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Summary

Background The human skin offers diverse ecosystems for microbial symbionts.
However, the factors shaping skin–microbiome interactions are still insufficiently
characterized. This contrasts with the broader knowledge about factors influenc-
ing gut microbiota.
Objectives We aimed to investigate major patterns of association of host traits, life-
style and environmental factors with skin bacteria in two German populations.
Methods This is a cross-sectional study with 647 participants from two population-
based German cohorts, PopGen (n = 294) and KORA FF4 (n = 353), totalling
1794 skin samples. The V1–V2 regions of the 16S ribosomal RNA (rRNA) gene
were sequenced. Associations were tested with two bacterial levels, community
(beta diversity) and 16S rRNA gene amplicon sequence variants (ASVs).
Results We validated known associations of the skin microbiota with skin
microenvironment, age, body mass index and sex. These factors were associated
with beta diversity and abundance of ASVs in PopGen, which was largely repli-
cated in KORA FF4. Most intriguingly, dietary macronutrients and total dietary
energy were associated with several ASVs. ASVs were also associated with smok-
ing, alcohol consumption, skin pH, skin type, transepidermal water loss, educa-
tion and several environmental exposures, including hours spent outdoors.
Associated ASVs included members of the genera Propionibacterium, Corynebacterium
and Staphylococcus.
Conclusions We expand the current understanding of factors associated with the
skin bacterial community. We show the association of diet with skin bacteria.
Finally, we hypothesize that the skin microenvironment and host physiology
would shape the skin bacterial community to a greater extent compared with a
single skin physiological feature, lifestyle and environmental exposure.

What is already known about this topic?

• The skin microbiome is essential for maintaining skin health.
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• Skin bacteria abundances are associated with skin physiology patterns (microenvi-

ronments), host traits, such as age and sex, and domestic environmental factors,

such as pets.

• Evaluation and translation of these associations are difficult because most studies

have a limited number of candidate factors.

What does this study add?

• We expand the current knowledge of factors associated with skin microbiota by

revealing new factors associated with skin bacteria, including diet.

• We provide a comprehensive view of the factors associated with skin microbiota,

which suggests that skin microenvironment and host physiology would shape the

skin bacterial community to a greater extent compared with a single skin physio-

logical feature, lifestyle and environmental exposure.

What is the translational message?

• Future clinical research involving skin microbiota should acknowledge the associa-

tions found as potential confounders.

• Host factors (age, body mass index and sex) and skin microenvironments should

be particularly considered because they were associated with skin bacteria at the

community level.

The human skin offers diverse ecosystems that harbour distinct

microbial communities, with three postulated major microen-

vironments: dry, moist and sebaceous.1 Microenvironments

are distinct sets of skin physiological parameters, including

pH, temperature, moisture, sebum content and topography.2

Skin microbiota include beneficial bacteria that can keep

potential pathogens at bay.3 Many common skin diseases are

associated with distinct microbiota signatures, including atopic

dermatitis4 and psoriasis.5 Therefore, understanding the

dynamics and functional causations of associated microbiota

changes will enable the development of better preventive and

therapeutic recommendations for skin health.

There are an increasing number of studies (such as Bousli-

mani et al. and Huang et al.) investigating the influence of

external and host factors on the skin microbiota of the general

population.6,7 Studies focusing on healthy individuals mostly

investigate single or few candidate factors,8,9 which hampers

the generalization and integration of their findings, and the

evaluation of their robustness. A recent study with 495 partici-

pants and 39 factors indicated the potential of population

studies to reveal associations with skin microbiota.10 Never-

theless, there are knowledge gaps about the forces that shape

the skin microbiome, in particular compared with what is

known about the human gut microbiota.11

Here, we aimed to investigate associations of host traits,

lifestyle and environmental factors with skin bacteria in two

German population-based cohorts. Skin bacteria were studied

at two levels, bacterial community (beta diversity) and bacte-

rial marker gene variants [16S ribosomal RNA (rRNA) gene

amplicon sequence variants (ASVs)]. In addition to the

investigation of as yet unexplored factors such as diet, known

factors associated with skin bacteria – age, body mass index

(BMI), sex and skin microenvironment – were integrated in

our analysis for validation, as references and as confounders.

