. [134] turned
out to be particularly well suited. Defining

tn =
πn

N + 1
, (7.8)

the quadrature rule is specified by its nodes

kn = b cot2(tn/2) (7.9)

and weights

wn =
8b sin(tn)

[1− cos(tn)]2
1

N + 1

N

∑
j=1

j odd

sin(jtn)

j
(7.10)

for n = 1, . . . , N. An optimal choice for the free parameter b can boost the conver-
gence of the computation.

For dimensional reasons, the transverse wave vector and thus b should scale like
the inverse surface-to-surface distance 1/L. In fact, the choice b = 1/L already yields
a fast convergence rate and will be used in the following discussion.

Estimation of the convergence rate

In order to understand how well the plane-wave method performs when R � L,
one needs to know how the quadrature orders N and M for the integration over
the angular and radial wave vector component, respectively, scale with the aspect
ratio R/L for a maximally allowed relative error. We refer to this scaling as the
convergence rate of the quadrature schemes.

In the multipole method, the number of multipoles needs to be truncated in or-
der to make the calculation of the Casimir interaction amenable to linear algebra
routines. Convergence will then be reached when the highest multipole order `max
and the highest azimuthal number mmax included in the computation take values
which scale as `max ∝ R/L and mmax ∝

√
R/L, respectively [37, 38, 40]. Since the

angular quadrature order M in the plane-wave approach is related to mmax through
a Fourier transform, one can expect that it exhibits the same convergence rate as
mmax. The scaling behavior of the radial quadrature order N, however, is a priori
not known and will be determined in the following.
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Within the plane-wave approach, convergence can only be reached once the
nodes associated to the quadrature rules are able to resolve the structure of the ker-
nel functions. The important contributions of the round-trip kernel come from a
region around its maximum at κ = κ′ ≈ 1/L. This region corresponds to indices of
the Fourier-Chebyshev quadrature rule around n = n′ ≈ N/2, where for large N
the spacing between neighboring quadrature nodes is given by

δk ≈ 2π

LN
. (7.11)

Furthermore, when R � L, the kernel can be approximated by a Gaussian with
width

√
κ/R ∝ 1/

√
LR. This can be seen by expanding the exponent in (7.7) around

k = k′. Requiring δk to be of the order of that Gaussian width, we find that the
quadrature order N scales like

√
R/L. Along the same lines, it can be verified that

the angular quadrature order M obeys the same scaling law.
The quadrature orders for angular and radial integration can thus be expressed

as

N =

⌈
ηN

(
R
L

)1/2
⌉

, M =

⌈
ηM

(
R
L

)1/2
⌉

(7.12)

respectively, where the ceiling function ensures that the orders are integers. The
two coefficients ηN and ηM control the numerical accuracy with larger values corre-
sponding to higher accuracy.

These expectations for the convergence rate can be verified numerically. We
specifically consider perfect reflectors in vacuum, a sphere radius of 1 µm, i.e. a typ-
ical value for colloids, and room temperature, T = 293 K. Figure 7.2 (a) shows the
relative error of the Casimir free energy as a function of ηN and ηM for the aspect
ratios R/L = 50 and 500. The errors have been computed relative to energies with
much larger values of the coefficients, namely ηN = ηM = 14 for all points in the
figure. For the points where the relative errors are shown as a function of ηN , the co-
efficient of the angular quadrature order was kept fixed at ηM = 14, and vice versa.
One can indeed see that the coefficients depend only weakly on the aspect ratio
R/L. This also holds for other system parameters and real materials as can be seen
in the example of a polystyrene sphere and plane in water depicted in Fig. 7.2 (b).
The figures can be further used as a guide to choose ηN and ηM in order to obtain a
given numerical accuracy. The formulas (7.12) only work when R/L is larger than
50. For smaller aspect ratios, one can simply set R/L to 50 in Eq. (7.12), which gives
a sufficiently high accuracy depending on the coefficients ηN and ηM.

Based on the curves depicted in Fig. 7.2 we establish a rule of thumb for which
the η’s can be determined for a given desired relative error ε:

ηM = −0.38 log(ε)− 0.13 ,

ηN = 0.007 log2(ε)− 0.27 log(ε) + 0.42 .
(7.13)

For convenience, required values of ηN and ηM for specific relative errors ε are listed
in Tab. 7.1.

In comparison to the multipole method we conclude that the matrix sizes appear-
ing in the plane-wave approach are smaller by a factor of

√
R/L. This reduction in

the matrix size becomes particularly relevant when typical aspect ratios appearing
in experiments are considered.
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FIGURE 7.2: The relative error as a function of ηN (circles and crosses)
and ηM (squares and pluses) for the aspect ratios R/L = 50 and
500 for (a) perfectly reflectors in vacuum (taken from [80]) and (b)
polystyrene in water.

ε 10−2 10−3 10−4 10−5 10−6 10−7 10−8

ηM 1.6 2.5 3.4 4.2 5.1 6.0 6.9
ηN 1.9 2.7 3.6 4.6 5.6 6.8 8.0

TABLE 7.1: Required values of ηN and ηM to achieve a numerical
relative error of ε.
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FIGURE 7.3: Runtime comparison between the plane-wave method
(squares) and the multipole method (circles) using MSD (open sym-
bols) and PSD (filled symbols). The solid lines indicate a power-law
fit ∝ (R/L)γ on the basis of the data points shown on top of the lines.
The value of the exponent γ is indicated at the end of the lines. The
timing experiments were carried out on a computer with an Intel Core
i7-2600 processor. The four cores running at 3.4 GHz were fully ex-
ploited by running eight threads or processes in parallel. (taken from
[80])

Runtime analysis: plane-wave versus multipole method

We now further quantify the advantages of the plane-wave method over the multi-
pole method by analyzing their respective runtimes. The plane-wave method was
implemented in Python using the scientific libraries NumPy [135], SciPy [136] as
well as Numba [137] for just-in-time compilation. For the multipole method the
implementation of Ref. [138] in C was used. Because the latter only supports the
computation of the Casimir free energy, we restrict the analysis to this quantity.

We consider the same plane-sphere setup as in the previous section with perfect
reflectors in vacuum, a sphere radius of R = 1 µm and temperature T = 293 K. The
Casimir free energy at finite temperatures can be evaluated in different ways. We
consider the Matsubara spectrum decomposition (MSD) represented by Eq. (2.52),
and the Padé spectrum decomposition (PSD) [79] outlined in Sec. 2.7. When using
PSD, only

√
λT/L terms in the frequency summation need to be considered, where

λT = h̄c/kBT is the thermal wavelength. Thus, PSD is expected to be significantly
faster than MSD for all experimentally relevant distances since the latter requires a
summation over λT/L terms to ensure convergence.

To ensure comparability, the Casimir free energy is computed with both meth-
ods to the same numerical precision of about six correct digits. Figure 7.3 shows the
runtime of the Casimir free energy for the multipole method (circles) and the plane-
wave method (squares) for aspect ratios R/L ≥ 10 using MSD (open symbols) and
PSD (filled symbols). For all timing experiments a machine with an Intel Core i7-
2600 processor was used. The four cores running at 3.4 GHz were fully exploited by
either running eight threads or processes in parallel depending on the implementa-
tion. We find that the plane-wave method is significantly faster than the multipole
method. As expected, the PSD performs better than the MSD. For instance, at the
aspect ratio R/L = 100, the multipole methods takes about 11 hours to compute
the free energy using MSD and only 25 minutes with PSD. The plane-wave method,
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however, needs only about two minutes to compute the same quantity when using
MSD and 12 seconds with PSD. For other system parameters and real materials we
come to similar conclusions for the runtime.

The black lines in Fig. 7.3 are fits to the points they overspan. The timings of
the multipole method are consistent with the timing experiment in Ref. [57] where
it was found that for a given frequency and azimuthal number the timing scales
as ∝ (R/L)1.31. The sum over the azimuthal numbers scales with ∝ (R/L)0.5. The
above mentioned scaling behavior for the frequency sum in the MSD and PSD is thus
consistent with the observed over-all scaling of (R/L)2.7 and (R/L)2.3, respectively.

The method based on plane waves scales as (R/L)2.1 for MSD and (R/L)1.8 us-
ing PSD, allowing the computation of higher aspect ratios with ordinary hardware.
The difference between the scaling behavior of the MSD and PSD for the plane-wave
method of about (R/L)0.3 is notably smaller than the expected difference of (R/L)0.5.
While the PSD requires the evaluation of fewer frequency contributions to the Casi-
mir energy, some of the frequencies to be considered are higher than those required
for the MSD (see discussion in Sec. 2.7). Numerical tests show that the time needed
to evaluate matrix elements increases with increasing frequency, thus offering an
explanation for the reduced improvement of the PSD over the MSD.

Note that for the calculations of the determinants, we did not use the sophis-
ticated algorithm using hierarchical matrices which was crucial to boost the perfor-
mance for Casimir computations in the multipole basis [56, 57]. Since we are dealing
with much smaller matrices and our computation time is dominated by the calcula-
tion of the matrix elements itself, such method is not expected to bring a significant
improvement. Instead we speed up the calculation of the matrix elements by first
estimating their values in terms of their asymptotic behavior given in Eq. (7.7). Since
the matrices are well-conditioned and their dominant contributions come from ma-
trix elements around the diagonal, we can set matrix-elements to zero if their asymp-
totic behavior predicts a value smaller than the machine precision. Otherwise, the
computed matrix elements are numerically exact. Numerical tests reveal that this
scheme yields a speed-up scaling as (R/L)0.5.

7.4 Sphere-sphere geometry

Another example of a Casimir setup with cylindrical symmetry consists of two spheres
with radii R1 and R2. As in the plane-sphere geometry, we denote the surface-to-
surface distance as L. The setup is depicted in Fig. 6.1. When the two reference
points are placed at the spheres’ centers, the kernel of the round-trip operator is of
the form (7.2) with the kernel functions of the reflection operators of the respective
spheres given in (7.6). Note that the sign of the coefficients C and D differs for the
two spheres.

We recall that, because the reflection operator at both objects is now non-diagonal,
a discretization of two integrals over the transverse momenta is required. Firstly, the
discretization of the integral over k′ in Eq. (7.1) results in a finite matrix represen-
tation of the round-trip operator. Secondly, the discretization of the integral over
k′′ in Eq. (7.2) allows to express the round-trip matrix in terms of a product of two
block-matrices. As before, we express k′ and k′′ in polar coordinates. For the ra-
dial components we employ the Fourier-Chebyshev quadrature scheme presented
in Sec. 7.3. The quadrature orders, however, do not need to coincide and thus we use
the quadratures of order N′ and N′′ for the integrations over k′ and k′′, respectively.
Likewise we employ trapezoidal rules of order M′ and M′′ for the discretization of
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the angular components. In order to exploit the cylindrical symmetry of the problem
by means of the discrete Fourier transform, the quadrature orders M′ and M′′ will
be required to be equal. However, for the sake of the following analysis we assume
them to be different.

The convergence rate of the quadrature orders can be determined with the same
line of reasoning as in section 7.3. When the sphere radii become large, the kernel
functions of the reflection operators can be approximated by Gaussians for which the
width is controlled by the respective radii. The kernel of the round-trip operator is
then a convolution of these two Gaussians, resulting in a Gaussian where the width
is controlled by the effective radius defined in (4.4) instead. We then find the scaling

N′ ∝ M′ ∝
√

Reff/L . (7.14)

The quadrature orders N′′ and M′′ can be estimated from the convolution integral.
The integrand is a Gaussian where the two radii appear as a sum, R1 + R2 and thus
the quadrature orders scale as

N′′ ∝ M′′ ∝
√
(R1 + R2)/L . (7.15)

Note that in the plane-sphere limit, where one radius is much larger than the other,
the quadrature orders N′ and M′ become the same as in the plane-sphere geometry
(7.12) where R = R1. The quadrature orders N′′ and M′′ then become very large,
reflecting the fact that the kernel functions of the sphere with the larger radius R2
become strongly peaked around k = k′ as expected from the reflection properties
of a plane. A more detailed discussion of this limiting procedure in connection with
the PFA can be found in Ref. [114].

Finally, we need to go back to equal orders M′ and M′′. Since R1 + R2 > Reff, the
quadrature order of the trapezoidal rule thus scales as M′ = M′′ ∝

√
(R1 + R2)/L

to ensure convergence.
In analogy to (7.12), we can express the quadrature orders for the angular and

radial integrations as

N′ =

⌈
ηN′

(
Reff

L

)1/2
⌉

,

N′′ =

⌈
ηN′′

(
R1 + R2

L

)1/2
⌉

,

M′ =

⌈
ηM′

(
R1 + R2

L

)1/2
⌉

,

(7.16)

where the functions ηN′ , ηN′′ and ηM′ control the numerical accuracy.
These expectations can again be numerically verified. Considering perfectly re-

flecting spheres at T = 293 K and sphere 1 with radius 1 µm, the relative error for
the Casimir free energy is shown in Fig. 7.4.

The functions ηN′ , ηN′′ and ηM′ are represented by the blue, green and red sym-
bols, respectively. Crosses and circles stand for aspect ratio R1/L = 100, and crosses
and circles for R1/L = 500. For the crosses and pluses, the ratio of the sphere radii
R1/R2 is one, while it is two for the circles and squares. The errors have been com-
puted relative to free energies with much larger values of the coefficients, namely
ηN′ = ηN′′ = ηM′ = 14 for all points in the figure. For the points where the rel-
ative errors are shown as a function of ηN′ , the other functions were kept fixed at
ηN′′ = ηM′ = 14. The same procedure was applied to the relative error as a function
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FIGURE 7.4: The relative error as a function of ηN′ (blue), ηN′′ (green)
and ηM′ (red) for aspect ratios R1/L = 100 (crosses and circles) and
R1/L = 500 (pluses and squares). For the crosses and pluses, the
ratio of the sphere radii R1/R2 is one, while it is two for the circles
and squares.

ε 10−2 10−3 10−4 10−5 10−6 10−7 10−8

ηN′ 1.5 2.3 3.2 4.2 5.2 6.4 7.6
ηN′′ 2.9 4.0 5.3 6.6 8.0 9.6 11
ηM′ 2.5 3.4 4.3 5.2 6.0 6.9 7.8

TABLE 7.2: Required values of ηN′ , ηN′′ and ηM′ to achieve a numeri-
cal relative error of ε.

of ηN′′ and ηM′ . Figure 7.4 shows that the coefficients depend only weakly on the sys-
tem parameters, thus verifying the scaling law (7.16). For other system parameters
and real materials we find similar results.

Based on Fig. 7.4, we establish a rule of thumb for which the coefficients in (7.16)
can be determined given a desired relative error ε:

ηN′ = 0.0076 log2(ε)− 0.27 log(ε) + 0.060 ,

ηN′′ = 0.011 log2(ε)− 0.35 log(ε) + 1.1 ,

ηM′ = −0.0009 log2(ε)− 0.40 log(ε) + 0.69 .

(7.17)

For convenience, the values of the coefficients ηN′ , ηN′′ and ηM′ according to (7.17)
can be found in Tab. 7.2 for certain values of ε.

7.5 Numerical evaluation of the scattering amplitudes

In this section, we address a few numerical issues arising in the plane-sphere and
sphere-sphere calculations discussed above. Apart from the numerical evaluation of
the Mie scattering amplitudes (5.3), we use routines provided by standard python
packages. For instance, we use the Fast Fourier Transform routine provided by the
numpy package to perform the discrete Fouier transform as described in Sec. 7.2
and the linear algebra routines from scipy [136] for the evaluation of the Casimir
interaction by means of the scattering formula once the round-trip matrix has been
computed.
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A fast and stable numerical evaluation of the Mie scattering amplitudes (5.3) re-
quires more work. We discuss our implementation in more detail in the following.
We start out by discussing the numerical evaluation of the Mie coefficients and the
angular functions. Then, we explain how we perform the summation over `. Finally,
we compare the numerically evaluated Mie scattering amplitudes with their asymp-
totics obtained in Sec. 5.4 and analyze for which parameters the numerical difference
is so small that the scattering amplitudes can be replaced by their asymptotics.

Numerical evaluation of the Mie coefficients/Bessel functions

Besides the material properties encoded through the refractive index, the Mie coef-
ficients a` and b` as given in (5.18) depend only on the imaginary size parameter
x = KR, where K is the imaginary wave number in the medium and R is the sphere
radius. For a given frequency, the Mie coefficients are the same for all matrix ele-
ments of the round-trip operator. Thus, they can be precomputed for each frequency
contribution to the Casimir interaction.

For practical purposes, it is convenient to limit the summation over the partial-
wave indices ` by a highest value `max up to which the Mie coefficients are com-
puted. In Sec. 5.4, we have disussed in more detail that, within the semiclassical
approximation, the localization principle [100] connects waves with angular mo-
mentum ` � 1 to localized rays defining an impact parameter b = `/K. Since
large impact parameters b� R correspond to rays passing by the sphere, their con-
tribution to the scattering amplitudes is negligible. Thus, the main contributions
to the scattering amplitudes come from angular momenta ` . RK. Because the
wave numbers contributing to the Casimir interaction scale as the inverse surface-
to-surface distance, K ∝ 1/L, we can set the highest angular momentum considered
in the summation to `max = dηR/Le, where the coefficient η controls the numerical
error.

In view of the numerical approaches based on the multipolar representation of
the electromagnetic fields [51, 54, 58], where the numerical error as a function of η
was analyzed, we set η = 12, and `max to at least 200 here. Then, the scattering am-
plitudes are evaluated to high enough accuracy, such that the numerical error due to
the finite `max, does not interfere with the numerical error induced by the Nyström
discretization discussed in sections 7.3 and 7.4. While the choice for the proportion-
ality constant η is crucial for performance in the multipole based approaches as it
determines the matrix sizes involved in the calculations, it does not affect perfor-
mance that notably here allowing the conservative choice for η.

By their definition (5.18), the evaluation of the Mie coefficients themselves can be
reduced to the numerical evaluation of Bessel functions. We implement the routines
for the evaluation of the Bessel functions as given in [51, 54, 58]. We refer the reader
interested in details to the expositions in those references.

Numerical evaluation of the angular functions

The angular functions π` and τ`, as defined in (5.4), are numerically evaluated in
different ways depending if the index ` is small or large. For small ` < 1000, we
evaluate the angular functions by means of the recurrence relations [81]

π`(z) =
2`− 1
`− 1

zπ`−1(z)−
`

`− 1
π`−2(z) ,

τ`(z) = `zπ`(z)− (`+ 1)π`−1(z)
(7.18)
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starting with π0(z) = τ0(z) = 0, π1(z) = 1 and τ1(z) = z. By our experience, the
recurrence relations (7.18) are stable in the upward direction.

For large ` ≥ 1000, we evaluate the angular functions by means of asymptotic
expansions. The reason for this is that we do not perform the summation over ` in
the scattering amplitudes (5.3) starting from ` = 1 up to `max, but rather sum only
over the relevant terms contained in a smaller interval between the lower and up-
per summation bound. This summation technique will be discussed in more detail
below.

An asymptotic expansion of the angular functions can be found by alternatively
expressing them as

π`(z) =
1√

z2 − 1
P1
` (z) ,

τ`(z) = −zπ`(z) + `(`+ 1)P`(z)
(7.19)

and using asymptotic expansions of the (associated) Legendre functions found in
the literature.

Asymptotic expansion of the associated Legendre function

With an asymptotic expansion of the associated Legendre function P1
` (z), we im-

mediately find an asymptotic expansion for the angular function π` as defined in
(7.19).

In [139, §29.3.3], a uniform asymptotic expansion of the associated Legendre
function P−1

` (z) for large ` is given by

P−1
` (cosh x) =

1
λ

( x
sinh x

)1/2 ∞

∑
k=0

ck(x)
(

3
2

)(k)

Im+k(λx)
(

2x
λ

)k

(7.20)

with λ = `+ 1/2 and the rising factorials defined by

(
3
2

)(k)

=
Γ(k + 3/2)

Γ(3/2)
. (7.21)

The coefficients ck(x) can be obtained from the series expansion [139, §29.3.2]


2x

cosh x− cosh
(√

x2 − y
)

y sinh x




1/2

=
∞

∑
k=0

ck(x)yk . (7.22)

The first few coefficients read

c0 = 1 ,

c1 =
1− x coth(x)

8x2 ,

c2 =
8x2 − 3x2 coth2(x)− 18x coth(x) + 21

384x4 ,

c3 =
−3x3 coth3(x) + 40x2 − 15x2 coth2(x)− 81x coth(x) + 99

3072x6 ,

c4 =
d4

1474560x8 ,

c5 =
d5

3932160x10

(7.23)
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with

d4 = 64x4 − 225x4 coth4(x)− 1260x3 coth3(x) + 13200x2

+ 30
(
8x2 − 165

)
x2 coth2(x)− 25740x coth(x) + 32175 ,

d5 = −105x5 coth5(x) + 192x4 − 675x4 coth4(x)− x
(

64x4 + 49725
)

coth(x)

+ 26000x2 + 30x2 (24x2 − 325
)

coth2(x) + 10x3 (16x2 − 273
)

coth3(x) + 62985 .
(7.24)

With the connection formula

Pm
` (z) =

Γ(1 + `+ m)

Γ(1 + `−m)
P−m
` (z) , (7.25)

we then find the asymptotic expansion of the angular function π` as

π`(cosh x) =
1

sinh x
P1
` (cosh x) ∼

`(`+ 1)
λ

(
x

sinh3 x

)1/2 5

∑
k=0

ck(x)
(

3
2

)(k)

Ik+1(λx)
(

2x
λ

)k

. (7.26)

Six terms in the asymptotic expansion are enough to determine π` to machine preci-
sion when ` ≥ 1000.

For the asymptotic expansion of the angular function τ` by means of the corre-
sponding formula in (7.19), we need to find the asymptotic expansion of the Legen-
dre functions. We follow the procedure of evaluating the Legendre functions P`(z)
as outlined in [140]. There, two different asymptotic expansions are used depending
on how the index ` compares with the argument z.

Legendre functions for small arguments

For small arguments,
(`+ 1) sinh x < 25 , (7.27)

the Legendre polynomials can be evaluated using the asymptotic expansion [140]

P`(cosh x) ∼
6

∑
n=0

fn(xλ)

λn (7.28)

where λ = ` + 1/2. The functions fn(x) vanish for odd values of n and for even
values of n they are given by

f0(x) = h0(x) ,

f2(x) = −1
8

h1(x)− 1
12

h2(x) ,

f4(x) =
11

384
h2(x) +

7
160

h3(x) +
1

160
h4(x) ,

f6(x) = − 173
15360

h3(x)− 101
3584

h4(x)− 671
80640

h5(x)− 61
120960

h6(x) ,

(7.29)

with hn(x) = xn In(x) and the modified Bessel function of the first kind In(x).
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Legendre functions for large arguments

For large arguments,
(`+ 1) sinh x ≥ 25 , (7.30)

we make use of the asymptotic expansion [140]

P`(cosh x) ∼
(

2
π sinh x

)1/2 M−1

∑
m=0

C`,m
cosh[(m + `+ 1/2)x]

sinhm x
. (7.31)

The coefficients C`,m are given in terms of the recurrence relation

C`,m+1 =
(m + 1/2)2

2(m + 1)(`+ m + 3/2)
C`,m (7.32)

with initial value

C`,0 =
Γ(`+ 1)

Γ(`+ 3/2)
. (7.33)

For ` ≥ 1000, it turns out that setting M = 16 in (7.31) yields numerical values for
the Legendre functions which are accurate to machine precision.

In practice, it is faster and more precise to compute the initial value C`,0 via the
asymptotic series

C`,0 ∼
1√
`

(
1− 3

8 `
+

25
128 `2 −

105
1024 `3 +

1659
32768 `4 −

6237
262144 `5 + . . .

)
(7.34)

than calculating it by means of implementations of the gamma function. The asymp-
totic series (7.34) has been obtained with Mathematica. For ` ≥ 1000, it yields nu-
merical values at machine precision.

Performing the summation over `

Now we discuss the summation over partial-wave indices ` appearing in the Mie
scattering amplitudes (5.3). In the discussion about the numerical evaluation of the
Mie coefficients above, we have argued that the summation over ` can be truncated
by `max = d12R/Le. If we were to compute the sum starting from ` = 1 up to
`max, the computation time would scale proportional to R/L. We can do better than
that by using our knowledge from the analytical derivation of the asymptotics of the
scattering amplitudes discussed in Sec. 5.4.

There, we have seen that the largest contribution comes from an index ` close to
`sp = KR

√
−(cos(Θ) + 1)/2. Thus, it makes sense to start the evaluation of the scat-

tering amplitudes close to `sp and perform an upward and downward summation
over `. The upward summation is terminated either if the value `max or conver-
gence is reached. Similarly, the downward summation is terminated either if ` = 1
or convergence is reached. In the special case that `sp > `max, we only perform a
downward summation starting from `max.

In this way, the number of terms which need to be considered in the evaluation
of the scattering amplitudes scales as

√
KR
√
(1− cos(Θ))/2, which corresponds to

the Gaussian width around `sp (see App C.2 for details). Since K ∝ 1/L, the number
of terms included in the calculation of the scattering amplitudes thus scales as

√
R/L

and so does the total computation time. Using this method for the summation over
`, we accomplish a speedup of

√
R/L compared to the naive summation from ` = 1

to `max.
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Employing asymptotics for the evaluation of the scattering amplitudes

Here, we explore for which parameters the asymptotic expansion (5.32) is accurate
enough to be used for the numerical evaluation of the scattering amplitudes instead
of the exact evaluation discussed above. It is worth recalling that the Mie scattering
amplitudes are functions of the imaginary size parameter x = KR, the scattering
angle Θ through cos(Θ) and the relative refractive index n.

We start out by comparing the asymptotics of the Mie scattering amplitudes
(5.32), which were derived in appendix C.2, with the numerical exact evaluation
explained aboved. In order to show that the asymptotics (5.32) are correct, we sub-
tract the numerical exact values of the scattering amplitudes and check whether the
remainder is asymptotically subleading compared to the WKB correction in (5.32).
As representative examples, we consider the scattering angles cos(Θ) = −1 and
cos(Θ) = −2, and the values n = 0.2, 2, ∞ for the refractive index, while varying
the size parameter x.

In Fig. 7.5 (a), the next-to-leading order (NTLO) correction of the Mie scattering
amplitudes is shown relative to the WKB approximation (5.33) for cos(Θ) = −1 as a
function of the imaginary size parameter x. The results for the refractive index with
values n = 0.2, 2 and ∞ are represented by pluses, crosses and circles, respectively.
The results for S1 and S2 in the figure are identical since, for cos(Θ) = −1, the two
Mie scattering amplitudes only differ by their sign, S1 = −S2. In Fig. 7.5 (b) and (c),
the NTLO correction to S1 and S2, respectively, is shown for cos(Θ) = −2. The solid
lines represent functions proportional to 1/x2, while the dashed line in Fig. 7.5 (a) is
proportional to 1/x4.

Fig. 7.5 shows that the NTLO correction is asymptotic to 1/x4 for perfect reflec-
tors (n = ∞) when cos(Θ) = −1 and asymptotic to 1/x2 in the other cases. Such
asymptotics are subleading compared to the WKB correction term in (5.33), which is
proportional to 1/x. Thus, we have numerically verified that the asymptotics of the
Mie scattering amplitudes as of Eq. (5.32) are indeed correct.

Since we have numerically verified that the asymptotics of the scattering ampli-
tudes (5.32) holds uniformly for any values of cos(Θ), we can now analyze for which
parameters the asymptotics are close enough to the numerical exact values, so that
they can be used for the numerical evaluation of the scattering amplitudes in the
calculation of the Casimir interaction.

In Fig. 7.6, the asymptotics of the Mie scattering amplitudes, denoted by S(asymptot.)
p ,

is compared to the numerical exact evaluation of the scattering amplitudes Sp. The
relative error of the asymptotics compared to the exact evaluation is depicted for a
fixed refractive index n and size parameter x as a function of the scattering angle Θ
through the parameter z = − cos(Θ)− 1. Figures 7.6 (a) and (b) show the relative
error for the asymptotics of S1, while Figs. 7.6 (c) and (d) show the relative error for
the asymptotics of S2. For (a) and (c) the size parameter is kept fixed at x = 500 and
for (b) and (d) at x = 5000. Pluses, crosses and circles represent the refractive index
of n = 0.2, 2 and ∞, respectively.

The plots in Fig. 7.6 on the left show a similar qualitative behavior compared to
those on the right. Quantitatively, the plots on the right show a smaller relative error,
which is expected as they correspond to the larger value of the size parameter x. In
all plots, we observe that, when z > 1, the relative error generally decreases as z
increases and, when n is finite, the relative error goes to a constant value for small z.
Similar to the observations made in Fig. 7.5, the perfect reflector limit is also special
here, as the relative error decreases further with decreasing z.
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FIGURE 7.5: Next-to-leading order (NTLO) correction of the Mie scat-
tering amplitudes Sp relative to the WKB approximation S(WKB)

p as a
function of the imaginary size parameter x. The refractive index of
n = 0.2, 2 and ∞ is represented by pluses, crosses and circles, respec-
tively. (a) NTLO correction for cos(Θ) = −1. In this case, the result
for S1 and S2 is identical. (b) and (c) NTLO correction of S1 and S2
for cos(Θ) = −2, respectively. The solid lines represent functions
proportional to 1/x2, while the dashed line in (a) is proportional to
1/x4.
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circles represent the refractive index of n = 0.2, 2 and ∞, respectively.
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We now focus on the larger value of the size parameter x = 5000, i.e. Fig. 7.6 (b)
and (d). For n = 2 and n = ∞, the relative error does not exceed 2× 10−8 regardless
of the value of cos(Θ). For n = 0.2, the relative error becomes much larger for small
values of z. In fact, by a further analysis, we find that the relative error may increase
even more if n = 0 is approached. We generally find that if n > 0.5, the relative error
is smaller than 2× 10−8 when x = 5000 and smaller than 2× 10−6 when x = 500,
regardless of the value of cos(Θ).

Based on this analysis, we decided to employ the asymptotics of the scattering
amplitudes when n > 0.5 and x > 5000. Then, they are found within an accuracy
of about eight digits. This accuracy is typically enough for analysis of the next-to-
next-to-leading order asymptotics in the Casimir interaction which we will study
in Secs. 8.2 and 8.3. For the computation of the Casimir interaction, the use of the
asymptotic does not yield a significant speed-up for us. However, we observe that
for large aspect ratios R/L, with the surface-to-surface distance L, the use of the
asymptotics makes the evaluation of the Casimir interaction more stable, as it effi-
ciently takes care of the cases where cos(Θ) and x take rather extreme values.





103

Chapter 8

Applications

In this chapter, applications for the asymptotic expansion method derived in Ch. 6
and the plane-wave numerical method developed in Ch. 7 are given.

In section 8.1, we study the Casimir interaction in aqueous colloid systems in-
volving polystyrene and mercury bodies in the plane-sphere and sphere-sphere ge-
ometry using our numerical method. Special attention is paid to the influence of
variable salt concentrations. The accuracy of the PFA, which is typically used for
predictions in experimental setup, is analyzed. Moreover, we study the geometry
dependence and the influence of the salt concentration on the effective Hamaker
parameter.

In section 8.2, the numerical accuracy of the asymptotic expansion for the Casi-
mir interaction for large radii, which was derived in chapter 6, is studied by com-
paring its predictions with the ones obtained from our numerical exact method.

Finally, we analyze the PFA corrections for the Casimir energy at zero temper-
ature in section 8.3. We investigate the asymptotic expansion of the Casimir en-
ergy beyond our analytical results. In the plane-sphere, we confirm the previously
found rather surprising result that the next-to-leading order correction has a frac-
tional power of 3/2. For the sphere-sphere geometry, we come to similar conclu-
sions. Finally, we provide a possible explanation for the emergence of that fractional
power due to resummation of asymptotic higher order terms in the expansion.

8.1 Numerical results for the Casimir interaction in colloid
systems

In this section, the plane-wave numerical method developed in chapter 7 will be
applied to various colloidal systems suspended in an aqueous electrolyte solution.
In particular, we will study the interaction between two spherical colloidal particles
and the interaction of such a spherical particle with a plane wall. The analysis in this
section is taken and adapted from Ref. [80], where the Casimir interaction is referred
to as retarded van der Waals interaction.

For the analysis of colloid experiments the Lifshitz theory is most commonly em-
ployed, where the finite curvature of the spheres is accounted for by the proximity
force approximation (PFA). In Sec. 4.1, we have seen that, within the PFA, the Casi-
mir free energy is given by

FPFA = 2πReff

∫ ∞

L
dlFPP(l) (8.1)
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with the effective radius Reff defined in (4.4) and the Casimir free energy per unit
area between two parallel planes FPP given in (3.29). By taking the negative deriva-
tive of (8.1) with respect to L, a corresponding expression for the force can be found

FPFA = 2πReffFPP(L) . (8.2)

As we have learned in chapter 6, the PFA is an asymptotic result valid only in the
limit L/Reff → 0. At finite distances between the surfaces, there will always be some
discrepancy between the exact result and the PFA.

The material dependence of the Casimir interaction is often expressed in terms
of the Hamaker constant A [6]. Within Hamaker’s microscopic theory, the non-
retarded free energy per unit area for two parallel planes is given by

FPP = − A
12πL2 , (8.3)

which is only valid for very small distances. For larger separations of the planes,
retardation can no longer be neglected and the free energy needs to be computed
using Eq. (3.29). This motivates the definition of an effective Hamaker parameter
[60]

Aeff(L) = −12πL2FPP(L) , (8.4)

which now has a non-trivial distance dependence through the exact plane-plane free
energy per unit area. Usually Aeff is experimentally determined by measuring the
force F between spherical surfaces [12]:

Aeff(L) = − 6L2

Reff
F . (8.5)

Since the PFA expression (8.2) becomes exact in the small distance limit, the two def-
initions (8.4) and (8.5) are equivalent as far as the Hamaker constant A = Aeff(0) is
concerned. However, deviations from the PFA result make them differ at finite dis-
tances. In the following, we take the experimentally motivated Eq. (8.5) as our def-
inition of the effective Hamaker parameter. In addition to the distance dependence
associated to electrodynamical retardation, it also contains a geometry dependence
which often translates into further reduction as the distance increases.

In the following, we will study colloidal systems involving polystyrene and mer-
cury. The validity of the PFA will be analyzed for the plane-sphere and sphere-
sphere geometry using the exactly calculated Casimir interaction through the nu-
merical method developed above. Moreover, the geometry dependence of the effec-
tive Hamaker parameter (8.5) will be analyzed.

In our analysis, we will consider the two extreme cases of very low and very high
salt concentrations in the aqueous suspensions. Only the zero-frequency Matsubara
contribution is affected by the presence of ions in solution, since the correspond-
ing plasma frequency is many orders of magnitude smaller than kBT/h̄ even when
considering the highest possible concentrations. We follow the standard theoretical
modeling of Casimir screening and consider the zero-frequency contribution to be
completely suppressed by ionic screening in the case of high salt concentrations [23,
141, 142]. On the other hand, we model very low salt concentrations by summing
over all Matsubara frequencies ξn including n = 0 and neglecting the effect of ions
on the dielectric permittivities. Based on the scattering theory, an alternative result
for the Casimir interaction in electrolytes has been derived [143]. This approach will
not be discussed here further.
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We model the dielectric function of polystyrene and water in terms of the oscilla-
tor model (3.16). For polystyrene, we take the parameters from data set 1 in Ref. [84]
and, for water, we take the parameters from Ref. [85]. Where appropriate, we will
compare our results to those obtained by using the Lorentz oscillator parameters
for water suggested by Ref. [84] with the static relative permittivity ε(0) = 78.7.
Moreover, the temperature is assumed to be T = 298 K.

Polystyrene in water

The Casimir interaction between a polystyrene bead and a glass wall in an aqueous
solution has been experimentally studied using the method of total internal reflec-
tion microscopy [15, 16]. With the colloidal probe technique, the interaction force
between two latex spheres was measured [12]. Based on calculations presented in
Refs. [59, 60], Elzbieciak-Wodka et al. assumed that the accuracy of the PFA for par-
ticles with diameters above 0.5 µm up to separations of 100 nm is within 1%. De-
viations of the measured forces from the PFA result, which resulted in a smaller
Hamaker constant, were attributed to the surface roughness of the spheres. Moti-
vated by these experiments, we use the numerical method developed in this paper
to study the Casimir interaction between two polystyrene bodies in an aqueous so-
lution for the plane-sphere and sphere-sphere geometry.

The Casimir free energy and force between a plane and a sphere with radius
R = 1 µm as a function of the surface-to-surface distance L is depicted in Figs. 8.1 (a)
and (b), respectively. The solid lines represent the numerically exact values, while
the dashed lines correspond to the PFA. Here and in the following figures, the arrow
indicates the direction of increasing screening. Thus, here, the upper curves rep-
resent strong screening while the lower curves refer to no screening. The Casimir
interaction for intermediate screening then will follow a curve in the grey shaded
area. Typical values of the free energies and forces are of the order of kBT and 102 fN,
respectively, and thus within reach of current experimental techniques [12, 15, 16].
For both observables, the PFA overestimates the interaction and the approximation
agrees better with the exact values when the screening is strong.

The relative error of the PFA for the Casimir free energy and the Casimir force is
quantified in Figs. 8.1 (c) and (d), respectively. We find that the PFA is more accurate
for the force than for the free energy. The relative error of the PFA is larger than one
percent above a separation of about 10 nm for the energy and above about 20 nm
for the force regardless of the screening strength. The PFA performs worse when
screening is negligible because the corrections to the PFA are particularly large for
the zero-frequency contribution. This is consistent with our analytical results for
the PFA correction for dielectrics which turned out to be particularly large at small
separations (see Sec. 6.8).

The Casimir free energy and force, for two polystyrene spheres with equal radii
R1 = R2 = 1 µm, as a function of the surface-to-surface distance L is depicted in
Figs. 8.1 (e) and (f), respectively. Again, the PFA overestimates the Casimir interac-
tion and performs better when screening is strong. Overall, the free energy and the
force are smaller for the two spheres than for the plane and the sphere. This can be
explained by the fact that the effective interacting surface area analyzed in Sec. 6.10
is smaller in the former than in the latter.

The relative error of the PFA for the Casimir free energy and for the Casimir
force are shown in Figs. 8.1 (g) and (h), respectively. Similar as in the plane-sphere
geometry, the accuracy of the PFA is better when screening is strong and the PFA
is more accurate for the force than for the energy. Above separations of 10 nm, the
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relative error is larger than 1% for any screening strength. This is in particular true
for distances below 100 nm, which is in contradiction to the assumption made in
Ref. [12]. Compared to the plane-sphere geometry, the PFA is less accurate for two
spheres. This is consistent with our findings in Sec. 6.9, where we have observed that
the correction to the PFA is dominated by diffractive contributions. For two spheres,
according to Eq. (6.38), these diffractive contributions are additive and thus lead to
a larger correction to the PFA than in the plane-sphere geometry.

The effective Hamaker parameter for spherical surfaces is determined by Eq. (8.5)
and depends not only on the chosen materials but also on the geometry used in its
derivation. Figure 8.2 demonstrates this dependence for polystyrene and water. The
dash-dotted and the solid curves represent the exact effective Hamaker parameter
for the plane-sphere and sphere-sphere geometries, respectively, whereas the dashed
curve corresponds to the PFA result, which is the same for both geometries. The up-
per curves do not take screening into account as they include the full contribution
from the Matsubara frequency ξ0. In contrast, in the lower curves the Matsubara fre-
quency ξ0 is omitted so that these curves correspond to the limit of a vanishingly
small Debye screening length: λD → 0. For any finite value of λD, the Hamaker
parameter for each geometry first starts close to the upper curve at short distances
(L� λD) and then is further suppressed by screening, approaching the lower curve
for L� λD.

At small separations, the effective Hamaker parameters derived for the two dif-
ferent geometries asymptotically approach each other and the PFA curve as ex-
pected. As the distance increases, the reduction of the effective Hamaker parameter
calculated within the PFA accounts for electrodynamical retardation only, whereas
the exact curves display an additional reduction associated to curvature. Such geo-
metrical reduction is more apparent in the absence of screening, since in this case the
PFA curve at long distances defines a plateau associated to the contribution from the
Matsubara frequency ξ0, while the exact values decay to zero due to the curvature
suppression.

We obtain the value A = Aeff(L → 0) = 1.40 kBT for the Hamaker constant.
The limiting value is obtained from the short-distance plateau defined by the up-
per curves in Fig. 8.2 since they correspond to L � λD. On the other hand, the
short-distance plateau associated to the lower curves yields the value 0.63 kBT, rep-
resenting the difference between the Hamaker constant and the contribution from
the Matsubara frequency ξ0, which in turn corresponds to the long-distance plateau
defined by the upper PFA curve in Fig. 8.2. If we use the optical data from Ref. [84]
for water instead, we obtain a somewhat larger Hamaker constant of 1.67 kBT and a
corresponding short-distance plateau at 0.90 kBT, for the lower curves in Fig. 8.2.

Our values for A are less than half of the theoretical value found in the litera-
ture [60]. This is because the optical data in Refs. [84] and [85] used here differ from
Parsegian’s optical data set [23]. It is interesting to observe that even though the dif-
ference between the permittivities of the data sets is small, namely less than 10%, the
difference for the resulting Hamaker constants can be much bigger. This is because,
at least within the PFA, the permittivities of the objects and the medium enter in
terms of their differences. For polystyrene and water, the optical data almost match
for UV frequencies. These frequencies become more and more important as the dis-
tance between the surfaces decreases, and then small differences in the optical data
can result in relatively large differences in the Hamaker constant. The reduction of
the Hamaker constant observed in the experiment of Ref. [12] could hence be partly
due to uncertainties of the optical data.
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FIGURE 8.1: (a) Casimir free energy and (b) force for a polystyrene
sphere with radius R = 1 µm in front of a polystyrene plane in water
as a function of the surface-to-surface distance L. Solid lines corre-
spond to the numerically exact values and dashed lines to the PFA.
The arrow indicates the direction of increasing screening so that the
lower curve includes the Matsubara frequency ξ0 while the upper
curve does not. The grey shaded area indicates the interaction for
any intermediate screening strength. The corresponding relative er-
ror of the PFA for (c) Casimir free energy and (d) force. Here, the
upper curve corresponds to the absence of screening and screening
increases through the grey area as indicated by the arrow. (e) Casi-
mir free energy and (f) force for two polystyrene spheres with radii
R1 = R2 = 1 µm in water as a function of the surface-to-surface
distance L. Corresponding relative error of the PFA for (g) the free
energy and (h) the force. (from [80])
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FIGURE 8.2: Effective Hamaker parameter for two polystyrene ob-
jects in water as a function of the surface-to-surface distance L. The
dash-dotted and solid lines are derived from the exact plane-sphere
and sphere-sphere interaction forces, respectively. The dashed line is
computed within the PFA and is the same for both geometries. The
radius of the sphere(s) is 1 µm. The arrow indicates the direction of
increasing screening strength with the upper (lower) curve including
(excluding) the Matsubara frequency ξ0. (from [80])

Mercury and polystyrene in water

Mercury and polystyrene in an aqueous medium constitute an interesting colloid
system, since the Casimir force can be tuned from repulsion to attraction depending
on the screening of the zero frequency contribution [13]. Furthermore, due to the
high surface tension mercury droplets have a small surface roughness and, thus,
corrections due to roughness may play a minor role [90].

We study the interaction between a mercury droplet with radius R = 1 µm and a
polystyrene wall and the interaction between a mercury droplet with a polystyrene
sphere with equal radii R1 = R2 = 1 µm. The dielectric function of mercury is
described by the Drude-Smith model (3.23) with parameters taken from Ref. [90].
Figures 8.3 (a) and (b) depict the Casimir free energy and force in the plane-sphere
geometry, respectively. The corresponding quantities in the sphere-sphere geometry
are shown in Figs. 8.3 (c) and (d).1 Solid lines correspond to the numerically exact
results, and the dashed lines to the PFA. We use the convention that a negative sign
of the force corresponds to attraction and a positive sign corresponds to repulsion.