Materials and methods

Study population and data acquisition

This study is a cross-sectional survey of skin microbiota from

participants of two independent population-based adult Ger-

man cohorts, PopGen and KORA FF4. For PopGen, 1317 par-

ticipants (aged 19–77 years; 55% men) were randomly

recruited between 2005 and 2007, and reinvited in 2016–
2017 (second follow-up) via the local population registry and

as blood donors from the region of Kiel, Germany.12 General

health information (standardized questionnaire), dietary pat-

terns and physical activity information (validated, self-

administered questionnaires in web-based version and, option-

ally, on paper13) were collected. Macronutrient intake details

were obtained using the German Food Code and Nutrient

Database.14

KORA FF4 (2279 participants) is the second follow-up of

the KORA S4 Survey (1999–2001, aged 25–74 years) con-

ducted between 2013 and 2014 in the southern German city

of Augsburg and its two surrounding counties.15 Personal data

and lifestyle data were collected from a standardized face-to-

face interview.16 Macronutrient intake details were obtained

using the German Food Code and Nutrient Database (BSL

III.2)17 on habitual dietary intake (repeated 24-h food lists
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and a food frequency questionnaire).18 Written informed con-

sent was obtained from all study participants. All protocols

were approved by the ethics committees of the Medical Fac-

ulty of Kiel University (PopGen) and of the Bavarian Medical

Association (KORA).

Biological specimen collection

Skin swabs were collected from participants of PopGen second

follow-up (n = 295) and from the youngest age group (39–
48 years) of KORA FF4 (n = 376). Participants were asked to

avoid bathing/showering and application of any topical agents

24 h prior to the sampling visit. A 4-cm2 area from the ante-

cubital fossa (PopGen and KORA FF4), retroauricular fold

(KORA FF4), forehead, volar and dorsal forearm (PopGen)

was firmly swabbed for at least 30 s. Immediately prior to

collection, swabs [Catch-All Sample Collection Swab; Epicentre

Biotechnologies (Illumina Inc., San Diego, CA, USA)] were

soaked in specimen collection fluid.19 Sampling negative con-

trols were swabs exposed to ambient air for 5 s. After sam-

pling, swabs were immediately stored at –80 °C. DNA was

isolated from KORA FF4 samples with MO BIO PowerSoil

DNA Isolation Kit (QIAGEN GmbH, Hilden, Germany) and

from PopGen samples with QIAamp UCP Pathogen Mini Kit

on an automated QIAcube system (QIAGEN).

Dermatological examination

For PopGen participants, skin type, skin pH and transepider-

mal water loss (TEWL) were recorded by trained dermatolo-

gists.19 At sampling sites, skin pH and TEWL were measured

with a Skin pH Meter (HI-99181/HI-1414D; Hanna Instru-

ments, V€ohringen, Germany) and Tewameter� TM 300

(Courage + Khazaka Electronic GmbH, Cologne, Germany).

The mean of three measurements was used for analysis.

Microbiota profiling

The V1 and V2 variable regions of the 16S rRNA gene were

amplified by polymerase chain reaction (PCR) with the uni-

versal primer pair 27F and 338R. Sequencing was performed

with MiSeq Reagent Kit v3 on the Illumina MiSeq (Illumina

Inc.) (Appendix S1; see Supporting Information).20,21

Sequence reads were processed with DADA2 v.1.10.22 The

resulting ASV table contained the number of times each ASV

was observed in each sample.23 ASV is a finer scale analogue

of the operational taxonomic unit. It resolves the sequenced

region variant down to a single-nucleotide difference level.

Taxonomic classification was performed with the RDP classifier

algorithm based on the Ribosomal Database Project v.16

release.24,25 Low confidence classifications (< 50) were

labelled unclassified. Sequences classified as chloroplasts or

mitochondria were removed. Cohort ASV tables were sepa-

rated into skin site-specific tables, four for PopGen and two

for KORA FF4. Samples taken from sites with skin abnormali-

ties (e.g. lesions) or where corticoids or antibiotics were used

within the last 7 days before collection were excluded. To

remove possible contaminants, ASVs that were low abundance

(< 0�1% of total sequence counts) were excluded (Figure S1;

see Supporting Information). Samples that yielded < 5000

sequences were excluded.

Bacterial community diversity (beta diversity) was estimated

from Bray–Curtis dissimilarities of rarefied ASV tables (5000

sequences per sample) and visualized with principal coordi-

nates analysis (PCoA). The rarefaction did not impact the ASV

diversity recovered (Figure S2; see Supporting Information).

Bray–Curtis dissimilarities were calculated using the R package

vegan v.2.5-5.26,27 PCoA was performed using ape package

v.5.3.28 No sequencing batch effects were observed on beta

diversities (Figure S2).