When screening is strong, the free energy and the force are negative and mono-
tonic. For negligible screening, both quantities are non-monotonic and can change
their sign. At intermediate distances, the force can be tuned from attractive to re-
pulsive depending on the screening strength. Consistent with the discussion of
polystyrene in water, the PFA is more accurate in the plane-sphere geometry than
in the geometry of two spheres.

This becomes most evident when considering the points in which the observ-
ables vanish. For instance, according to the PFA the force vanishes at about L =
138 nm for both geometries. The exact equilibrium distance is overestimated by
about 3 nm for the plane-sphere geometry and underestimated by about 10 nm for

1Such calculations have been performed before in Ref. [13]. An implementation error affecting the
Gaunt coefficient at large orders, however, lead to erroneous results for the Casimir force for small
separations which were corrected in Ref. [54].
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FIGURE 8.3: (a) Casimir free energy and (b) force between a mer-
cury sphere of radius R = 1 µm and a polystyrene plane in water.
(c) Casimir free energy and (d) force between a mercury sphere and
a polystyrene sphere with radii R1 = R2 = 1 µm in water. For both
scattering geometries, the quantities are presented as a function of
the surface-to-surface distance L. The solid lines correspond to the
numerically exact results and the dashed lines to the PFA. A positive
(negative) sign of the force represents repulsion (attraction). The ar-
rows indicate the direction of increasing screening strength with the
upper (lower) curve including (excluding) the Matsubara frequency
ξ0. The grey shaded area indicates the interaction for any intermedi-
ate screening. (from [80])
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the two spheres. When we use the optical data from Ref. [84] for water at a slightly
different temperature (T = 293 K) instead, we find different values for the equi-
librium distances. While the PFA would predict an equilibrium distance around
L = 178 nm, its exact value would be shorter by about 4 nm for the plane-sphere
geometry and larger by about 16 nm for the sphere-sphere geometry.

The determination of the equilibrium distance is particularly relevant for stable
equilibria. This is the case for the materials considered in connection with ice parti-
cles [144] and gas bubbles [145] in liquid water near a planar interface. Our results
suggest that beyond-PFA corrections in the nm range could appear when consider-
ing aspect ratios comparable to those taken in Fig. 8.3.

Figure 8.4 shows the effective Hamaker parameter for mercury and polystyrene
in water. The effective Hamaker parameter has been computed through the exact
force between a sphere and a plane (dash-dotted lines) and the exact force between
two spheres (solid lines). We also show the results obtained within the PFA (dashed
lines), which are the same for both geometries. The contribution from the Matsubara
frequency ξ0 is included in the lower lines but not in the upper ones. For any given
Debye screening length, the Hamaker parameter exhibits a crossover from the lower
curve to the upper one as the distance increases past λD. We find A = Aeff(L→ 0) =
4.11 kBT for the Hamaker constant by following the lower short-distance plateau. In
this configuration, the contribution 4.75 kBT from non-zero Matsubara frequencies,
associated to the short-distance upper plateau, is larger than the Hamaker constant.
This is a consequence of the repulsive nature of the contribution from the Matsubara
frequency ξ0, which corresponds to the negative plateau defined by the lower PFA
curve for the longer distances shown in Fig. 8.4. If we use the optical data for water
from Ref. [84], we find a Hamaker constant of 5.17 kBT and the upper short-distance
plateau at 5.81 kBT instead.

Again, the modification of the effective Hamaker parameter associated to the
scattering geometry is most pronounced for larger distances provided that screening
is negligible. The corresponding exact curves exhibit a non-monotonic behavior as
they tend to zero at large distances.

8.2 Numerical accuracy of the asymptotic expansion

In chapter 6, we have derived the first two terms in the asymptotic expansion of the
Casimir interaction between two spheres when the sphere radii become large com-
pared to the surface-to-surface distance. It was shown that the leading term of the
expansion corresponds to the PFA. The result for the asymptotic expansion holds
for any dielectric materials of the spheres or the medium and at any temperature.
It is given by the zero-frequency contribution (6.36) and the contributions for finite
frequencies composed of (6.32) and (6.60). The asymptotic expansion for the plane-
sphere geometry is contained as a limiting case, which was discussed in Sec. 6.6 in
more detail. In the following, we will refer to the results for the asymptotic expan-
sion with the acronym AE.

With the recent trend of experiments probing the Casimir interaction at larger
distances [13, 30], it is important to utilize methods which predict the Casimir in-
teraction beyond the PFA. This is because, by its asymptotic nature, the accuracy of
the PFA becomes worse for larger distances. We have seen that this is true in the
examples of the colloid setups in Sec. 8.1. Beyond-PFA predictions can be made by
using numerical exact methods, such as our plane-wave numerical method, or by
employing asymptotics beyond the PFA, like for instance our AE result.
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FIGURE 8.4: Effective Hamaker parameter for mercury and
polystyrene in water as a function of the surface-to-surface distance
L. The dash-dotted and solid lines are derived from the exact plane-
sphere and sphere-sphere interaction forces, respectively. The dashed
line is computed within the PFA and is the same for both geometries.
The radius of the sphere(s) is 1 µm. The arrow indicates the direction
of increasing screening strength with the lower (upper) curve includ-
ing (excluding) the Matsubara frequency ξ0. (from [80])

Before such asymptotic results can be employed, it is necessary to assess their
numerical accuracy. In this section, we thus study the numerical accuracy of the
AE in the plane-sphere and sphere-sphere geometry by comparing its predictions
with the numerical exact results obtained from our plane-wave method, which was
developed in Secs. 7.3 and 7.4. As example setups, we consider polystyrene in water,
which was also discussed in Sec. 8.1 and is typical for colloid experiments [12, 15,
16], and gold in vacuum, which is commonly used in Casimir experiments [20, 22].

We first analyze the setups of polystyrene in water. Since in colloid experiments
typically the Casimir free energy and the force are measured [12, 15, 16], we will
analyze the accuracy of the AE for those observables. Like in the previous section,
we model the dielectric function of polystyrene and water in terms of the oscillator
model (3.16) with parameters from [84] and [85], respectively. The temperature is
assumed to be T = 298 K and the radius of the sphere(s) is R = 1 µm. We consider
the same range of values for the surface-to-surface distance as in Fig. 8.1, i.e. L =
10 nm up to 400 nm. This distance range corresponds to rather small aspect ratios of
R/L = 100 to 2.5

In Fig. 8.5, the relative error of the AE is depicted by the solid lines. For compar-
ison, the dashed lines indicate the relative error of the PFA, which was also depicted
in Fig. 8.1 for the same setup. Figures 8.5 (a) and (b) depict the relative error of the
Casimir free energy F in the plane-sphere and the sphere-sphere geometry, respec-
tively. Figures 8.5 (c) and (d) show the corresponding results for the Casimir force F.
The arrows indicate the direction of increasing screening strength, so that the upper
curves include the Matsubara frequency ξ0, while the lower curves do not. For an
intermediate screening strength, the relative error would follow a curve between the
upper and lower lines.

Note that in Fig. 8.5 (a), the relative error of the AE for strong screening does
not monotonically increase with the distance as one would expect. This reason why
it falls off for distances larger than 200 nm, is that around 500 nm it passes through
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FIGURE 8.5: Relative error of the PFA (dashed lines) and the AE (solid
lines) for polystyrene objects in water at T = 298 K for (a) and (b) the
Casimir free energy F in the plane-sphere and sphere-sphere geome-
try, respectively. (c) and (d) corresponding relative errors for the Casi-
mir force F. The arrows indicate the direction of increasing screening
strength so that the upper curves include the Matsubara frequency
ξ0, while the lower curves do not.

zero owing to the fact that the prediction by the AE and the numerical exact Casimir
free energy coincidentally match at that value (see also Fig. 8.6).

We observe that the AE improves significantly on the PFA for the Casimir free
energy and the force, regardless of geometry and screening strength. When compar-
ing the accuracy of the AE between the observables, the geometries and screening
strengths, we come to similar conclusions as for the PFA. Namely, that the accuracy
of the AE is higher when screening is strong. In the plane-sphere geometry the AE
performs slightly better than for two spheres and the AE is more accurate for the
Casimir force than for the Casimir energy.

We now study the setup of gold in vacuum and take similar parameters as in the
plane-sphere experiment of Ref. [30], i.e. room temperature T = 293 K, the radius of
the sphere(s) of R = 43 µm and the surface-to-surface distance range from 200 nm to
one micron. This distance range corresponds to aspect ratios R/L = 215 to 43, which
is rather small compared to the aspect ratios considered in earlier experiments [20,
22]. For the finite frequency contribution to the Casimir interaction, we use a di-
electric function due to tabulated optical data for gold [121]. For the zero-frequency
contribution, we consider the Drude and the plasma model separately.

In Fig. 8.6, the relative error of the PFA (dashed lines) and the AE (solid lines)
is depicted for (a) and (b) the Casimir force in the plane-sphere and sphere-sphere
geometry, respectively. Similarly, (c) and (d) show the corresponding relative errors
for the Casimir force gradient. The blue lines correspond to the plasma and the black
lines to the Drude prescription.

As for the colloid system, we find that the AE improves significantly upon the
PFA for both observables in the two geometries. For Casimir force, the relative error
is more than one magnitude smaller for the AE than for the PFA at shorter distances
for both geometries. For the force gradient, the relative errors are smaller when
compared to the force and it may even be two orders of magnitudes smaller for the
AE compared to the PFA at the depicted distances.
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FIGURE 8.6: Relative error of the PFA (dashed lines) and the AE (solid
lines) for gold in vacuum at T = 293 K for (a) and (b) the Casimir
force F in the plane-sphere and sphere-sphere geometry, respectively.
(c) and (d) corresponding relative errors for the Casimir force gradi-
ent F′. The blue lines correspond to a plasma prescription and the
black lines to a Drude prescription. The radius of the sphere(s) is
R = 43 µm.

The results for the two geometries are rather similar. The relative errors for the
plane-sphere geometry are slightly smaller when compared to the sphere-sphere ge-
ometry. When comparing the relative errors between the two observables, we see
that they are generally smaller for the force gradient than for the force.

Note that the zero-frequency contribution in the AE, as given by (6.36), is iden-
tical to the PFA for Drude metals. Yet the AE provides a very accurate prediction
of the Casimir interaction at the considered distances. At larger distances, the zero-
frequency contribution becomes increasingly important. In this case, it might be
beneficial to use the exact results known for the plane-sphere and sphere-sphere ge-
ometry [33–35]. We have not investigated this possibility here further and leave it
for future work.

In conclusion, we have seen that the AE improves significantly on the PFA for
the two exemplary setups corresponding to typical experimental situations. The AE
may thus be useful for accurate predictions of the Casimir interaction for larger dis-
tances. Besides, the AE is an interesting alternative to numerical exact methods as
it provides a way of computing the beyond-PFA Casimir interaction at a computa-
tional constant time, regardless of the separation.

8.3 Corrections beyond the PFA at zero temperature

In this section, we study the corrections beyond the PFA at zero temperature and
generalize the results found for the plane-sphere geometry in [58] to the geometry
of two spheres. In Ref. [58], it was found that at T = 0, the asymptotic expansion of
the Casimir energy in the plane-sphere geometry for short distances is of the form

E
EPFA

= 1 + θ1

(
L
R

)
+ θ2

(
L
R

)3/2

+ . . . , (8.6)
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with the surface-to-surface distance L, the sphere radius R and the PFA energy EPFA.
For perfect reflectors, the PFA energy reads [37, 42, 104]

EPFA = − h̄cπ3R
720L2 . (8.7)

The next-to-leading order (NTLO) coefficient θ1 is generally known in the literature
[37, 38, 42, 104]. For perfect reflectors, it reads θ1 = 1/3− 20/π2 ≈ −1.69, which
can be obtained from (6.1) by taking the plane-sphere limit, Reff → R and u → 0.
The next-to-next-to-leading order (NNTLO) coefficient θ2 was obtained in [58] by a
fit to numerical exact data for the Casimir energy. For perfect reflectors in vacuum,
it was then found that θ2 ≈ 2.65. This result ruled out a previous suggestion made
in [42], where, using a Padé approximation, the NNTLO term in the expansion was
predicted to be of the form θ2(L/R)2 log(L/R) with θ2 ≈ −4.52.

In Ref. [58], it was further shown that the NNTLO proportional to (L/R)3/2 also
appears when real materials at T = 0 are considered. For a simple Drude and plasma
model, it was found that the NNTLO coefficient θ2 in (8.6) depends on the values of
the plasma frequency and the damping coefficient.

The derivative expansion (DE) approach, introduced in Sec. 4.2, generally pre-
dicts a NNTLO term proportional to (L/R)2 at T = 0 [120, 146]. In the electromag-
netic case, the perturbative kernel G̃(k, L) given in (4.16) is non-analytic with respect
to the in-plane wave number k and hence cannot be expanded beyond second or-
der in k [44, 120]. While the DE provides the correct NTLO in the Casimir energy
proportional to L/R [42, 43], it fails in the asymptotic expansion beyond that term
due to this non-analyticity of the perturbative kernel function [120]. As the DE ap-
proach requires the Casimir interaction to be local, the NNTLO in (8.6) may stem
from non-local contributions to the Casimir energy.

We now analyze the asymptotic series of the Casimir energy for two spheres with
radii R1 and R2 at zero temperature for short distances. For simplicity, we assume
perfect reflectors in vacuum. Before numerically analyzing the NNTLO term in the
asymptotic expansion of the Casimir energy for two spheres, we demonstrate that
our plane-wave numerical method produces the correct NTLO term in the asymp-
totic expansion given in (6.1).

In Fig. 8.7, the PFA correction is depicted as a function of L/R2 with the surface-
to-surface distance L. The circles represent our results for the plane-sphere limit,
where R1/R2 = ∞, while the pluses, crosses and squares represent results for the
ratios R1/R2 = 1, 2 and 4, respectively. The solid lines correspond to the NTLO
term in (6.1) relative to the PFA with the just mentioned ratios R1/R2 increasing
from to top to bottom. We see that, indeed, our numerical data is consistent with the
asymptotics (6.1) for short distances.

We now analyze the correction to the NTLO term using our numerical data. In
Fig. 8.8, the NTLO correction to the Casimir energy is shown as a function of L/Reff.
Pluses, crosses and squares correspond to numerical data with R1/R2 = 1, 2 and 4,
respectively, while the circles represent numerical data in the plane-sphere geometry.
The black solid line represents the function 2.65 (L/Reff)

3/2, which corresponds to
the NNTLO term determined in Ref. [58] when the plane-sphere limit, Reff → R, is
taken.

As the NTLO correction seems to be asymptotic to the solid black line, our nu-
merical analysis suggests that the asymptotic expansion of the Casimir interaction is
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FIGURE 8.7: PFA correction for perfectly reflecting spheres with radii
R1 and R2 in vacuum at zero temperature. The PFA correction is
shown as a function of L/R2 with the surface-to-surface distance L.
The circles represent the plane-sphere limit, where R1/R2 = ∞, while
the pluses, crosses and squares represent radii ratios of R1/R2 = 1,
2 and 4, respectively. The solid lines correspond to the asymptotics
given by Eq. (6.1) where from top to bottom the radii ratio R1/R2
increases according to the numerical data.

of the form
E

EPFA
= 1 + θ1

(
L

Reff

)
+ θ2

(
L

Reff

)3/2

+ . . . (8.8)

with the PFA energy (6.2) and the NTLO coefficient given in (6.1)

θ1 =
1
3
− 20

π2 −
R1R2

(R1 + R2)2 . (8.9)

As the numerical data points for different ratios of R1/R2 collapse, it seems that
the NNTLO coefficient is consistent with θ2 ≈ 2.65 for all values of R1/R2. It is
interesting to observe that, while the NTLO coefficient θ1 depends on the sphere
radii, the NNTLO coefficient θ2 seems to be independent of the radii.

Now we try to provide an explanation for the appearance of the 3/2 power in
the NNTLO asymptotic term of the Casimir energy. For simplicity, we will focus on
the plane-sphere geometry in the following analysis and comment on the sphere-
sphere case later. At first sight, in view of the asymptotic expansion of the Casimir
interaction provided in Ch. 6, it seems that the NNTLO term should be proportional
to (L/R)2. This is because the NNTLO term of the Casimir energy should stem
from the NNTLO term in the saddle-point approximation, the NNTLO term for the
asymptotics of the scattering amplitudes and the combination of the NTLO terms in
the saddle-point approximation with the NTLO term for the scattering amplitudes.
The NNTLO of the saddle-point approximation going beyond (6.5) goes inversely
quadratic in the large parameter which is the sphere radius here. In Sec. 7.5, we
have seen that the NNTLO term in the scattering amplitudes is inversely propor-
tional to the size parameter squared and thus also ∝ 1/R2. As the two NTLO terms
contribute to the linear correction L/R, it is plausible that their combination con-
tributes as (L/R)2 to the asymptotic expansion of the Casimir energy. What is the
mechanism giving rise to the numerical observed NNTLO term then?
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FIGURE 8.8: NTLO correction of the Casimir free energy for perfectly
reflecting spheres with radii R1 and R2 in vacuum at zero tempera-
ture. The coefficient of the NTLO term is θ1 = 1/3− 20/π2 − u with
the dimensionless parameter u = R1R2/(R1 + R2)

2. The NTLO cor-
rection is shown as a function of L/Reff with the surface-to-surface
distance L and the effective radius Reff. The circles represent the
plane-sphere limit, where R1/R2 = ∞, while the pluses, crosses and
squares represent radii ratios of R1/R2 = 1, 2 and 4, respectively. The
solid line corresponds to 2.65 (L/Reff)

3/2.

An expansion of the Casimir energy in round trips seems to provide an answer
to this question. In order to get insight, we numerically analyze the decomposition
of the Casimir energy in round-trips. Specifically, we define the contribution to the
Casimir energy for each round trip Er by

E =
∞

∑
r=1

Er , (8.10)

where
Er = −h̄

∫ ∞

0

dξ

2π

1
r

trMr . (8.11)

Numerically we can determine the trace over round trips, trMr, by first comput-
ing the round-trip matrix within the Nyström discretization as explained in Sec. 7.3
and 7.4 for the plane-sphere and sphere-sphere, respectively. The trace of the r-th
round-trip is given by the sum over eigenvalues of the round trip matrix exponenti-
ated by the power r.

By the arguments given above, it seems plausible to assume that Er has an asymp-
totic expansion for small L/R of the form

Er

Er,PFA
∼ 1 + θr,1

(
L
R

)
+ θr,2

(
L
R

)2

+ . . . , (8.12)

where we can determine Er,PFA and θr,1 from our analytical calculation in Sec. 6.5 by
taking the plane-sphere limit, Reff → R and u→ 0. From (6.76) we can then read off
that

Er,PFA = − h̄cR
8πL2r4 (8.13)
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and from (6.78) we find

θr,1 =
h̄c

24πL

( 4
r2 − 1

r4

)

Er,PFA

R
L
= −1

3
(
4r2 − 1

)
. (8.14)

We now investigate the NNTLO term in (8.12) numerically. To this end, we com-
pute the round-trip contributions to the energy Er for various number of round trips
in the aspect ratio range R/L = 0.002 to 0.1. In Fig. 8.9 (a) these energy contributions
are shown relative to the PFA expression (8.13). Purple, orange, blue, red and green
lines correspond to 5, 10, 20, 30 and 40 round trips, respectively. Since the numerical
data is shown as a function of the parameter v = r2L/R and the distance range with
respect to L/R is the same for each r, the lines corresponding to higher number of
round trips depict function values further to right in the figure.

As v decreases, all lines approach the value one, indicating that the PFA expres-
sion becomes asymptotically correct. When v becomes large, the round-trip contri-
bution becomes much smaller than the PFA expression even though L/R is small
for the depicted data. This is because for large r, the asymptotic expansion breaks
down, which can be seen by the fact that the NTLO term in (8.12) exceeds the leading
order contribution when r is large enough. This is typical for asymptotic expansions
for high dimensional integrals, which can be often improved by a resummation of
higher order terms in the expansion [115, 116]. Indeed, the number of round trips r
is proportional to the number of integrals appearing in the expression for the trace
of the r-th round-trip, which can be seen in (6.9). The number of integrals is thus
unbounded in the round-trip sum. Nevertheless, when the first two terms in (8.12)
are summed over all round trips from r = 1 to infinity, the result yields the correct
asymptotics of the Casimir interaction for small L/R, as we have seen in Fig. 8.7.

Fig. 8.9 (b) and (c) depict the correction to the PFA and NTLO term in the asymp-
totic series (8.12). Since for large values of v, the exact round-trip contribution to the
energy becomes much smaller than the PFA, it is clear that in Fig. 8.9 (b) the PFA
correction goes to 1 for large v. In this figure, when v becomes small the PFA correc-
tion approaches 4/3v as expected since this line corresponds to NTLO term in (8.12)
for large r. Likewise, in Fig. 8.9 (c) since 4/3v becomes large compared to 1 for large
v, the NTLO correction asymptotically approaches that line as v increases. For small
values of v, the asymptotics of the numerical data does not seem to be consistent
neither with v3/2 nor with v2. We will give an explanation for this below. Note that
the lines all collapse on top of each other for depicted number of round trips. When
the number of round trips is small the deviation between the lines becomes more
prominent indicating that the NNTLO term in the asymptotic series of the Casimir
energy depends only of the parameter v when r becomes large.

If we still hold on the form of the asymptotic series (8.12), this would suggest
that θr,2 ∼ r4 for large r. The contribution to the Casimir energy due to that NNTLO
term would then be (

L
R

)2 ∞

∑
r=1

Er,PFAθr,2 (8.15)

which diverges since Er,PFA ∝ 1/r4. As there does not seem to be a good reason to
assume an NNTLO term of a different form than the one given in (8.12), convergence
of the round-trip sum can yet be ensured by a resummation of higher order terms in
the expansion. The suggested resummation methods in Refs. [115, 116] did not give
a conclusive result for us, which may be due to the rather complicated structure of
our saddle-point integrals.
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FIGURE 8.9: Round-trip contributions to the Casimir energy for a per-
fectly reflecting sphere and plane in vacuum at zero temperature as
a function of v = r2L/R with the round-trip index r, the surface-to-
surface distance L and the sphere radius R. Purple, orange, blue, red
and green lines correspond to 5, 10, 20, 30 and 40 round trips, respec-
tively. (a) Numerical data relative to the PFA expression Er,PFA de-
fined in (8.13). (b) and (c) show the correction to the PFA and NTLO
term in the asymptotic series of the round-trip contribution to the
Casimir energy defined in (8.12). The dotted line corresponds to the
constant value of 1, while the dashed line represents 4/3v. The dash-
dotted and solid line are proportional to v3/2 and v2, respectively.



8.3. Corrections beyond the PFA at zero temperature 119

However, by simply assuming that some resummation mechanism exists, which
ensures the convergence of the round-trip sum in the NNTLO term, we can show
that the corresponding contribution to the Casimir energy will indeed be propor-
tional to (L/R)3/2.

We first recall that in Sec. 6.5, the PFA and the NTLO term in the asymptotic
expansion of the Casimir energy have been expressed in terms of integrals over the
dimensionless variables s and t which were defined in (6.69) and (6.72), respectively.
The variable s corresponds to the imaginary frequency and the variable t to the in-
plane momenta representing the saddle-point manifold (6.16). Likewise, the PFA
and the NTLO expression for the round-trip contribution to the Casimir energy are
expressed as integrals over s and t. These integrals were already carried out when
we wrote down Eqs. (8.13) and (8.14).

We assume that the NNTLO term in the round-trip contribution to the Casimir
energy will also be expressed in terms of integrals over s and t. This assumption is
not necessary to show that the NNTLO term in the Casimir energy is proportional
to (L/R)3/2, but it explains the observations made in Fig. 8.9 (c) for small values
of r2L/R. Incorporating the numerically observed universal behavior in v for large
round-trips, we thus assume that the NNTLO term of the Casimir energy is of the
form

ENNTLO =
∞

∑
r=1

∫ ∞

0
ds
∫ ∞

s
dt f (v, s, t)

(
L
R

)2

, (8.16)

where v = r2L/R as before and f is a function which ensures the convergence of
the round-trip sum through resummation of asymptotic higher order terms. For
instance, f could be of the form

g(s, t)
1 + h(s, t)v

= g(s, t)
(
1− h(s, t)v + h2(s, t)v2 + . . .

)
, (8.17)

where on the right-hand side the fraction was expanded by means of the geomet-
ric series to illustrate the resummation procedure. Such fractional form would also
encode that for v � 1, the NNTLO term becomes proportional to L/R, which is in
agreement with the numerical observations we have made in Fig. 8.9 (c).

In the numerical data for the round-trip contributions, all in-plane momenta and
frequencies are already considered. This would correspond to the evaluation of the
integrals over s and t in the NNTLO expression (8.16). If we carry out the integrals in
(8.16), its leading asymptotic behavior may then in general be different from (L/R)2,
which is precisely what we have observed in Fig. 8.9 (c).

When L/R� 1, the round trip sum in (8.16) can be replaced by an integral using
the Euler-Maclaurin formula:

ENNTLO ∼
∫ ∞

1
dr
∫ ∞

0
ds
∫ ∞

s
dt f (r2L/R, s, t)

(
L
R

)2

∼
∫ ∞

0
ds
∫ ∞

s
dtF(s, t)

(
L
R

)3/2

(8.18)
with the function

F(s, t) =
1
2

∫ ∞

0

dv√
v

f (v, s, t) (8.19)

which arose by changing the integration over r to v = r2L/R and by further setting
the lower integration bound to zero to obtain the leading order asymptotic behavior.
As the integrals over s and t over the function F(s, t) are a numerical factor in (8.18),
we have shown that indeed a resummation of higher order terms in the asymptotic
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series explains the appearance of the fractional power of 3/2 in the NNTLO contri-
bution to the Casimir energy.

The precise value of its coefficient depends, however, on the details of the func-
tion f which we do not know. A possible candidate for the resummation procedure
may be found by observing that the Mie coefficients (5.18) and (5.20) are expressed
as fractions. We have expanded those fractions to obtain the asymptotics of the Mie
scattering amplitudes (5.32) which is needed for the calculation of the PFA and the
NTLO term in the asymptotic expansion of the Casimir energy. If we had not ex-
panded that fraction, we would indeed find a fraction of the form (8.17), for which
we would also know the function h(s, t). Obtaining an expression for the function
g(s, t) in (8.17) seems like a difficult task as it involves the calculation of the NNTLO
term in the saddle-point formula, as the calculation of the NTLO term in the saddle-
point formula was already involved. On top of that, we do not know if the resum-
mation due to the fractional representation of the asymptotics of the Mie coefficients
would be enough to obtain the correct NNTLO coefficient of the energy. Perhaps
another such resummation procedure will be necessary.

Finally, we would like to comment on the geometry of two spheres. In fact, by
investigating the round-trip contributions to the energy, we find a universal behav-
ior in r2L/Reff of its NTLO correction when LReff is small. By further assuming, that
the NNTLO term is proportional to (L/Reff)

2 with a coefficient possibly depend-
ing on the sphere radii, we can use the same argument as above to show that the
NNTLO term in the asymptotic expansion of the Casimir energy is proportional to
(L/Reff)

3/2. On this level, we can, however, not argue that the coefficient does not
depend on the sphere radii as we have observed numerically.
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Chapter 9

Conclusions

In this thesis, we have explored a plane-wave approach to the Casimir interaction
within the scattering formalism. Specializing on the plane-sphere and the sphere-
sphere geometry, we have developed an analytical and a numerical method making
predictions beyond the proximity-force approximation (PFA).

The analytical method is based on an asymptotic expansion of the exact Casimir
interaction when the sphere radii become large compared to the surface-to-surface
distance. In order to determine the asymptotic expansion, we employed a saddle-
point approximation up to second order for the multidimensional integrals appear-
ing in the calculation. As the leading order term in the asymptotic series, we recover
the PFA, which can be described within a geometric optical picture of the plane-
wave modes. We found that the subleading contribution to the Casimir interaction
is mainly due to modifications of the geometric optical picture due to diffraction. By
sending one sphere radius to infinity, we found a corresponding asymptotic expan-
sion for Casimir interaction in the plane-sphere geometry. At zero temperature, we
have recovered results, which were already known in the literature. As our result
is also valid at finite temperatures for arbitrary materials, we found an analytical
result, which has not been given in the literature before.

The derivative expansion approach, which assumes that the Casimir interaction
is localized at the points of closest approach of the two surfaces, is an alternative ap-
proach, which makes beyond-PFA predictions for the Casimir interaction. We com-
pared the results from our asymptotic expansion with the results from the derivative
expansion approach. While we find good agreement for finite-frequency contribu-
tions to the Casimir interaction, we find that, in the example of aqueous systems
involving dielectric bodies, the zero-frequency contribution within the derivative
expansion approach does not make adequate predictions beyond the PFA. In con-
trast, our asymptotic expansion approach worked well in that case.

The derivation of the asymptotic expansion result entailed an estimation of the
effective interaction area scaling as R1L, with the sphere radius of the smaller sphere
R1 and the surface-to-surface distance L. Apart from numerical factors, the same
scaling law has been found earlier by heuristic geometric arguments. The scaling
law shows that, within the asymptotic expansion, the Casimir interaction is, indeed,
localized at the point of closest approach between the two surfaces.

On the numerical front, we have developed a novel scheme utilizing the plane-
wave basis within the scattering formalism. The method is built on a Nyström dis-
cretization of the plane-wave momenta and it is applicable to in principle arbitrary
geometries. We have shown that it can be improved by a discrete Fourier transform,
when geometries exhibiting a cylindrical symmetry are considered. In comparison
to the standard numerical approach built on the multipole basis, we have demon-
strated that our approach has superior convergence properties. We have shown that,
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in the example of the plane-sphere geometry, our method outperforms a state-of-the-
art implementation of the multipole approach. As a result, the Casimir interaction
for experimentally distances becomes now within reach of standard desktop com-
puters when using our plane-wave numerical method.

We have then applied our new numerical method to study the accuracy of the
PFA in aqueous colloid systems. Depending on the salt concentration, the zero-
frequency contribution of the Casimir interaction is altered. We thus modeled the
extreme cases of high and low salt concentration by excluding and including the
zero-frequency contribution in the calculations. For polystyrene in water, we have
found that the accuracy of the PFA is worse than often anticipated in the literature,
especially for low salt concentrations. We demonstrated that in the system of mer-
cury and polystyrene in water, the Casimir force can be repulsive or attractive de-
pending on the distances of the two surfaces. Furthermore, our exact numerical ap-
proach allowed us to study the dependence of the effective Hamaker parameter on
the geometries. We have found that the effective Hamaker parameter obtained from
the Casimir interaction of the curved surfaces is reduced at larger distances when
comparing to the usually found result obtained from the plane-plane interaction.

Then, we have studied the accuracy of the predictions made by our asymptotic
expansion approach using exact data from the numerical plane-wave method. We
found the result from the asymptotic expansion improves significantly on the PFA
in typical experimental setups. Thus, it offers a precise alternative to our numerical
approach on predicting the Casimir interaction.

Finally, we have studied the asymptotic series of the Casimir energy at zero
temperature beyond the result obtained from our asymptotic expansion formula.
We have found that in the sphere-sphere geometry the asymptotic next-to-next-to-
leading order contribution to the Casimir energy has a fractional power, which is
in agreement with a previously found result in the plane-sphere geometry. Interest-
ingly, the coefficient of that next-to-next-to-leading order term does not depend on
the sphere radii. By examining the round-trip contributions to the Casimir energy,
we have found a possible explanation of the fractional power due to a resummation
of higher order terms in the asymptotic series.

The analytical and numerical methods developed in this thesis leave room for fu-
ture work. For instance, our methods may further be used for studying the Casimir
interaction in setups involving magnetic and chiral materials or for other geometries
involving cylinders, gratings, structured surfaces and layered surfaces.
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Appendix A

Special functions

In this appendix, special functions and their properties, which are need in other parts
of this thesis, are summarized.

A.1 Modified Bessel functions

Derivatives of the modified Bessel functions can be recursively expressed as [147,
(10.29.2)]

I′λ(z) = Iλ−1(z)−
λ

z
Iλ(z) , (A.1a)

K′λ(z) = −Kλ−1(z)−
λ

z
Kλ(z) . (A.1b)

For large arguments z � 1, the asymptotics of the modified Bessel functions of first
order read [147, (10.40.1)]

I0(z) ∼
exp(z)√

2πz

(
1 +

1
8z

+O(1/z2)

)
, (A.2a)

I1(z) ∼
exp(z)√

2πz
(1 +O(1/z)) . (A.2b)

For large orders λ � 1, the Debye uniform asymptotic expansion of the modified
Bessel functions and their derivatives reads [147, (10.41.3) - (10.41.6)]

Iλ(λz) ∼ eλη

(2πλ)1/2(1 + z2)1/4

(
1 +

U1(p)
λ

+O(λ−2)

)
, (A.3a)

Kλ(λz) ∼
( π

2λ

)1/2 e−λη

(1 + z2)1/4

(
1− U1(p)

λ
+O(λ−2)

)
, (A.3b)

I′λ(λz) ∼ (1 + z2)1/4eλη

(2πλ)1/2z

(
1 +

V1(p)
λ

+O(λ−2)

)
, (A.3c)

K′λ(λz) ∼ −
( π

2λ

)1/2 (1 + z2)1/4e−λη

z

(
1− V1(p)

λ
+O(λ−2)

)
, (A.3d)

where

η = (1 + z2)1/2 + log
z

1 + (1 + z2)1/2 = (1 + z2)1/2 − arsinh(1/z) (A.4)
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and

U1(p) =
1
24
(
3p− 5p3) ,

V1(p) =
1
24
(
−9p + 7p3)

with
p = (1 + z2)−1/2 . (A.5)

Combining (A.3a) and (A.3c), we obtain

I′λ(λz)
Iλ(λz)

∼
√

1 + z2

z

(
1− z2

2(1 + z2)3/2
1
λ
+O(λ−2)

)
, (A.6)

which is valid uniformly in z for λ� 1.

A.2 Associated Legendre functions

The associated Legendre functions are defined as [147, (14.7.11)]

Pm
` (z) = (z2 − 1)m/2 dm

dzm P`(z) , (A.7)

where P`(z) ≡ P0
` (z) are the ordinary Legendre functions defined by [147, (14.7.13)]

P`(z) =
1

2``!
d`

dz`
(z2 − 1)` . (A.8)

Note that the definition (A.7) is well adapted for arguments |z| > 1 and that we omit
the Condon–Shortley phase.

The associated Legendre functions Pm
` (z) satisfy the recurrence relations

(`−m + 1)Pm
`+1(z) = (2`+ 1)zPm

` (z)− (`+ m)Pm
`−1(z) ,

(z2 − 1)Pm
`
′(z) = `zPm

` (z)− (`+ m)Pm
`−1(z) .

(A.9)

For ` = m, they are given by

Pm
m (z) =

(2m)!
2mm!

(z2 − 1)m/2 . (A.10)

For `� 1, the asymptotic expansion of the associated Legendre functions with m =
0 and 1 reads [139, §29.3.3]

P`(cosh u) ∼
( u

sinh u

)1/2
(

I0(λu)− 1
8

1− u coth u
u

I1(λu)
λ

+O(1/λ2)

)
, (A.11a)

P1
` (cosh u) ∼ `(`+ 1)

λ

( u
sinh u

)1/2
(

I1(λu) +
3
8

1− u coth u
u

I2(λu)
λ

+O(1/λ2)

)
,

(A.11b)

with λ = `+ 1
2 . The asymptotic expansions (A.11) hold uniformly for u ≥ 0 .
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A.3 Polylogarithm

The polylogarithm of order s is defined as [147, (25.12.10)]

Lis(z) =
∞

∑
n=1

zn

ns . (A.12)

For certain integer values of the order, the polylogarithm can be expressed in terms
of elementary functions. For instance,

Li1(z) = − log(1− z) , (A.13a)

Li0(z) =
z

1− z
, (A.13b)

Li−1(z) =
z

(1− z)2 , (A.13c)

Li−2(z) =
z(1 + z)
(1− z)3 . (A.13d)

We will often need to evaluate the polylogarithms of order 2 and 3. The evaluation
of those polylogarithm cannot be reduced to the evaluation of elementary functions.
For a fast and stable numerical evaluation we will make use of the integral represen-
tation [147, (25.12.11)]

Lis(z) =
z

Γ(s)

∫ ∞

0
dx

xs−1

ex − z
(A.14)

valid for 0 < z < 1, which is also known as the Bose-Einstein integral. For z = 1, the
polylogarithm reduces to the Riemann zeta function

Lis(1) = ζ(s) . (A.15)

Using the power series (A.12), the derivative of the polylogarithm can be expressed
as

d Lis(z)
dz

=
1
z

Lis−1(z) . (A.16)

A.4 Angular functions

The angular functions (5.4) can be alternatively defined as

π`(z) =
1√

z2 − 1
P1
` (z) , (A.17a)

τ`(z) = −zπ`(z) + `(`+ 1)P`(z) . (A.17b)

The angular functions with negative arguments can be expressed in terms of the
angular functions with positive arguments through the relations

π`(−z) = (−1)`−1π`(z) ,

τ`(−z) = (−1)`τ`(z) .
(A.18)

For z = 1, the angular functions take the special value

π`(1) = τ`(1) =
1
2
`(`+ 1) . (A.19)
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In view of the alternative definition for the angular functions (A.17), a uniform
asymptotic expansion for large order ` can be derived from (A.11). The expansion
reads

π`(cosh u) ∼ `(`+ 1)
λ

(
u

sinh3 u

)1/2 (
I1(λu) +

3
8

1− u coth u
u

I2(λu)
λ

+O(1/λ2)

)
,

(A.20a)

τ`(cosh u) ∼ `(`+ 1)
( u

sinh u

)1/2
(

I0(λu)− 1
8

1 + 7u coth u
u

I1(λu)
λ

+O(1/λ2)

)
,

(A.20b)

where λ = `+ 1
2 . When λu� 1, we can make use of (A.2) to find

π`(cosh u) ∼ `(`+ 1)
λ

(
1

2πλ sinh3 u

)1/2

exp(λu) (1 +O(1/λ)) , (A.21a)

τ`(cosh u) ∼ `(`+ 1)
(

1
2πλ sinh u

)1/2

exp(λu)
(

1− 7
8

coth u
1
λ
+O(1/λ2)

)
.

(A.21b)

In view of the definition of the angular functions (5.4), in which they are ex-
pressed in terms of the Legendre functions (A.8), their asymptotics for large argu-
ments |z| � 1 reads

π`(z) ∼
(2`)!

2``!(`− 1)!
z`−1 ,

τ`(z) ∼
(2`)!

2`[(`− 1)!]2
z` .

(A.22)
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B.1 Properties of a unitary matrix

Let S be a unitary matrix. The defining properties of a unitary matrix, SS† = 1 and
S†S = 1, yield the equations

S11S†
11 + S12S†

12 = 1 (B.1)

and
S†

22S22 + S†
12S12 = 1 , (B.2)

respectively.
The relation S−1 = S† can be expressed as [63, Eq. (A6)]

(
S†

11 S†
21

S†
12 S†

22

)
=

(
(S/S22)−1 −(S/S22)−1S12S−1

22
−S−1

22 S21(S/S22)−1 (S/S11)
−1

)
, (B.3)

where
S/S11 = S22 − S21S−1

11 S12 ,

S/S22 = S11 − S12S−1
22 S21 .

(B.4)

B.2 Relation between the scattering and transfer matrix

In this appendix, we derive the formulae (2.27) and (2.26) relating the scattering and
transfer matrix. Using Eq. (2.18), the corresponding inverted equation and Eq. (2.24),
we can eliminate the fields b±. Comparison of the coefficients of the fields a± then
yields

T11 = S11 + S12T21 , (B.5a)
T12 = S12T22 , (B.5b)

T21 = S†
12T11 , (B.5c)

T22 = S†
22 + S†

12T12 . (B.5d)
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Using (B.1) and (B.2), we can solve for the entries of the transfer matrix and obtain

T11 = (S†
11)
−1 , (B.6a)

T12 = S12S−1
22 , (B.6b)

T21 = S†
12(S

†
11)
−1 , (B.6c)

T22 = S−1
22 . (B.6d)

Application of (B.3) to (B.6a) and (B.6c) then finally yields Eq. (2.26). Conversely,
equation (2.26) can be straightforwardly solved for S to obtain (2.27)

B.3 Convergence analysis for the PSD

We study how the PSD converges as a function of the order of the Padé approxima-
tion N. For the analysis, we consider the Casimir free energy for the geometry of a
plane and a sphere and the geometry of two spheres. The numerical evaluation of
the Casimir free energy is based on the method developed in Ch. 7.

It turns out that convergence is reached when N takes values that scale as
√

λT/L,
which motivates to write

N =

⌈
η

(
λT

L

)1/2
⌉

. (B.7)

The coefficient η controls the numerical accuracy. For larger values of η the accuracy
increases.

In Fig. B.1, the relative error of the PSD as a function of the coefficient η is shown
for various system parameters. The error is computed relative to the free energy with
η = 7. The radius of the sphere(s) is set to R = 1 µm. In Fig. B.1 (a) the temperature is
fixed at T = 300 K, while in Fig. B.1 (b) the temperature is T = 200 K. The geometries
are represented by the shape of the symbols: circles and squares stand for the sphere-
sphere geometry, and pluses and crosses stand for the plane-sphere geometry. The
surface-to-surface distance for the crosses and circles is L = 0.1 µm, while for the
squares and pluses it is L = 0.01 µm. Different colors represent different materials
for the objects and the medium. The red, green and blue symbols correspond to the
results for perfect reflectors in vacuum, gold in vacuum and polystyrene in water,
respectively.

We observe that, for perfect reflectors in vacuum, the relative error only depends
weakly on the geometries and on the surface-to-surface distance. For the other ma-
terial choices this is no longer true and convergence is typically reached faster than
for perfect reflectors. As Fig. B.1 (a) and (b) almost coincide, the temperature depen-
dence on relative error as a function of η is very weak. Moreover, for other values
for the radii of the sphere(s), we find that the depicted would change only weakly
from those given in Fig. B.1. This shows that, for the two geometries composed of
real materials, the curves for the relative error as a function of η depend to first order
only on the distance L. Indeed, one expects that the convergence of the summation
over imaginary frequencies depends on how the distance L between the two objects
changes relative to the length scales introduced by the real materials. An example
for such a length scale is the plasma wave length for gold.

For perfect reflectors in vacuum the convergence of the PSD-sum is determined
by the translation factor between the two surfaces, which behaves like exp(−2ξL/c)
for large imaginary frequencies ξ. When real materials are involved the sum may
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FIGURE B.1: The relative error of the Casimir free energy as a function
of η at (a) T = 300 K and (b) T = 200 K. The circles and squares rep-
resent the result for the sphere-sphere geometry (SS) and the pluses
and crosses correspond to the plane-sphere geometry (PS). The radius
of the sphere(s) is R = 1 µm. For the crosses and circles the surface-
to-surface distance is L = 0.1 µm, while for the squares and pluses
that distance is L = 0.01 µm. The red, green and blue symbols repre-
sent the result for perfect reflectors in vacuum, gold in vacuum and
polystyrene in water, respectively. The dashed lines serve as a guide
to establish formula (B.8).

converge more rapidly since the objects become transparent at high enough frequen-
cies. Thus, the curves for the relative errors of perfect reflectors in vacuum in Fig. B.1
can be understood as an upper bound for any materials. This allows us to establish a
rule of thumb for choosing η for the plane-sphere and sphere-sphere geometry valid
for any choice of material. From the dashed lines in Fig. B.1, we find the formula

η = −0.19 log(0.30 ε) (B.8)

where ε is the desired relative error.
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C.1 Explicit expressions for the polarization transformation
coefficients

In this appendix, we derive explicit expressions for the polarization transformation
coefficients (5.10).

First, we note that the basis vectors ε̂⊥ and ε̂‖ for the incident and scattered wave
vectors are related by

ε̂
(in)
‖ · ε̂(sc)

‖ = cos(Θ) ,

ε̂
(in)
⊥ · ε̂(sc)

⊥ = 1 ,

ε̂
(in)
‖ · ε̂(sc)

⊥ = 0 ,

ε̂
(in)
⊥ · ε̂(sc)

‖ = 0 .