Prediction of microenvironment by bacterial genus profile

PopGen and KORA FF4 rarefied microbiota profiles were com-

bined. Sequence counts were grouped by genus. Only the most

abundant bacterial genera (> 1%) were used. The machine

learning routine consisted of 100 rounds (Appendix S1).

Briefly, in each round, one sample per participant was randomly

chosen and the dataset was randomly split into training and pre-

diction sets (8 : 2 ratio). The random forest algorithm was

trained using the R packages randomForest v.4.6-1429 and caret

v.6.0-84.30 Predictions of samples’ skin microenvironment

were evaluated with a multiclass receiver operating characteris-

tic area under the curve (AUC)31 and with the Matthews corre-

lation coefficient (MCC).32

Association of individual traits with skin bacteria

Age, BMI and sex were confounders in all tests, based on the

literature8–10 and on their effects on unadjusted beta diversity

association tests (Appendix S1). Total energy intake was

included as a confounder for tests with macronutrient intake

as recommended.33 Room temperature and air humidity were

included as confounders for tests with TEWL due to their

potential impact on its measurements. Therefore, each variable

was tested separately in its own confounder-adjusted model

(Figure S3; see Supporting Information). This approach was

chosen to avoid overfitting, control for main confounders and

ensure the interpretability of our results. To address the con-

founding effect of microenvironment, tests were carried out

for each skin site independently. For reference, we tested vari-

ables in unadjusted models, which yielded a greater number

of significant results (null hypothesis rejections) for beta

diversity and fewer for ASV associations (Figure S4; see Sup-

porting Information).

Associations with beta diversity (i.e. Bray–Curtis dissimilari-

ties) were tested with permutational multivariate analysis of

variance with adonis2 function in R (vegan package, version

2.4-2) using 999 permutations and sequential effects. False

discovery rate (FDR) correction was applied per site and test

datasets (as stated in Table S1; see Supporting Information and

described in the following section). The adjusted P-value
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significance cut-off was 0�05. Results are presented as percent-

age of community variation, i.e. R2 9 100.

Unlike other tests, assessment of the effect of skin microen-

vironment on beta diversity includes samples from all skin

sites collected within a cohort. To ensure samples were inde-

pendent of each other, this test was performed in 100 rounds.

In each round, one sample per participant was randomly

selected. The proportions between microenvironments were

kept. R2 values were summarized with mean � SD. Results are

presented as a percentage of community variation.

Associations with nonrarefied ASV abundances were tested

with the package DESeq2 v.1.24.0,34 with negative binomial

generalized linear models and likelihood ratio tests

(Appendix S1). Log fold changes were estimated using the

zero-centred normal prior distribution.34 FDR correction was

applied across all ASVs for each variable separately. The

adjusted P-value significance cut-off was 0�05.

Study-specific analyses and reproducibility

Age, BMI, sex and lifestyle factors, including dietary macronu-

trients, were available in both cohorts (Table 1, Figure S5; see

Supporting Information). Only participants with complete

information regarding these traits were kept for association

analysis. Association analysis with these variables were con-

ducted primarily in PopGen because it includes samples from

four different skin sites and three microenvironments, while

two skin sites from two microenvironments were sampled in

Table 1 Age, body mass index (BMI), sex and lifestyle factors of

PopGen and KORA FF4 participants

PopGen

(n = 254)

KORA FF4

(n = 225)

Age/BMI/Sex

Age (years) 66 (59, 75) 45 (42, 46)
Sex:female 112 (44) 133 (59)

BMI (kg m–2) 27 (24, 30) 25 (23, 28)
Diet

Carbohydrate
(g per day)

213 (164, 268) 208 (173, 245)

Energy

(kcal per day)

2135 (1752, 2726) 1881 (1672, 2130)

Fat (g per day) 98 (74, 128) 78 (68, 87)

Fibre (g per day) 20 (17, 25) 16 (14, 19)
Protein (g per day) 77 (62, 96) 71 (63, 82)

Systemic antibiotics
Antibiotics

(< 6–8 w)1:yes

15 (6) 20 (9)

Smoking

Smoking:ex-smoker 122 (48) 76 (34)
Smoking:nonsmoker 109 (43) 114 (51)

Smoking:smoker 23 (9) 35 (16)
Alcohol consumption

Alcohol (g per day) 9 (2, 19) 5 (3, 13)
Physical activity

Regular sports2 228 (90) –
Sport in

summer (h)2
2�00 (0�00, 4�75) –

Values represent n (%) or median (interquartile range; separated

by comma). Variables encoding related factors are indicated by a

colon, ‘:’. 1PopGen collected information about 6 weeks prior

sampling. KORA FF4 collected information about 8 weeks prior

sampling. 2Information not available for KORA FF4 participants.

Table 2 Age, body mass index (BMI), sex, education and

environmental factors of KORA FF4 participants

KORA FF4
(n = 349)

Age/BMI/Sex

Age (years) 45 (42, 47)
Sex:female 185 (53)

BMI (kg m–2) 26 (23, 29)
Education/dwelling

HVQ:no degree/vocational school/teaching 204 (58)
HVQ:technical school/technical/master 73 (21)

HVQ:engineering school/
polytechnic/college/university

72 (21)

Cohabiting couple:no
(single, living alone/married, separated/

divorced/widowed)

75 (21)

Cohabiting couple:yes

(living together with partner/married,
living together)

274 (79)

Location:city (city of Augsburg) 110 (32)
Location:rural (administrative district of

Augsburg/Aichach–Friedberg)
239 (68)

Hours outdoors

In summer (per week) 3�00 (2�00, 4�00)
In summer (per weekend) 5�00 (3�00, 7�00)
In winter (per week) 1�00 (1�00, 2�00)
In winter (per weekend) 2�00 (1�00, 3�00)

Free time outdoors

Beach/lake 138 (40)
Green spaces 313 (90)

Mountain region 100 (29)
Urban spaces 103 (30)

Holidays outdoors
Beach/lake 264 (76)

Green spaces 195 (56)
Mountain region 171 (49)

Urban spaces 121 (35)
Pets

Animal contact:no (not pet owner/never/
occasionally)

153 (44)

Animal contact:yes (regular or pet owner) 196 (56)
Cat 98 (28)

Dog 52 (15)
Rodent 34 (10)

Other 33 (9)
Ultraviolet protection

Sun protection in summer:always 50 (14)
Sun protection in summer:mostly 173 (50)

Sun protection in summer:sometimes 72 (21)
Sun protection in summer:rarely/never 54 (15)

Values represent n (%) or median (interquartile range; separated

by comma). Variables encoding related factors are indicated by a

colon, ‘:’. HVQ, highest vocational qualification.
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KORA FF4. Analysis with these variables in KORA FF4 was used

to verify the reproducibility of the results from PopGen. Study-

specific analyses with variables available in either cohort were

performed. Accordingly, the analyses with variables regarding

physical activity (Table 1) and skin physiological parameters

(Table S2; see Supporting Information) were performed in Pop-

Gen. In addition, the analysis with variables about dwelling,

education and environmental factors was performed in KORA

FF4 (Table 2). Associations found in at least two sites were

regarded as robust, and therefore further inspected in our study.

However, associations with environmental variables (Table 2)

were also inspected, because little overlap was found between

results from the antecubital fossa and retroauricular fold. Data

availability is provided in Appendix S1.

(a)

(b) (c)

Figure 1 Skin microbiota patterns. (a) Most abundant bacterial genera in skin sites: dorsal (D.) forearm, volar (V.) forearm, antecubital (A.) fossa,

forehead and retroauricular (R.) fold. Samples from PopGen (P) and KORA FF4 (K) cohorts are shown. All genera with < 1% abundance were

combined in the category ‘Others’. Skin sites are grouped by microenvironment, i.e. dry, moist and sebaceous (Seb.). Skin collection sites are

depicted. Bacteria from the family Neisseriaceae and order Actinomycetales that were left unclassified (unc.) at the genus level were also included. (b)

Prediction of sample microenvironments by genus profile (> 1% abundance). The receiver operating characteristic area under the curve (AUC) of

100 iterations (light grey lines) and their mean (black bold line) are shown. Median and median absolute deviation (�) of the AUC and

Matthews correlation coefficient (MCC) are shown, indicating very high classification performance of random forest predictions. (c) Bacterial

community variation (beta diversity). Points represent individual samples. Bray–Curtis dissimilarities were visualized using principal coordinates

analysis (PCoA). Marginal boxplots are shown to visualize sample distributions along axes. Percentage of variation explained by each axis is

shown. Samples are coloured by microenvironment: dry (light blue and blue), moist (yellow, orange) and sebaceous (pink and grey).
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Figure 2 Age, body mass index (BMI), sex and lifestyle were associated with skin bacteria. (a) Factors associated with bacterial community

variation in skin sites: dorsal (D.) forearm, volar (V.) forearm, antecubital (A.) fossa and forehead. Only factors that were significantly associated

with beta diversity are shown (adjusted P < 0�05). (b) Associated bacterial marker gene variants. Number of 16S ribosomal RNA gene amplicon

sequence variants (ASVs) significantly associated with each factor, i.e. age (A.), BMI, sex (S.), diet and ‘Others’, is shown (adjusted P value <