(C.1)

With
ε̂TM = cos(χ)ε̂‖ − sin(χ)ε̂⊥ ,

ε̂TE = sin(χ)ε̂‖ + cos(χ)ε̂⊥
(C.2)

and (C.1), the scalar products between the polarization vectors {ε̂TM, ε̂TE} of the
incident and scattered mode can be related to the polarization transformation coef-
ficients (5.10). We find the relations

ε̂
(in)
TM · ε̂

(sc)
TM = A cos(Θ) + B ,

ε̂
(in)
TE · ε̂

(sc)
TE = A + B cos(Θ) ,

ε̂
(in)
TM · ε̂

(sc)
TE = −C cos(Θ)− D ,

ε̂
(in)
TE · ε̂

(sc)
TM = C + D cos(Θ) .

(C.3)
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Solving for the coefficients A, B, C and D, we obtain

A =
ε̂
(in)
TE · ε̂

(sc)
TE − cos(Θ)ε̂

(in)
TM · ε̂

(sc)
TM

1− cos2(Θ)
,

B =
ε̂
(in)
TM · ε̂

(sc)
TM − cos(Θ)ε̂

(in)
TE · ε̂

(sc)
TE

1− cos2(Θ)
,

C =
ε̂
(in)
TE · ε̂

(sc)
TM + cos(Θ)ε̂

(in)
TM · ε̂

(sc)
TE

1− cos2(Θ)
,

D = − ε̂
(in)
TM · ε̂

(sc)
TE + cos(Θ)ε̂

(in)
TE · ε̂

(sc)
TM

1− cos2(Θ)
.

(C.4)

The remaining task is thus to find expressions for the scalar products between the
TE and TM polarization components. They can be expressed in terms of the incident
and scattered wave vectors through their definition (3.1). We find

ε̂
(in)
TM · ε̂

(sc)
TM =

1
k(in)k(sc)

[
k(in) · k(sc) cos(Θ) +

1
K2 (k

(in) × k(sc))2
]

,

ε̂
(in)
TE · ε̂

(sc)
TE =

k(in) · k(sc)

k(in)k(sc)
,

ε̂
(in)
TM · ε̂

(sc)
TE = −K(in) · (k(in) × k(sc))

k(in)k(sc)K
,

ε̂
(in)
TE · ε̂

(sc)
TM =

K(sc) · (k(in) × k(sc))

k(in)k(sc)K
.

(C.5)

In polar coordinates, k(in) = (k(in), ϕ(in)) and k(sc) = (k(sc), ϕ(sc)), the scalar and
cross products become

k(in) · k(sc) = k(in)k(sc) cos(ϕ(sc) − ϕ(in)) ,

k(in) × k(sc) = ẑk(in)k(sc) sin(ϕ(sc) − ϕ(in)) .
(C.6)

The polarization transformation coefficients then read

A =
K4 cos(ϕ)− [k(in)k(sc) cos(ϕ) + φ(in)φ(sc)k(in)z k(sc)

z ][k(in)k(sc) + φ(in)φ(sc)k(in)z k(sc)
z cos(ϕ)]

K4 − [k(in)k(sc) cos(ϕ) + φ(in)φ(sc)k(in)z k(sc)
z ]2

,

B =
K2k(in)k(sc) sin2(ϕ)

K4 − [k(in)k(sc) cos(ϕ) + φ(in)φ(sc)k(in)z k(sc)
z ]2

,

C = −K sin(ϕ)
k(in)k(sc)φ(in)k(in)z cos(ϕ)− (k(in))2φ(sc)k(sc)

z

K4 − [k(in)k(sc) cos(ϕ) + φ(in)φ(sc)k(in)z k(sc)
z ]2

,

D = −K sin(ϕ)
k(in)k(sc)φ(sc)k(sc)

z cos(ϕ)− (k(sc))2φ(in)k(in)z

K4 − [k(in)k(sc) cos(ϕ) + φ(in)φ(sc)k(in)z k(sc)
z ]2

,

(C.7)
where ϕ = ϕ(sc) − ϕ(in).

For k(in) = k(sc), they simplify to

A = 1 , B = C = D = 0 . (C.8)
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C.2 Scattering amplitudes for large spheres

Here, the first two terms in the asymptotic series of the plane-wave scattering am-
plitudes (5.3) for a large sphere radius is derived. The derivation is within the imag-
inary frequency domain. The two cases of a finite and a vanishing imaginary fre-
quency ξ are considered separately. First, the finite frequency case is considered and
the calculation is demonstrated for a perfectly reflecting sphere. Then, the result is
generalized to a dielectric sphere. Finally, the asymptotic expansion of the scattering
amplitudes at vanishing frequencies is studied.

Finite imaginary frequencies

We recall that the scattering amplitudes are given by the expressions

S1 =
∞

∑
`=1

2`+ 1
`(`+ 1)

[a`(ix)π`(cos(Θ)) + b`(ix)τ`(cos(Θ))] ,

S2 =
∞

∑
`=1

2`+ 1
`(`+ 1)

[a`(ix)τ`(cos(Θ)) + b`(ix)π`(cos(Θ))] .
(C.9)

Inspired by the derivation of the asymptotic expansion in the real frequency do-
main, we make use the the localization principle [100] to argue that the important
contributions to the `-sum come from the neighborhood ` . x as the imaginary size
parameter x = KR becomes large. Larger values of ` correspond to rays passing by
the sphere and thus have a small contribution to the scattering amplitudes.

This motivates the replacement of the sum over ` by an integral

∞

∑
`=1
→
∫ ∞

1/2
d` (C.10)

for extracting the asymptotics of the scattering amplitudes. With suitable asymptotic
expansions for the Mie coefficients and angular functions for `� 1, the integral can
be evaluated by the saddle-point method described in Sec. 6.1, where x plays the
role of the large parameter.

For positive arguments, a uniform asymptotic expansion of the angular functions
for large order is given in (A.21). However, cos(Θ) is always negative in the imag-
inary frequency domain, which can be seen from its defining equation (5.17). It is
thus convenient to introduce the variable u > 0 in terms of cosh(u) = − cos(Θ). Us-
ing the reflection formulas (A.18), the asymptotic expansion of the angular functions
then reads

π`(cos(Θ)) ∼ (−1)`−1 `(`+ 1)
λ

(
1

2πλ sinh3 u

)1/2

exp(λu)

τ`(cos(Θ)) ∼ (−1)``(`+ 1)
(

1
2πλ sinh u

)1/2

exp(λu)
(

1− 7
8

coth u
1
λ

)
.

(C.11)

for λ � 1 where λ = ` + 1/2. Note that we have expanded τ` one order further
than π`. This is because the leading order term of π` is asymptotically of the same
order in λ as the subleading term of τ`.

The Mie coefficients and thus also their asymptotic behavior depend on the bound-
ary conditions on the sphere. We first discuss the asymptotics of the Mie coefficients
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for a perfectly conducting sphere and use the result to derive the asymptotic expan-
sion of the scattering amplitudes. Then, we generalize these results to a dielectric
sphere.

Perfectly conducting sphere

Using the identities for the derivatives of the modified Bessel functions (A.1), we can
rewrite the Mie coefficient for electric polarization a` in (5.20). The Mie coefficients
for a perfectly conducting sphere then read

a(PR)
` (ix) = (−1)`

π

2
xI′λ(x) + 1

2 Iλ(x)
−xK′λ(x)− 1

2 Kλ(x)
,

b(PR)
` (ix) = (−1)`−1 π

2
Iλ(x)
Kλ(x)

.

(C.12)

where λ = `+ 1/2. This form for the Mie coefficients is now suitable for employing
the Debye asymptotic expansion of the modified Bessel functions and its derivatives
(A.3). We find

a(PR)
` (ix) ∼ (−1)`

1
2

exp (ψ)
1 + α/x
1− α/x

,

b(PR)
` (ix) ∼ (−1)`−1 1

2
exp (ψ)

1 + β/x
1− β/x

(C.13)

where
ψ = 2x

(√
1 + Λ2 −Λ arsinh(Λ)

)
(C.14)

with Λ = λ/x and

α =
1
24

[
3

(1 + Λ2)1/2 +
7Λ2

(1 + Λ2)3/2

]
,

β =
1
24

[
3

(1 + Λ2)1/2 −
5Λ2

(1 + Λ2)3/2

]
.

(C.15)

The fractions in (C.13) can be expanded for x � 1, which yields

a(PR)
` (ix) ∼ (−1)`

1
2

exp (ψ)

[
1 +

1
4x

(
1√

1 + Λ2
+

7
3

Λ2

(1 + Λ2)3/2

)
+O(1/x2)

]
,

b(PR)
` (ix) ∼ (−1)`−1 1

2
exp (ψ)

[
1 +

1
4x

(
1√

1 + Λ2
− 5

3
Λ2

(1 + Λ2)3/2

)
+O(1/x2)

]
.

(C.16)
Having replaced the sum over ` by an integral as given in (C.10) and using the

substitution Λ = λ/x = (`+ 1/2)/x, we can express the scattering amplitudes for
perfectly conducting spheres as

S(PR)
1/2 =

∫ ∞

1/x
dΛ g1/2(Λ) exp (−x f (Λ)) (C.17)

with
f (Λ) = 2Λ arsinh(Λ)− 2

√
1 + Λ2 −Λu (C.18)

and

g1/2(Λ) = ∓
(

x3Λ
2π sinh u

)1/2 [
1 + g(1)1/2(Λ)

1
x
+O(1/x2)

]
, (C.19)
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where

g(1)1 (Λ) =
1

Λ sinh u
− 7 coth u

8Λ
+

1
4

(
1√

1 + Λ2
− 5

3
Λ2

(1 + Λ2)3/2

)
,

g(1)2 (Λ) =
1

Λ sinh u
− 7 coth u

8Λ
+

1
4

(
1√

1 + Λ2
+

7
3

Λ2

(1 + Λ2)3/2

)
.

The first and second terms in the functions g(1)1 and g(1)2 come from the leading or-
der contribution of π` and subleading contribution to τ`. They agree for the two
functions. This is special to the perfect reflector case, because the leading order con-
tributions of the Mie coefficients for the two polarizations just differ by a sign. The
last terms in g(1)1 and g(1)2 differ because they come from the leading term in τ` and
the subleading term of the Mie coefficients which are different for the two polariza-
tions.

Now, the saddle-point method as described in Sec. 6.1 can be carried out. The
saddle point for both scattering amplitudes is uniquely determined by

Λsp =

√
cosh(u)− 1

2
= i cos(Θ/2) . (C.20)

For a more compact notation and also to allow for a direct comparison with the
known results from the real-frequency domain, we write the expressions arising in
the saddle-point approximation in terms of the scattering angle Θ. For instance,
equation (C.20) precisely corresponds to the saddle-point `sp = KR cos(Θ/2) ap-
pearing in the asymptotic expansion of the scattering amplitudes at real frequencies
[108, 113]. Note that for imaginary frequencies cos(Θ/2) is purely imaginary.

In order to find the asymptotic expansion of the scattering amplitudes by means
of the saddle-point formula (6.6), we need to evaluate the functions f and g1/2 and
their derivatives at the saddle point. We find

f (Λsp) = −2 sin(Θ/2) ,

f ′′(Λsp) =
2

sin(Θ/2)
,

f ′′′(Λsp) = −
i sin(Θ)

sin4(Θ/2)
,

f ′′′′(Λsp) = −
2[2 + cos(Θ)]

sin5(Θ/2)

(C.21)

and

g1/2(Λsp) ∼ ∓
(

x3 cos(Θ/2)
2π sin(Θ)

)1/2 [
1 + g(1)1/2(Λsp)

1
x

]
,

g′1/2(Λsp) ∼ −
ig1/2(Λsp)

2 cos(Θ/2)
,

g′′1/2(Λsp) ∼
g1/2(Λsp)

4 cos2(Θ/2)
,

(C.22)
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where

g(1)1 (Λsp) =
25 cos(2Θ) + 46 cos(Θ) + 9

48 sin(Θ/2) sin2(Θ)
,

g(1)2 (Λsp) =
cos(2Θ)− 50 cos(Θ)− 63

48 sin(Θ/2) sin2(Θ)
.

We then arrive at the asymptotic expansion of the scattering amplitudes

S(PR)
p = S(PR)

p, WKB

(
1 + s(PR)

p
1
x
+O(1/x2)

)
(C.23)

with the geometric optical WKB approximation as the leading term

S(PR)
p, WKB = (−1)p x

2
exp (2x sin(Θ/2)) . (C.24)

The subleading term has two distinct contributions: one contribution from the lead-
ing order saddle-point approximation with the subleading term in the function g1/2,
and the other contribution from the subleading term in the saddle-point approxima-
tion with the leading order term in g1/2. The coefficient of the correction to the WKB
approximation reads

s(PR)
1 =

1
2

cos(Θ)

sin3(Θ/2)
,

s(PR)
2 = −1

2
1

sin3(Θ/2)
.

Dielectric sphere

Now, we consider the case of a dielectric sphere with a finite refractive index nsphere.
The asymptotic expansion of the scattering amplitudes can be carried out in the
same way as in the perfect reflector case, only that now the asymptotics of the Mie
coefficients need to be replaced by the corresponding expressions for a dielectric
sphere.

In deriving the asymptotics of the Mie coefficients the same strategy as in the per-
fect reflector case can be followed. With (A.1) the coefficients (5.19) can be expressed
in terms of the modified Bessel functions and their derivatives with the same order
λ. We find

a`(ix) = (−1)`
π

2
n2s(a)

` − s(b)`

n2s(c)` + s(d)`

,

b`(ix) = (−1)`+1 π

2
s(b)` − s(a)

`

s(c)` + s(d)`
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with the relative refractive index n = nsphere/nmedium and

s(a)
` = Iλ(nx)

[
1
2

Iλ(x) + xI′λ(x)
]

,

s(b)` = Iλ(x)
[

1
2

Iλ(nx) + nxI′λ(nx)
]

,

s(c)` = −Iλ(nx)
[

1
2

Kλ(x) + xK′λ(x)
]

,

s(d)` = Kλ(x)
[

1
2

Iλ(nx) + nxI′λ(nx)
]

.

where again λ = `+ 1/2.
Using the Debye asymptotic expansion (A.3), the asymptotics of the Mie coeffi-

cients reads

a`(ix) ∼ (−1)`
1
2

n2
√

1 + Λ2 −
√

n2 + Λ2

n2
√

1 + Λ2 +
√

n2 + Λ2
exp(ψ)

(
1 + a(1)

1
x
+O(x−2)

)
,

b`(ix) ∼ (−1)`+1 1
2

√
n2 + Λ2 −

√
1 + Λ2

√
n2 + Λ2 +

√
1 + Λ2

exp(ψ)
(

1 + b(1)
1
x
+O(x−2)

)

with Λ = λ/x, ψ as defined in (C.14) and

a(1) =
1
4

1√
1 + Λ2

+
7
12

Λ2

(1 + Λ2)3/2

+
Λ2

(n2 − 1)[n2 + (n2 + 1)Λ2]

(
n2 + Λ2

(1 + Λ2)3/2 −
n2
√

1 + Λ2

n2 + Λ2

)
,

b(1) =
1
4

1√
1 + Λ2

− 5
12

Λ2

(1 + Λ2)3/2 +
Λ2

n2 − 1

(√
1 + Λ2

n2 + Λ2 −
1√

1 + Λ2

)
.

In the limit n → i∞, the asymptotics of the Mie coefficients indeed coincides with
the expressions from the perfect reflector limit (C.16).

Because the exponential in the asymptotics of the Mie coefficients is the same as
in the perfect reflector case, the function f in the saddle-point formula is also the
same. Carrying out the saddle-point integral, we find the asymptotic expansion for
the scattering amplitudes

Sp ∼
x
2

rp((π −Θ)/2) exp(2x sin(Θ/2))
(

1 + sp
1
x
+O(1/x2)

)
, (C.25)

where rp are the Fresnel coefficients (3.3) with p = 1, 2 corresponding to TE and TM
modes, respectively, and

s1 = s(PR)
1 +

1/s
c2 + s

√
n2 − c2

− 2n2 − c2

2(n2 − c2)3/2 ,

s2 = s(PR)
2 +

1/s
c2 − s

√
n2 − c2

− c2

s3
2n4s2 − n2c2(1 + s2 − s4) + c6

(n2 − c2)(n2s2 − c2)2

+
n2

2(n2 − c2)3/2
2n4 − n2c2(1 + c2)− c4

(n2s2 − c2)2

(C.26)
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with the abbreviations

s ≡ sin(Θ/2) , c ≡ cos(Θ/2) . (C.27)

Notice that our result for the correction as given in (C.26) differs from those ob-
tained in Ref. [110] or [111]. The results from those references does not agree mu-
tually either for dielectric spheres. In Sec. 7.5, we numerically verify that our ex-
pressions correspond indeed to the correct asymptotic expansion of the scattering
amplitudes.

For a comparison, we give their results in our notation. Khare’s expression reads
[110, §7.A]

s(Khare)
1 = s(PR)

1 +
1/s

c2 + s
√

n2 − c2
− 1

2
2n2 − c2

(n2 − c2)3/2 ,

s(Khare)
2 = s(PR)

2 +
2/s

c2 − s
√

n2 − c2
− 2c2

s2
2n4s2 − n2c2(1 + s2 − s4) + c6

(n2 − c2)(n2s2 − c2)2

+
n2s

(n2 − c2)3/2
2n4 − n2c2(1 + c2)− c4

(n2s2 − c2)2

(C.28)

and Grandy Jr. writes [111, §5.2]

s(Grandy Jr.)
1 = s(PR)

1 +
1/s2

c2 + s
√

n2 − c2
− 1

2
2n2 − c2

(n2 − c2)3/2 ,

s(Grandy Jr.)
2 = s(PR)

2 +
2/s

c2 + s
√

n2 − c2
− 2c2

s2
2n4s2 − n2c2(1 + s2 − s4) + c6

(n2 − c2)(n2s2 − c2)2

+
n2s

(n2 − c2)3/2
2n4 − n2c2(1 + c2)− c4

(n2s2 − c2)2 .

(C.29)

Vanishing frequencies

Recall that, in the low-frequency limit, the reflection matrix elements contain the
scaled scattering amplitudes

S̃1 ∼
∞

∑
`=1
Bmodel
`

y2`

(2`)!
,

S̃2 ∼
∞

∑
`=1
Amodel

`

y2`

(2`)!
,

where y = R
√

2(k1k2 + k1 · k2) and the coefficients Amodel
` and Bmodel

` depend on
the modeling of the sphere material and are given in Table 5.1 on page 48.

For large spheres, i.e. when y � 1, the dominant contributions to the scaled
scattering amplitudes come from large momenta ` � 1. Like in the derivation of
the asymptotics for finite imaginary frequencies, we replace the sum over ` by an
integral

∞

∑
`=1
→
∫ ∞

1/2
d` . (C.30)

Using the leading order Stirling approximation for the factorial,

n! ∼
√

2πn
(n

e

)n
, (C.31)
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the scaled scattering amplitudes can be expressed as

S̃p ∼
y
2

∫ ∞

1/y
dΛ gp(Λ)e−y f (Λ) , (C.32)

where we have made the change of variables Λ = 2`/y. The functions f and g read

f (Λ) = Λ [log (Λ)− 1] (C.33)

and

g1(Λ) =
Bmodel

yΛ/2√
2πyΛ

, (C.34)

g2(Λ) =
Amodel

yΛ/2√
2πyΛ

. (C.35)

The approximation of the scattering amplitudes as given in Eq. (C.32) is suitable for
a saddle-point approximation where y plays the role of the large parameter. The
saddle-point condition f ′(Λsp) = 0 yields Λsp = 1. At this saddle point, the func-
tion f takes the value f (Λsp) = 1 which corresponds to a minimum since the second
derivative is positive, f ′′(Λsp) = 1. To leading order in the saddle-point approxima-
tion (6.6) we then find

S̃1 ∼
1
2
Bmodel

y/2 ey , (C.36a)

S̃2 ∼
1
2
Amodel

y/2 ey . (C.36b)

In the remaining part of this appendix, it is shown that the leading order asymp-
totic behavior of the scattering amplitudes Sp = xS̃p agrees with theWKB approxi-
mation

S̃p ∼
1
2

rp((π −Θ)/2) exp(2x sin(Θ/2)) (C.37)

evaluated at ξ = 0. We start out by showing that the exponential functions agree for
both expressions. Namely, in the limit of vanishing frequencies, the exponent in the
exponential function can be expressed as

2x sin(Θ/2) =
√
−2x2 cos(Θ) = R

√
2(k1k2 + k1 · k2) = y . (C.38)

Finally, it needs to be shown that the coefficients Amodel
y/2 and Bmodel

y/2 reproduce the
corresponding Fresnel coefficients in the low-frequency limit when expanded for
y� 1.

When the coefficientsAmodel
y/2 and Bmodel

y/2 are equal to 1 or 0, there is nothing to do
and they already agree with the corresponding Fresnel coefficients. Furthermore, by
expanding the coefficients for perfect reflectors

B(PR)
y/2 = − y

y + 2
∼ −1 +O(1/y) (C.39)

and dielectrics

A(diel.)
y/2 =

ε(0)− 1
ε(0) + 2/y

∼ ε(0)− 1
ε(0) + 1

+O(1/y) , (C.40)
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we see that they agree to leading order with the corresponding Fresnel coefficients
in (3.10) and (3.24). The coefficient B` for the plasma model requires more work.
Using A.1, we can express it as

B(plasma)
` = − `

`+ 1
αI′λ(α)− λIλ(α)

αI′λ(α) + λIλ(α)
(C.41)

with α = Rωp/c. For λ = ` + 1/2 � 1, we can employ the Debye asymptotic
expansion (A.6). After setting λ = y/2, we find

B(plasma)
y/2 ∼ y/2−

√
(y/2)2 + α2

y/2 +
√
(y/2)2 + α2

(1 +O(1/y)) . (C.42)

Using that
K cos((π −Θ)/2) = K sin(Θ/2) = y/2R , (C.43)

we find that the leading order term of B(plasma)
y/2 is precisely the TE-Fresnel coeffi-

cient (3.3) at the incident angle θi = (π −Θ)/2 in the low-frequency limit when the
plasma model is assumed.
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Supplementary material for
chapter 6

D.1 Uniqueness of the saddle-point condition

Here, we derive the saddle points of the 2r-dimensional integral defined in Eq. (6.10).
They are given by the points which minimize the function f defined in (6.11). We
recall that f is composed of a sum over the functions

ηj,j+1 = κj + κj+1 −
√

2
[
K2 + κjκj+1 + kj · kj+1

]
. (D.1)

It is thus enough to find a condition under which all ηj,j+1 are minimized simultane-
ously.

This condition can be found by successive application of inequalities. We start
out by estimating the scalar-product as

kj · kj+1 ≤ k jk j+1 , (D.2)

where equality holds if kj and kj+1 are parallel. We then have

ηj,j+1 ≥ κj + κj+1 −
√

2
[
K2 + κjκj+1 + k jk j+1

]
. (D.3)

Next, we make use of the inequality

K2 + k jk j+1 ≤ κjκj+1 (D.4)

where equality holds if k j = k j+1. This is true because after squaring, (D.4) becomes
equivalent to (k j + k j+1)

2 ≥ 0. Together with the inequality of arithmetic and geo-
metric means,

x + y
2
≥ √xy (D.5)

with equality if and only if x = y, we find that

ηj,j+1 ≥ 0 . (D.6)

The functions ηj,j+1 are thus minimized when kj = kj+1. Thus, the saddle-points are
given by the condition

k0 = · · · = k2r−1 . (D.7)

Note that the derivation entails that this saddle-point condition is unique and, there-
fore, there are no other points which minimize f .
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D.2 Hessian matrix for Fourier transformed variables

For the asymptotic expansion of the Casimir energy, the Hessian matrix for the
Fourier transformed variables is needed. After the change of variables, the Hessian
becomes H̃ = WTHW where, for the geometry of two spheres, the Hessian matrix is
a 2r× 2r matrix of the form

H =




a + b −a −b
−a a + b −b

−b
. . . . . .
. . . . . . −a

−b −a a + b




(D.8)

with a, b > 0 and the matrix elements not shown are zero. The Fourier matrix is
given by

Wjk =
1√
2r

exp
(

2πijk
2r

)
(D.9)

for j, k = 0, . . . , 2r− 1.
Note that the Hessian matrix is composed of blocks of the form

M =




1 −1 0 . . . 0
−1 1 0

0 0 0
. . .

...
...

. . . . . . 0
0 . . . 0 0




(D.10)

which are shifted along the diagonal. Those shifts can be expressed in terms of
transformations with the permutation matrix

Z =




0 1
0 1

. . . . . .
0 1

1 0




. (D.11)

For the blocks containing the parameter a and b, the transformation is applied an
even and odd number of times, respectively. The Hessian matrix can thus be written
as

H =
r−1

∑
n=0

[
a
(
Z2n)T

MZ2n + b
(
Z2n+1

)T
MZ2n+1

]
. (D.12)

Using that the permutation matrix is diagonal after Fourier transform

W†ZW = D , D = diag
(

ω0, ω1, . . . , ω2r−1
)

(D.13)

with ω = exp(πi/r), and that the Fourier matrix is unitary W†W = 1, we can
express the Hessian matrix for the transformed variables as

H̃ =
r−1

∑
n=0

[
aD2nM̃D2n + bD2n+1M̃D2n+1

]
, (D.14)
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where M̃ = WTMW with

M̃jk =
(
Wj,0 −Wj,1

)
(Wk,0 −Wk,1) . (D.15)

The matrix elements of the transformed Hessian can be further expressed as

H̃jk = [a + b exp(πi(j + k)/r)] M̃jk

r−1

∑
n=0

exp(2πi(j + k)n/r) , (D.16)

where the sum over n can be evaluated yielding

H̃jk = r [a + (−1)mb] M̃jk (D.17)

if j + k = mr for m = 0, 1, 2, 3. Otherwise the matrix elements vanish. Expressing
M̃jk in terms of trigonometric functions, we finally obtain

H̃jk =





2i(b− a) sin(πk/2r) cos(πk/2r) for j + k = r, 3r
2(a + b) sin2(πk/2r) for j + k = 0, 2r
0 else

. (D.18)
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Appendix E

Derivation of the
next-to-leading-order term in the
saddle-point approximation

In this appendix, we present more details on the calculation of the NTLO term in the
saddle-point approximation. Specifically, we calculate the contribution

gijH̃
ij − 1

4
gsp fijklH̃

ijH̃kl +
1
6

gsp fijk flmnH̃
ilH̃jmH̃kn ≡ U(i) + U(ii) (E.1)

which is relevant for the geometric optical correction to the trace of the r-th round
trip in (6.48). Here, the same notation for the indices is used as in the main text in
Sec. 6.4.

The term (E.1) is split into the two contributions U(i) and U(ii). This splitting is
chosen such that U(ii) will only contain derivatives on the polarization transforma-
tion coefficients A, B, C and D and all other functions are evaluated at the saddle-
point manifold, while for U(i) the polarization transformation coefficients are evalu-
ated at the saddle-point manifold and derivatives are taken on the remaining func-
tions. For convenience, the functions U(i) and U(ii) are further expressed as

U(i) = U(i,0) + ∑
p

(
U(i,1)

p + U(i,2)
p

)
(E.2)

and
U(ii) = U(ii,0) + ∑

p

(
U(ii,1)

p + U(ii,2)
p

)
. (E.3)

In the following, the splitting of (E.1) into the two contributions U(i) and U(ii)

will be justified, and the terms constituting those two contributions will be defined.
Using the fact that single derivatives on symmetric functions with respect to the

momenta kj vanish (see Lemma 1.1 in App. E.5), we can split the second derivative
of g as of (6.13) into two parts:

gij = ∑
p

(
r(1)p r(2)p

)r
(

2r−1

∏
l=0

e−κl L

κl

)

ij

+
e−2rκspL

(κsp)2r

(
∑

p0,...,p2r−1

r−1

∏
l=0

ρ
(1)
p2j+1,p2j(k2j+1, k2j)ρ

(2)
p2j,p2j−1(k2j, k2j−1)

)

ij

, (E.4)
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where it was used that ρ
(s)
pp′ |sp = r(s)p if p = p′ and ρ

(s)
pp′ = 0 otherwise. Using Lemma

1.2 from App. E.5, the first term in (E.4) can be expressed as

∑
p

(
r(1)p r(2)p

)r
(

2r−1

∏
l=0

e−κl L

κl

)

ij

= −gsp

2r−1

∑
l=0

(κl L + log(κl))ij . (E.5)

Due to the evaluation at the saddle-point, (κl L + log(κl))ij does not depend on the
index l and thus the sum over l yields a factor of 2r. Together with the contributions
from the derivatives of the function f in (E.1), we define

U(i,0) = gspV with V = V1 −
V2

4
+

V3

6
(E.6)

where

V1 = −2r(κl L + log(κl))ijH̃
ij ,

V2 = fijklH̃
ijH̃kl ,

V3 = fijk flmnH̃
ilH̃jmH̃kn .

The remaining contributions to U(i) and U(ii) come from the second term in (E.4). We
can further split this contribution into those terms for which the polarization is con-
served for each reflection and into those for which polarization change is allowed.

Using Lemma 1.2 in App. E.5, the contributions in the second term of (E.4) cor-
responding to the polarization preserving terms can be expressed as

∑
s=1,2

∑
p

gp

r−1

∑
l=0

[
log
(

ρ
(s)
pp

)]
ij

. (E.7)

In view of (E.20), it is important to keep track of the arguments of the function ρ
(s)
pp .

The argument is (k2l+1, k2l) for s = 1 and (k2l , k2l−1) for s = 2. Using the fact that
single derivatives on A and B vanish,

∂A
∂k j,α

∣∣∣∣
sp

=
∂B

∂k j,α

∣∣∣∣
sp

= 0 , (E.8)

which can be seen by the representation of A and B in (5.10) in terms of the angles,
we can write (

ρ
(s)
pp

)
ij
=
(

r(s)p

)
ij
+ r(s)p Aij + r(s)p̄ Bij (E.9)

where p̄ is the opposite polarization to p, i.e. p̄ = TE when p = TM and vice versa.
Since further (

ρ
(s)
pp

)
i
=
(

r(s)p

)
i

, (E.10)

we can write
[
log
(

ρ
(s)
pp

)]
ij
=
[
log
(

r(s)p

)]
ij
+ Aij +

r(s)p̄

r(s)p

Bij . (E.11)



E.1. A differential operator and the chain rule 147

Noting that the sum over l in (E.7) yields a factor of r, we can summarize those
contributions to (E.1) as

U(i,s)
p = rgp

[
log
(

r(s)p

)]
ij
H̃ij ,

U(ii,s)
p = r


Aij +

r(s)p̄ |sp

r(s)p |sp

Bij


 H̃ij ,

where the functions r(s)p , A and B depend on (k2l+1, k2l) for s = 1 and (k2l , k2l−1) for
s = 2.

The remaining contribution comes from the terms which take polarization mix-
ing into account. These terms are proportional to the polarization transformation
coefficients C and D. Due to the trace in (6.10), the polarization can only change an
even number of times upon reflection on the spheres. Since C = D = 0 at the saddle-
point, the terms with four or more polarization changes vanish in the NTLO term
to the saddle-point contribution. For the remaining term, the polarization change
occurs exactly twice. It may only contribute when the derivatives with respect to the
transformed variables acts on the functions C and D. We denote this contribution as
U(ii,0).

Before we calculate the contributions constituting U(i) and U(ii) in (E.2) and (E.3),
respectively, we introduce a differential operator, which frequently appears in the
calculations, in the following section.

E.1 A differential operator and the chain rule

Since in the terms in the NTLO saddle-point contributions a second order derivative
is always coupled to the inverse Hessian, it is convenient to define the differential
operator

D ≡
r−1

∑
i,j=1

(
H̃−1

)
ij

∂2

∂vi,α∂vj,α
(E.12)

for α = x, y.
Because the functions f and g are defined with respect to the variables k j,α, we

make use of the chain rule
∂

∂vl,α
=

2r−1

∑
l=1

Wj,l
∂

∂k j,α
. (E.13)

The sums in (E.12) can then be performed leading to a simplified expression for D
in terms of derivatives with respect to the variables k j,α.

In the following part of this section, we drop the index α and introduce the short-
hand notation for the derivatives

∂̃j ≡
∂

∂vj,α
and ∂j ≡

∂

∂k j,α
. (E.14)

We start out by expressing (E.12) in terms of the non-vanishing matrix elements
of the inverse Hessian (6.45) and (6.46). The second order derivatives can then be
split into three parts

D = D1 + D2 + D3 (E.15)
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with

D1 ≡ H̃−1
r,r ∂̃r ∂̃r =

κsp

R1 + R2
∂̃r ∂̃r ,

D2 ≡
r−1

∑
j=1

[
H̃−1

j,r−j∂̃j∂̃r−j + H̃−1
r+j,2r−j∂̃r+j∂̃2r−j

]
= −i

κsp(R1 − R2)

4R1R2

r−1

∑
j=1

1
sjcj

(
∂̃j∂̃r−j − ∂̃r+j∂̃2r−j

)
,

D3 ≡
r−1

∑
j=1

[
H̃−1

j,2r−j∂̃j∂̃2r−j + H̃−1
r+j,r−j∂̃r+j∂̃r−j

]
=

κsp

2Reff

r−1

∑
j=1

1
s2

j
∂̃j∂̃2r−j ,

where we have used in the last line that the second term proportional to H̃−1
r+j,r−j is

equal to the first one. This can be seen by reversing the summation over j.
The next step is to employ the chain rule (E.13). The first term D1 then becomes

D1 =
κsp

R1 + R2

2r−1

∑
m,n=0

Wm,rWn,r∂m∂n

=
κsp

2r(R1 + R2)

2r−1

∑
m,n=0

(−1)m+n∂m∂n ,

where we have used in the second line that Wn,r = (−1)n/
√

2r. Likewise, the second
term D2 can be expressed as

D2 = −i
κsp(R1 − R2)

4R1R2

2r−1

∑
m,n=0

r−1

∑
j=1

1
sjcj

(
Wm,jWn,r−j −Wm,2r−jWn,r+j

)
∂n∂m

=
κsp(R1 − R2)

2rR1R2

2r−1

∑
m,n=0

(−1)n
r−1

∑
j=1

sin (π j(m− n)/r)
sin(π j/r)

∂n∂m .

Using the identities (E.87) and (E.88) the summation over j can be performed and
we find

D2 =
κsp(R1 − R2)

2rR1R2

2r−1

∑
m,n=0

(−1)nd2(m− n)∂m∂n (E.16)

with the 2r-periodic function

d2(k) =
{

r− k for k odd
0 else

(E.17)

for k = 0, . . . , 2r− 1. Note that d2 is anti-symmetric, i.e. d2(−k) = −d2(k).
Making use of the chain rule, the third term D3 can be written as

D3 =
κsp

2Reff

2r−1

∑
m,n=0

r−1

∑
j=1

Wm,jWn,2r−j

s2
j

∂m∂n

=
κsp

4rReff

2r−1

∑
m,n=0

r−1

∑
j=1

cos (π j(m− n)/r)
sin2(π j/2r)

∂m∂n ,

where we have used in the last line that the imaginary parts of the complex expo-
nentials cancel out due to the commutivity of the partial derivatives. The sum over
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j can be performed using (E.89) and we obtain

D3 =
κsp

8rReff

2r−1

∑
m,n=0

d3(m− n)∂m∂n (E.18)

with the 2r-periodic function

d3(k) =
1
3
(
4r2 − 12kr + 6k2 − 1

)
− (−1)k (E.19)

for k = 0, . . . , 2r. The function d3 is symmetric, i.e. d3(−k) = d3(k).
Summing up the expressions for D1, D2 and D3, the differential operator (E.12)

can be written as

D =
r−1

∑
i,j=1

(
H̃−1

)
ij

∂2

∂vi,α∂vj,α
=

2r−1

∑
m,n=0

dσ(m− n)
∂2

∂km,α∂kn,α
(E.20)

for α = x, y. The function dσ is 2r-periodic and defined as

d±(k) =
κsp

2r

[
(−1)k 1

R1 + R2
± d2(k)

R1 − R2

R1R2
+

d3(k)
4Reff

]
(E.21)

for k = 0, . . . , 2r, where σ = + is used when n is even and σ = − when n is odd.
The functions d2 and d3 as defined in (E.17) and (E.19), respectively. Since d3 is
symmetric and d2 anti-symmetric, negative arguments of dσ can be expressed in
terms of positive arguments by flipping the sign σ, i.e.

d±(−k) = d∓(k) . (E.22)

When k is even, d2 vanishes and thus the sign σ is dispensable. In this case, we will
thus write d(k) instead of dσ(k).

Most often, the coefficients dσ(k) are needed when k = 0 or 1. In these cases, the
coefficients read

d(0) =
κsp

2r

(
1

R1 + R2
+

r2 − 1
3Reff

)
, (E.23)

d±(1) =
κsp

2r

(
− 1

R1 + R2
± (r− 1)

R1 − R2

R1R2
+

(r− 1)(r− 2)
3Reff

)
. (E.24)

E.2 Derivation of V

Here, we calculate the contribution

V = V1 −
V2

4
+

V3

6
, (E.25)

where the terms

V1 = −
2r−1

∑
l=0

(κl L + log(κl))ij H̃
ij ,

V2 = fijklH̃
ijH̃kl ,

V3 = fijk flmnH̃
ilH̃jmH̃kn

(E.26)

are determined in the following subsections.
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With the results (E.31), (E.38) and (E.51), we find

V = −
rLκsp(κ2

sp +K2) +K2

3rκ3
sp

(
r2 − 1

Reff
+

3
R1 + R2

)
. (E.27)

It is interesting that this expression is proportional to d(0) even though V2 and V3 are
not. This may be a mere coincidence or a hint on the existence of a representation of
the term V for which the differential operator (E.20) is diagonal.

Derivation of V1

We compute the term

V1 = −2r
2r−1

∑
i,j=1

(
H̃−1

)
ij

∑
α∈{x,y}

∂2 (κl L + log(κl))

∂vi,α∂vj,α
. (E.28)

Using the identity for the differential operator (E.20), we can write

V1 = −2rd(0) ∑
α∈{x,y}

∂2(κl L + log(κl))

∂kl,α∂kl,α

∣∣∣∣
sp

. (E.29)

With d(0) as given in (E.23) and

∑
α∈{x,y}

∂2(κl L + log(κl))

∂kl,α∂kl,α

∣∣∣∣
sp

=
Lκsp(κ2

sp +K2) + 2K2

κ4
sp

, (E.30)

we obtain the final result

V1 = −
Lκsp(κ2

sp +K2) + 2K2

κ3
sp

(
1

R1 + R2
+

r2 − 1
3Reff

)
. (E.31)

Derivation of V2

We calculate the expression

V2 = ∑
α,β∈{x,y}

2r−1

∑
i,j,m,n=1

(
H̃−1

)
ij

(
H̃−1

)
mn

∂4 f
∂vi,α∂vj,α∂vm,β∂vn,β

. (E.32)

Using the defining equation (6.11) for f we can split V2 into two terms and write

V2 = R1V2,1 + R2V2,2 . (E.33)

Using (E.20), the two terms can be expressed as

V2,1 =
r−1

∑
p=0

2p+1

∑
i,j,m,n=2p

dσj(i− j)dσn(m− n)e(i, j, m, n) , (E.34)

V2,2 =
r−1

∑
p=0

2p

∑
i,j,m,n=2p−1

dσj(i− j)dσn(m− n)e(i, j, m, n) , (E.35)
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where

e(i, j, m, n) = ∑
α,β={x,y}

∂4η2p,2p+1

∂ki,α∂k j,α∂km,β∂kn,β

∣∣∣∣∣
sp

= ∑
α,β={x,y}

∂4η2p−1,2p

∂ki,α∂k j,α∂km,β∂kn,β

∣∣∣∣∣
sp

.

Note that since the polarization does not play a role in the calculations of this and
the following subsection, we use the variable p as an index running from 0 to r− 1.

Due to the evaluation at the saddle-point manifold, the function e does not de-
pend on the index p and is thus the same for the two terms V2,1 and V2,2. Depending
on the values of i, j, m and n the function e falls into four different classes. These
are listed in the second column of Tab. E.1. In the last column of this table the cor-
responding coefficients for V2,1 are given which depend only on d(0) and d±(±1).
Because these terms do not depend on the index p, the sum over p yields a factor of
r. With property (E.22), we have d−(−1) = d+(1). We then obtain

V2,1 = r
{

2(e1 + e4) [d(0)]
2 + 8e2d(0)d+(1) + 4e3 [d+(1)]

2
}

. (E.36)

Because for V2,2 the order of the odd and even indices entering the functions dσ is
interchanged compared to V2,1, we find an expression for V2,2 by flipping the sign σ.
By thus replacing d+(1) with d−(1) in (E.36), we obtain

V2,2 = r
{

2(e1 + e4) [d(0)]
2 + 8e2d(0)d−(1) + 4e3 [d−(1)]

2
}

. (E.37)

Using (E.23) and (E.24), the final result becomes

V2 =
4

rκ3
sp



(r− 1)

[
κ2

sp
(
r2 − r + 1

)
− 3K2r2

]

3Reff
−
K2r + κ2

sp(r− 1)
R1 + R2


 . (E.38)

Derivation of V3

Here, we compute the term

V3 = ∑
α,β,γ∈{x,y}

∑
ijklmn

(
H̃−1

)
ij

(
H̃−1

)
kl

(
H̃−1

)
mn

∂3 f
∂vi,α∂vk,β∂vm,γ

∂3 f
∂vj,α∂vl,β∂vn,γ

,

(E.39)
where the indices i, . . . , n run from 1 to 2r− 1.

Since f can be split into two terms for the respective radii, we can express V3 as
a sum of three terms

V3 = R2
1V3,11 + 2R1R2V3,12 + R2

2V3,22 . (E.40)
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4-tuple e(i, j, m, n) coefficient
(0, 0, 0, 0) e1 ≡ (κ2

sp − 4K2)/κ5
sp [d(0)]2

(1, 1, 1, 1) * *
(1, 0, 0, 0) e2 ≡ K2/κ5

sp d(0)d+(1)
(0, 1, 0, 0) * *
(0, 0, 1, 0) * *
(0, 0, 0, 1) * *
(0, 1, 1, 1) * d(0)d−(−1)
(1, 0, 1, 1) * *
(1, 1, 0, 1) * *
(1, 1, 1, 0) * *
(1, 0, 1, 0) e3 ≡ −(κ2

sp −K2)/2κ5
sp [d+(1)]

2

(0, 1, 0, 1) * [d−(−1)]2

(1, 0, 0, 1) * d+(1)d−(−1)
(0, 1, 1, 0) * *
(1, 1, 0, 0) e4 ≡ −K2/κ5

sp [d(0)]2

(0, 0, 1, 1) * *

TABLE E.1: The sixteen terms of V2,1 as defined in (E.34) for a given
p. The first column represents the 4-tuple of the indices (i − 2p, j −
2p, m − 2p, n − 2p) for which the values of the function e(i, j, m, n)
are given in the second column. The coefficients represented by a
product containing the function dσ(k) is given in last column. The
asterisk indicates that the entry is the same as the entry above.

where

V3,11 =
r−1

∑
p,q=0

2p+1

∑
m,n,s=2p

2q+1

∑
t,u,w=2q

dt(m− t)du(n− u)dw(s− w)e3,11(m, n, s; t, u, w)

V3,12 =
r−1

∑
p,q=0

2p+1

∑
m,n,s=2p

2q

∑
t,u,w=2q−1

dt(m− t)du(n− u)dw(s− w)e3,12(m, n, s; t, u, w)

V3,22 =
r−1

∑
p,q=0

2p

∑
m,n,s=2p−1

2q

∑
t,u,w=2q−1

dt(m− t)du(n− u)dw(s− w)e3,22(m, n, s; t, u, w)

(E.41)
with

e3,11(m, n, s; t, u, w) = ∑
α,β,γ∈{x,y}

∂3η2p,2p+1

∂km,α∂kn,β∂ks,γ

∂3η2q,2q+1

∂kt,α∂ku,β∂kw,γ

∣∣∣∣∣
sp

e3,12(m, n, s; t, u, w) = ∑
α,β,γ∈{x,y}

∂3η2p,2p+1

∂km,α∂kn,β∂ks,γ

∂3η2q−1,2q

∂kt,α∂ku,β∂kw,γ

∣∣∣∣∣
sp

e3,22(m, n, s; t, u, w) = ∑
α,β,γ∈{x,y}

∂3η2p−1,2p

∂km,α∂kn,β∂ks,γ

∂3η2q−1,2q

∂kt,α∂ku,β∂kw,γ

∣∣∣∣∣
sp

(E.42)

For given values of p and q each of the terms in (E.41) consists of 64 terms. There
are however only three classes of arguments for which the functions in (E.42) do not
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vanish.1 These are given by the functions of the form

e3,ab(ip, ip, ip; iq, iq, iq) = e ,

e3,ab(ip + 1, ip, ip; iq, iq, iq) = e3,ab(ip, ip, ip; iq + 1, iq, iq) = −
1
3

e ,

e3,ab(ip + 1, ip, ip; iq + 1, iq, iq) =
1
3

e

(E.43)

with

e =
3
4

k2
sp

κ6
sp

. (E.44)

On the other hand, the vanishing functions are of the form

e3,ab(ip + 1, ip, ip; iq, iq + 1, iq) = e3,ab(ip + 1, ip, ip; iq, iq, iq + 1) = 0 . (E.45)

The dependencies of the indices ip and iq on p and q, respectively, is different for the
three functions in (E.42) and will be discussed in more detail below. All other sets of
arguments of the functions e3,ab can be reduced to the ones given above by using the
following rules. One can perform the replacement ip ↔ ip + 1 and/or iq ↔ iq + 1
in each triple because the derivatives are evaluated at the saddle point. In this way,
the argument ip + 1 or iq + 1 appears at most once. Moreover, the arguments within
the two triples can be permuted since the partial derivatives commute. However,
one has to perform that permutation simultaneously on both triples, for they are
connected through the indices α, β and γ. Utilizing this rule, the argument ip + 1
can be brought to the first position thus ending up with the set of arguments given
above.

The coefficients composed of the products of the functions dσ(k) is different for
each term in (E.41). In Table E.2 the arguments and values of the function e3,11 along
with the coefficients of the function V3,11 are listed for fixed values of p and q. The
function V3,22 can be obtained from V3,11 by the replacements 2p ↔ 2p + 1 and
2q ↔ 2q + 1, which interchanges the role of the even and odd indices. Thus, a
corresponding table for the coefficients of V3,22 can be obtained from Table E.2 by
interchanging d+(k)↔ d−(k). The coefficients of the function V3,12 are not related to
the ones of V3,11. For fixed values of p and q, they can be found in Table E.3.

Using the tables E.2 and E.3, the tree terms (E.41) can then be expressed as

V3,ab =
r−1

∑
p,q=0

Aab(p− q) (E.46)

for ab = 11, 22, 12 where

A11/22(c) = e
{

4[d(2c)]3 + [d±(2c + 1)]3 + [d∓(2c− 1)]3 + d±(2c + 1)[d∓(2c− 1)]2

+ d∓(2c− 1)[d±(2c + 1)]2 − 2[d(2c)]2[d±(2c + 1) + d∓(2c− 1)]

− 2d(2c)
(
[d±(2c + 1)]2 + [d∓(2c− 1)]2

) }
(E.47)

1These function values coincide with the corresponding ones in the plane-sphere geometry as given
in Appendix A in Ref. [104].
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and

A12(c) = e
{
[d−(2c + 1)]3 + [d+(2c + 1)]3 + [d(2c)]3 + [d(2c + 2)]3

+ [d−(2c + 1) + d+(2c + 1)]
[
d−(2c + 1)d+(2c + 1)− [d(2c)]2 − [d(2c + 2)]2

]

+ [d(2c) + d(2c + 2)]
[
d(2c)d(2c + 2)− [d−(2c + 1)]2 − [d+(2c + 1)]2

] }
. (E.48)

Because the function dσ is 2r-periodic, each term Aab(c) appears r times in (E.46)
allowing us to write

V3,ab = r
r−1

∑
c=0

Aab(c) (E.49)

which is a sum over polynomials in c. Before performing the summation machined,
it is convenient to use d−(−1) = d+(1) to write

A11/22(0) = 4e[d(0) + d±(1)][d(0)− d±(1)]2 . (E.50)

Then, within the sum in (E.49), the functions dσ are evaluated at positive arguments
k = 0, . . . , 2r and the 2r-periodicity does not need to be explicitly implemented. The
term A12(0) does not need special attention as the arguments of the coefficients dσ

do not become negative in (E.49).
As the final result we obtain

V3 =
2(r− 1)k2

sp

rκ3
sp

(
r2 − r + 1

Reff
− 3

R1 + R2

)
. (E.51)

E.3 Derivation of U(i,1)
p and U(i,2)

p

We calculate the terms

U(1/2)
p = rgp

2r−1

∑
i,j=1

(
H̃−1

)
ij

∑
α=x,y

∂2 log
(

r(1/2)
p

)

∂vi,α∂vj,α

∣∣∣∣∣∣
sp

. (E.52)

Here, the Fresnel coefficients are understood as given in (3.3) evaluated at

cos(θi) =

√
1− cos(Θ)

2
. (E.53)

The scattering angle depends on (k2l+1, k2l) for s = 1 and (k2l , k2l−1) for s = 2.
Note that the order of the odd and even indices matters for the coefficients of the
differential operator (E.20). Using (E.20) and (E.22), we find

U(1/2)
p = 2rgp

[
d(0)Q(1/2)

p,0 + d±(1)Q
(1/2)
p,1

]
(E.54)
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6-tuple e3,11(m, n, s; t, u, w) coefficient
(0, 0, 0; 0, 0, 0) e [d(2c)]3

(1, 1, 1; 1, 1, 1) * *
(1, 1, 1; 0, 0, 0) * [d+(2c + 1)]3

(0, 0, 0; 1, 1, 1) * [d−(2c− 1)]3

(1, 0, 0; 0, 0, 0) −e/3 d+(2c + 1) [d(2c)]2

(0, 1, 0; 0, 0, 0) * *
(0, 0, 1; 0, 0, 0) * *
(1, 1, 1; 1, 1, 0) * *
(1, 1, 1; 1, 0, 1) * *
(1, 1, 1; 0, 1, 1) * *
(0, 0, 0; 1, 0, 0) * d−(2c− 1) [d(2c)]2

(0, 0, 0; 0, 1, 0) * *
(0, 0, 0; 0, 0, 1) * *
(1, 1, 0; 1, 1, 1) * *
(1, 0, 1; 1, 1, 1) * *
(0, 1, 1; 1, 1, 1) * *
(1, 1, 0; 0, 0, 0) * d(2c) [d+(2c + 1)]2

(1, 0, 1; 0, 0, 0) * *
(0, 1, 1; 0, 0, 0) * *
(1, 1, 1; 1, 0, 0) * *
(1, 1, 1; 0, 1, 0) * *
(1, 1, 1; 0, 0, 1) * *
(0, 0, 0; 1, 1, 0) * d(2c) [d−(2c− 1)]2

(0, 0, 0; 1, 0, 1) * *
(0, 0, 0; 0, 1, 1) * *
(1, 0, 0; 1, 1, 1) * *
(0, 1, 0; 1, 1, 1) * *
(0, 0, 1; 1, 1, 1) * *
(1, 0, 0; 1, 0, 0) e/3 [d(2c)]3

(0, 1, 0; 0, 1, 0) * *
(0, 0, 1; 0, 0, 1) * *
(0, 1, 1; 0, 1, 1) * *
(1, 0, 1; 1, 0, 1) * *
(1, 1, 0; 1, 1, 0) * *
(1, 0, 0; 0, 1, 1) * d+(2c + 1) [d−(2c− 1)]2

(0, 1, 0; 1, 0, 1) * *
(0, 0, 1; 1, 1, 0) * *
(0, 1, 1; 1, 0, 0) * d−(2c− 1) [d+(2c + 1)]2

(1, 0, 1; 0, 1, 0) * *
(1, 1, 0; 0, 0, 1) * *

TABLE E.2: The non-vanishing terms for V3,11 in (E.41). The first col-
umn represents the 6-tuple of the indices (m− 2p, n− 2p, s− 2p; t−
2q, u− 2q, w− 2q) and the values of the function e3,11(m, n, s; t, u, w)
are given in the second column where e = 3k2

sp/4κ6
sp. The coefficients

represented by a product containing the function dσ(k) is given in
last column where the abbreviation c ≡ p − q is used. The asterisk
indicates that the table entry is identical to the entry above.
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6-tuple e3,12(m, n, s; t, u, w) coefficient
(0, 0, 0; 0, 0, 0) e [d−(2c + 1)]3

(1, 1, 1; 1, 1, 1) * [d+(2c + 1)]3

(1, 1, 1; 0, 0, 0) * [d(2c + 2)]3

(0, 0, 0; 1, 1, 1) * [d(2c)]3

(1, 0, 0; 0, 0, 0) −e/3 d(2c + 2) [d−(2c + 1)]2

(0, 1, 0; 0, 0, 0) * *
(0, 0, 1; 0, 0, 0) * *
(1, 1, 1; 1, 1, 0) * d(2c + 2) [d+(2c + 1)]2

(1, 1, 1; 1, 0, 1) * *
(1, 1, 1; 0, 1, 1) * *
(0, 0, 0; 1, 0, 0) * d(2c) [d−(2c + 1)]2

(0, 0, 0; 0, 1, 0) * *
(0, 0, 0; 0, 0, 1) * *
(1, 1, 0; 1, 1, 1) * d(2c) [d+(2c + 1)]2

(1, 0, 1; 1, 1, 1) * *
(0, 1, 1; 1, 1, 1) * *
(1, 1, 0; 0, 0, 0) * d−(2c + 1) [d(2c + 2)]2

(1, 0, 1; 0, 0, 0) * *
(0, 1, 1; 0, 0, 0) * *
(1, 1, 1; 1, 0, 0) * d+(2c + 1) [d(2c + 2)]2

(1, 1, 1; 0, 1, 0) * *
(1, 1, 1; 0, 0, 1) * *
(0, 0, 0; 1, 1, 0) * d−(2c + 1) [d(2c)]2

(0, 0, 0; 1, 0, 1) * *
(0, 0, 0; 0, 1, 1) * *
(1, 0, 0; 1, 1, 1) * d+(2c + 1) [d(2c)]2

(0, 1, 0; 1, 1, 1) * *
(0, 0, 1; 1, 1, 1) * *
(1, 0, 0; 1, 0, 0) e/3 d+(2c + 1) [d−(2c + 1)]2

(0, 1, 0; 0, 1, 0) * *
(0, 0, 1; 0, 0, 1) * *
(0, 1, 1; 0, 1, 1) * d−(2c + 1) [d+(2c + 1)]2

(1, 0, 1; 1, 0, 1) * *
(1, 1, 0; 1, 1, 0) * *
(1, 0, 0; 0, 1, 1) * d(2c + 2) [d(2c)]2

(0, 1, 0; 1, 0, 1) * *
(0, 0, 1; 1, 1, 0) * *
(0, 1, 1; 1, 0, 0) * d(2c) [d(2c + 2)]2

(1, 0, 1; 0, 1, 0) * *
(1, 1, 0; 0, 0, 1) * *

TABLE E.3: The non-vanishing terms for V3,12 in (E.41). The first
column represents the 6-tuple of the indices (m − 2p, n − 2p, s −
2p; t − 2q + 1, u − 2q + 1, w − 2q + 1) and the values of the func-
tion e3,11(m, n, s; t, u, w) are given in the second column where e =
3k2

sp/4κ6
sp. The coefficients represented by a product containing the

function dσ(k) is given in last column where the abbreviation c ≡
p− q is used. The asterisk indicates that the table entry is identical to
the entry above.



E.4. Derivation of U(ii) 157

where the coefficients d(0) and d±(1) are given in (E.23) and (E.24), respectively, and

Q(s)
TE,0 ≡∑

α

∂2 log
(

r(s)TE

)

∂kl,α∂kl,α

∣∣∣∣∣∣
sp

= Q(s)
TE,1 +

k2
sp

κ3
spκsp

(E.55)

Q(s)
TE,1 ≡∑

α

∂2 log
(

r(s)TE

)

∂kl,α∂kl+1,α

∣∣∣∣∣∣
sp

=
k2

sp − 2κ2
sp

2κspκ3
sp

(E.56)

Q(s)
TM,0 ≡∑

α

∂2 log
(

r(s)TM

)

∂kl,α∂kl,α

∣∣∣∣∣∣
sp

= Q(s)
TM,1 −

n2
s k2

spK2

κ3
spκsp(κ2

sp + n2
s k2

sp)
(E.57)

Q(s)
TM,1 ≡∑

α

∂2 log
(

r(s)TM

)

∂kl,α∂kl+1,α

∣∣∣∣∣∣
sp

= n2
sK2 k2

sp(n2
s k2

sp − 3κ2
sp) + 2κ4

sp

2κspκ3
sp

(
κ2

sp + n2
s k2

sp

)2 (E.58)

with the relative refractive index ns for sphere s and

κsp =
√

n2
sK2 + k2

sp . (E.59)

E.4 Derivation of U(ii)

Derivation of U(ii,1)
p and U(ii,2)

p

We calculate the term

U(ii,1/2)
p = rgp


u(1/2)

1 +
r(s)p̄ |sp

r(s)p |sp

u(1/2)
2


 (E.60)

with

u(1/2)
1 =

2r−1

∑
i,j=1

(
H̃−1

)
ij

∑
α=x,y

∂2A
∂vi,α∂vj,α

∣∣∣∣
sp

,

u(1/2)
2 =

2r−1

∑
i,j=1

(
H̃−1

)
ij

∑
α=x,y

∂2B
∂vi,α∂vj,α

∣∣∣∣
sp

.

The functions A and B depend on (k2l+1, k2l) for s = 1 and (k2l , k2l−1) for s = 2.
Thus, the results for the functions u(s)

1 and u(s)
2 is in general different for the two

spheres. We find

u(1)
1 = −u(1)

2 = −[d(0)− d+(1)]
K2

k2
spκsp

= −1
r
K2

k2
spκsp

(
r + (r− 1)

R2

R1

)
1

R1 + R2
,

u(2)
1 = −u(2)

2 = −[d(0)− d−(1)]
K2

k2
spκsp

= −1
r
K2

k2
spκsp

(
r + (r− 1)

R1

R2

)
1

R1 + R2
,
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where we used that

∑
α

∂2A
∂kl,α∂kl,α

∣∣∣∣
sp

= −∑
α

∂2A
∂kl,α∂kl+1,α

∣∣∣∣
sp

= − K2

2k2
spκ2

sp
,

∑
α

∂2B
∂kl,α∂kl,α

∣∣∣∣
sp

= −∑
α

∂2B
∂kl,α∂kl+1,α

∣∣∣∣
sp

= +
K2

2k2
spκ2

sp
.

As the final result, we thus find

U(1/2)
p = −gp

K2

k2
spκsp

(
r + (r− 1)

R2/1

R1/2

)
1

R1 + R2

r(1/2)
p − r(1/2)

p̄

r(1/2)
p

, (E.61)

where, as before, p̄ = TE if p = TM and vice versa.

Derivation of U(ii,0)

The term U(ii,0) corresponds to the contribution to the saddle-point correction where
a polarization change occurs precisely twice during the r round trips. Since the
polarization change from TE to TM and back to TE can occur on any of the two
spheres during the round trips, there are a total 2r(2r− 1) terms to be considered.

Without loss of generality we may assume that the polarization change from TE
to TM occurs in the zeroth round trip and the polarization back to TE at the l-th
round trip. The terms for which the polarization change from TE to TM occurs in a
different round trip yield an identical contribution and can thus be accounted for by
multiplying the result by a factor of r.

It is then convenient to divide the contributions to U(ii,0) by specifying on which
spheres the polarization changes occur:

U(ii,0) = J(1,1) + J(2,2) + J(1,2) + J(2,1) (E.62)

where J(s,t) stands for the contribution where the polarization from TE to TM occurs
upon reflection on sphere s and the polarization change back to TE on sphere t.

We consider first the case that both polarization changes occur on sphere 1 which
accounts for r(r− 1) terms in U(ii,0). This contribution reads

J(1,1) = 2r
exp(−2rκspL)

κ2r
sp

r−1

∑
l=1

xr−l−1
TE xl−1

TM r(2)TE r(2)TM

×∑
ij

(
H̃−1

)
ij
∑
α

∂ρ
(1)
TETM(k2l+1, k2l)

∂vi,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE(k1, k0)

∂vj,α

∣∣∣∣∣
sp

(E.63)

where the factor of 2 is due to the identical contributions from the product rule for
derivatives and

xp ≡ r(1)p r(2)p . (E.64)

Moreover, we have used that the polarization preserving contributions are given by
ρ
(1/2)
pp

∣∣∣
sp

= r(1/2)
p .
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Using that

∑
α

∂ρ
(1)
TETM

∂k2l,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE

∂k0,α

∣∣∣∣∣
sp

= ∑
α

∂ρ
(1)
TETM

∂k2l+1,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE

∂k1,α

∣∣∣∣∣
sp

=
K2
[
∆r(1)

]2

4k2
spκ2

sp

∑
α

∂ρ
(1)
TETM

∂k2l+1,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE

∂k0,α

∣∣∣∣∣
sp

= ∑
α

∂ρ
(1)
TETM

∂k2l,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE

∂k1,α

∣∣∣∣∣
sp

= −
K2
[
∆r(1)

]2

4k2
spκ2

sp

where
∆r(s) = r(s)TE − r(s)TM , (E.65)

we can write

∑
ij

(
H̃−1

)
ij

∂ρ
(1)
TETM(k2l+1, k2l)

∂vi,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE(k1, k0)

∂vj,α

∣∣∣∣∣
sp

= [2d(2l)− d+(2l + 1)− d−(2l − 1)]
K2
[
∆r(1)

]2

4k2
spκ2

sp
. (E.66)

The brackets containing the functions dσ is independent of l since it evaluates to

[2d(2l)− d+(2l + 1)− d−(2l − 1)] = − 2R2κsp

rR1(R1 + R2)
. (E.67)

The sum over l can then be identified as a geometric sum for which we obtain

X ≡
r−1

∑
l=1

xr−l
TE xl

TM =

{
xr

TExTM−xr
TMxTE

xTE−xTM
for xTE 6= xTM

(r− 1)xr
TE for xTE = xTM .

(E.68)

The contribution for which the polarization change occurs twice on sphere 1 can
then be summarized as

J(1,1) = −K
2 exp(−2rκspL)

k2
spκ2r+1

sp
X

[
∆r(1)

]2

r(1)TE r(1)TM

R2

R1(R1 + R2)
. (E.69)

The contribution J(2,2) where both polarization changes occur upon reflection on
sphere 2 can be found by replacing 1↔ 2 in J(1,1) which yields

J(2,2) = −K
2 exp(−2rκspL)

k2
spκ2r+1

sp
X

[
∆r(2)

]2

r(2)TE r(2)TM

R1

R2(R1 + R2)
. (E.70)

The remaining terms represent the cases where the polarization changes occurs upon
reflections on different spheres. The contribution where the polarization change
from TE to TM occurs upon reflection on sphere 1 and the polarization change back
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to TE on sphere 2 counts r2 terms. These terms read

J(1,2) =
2r exp(−2rκspL)

κ2r
sp

r−1

∑
l=0

xr−l−1
TE xl

TM

×∑
ij

(
H̃−1

)
ij
∑
α

∂ρ
(2)
TETM(k2l+2, k2l+1)

∂vi,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE(k1, k0)

∂vj,α

∣∣∣∣∣
sp

(E.71)

where this time the sum over l starts at l = 0 allowing for the possibility that both
polarization changes may occur within the same round trip. With

∑
α

∂ρ
(2)
TETM

∂k2l+1,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE

∂k0,α

∣∣∣∣∣
sp

= ∑
α

∂ρ
(2)
TETM

∂k2l+2,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE

∂k1,α

∣∣∣∣∣
sp

= −K
2∆r(1)∆r(2)

4k2
spκ2

sp

∑
α

∂ρ
(2)
TETM

∂k2l+2,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE

∂k0,α

∣∣∣∣∣
sp

= ∑
α

∂ρ
(2)
TETM

∂k2l+1,α

∣∣∣∣∣
sp

∂ρ
(1)
TMTE

∂k1,α

∣∣∣∣∣
sp

=
K2∆r(1)∆r(2)

4k2
spκ2

sp

(E.72)

and the fact that

d(2l) + d(2l + 2)− d+(2l + 1)− d−(2l + 1) =
2κsp

r(R1 + R2)
(E.73)

is independent of l, we can perform the sum over l:

Y ≡
r−1

∑
l=0

xr−l−1
TE xl

TM =

{
xr

TE−xr
TM

xTE−xTM
for xTE 6= xTM

rxr−1
TE for xTE = xTM

. (E.74)

We then obtain

J(1,2) =
K2 exp(−2rκspL)

k2
spκ2r+1

sp
Y

∆r(1)∆r(2)

R1 + R2
. (E.75)

The remaining contribution for which the polarization change from TE to TM
occurs upon reflection at sphere 2 and the polarization change back to TE on sphere
1 is given by interchanging the polarization components TE↔ TM in J(1,2). It turns
out that the two contributions are identical:

J(2,1) = J(1,2) . (E.76)

In total, we thus find

U(ii,0) =
K2 exp(−2rκspL)

k2
spκ2r+1

sp

1
R1 + R2

×


2∆r(1)∆r(2)Y− X




[
∆r(1)

]2

r(1)TE r(1)TM

R2

R1
+

[
∆r(2)

]2

r(2)TE r(2)TM

R1

R2





 . (E.77)
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Perfect reflector case

The condition xTE = xTM, or equivalently

r(1)TE r(2)TE = r(1)TMr(2)TM , (E.78)

is special which can already be seen by the fact that the functions X and Y defined
in (E.68) and (E.74), respectively, take special values. For dielectric spheres, this
condition is only satisfied in the perfect reflector limit.

We thus consider perfectly reflecting spheres in the following discussion. The
Fresnel coefficients then become rTE = −1 and rTM = 1 and thus X = r − 1 and
Y = r.

We can then write

∑
p

(
U(ii,1)

p + U(ii,2)
p

)
= −K

2 exp(−2rκspL)
k2

spκ2r+1
sp

1
R1 + R2

[
8r + 4(r− 1)

(
R2

R1
+

R1

R2

)]

(E.79)
and

U(ii,0) =
K2 exp(−2rκspL)

k2
spκ2r+1

sp

1
R1 + R2

[
8r + 4(r− 1)

(
R2

R1
+

R1

R2

)]
. (E.80)

The two term (E.79) and (E.80) precisely cancel each other. Thus, the contribution to
the geometric optical correction due to the term U(ii) vanishes for perfect reflectors.

E.5 Useful identities

Identities for derivatives with respect to the Fourier transformed variables

Lemma 1.1: Let X be a symmetric function of the momenta kn for n = 0, . . . , 2r − 1 and
j 6= 0, then

∂X
∂vj,α

∣∣∣∣
sp

= 0 . (E.81)

Proof: Using the chain rule, we can write

∂X
∂vj,α

∣∣∣∣
sp

=
2r−1

∑
l=0

Wjl
∂X

∂kl,α

∣∣∣∣
sp

. (E.82)

Since now X is symmetric with respect to the kl,α, the derivative on the right-hand
side evaluated at the saddle-point yields the same value for each l. The sum over l
can then be written in terms of the geometric sum

2r−1

∑
l=0

Wjl =
1√
2r

2r−1

∑
l=0

ωl =
1√
2r

1−ω2r

1−ω
(E.83)

where ω = exp(πij/r). Because j 6= 0 and ω2r = 1 the geometric sum evaluates to
zero which proofs the lemma. �

Lemma 1.2: Let X = ∏l Xl such that ∑l Xl is a symmetric function of the momenta kn for
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n = 0, . . . , 2r− 1. If further i, j 6= 0 then

∂2X
∂vi,α∂vj,α

∣∣∣∣
sp

= X|sp
∂2 log(X)

∂vi,α∂vj,α

∣∣∣∣
sp

. (E.84)

Proof: Using the product rule, we first express the second order derivative as

∂2X
∂vi,α∂vj,α

∣∣∣∣
sp

= X|sp

[
1

Xl |sp
∑

l

∂2Xl

∂vi,α∂vj,α

∣∣∣∣
sp
+

1
Xl |2sp

∑
k 6=l

∂Xk

∂vi,α

∣∣∣∣
sp

∂Xl

∂vj,α

∣∣∣∣
sp

]
. (E.85)

Adding and subtracting the expression

1
Xl |2sp

∑
l

∂Xl

∂vi,α

∣∣∣∣
sp

∂Xl

∂vj,α

∣∣∣∣
sp

(E.86)

inside the brackets allows us to complete the sum of the second term. That second
term then becomes proportional to ∂X/∂vi,α|sp which vanishes according to Lemma
1.1. We thus write

∂2X
∂vi,α∂vj,α

∣∣∣∣
sp

= X|sp ∑
l

[
1

Xl |sp
∑

l

∂2Xl

∂vi,α∂vj,α

∣∣∣∣
sp
− 1

Xl |2sp

∂Xl

∂vi,α

∣∣∣∣
sp

∂Xl

∂vj,α

∣∣∣∣
sp

]

= X|sp ∑
l

∂2 log(Xl)

∂vi,α∂vj,α

∣∣∣∣
sp

.

Expressing the sum of the logarithms as a logarithm of a product then completes the
proof. �

Identities for sums over trigonometric functions

Lemma 2.1: Let k and r be integers with 0 ≤ k < r then

r−1

∑
j=1

sin(π j(2k + 1)/r)
sin(π j/r)

= r− (2k + 1) . (E.87)

Proof: When k = 0, the sum trivially yields r− 1. For k > 0, we can use the addition
formula for the sine and express the sum as

r−1

∑
j=1

sin(π j(2k + 1)/r)
sin(π j/r)

=
r−1

∑
j=1

sin(2πkj/r) cot(π j/r) +
r−1

∑
j=1

cos(2π jk/r) .

Using Corollary 4.2 from Ref. [148] the first sum yields r − 2k. The cosine of the
second sum can be expressed in terms of complex exponentials. The summation
over j then yields −1. �

Lemma 2.2: Let k and r be integers then

r−1

∑
j=1

sin(2π jk/r)
sin(π j/r)

= 0 . (E.88)

Proof: The identity is easily proven by reversing the summation over j. The sum
then goes over into the same sum with a negative sign, which can only be true if the
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sum vanishes. �

Lemma 2.3: Let k and r be integers with 0 ≤ k ≤ 2r then

r−1

∑
j=1

cos(π jk/r)
sin2(π j/2r)

=
1
2

[
1
3
(
4r2 − 12kr + 6k2 − 1

)
− (−1)k

]
(E.89)

Proof: Using
r−1

∑
j=1

cos(π jk/r)
sin2(π j/2r)

=
r−1

∑
j=1

cos(π(2r− j)k/r)
sin2(π(2r− j)/2r)

we can write

r−1

∑
j=1

cos(π jk/r)
sin2(π j/2r)

=
1
2

(
2r−1

∑
j=1

cos(2π jk/2r)
sin2(π j/2r)

− (−1)k

)
=

1
2

[
1
3
(
4r2 − 12kr + 6k2 − 1

)
− (−1)k

]

where Corollary 5.4 from Ref. [148] was used to perform the sum over j in the last
equality. �
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Appendix F

Hybrid numerical approach

In this appendix, we discuss the hybrid numerical approach in more detail. This ap-
proach is a hybrid method between the plane-wave numerical approach discussed
in chapter 7 and the commonly employed method based on spherical multipoles.
For simplicity, we discuss the hybrid approach in the example of the plane-sphere
geometry depicted in Fig. 7.1. This method may also be applied to any other geom-
etry with cylindrical symmetry.

Within the plane-wave basis, the matrix elements of the reflection operator at the
sphere can be expressed as [55, Appendix 5]

〈k′, p′,−|RS|k, p,+〉 = 8π2

Kκ′

∞

∑
`=1

`

∑
m=−`

ip−p′

`(`+ 1)

×
[

a`

(
m

sin θ−k′

)δp′ ,1
(

∂

∂θ−k′

)1−δp′ ,1
(

m
sin θ+k

)δp,1
(

∂

∂θ+k

)1−δp,1

+ b`

(
m

sin θ−k′

)δp′ ,2
(

∂

∂θ−k′

)1−δp′ ,2
(

m
sin θ+k

)δp,2
(

∂

∂θ+k

)1−δp,2
]

Ym
` (θ

−
k′ , ϕk′)Ym

`
∗(θ+k , ϕk) ,

(F.1)

where p = TE and TM and associated with the indices 1 and 2, respectively. Here,
a` and b` are the Mie coefficients given in (5.18),

sin θ±k = −i
k
K , cos θ±k = ± κ

K (F.2)

and the spherical harmonics are defined as [147, §14.30]

Ym
` (θ, ϕ) =

√
2`+ 1

4π

(`−m)!
(`+ m)!

Pm
` (cos θ) eimϕ (F.3)

with the associated Legendre functions defined in (A.7).
If objects different than spheres are involved, the Mie coefficients a` and b` ap-

pearing in (F.1) would need to be replaced with the corresponding partial-wave re-
flection coefficients. Note that the sum over the azimuthal numbers m in (F.1) can
be performed analytically yielding the matrix elements (5.14) as outlined in [58, Ap-
pendix C]. Here, we perform the discrete Fourier transform discussed in 7.2 analyt-
ically and proceed as follows.

First, it is necessary to express the in-plane wave vector k appearing in the ma-
trix elements (F.1) in polar coordinates with radial and angular component k and ϕ,
respectively. The matrix elements depend on the angular components only through
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the phase factor appearing in the spherical harmonics (F.3) and thus only on the dif-
ference of the angular components, ∆ϕ = ϕ′ − ϕ. Applying the trapezoidal rule
for the angular components with a subsequent discrete Fourier transform as dis-
cussed in Sec. 7.2, the reflection matrix becomes block diagonal with respect to the
azimuthal number and takes the form

〈k′, p′,−|R(m)
S |k, p,+〉 =

M−1

∑
j=0

1
M

e2πijm/M 〈k′, 2π j/M, p′,−|RS|k, 0, p,+〉 (F.4)

for m = 0,±1, . . . up to±(M− 1)/2 when M is odd or M/2 when M is even. Taking
the limit M→ ∞, the sum over j becomes an integral over ∆ϕ

〈k′, p′,−|R(m)
S |k, p,+〉 =

∫ 2π

0

d∆ϕ

2π
eim∆ϕ 〈k′, ∆ϕ, p′,−|RS|k, 0, p,+〉 , (F.5)

where the azimuthal numbers now run from m = 0,±1, . . . to ±∞.
Switching the order of summation over ` and m in (F.1) by means of the relation

∞

∑
`=1

`

∑
m=−`

=
∞

∑
m=−∞

∞

∑
`=max(1,|m|)

, (F.6)

we can perform the integration over ∆ϕ analytically yielding the matrix elements

〈k′, TE,−|R(m)
S |k, TE,+〉 = − 1

Kκ′

∞

∑
`=max(1,|m|)

Nm
`

[
a`

m2K2

kk′
Pm
` (−κ′/K)Pm

` (κ/K)

+ b`
kk′

K2 ∂Pm
` (−κ′/K)∂Pm

` (κ/K)
]

,

〈k′, TM,−|R(m)
S |k, TM,+〉 = 1

Kκ′

∞

∑
`=max(1,|m|)

Nm
`

[
a`

kk′

K2 ∂Pm
` (−κ′/K)∂Pm

` (κ/K)

+ b`
m2K2

kk′
Pm
` (−κ′/K)Pm

` (κ/K)
]

,

〈k′, TE,−|R(m)
S |k, TM,+〉 = − im

Kκ′

∞

∑
`=max(1,|m|)

Nm
`

[
a`

k
k′

Pm
` (−κ′/K)∂Pm

` (κ/K)

+ b`
k′

k
∂Pm

` (−κ′/K)Pm
` (κ/K)

]
,

〈k′, TM,−|R(m)
S |k, TE,+〉 = − im

Kκ′

∞

∑
`=max(1,|m|)

Nm
`

[
a`

k′

k
∂Pm

` (−κ′/K)Pm
` (κ/K)

+ b`
k
k′

Pm
` (−κ′/K)∂Pm

` (κ/K)
]

,
(F.7)

where ∂Pm
` denotes a derivative of the associated Legendre function with respect to

its argument and

Nm
` =

2`+ 1
`(`+ 1)

(`−m)!
(`+ m)!

. (F.8)

Using the reflection formulas

Pm
` (−x) = (−1)`Pm

` (x) ∂Pm
` (−x) = (−1)`+1∂Pm

` (x) , (F.9)

the alternating sign of the Mie coefficients with respect to ` can be canceled out. In
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the resulting sums over `, the summands have a fixed sign and the sums can be
numerically evaluated in a similar way as the summation over ` appearing in the
Mie scattering amplitudes which is detailed in Sec. 7.5.

The reflection matrix elements (F.7) can now be used to compute the Casimir
interaction between a plane and a sphere. To this end, we apply the Nyström dis-
cretization to the radial components of the wave-vectors as discussed in Sec. 7.3 and
compute the contribution of the round-trip operator for each azimuthal number m
until convergence is reached.

In our numerical implementation of the hybrid method, we calculate the asso-
ciated Legendre functions and its derivative by means of the upward recurrence
relations (A.9)

(`−m + 1)Pm
`+1(z) = (2`+ 1)zPm

` (z)− (`+ m)Pm
`−1(z) ,

(z2 − 1)∂Pm
` (z) = `zPm

` (z)− (`+ m)Pm
`−1(z)

(F.10)

initiated with (A.10)

Pm
m (z) =

(2m)!
2mm!

(z2 − 1)m/2 ,

Pm
m+1(z) = (2m + 1)zPm

m (z) ,

∂Pm
m (z) =

(2m)!
2m(m− 1)!

z(z2 − 1)m/2−1 .

(F.11)

In principle, the evaluation of the sum over ` can be sped up by the use of asymp-
totics for the evaluation of the associated Legendre functions since then we would
not need to calculate the sum from ` = max(1, |m|) to `max. We, however, did not
investigate this possibility further.

For a fair comparison between the plane-wave and the hybrid method, we eval-
uated the Mie scattering amplitudes (5.3) in the plane-wave method also with an
upward summation of the angular functions starting at ` = 1. In both the hy-
brid and plane-wave methods the sums over ` were truncated by the same value
`max = d10R/Le. We found that the hybrid method performed slower than the
plane-wave method. This may be explained by the fact that in the plane-wave
method the round-trip matrix has to be constructed for fewer values of m than in
the hybrid method. This is related to the convergence rate of the summation over
m in the hybrid approach and the convergence of the quadrature order M in the
plane-wave method, respectively, which we will discuss in the following.

For a comparison of the convergence rates, we truncate the summation over the
contribution of m in the hybrid method by some highest value mmax. The choice of
mmax determines how well the result converges. For simplicity, we study the conver-
gence for a given frequency contribution to the Casimir free energy for a perfectly
reflecting sphere and plane in vacuum. The frequency is set to ξ = 0.1 c/L and the
radial quadrature order is set to N = d6

√
R/Le which yields a numerical accuracy

between 10−6 and 10−7 (cf. Tab. 7.1).
In Fig. F.1, we compare the convergence of mmax in the hybrid approach with

the convergence of the quadrature order M in the plane-wave approach for aspect
ratios R/L = 100 and 10. For a given mmax or M the error of the contribution to the
Casimir free energy is shown relative to a numerical value with higher numerical
accuracy with M = 100 for R/L = 10 and M = 250 for R/L = 100. The results
for the hybrid method are represented by the circles and squares and the results for
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FIGURE F.1: Numerical relative error for the evaluation of the fre-
quency contribution to the Casimir free energy in the plane-sphere
geometry as a function of the highest azimuthal number mmax in-
cluded in the hybrid method and angular quadrature order M in the
plane-wave method. The object are assumed to be perfectly reflect-
ing and the medium to be vacuum. The imaginary frequency is set
to ξ = 0.1 c/L with the surface-to-surface distance L. The circles and
squares (crosses and pluses) represent data points obtained in the hy-
brid (plane-wave) method for R/L = 100 and R/L = 10, respectively.
For the data points, the numerical error is calculated relative to the re-
sult obtained by setting M = 100 when R/L = 10 and M = 250 when
R/L = 100 in the plane-wave method.

the plane-wave method by the crosses and pluses. The circles and crosses show the
result for the aspect ratio R/L = 100 and the pluses for the aspect ratio of R/L = 10.

We observe that for the two methods convergence is reached for about the same
values of M and mmax. For R/L = 10, this is at about M = mmax = 25 and, for
R/L = 100, at about M = mmax = 70. For larger values of M and mmax, the relative
error stays constant as it is determined by the relative error induced by discretiza-
tion order of the radial component of the wave vector which is fixed here. Though
convergence is reached when M = mmax, this means that in the plane-wave method
about half of the matrix elements and matrix computations have to be performed
compared to the hybrid method.

Due to symmetry in ∆ϕ, we only need to compute half of the matrix elements.
After then applying the discrete Fourier transform, the contributions to the Casimir
energy correspond to azimuthal numbers m = 0,±, . . . to about M/2. Since positive
and negative azimuthal numbers contribute equally, we only need to compute half
of the determinants of the round-trip matrices.

Note that, for a fixed M, expression (F.4) yields a worse and worse approximation
of the exact result (F.5) as m increases. This is because the Fourier factor becomes
more and more oscillatory and the fixed quadrature order resolves these oscillations
worse and worse. This is illustrated in Fig. F.2, where the numerical value of the
contribution to the free energy is shown as a function of the azimuthal number m.
In the figure, the frequency is set to ξ = 0.1 c/L and the aspect ratio to R/L =
100. Circles and crosses represent the data points of the hybrid and plane-wave
method respectively. For the plane-wave method, numerical data corresponding to
the angular quadrature order M = 40 and M = 60 is shown.
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FIGURE F.2: The numerical value of the contribution to the free en-
ergy in the plane-sphere geometry as a function of the azimuthal
number m for a fixed frequency ξ = 0.1 c/L. The objects are assumed
to be perfect reflectors in vacuum and the ratio of the sphere radius
R to the surface-to-surface distance L is set to R/L = 100. Circles
and crosses represent the data points of the hybrid and plane-wave
method respectively. For the plane-wave method, data correspond-
ing to the quadrature order M = 40 and M = 60 is depicted.

One can nicely observe the exponential convergence of the m-sum in the hybrid
method. For M = 40, the data points from the plane-wave method agree well with
the results from the hybrid method for small m. For larger m, the deviation increases.
The deviation is largest for the last data point at m = 20. The situation is similar for
the quadrature order M = 60, which contains data for azimuthal numbers up to m =
30. If we were interested in the Casimir contribution for a given azimuthal number,
the hybrid approach is certainly to be preferred, as one can directly compute the
contribution. Interestingly, in the plane-wave approach the loss of accuracy in the
calculation of higher azimuthal numbers makes the summation over all azimuthal
numbers converge fast. For M = 40, the summation over the crosses from m = 0 to
20 yield the contribution to the Casimir energy to the same accuracy as all circles in
the figure stemming from the hybrid method.
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AE Asymptotic Expansion, see chapter 6
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LO Leading Order
MSD Matsubara Spectrum Decomposition, see section 2.6
NTLO Next-To-Leading-Order
NNTLO Next-To-Next-To-Leading-Order
PFA Proximity Force Approximation, see section 4.1
PR Perfect Reflector
PSD Padé Sectrum Decomposition, see section 2.7
sc scattered (plane wave)
sp saddle point
TE Transverse Electric, see equation (3.1)
TM Transverse Magnetic, see equation (3.1)
WKB Wentzel–Kramers–Brillouin (approximation), see section 5.4
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List of Symbols

Physical constants

c speed of light in vacuum 2.997 924 58× 108 m s−1

h̄ reduced Planck constant 1.054 571 817× 10−34 J s = 6.582 119 569× 10−16 eV s
kB Boltzmann constant 1.380 649× 10−23 J K−1 = 8.617 333 262 145× 10−5 eV K−1

ε0 vacuum permittivity 8.854 187 812 8(13)× 10−12 F m−1

µ0 vacuum permeability 1.256 637 062 12(19)× 10−6 H m−1

Special functions

Iν(x) modified Bessel function of the first kind, see appendix A.1
Kν(x) modified Bessel function of the second kind, see appendix A.1
Lis(x) polylogarithm of order s, see appendix A.3
P`(x) ordinary Legendre function, see equation (A.8)
Pm
` (x) associated Legendre function, see appendix A.2

Ym
` (θ, ϕ) spherical harmonics, see equation F.3

Γ(z) Gamma function, see [147, §5]
π`(x), τ`(x) angular functions, see equation (5.4) and appendix A.4

Typographical symbols

f ∼ g function f is asymptotic to function g
x ∝ y x is proportional to y
f |sp evaluation of the function f at the saddle-point manifold (6.16)
∑∞

n=0
′ primed Matsubara sum, see equation (2.53)

Calligraphic symbols

A, B coefficients of the Mie coefficients in the zero-frequency limit, see Eq. (5.22) and Tab. 5.1
F Casimir free energy, see equations (2.44) and (2.52)
FPP Casimir free energy per unit area between parallel planes, see equation (3.29)
K imaginary wave number, K = iK =

√
εmξ/c

L center-to-center distance in sphere-sphere geometry, L = L + R1 + R2
M round-trip operator, see equation (2.41)
R reflection operator, see round-trip operatorM
T translation operator, see round-trip operatorM
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Greek symbols

ε(ω) dielectric function, see section 3.2
εm dielectric function of the medium
ε̂p plane-wave polarization vector, see equation (2.11)
κ κ =

√
K2 + k2

φ plane-wave propagation direction with respect to the z-axis, Kz = φkz
λT thermal wavelength, λT = h̄c/kBT
ξ imaginary frequency, ξ = −iω
ξn Matsubara frequency, ξn = 2πnkBT/h̄ for n ∈ Z

Θ scattering angle
ω (angular) frequency
χ angle between scattering and Fresnel plane

Latin symbols

a`, b` Mie coefficients, see equation (5.18)
A, B, C, D polarization transformation coefficients, see equations (5.10) and (5.15)
Aeff effective Hamaker parameter, see equations (8.4) and (8.5)
B magnetic field
E Casimir energy, E = F (T = 0)
E electric field
F Casimir force, F = −∂F/∂L
FPP Casimir pressure between parallel planes, see equation (3.30)
F′ Casimir force gradient, F′ = ∂F/∂L = −∂2F/∂L2

K wave vector, K = (Kx, Ky, Kz)
K wave number, magnitude of the wave vector K, K = |K|
k projection of K onto the x-y-plane, k = (Kx, Ky, 0)
k magnitude of the wave vector k, k = |k|
kz modulus of the wave vector’s z-component kz = |Kz|
` multipole order, see spherical harmonics Ym

` (θ, ϕ)
L surface-to-surface distance
m azimuthal number, see spherical harmonics Ym

` (θ, ϕ)
p polarization
R sphere radius
R spatial coordinates, R = (x, y, z)
Reff effective radius in the sphere-sphere geometry, Reff = R1R2/(R1 + R2)
rp Fresnel coefficients, see section 3.1
S1, S2 Mie scattering amplitudes, see equation (5.3)
S̃1, S̃2 scaled Mie scattering amplitudes in the zero-frequency limit, see Eq. (5.26)
s1, s2 coefficients for the WKB correction, see equation (5.34)
S scattering matrix, see equation (2.18)
T temperature
T transfer matrix, see equation (2.24)
u dimensionless parameter in the sphere-sphere geometry, u = R1R2/(R1 + R2)2
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