0�05). Skin sites are grouped by microenvironment, i.e. dry, moist and sebaceous (Seb.). (c) Top associated bacterial genera. The x-axis shows the

sum of all ASV abundances of a given genus averaged by microenvironment, where volar forearm and dorsal forearm together weighted one. The

numbers of associated ASVs found in each genus were averaged by microenvironment. Grey lines represent weighted standard deviations. Bacteria

from the family Neisseriaceae that were left unclassified (unc.) at genus level were also included. Data shown are from analysis of the PopGen

cohort.
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Results

Skin microbiota patterns reflect skin microenvironments

Microbiota profiles from 647 participants (294 from PopGen

and 353 from KORA FF4) were recovered (1794 skin sam-

ples). The microbial composition varied among skin sites (Fig-

ure 1a). Random forest algorithms trained with the abundant

bacterial genera (> 1% of 16S rRNA gene sequences) per-

formed highly on predicting samples’ microenvironment (me-

dian AUC of 0�932 and median MCC 0�735) (Figure 1b).

Bacterial communities were similar within each microenviron-

ment. There was a large overlap between samples collected

from the antecubital fossa from PopGen and KORA FF4 partic-

ipants (Figure 1c). Each sampling site presented distinct, albeit

not completely separated, bacterial profiles as observed from

density distributions along PCoA axes. The suggested gradients

of skin microbiota’s structures are supported by the finding

that at least 61�65% of the sequences recovered in each site

were shared with at least another site (Table S3; see Support-

ing Information).

Associations of skin microenvironment, host traits and

lifestyle with skin bacterial community and marker gene

variants

For 86% of PopGen participants (n = 254), individual and

lifestyle information (Table 1) was collected. Although partici-

pants were asked to avoid washing or using cosmetic cream,

lotion or ointment (hereafter referred to as cream/lotion) in

the skin collection area 24 h prior to sampling, up to 78% of

participants (Table S4; see Supporting Information) did not

follow this instruction. Therefore, these behaviours were

included as lifestyle variables to be tested. Skin microenviron-

ment was the major trait associated with skin microbiota beta

diversity, explaining about 9�2 � 0�9% of the bacterial com-

munity variation. Age, BMI and sex were associated with com-

munity variation at all four sampling sites (Figure 2a). The

effects of sex and age were the highest, with maximum effect

sizes observed in the antecubital fossa (4�3% for sex; 2�7% for

age). In addition, the use of systemic antibiotics less than

6 weeks prior to sampling was associated with dorsal and

volar forearm bacterial communities (maximum 1�2%)
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Figure 3 Age, body mass index (BMI), sex and dietary macronutrients were associated with skin bacteria of the genera Corynebacterium (Coryn.),

Propionibacterium (Propi.) and Staphylococcus (Staph.). (a) Bacteria associated with age, BMI and sex. Significant effects on bacterial marker gene

variants, i.e. 16S ribosomal RNA gene amplicon sequence variants (ASVs), are shown (adjusted P-value < 0�05). Effect size is shown on the x-axis.

Species level classification of ASVs is shown when available. ASVs were coloured within each species classification (rows) to facilitate visualization.

(b) Bacteria associated with diet macronutrients. Data shown are from analysis of the PopGen cohort. m, male; f, female; D., dorsal; V., volar; A.,

antecubital; Abun., abundance; g/d, grams per day; kcal/d, kilocalories per day.
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(Figure 2a). None of the other factors was associated with

beta diversity (Table S1). Associations with microenviron-

ment, sex and BMI were replicated in KORA FF4 (n = 225)

[Table 1; Figure S6 (see Supporting Information) and

Table S1]. KORA FF4 participants were of a limited age range

(median 45 years, interquartile range 42–46), which could

explain the absence of significant associations of age with beta

diversity in this cohort.

A total of 647 unique significant associations of age, BMI, sex

and lifestyle factors with bacterial marker gene variants, i.e.

ASVs, were found (Table S5; see Supporting Information). Of

these, 209 associations were found in at least two sampling

sites, and therefore further inspected. Accordingly, age (maxi-

mum of 33 associated ASVs), sex (maximum 30), smoking

(maximum 15) and BMI (14) were associated with the highest

numbers of variants per site, followed by dietary macronutrients

[maximum 12 for carbohydrate (g per day)] (Figure 2b). We

then inspected the genus classification of the associated bacteria

(Figure 2c). The genus Propionibacterium contained few (mean �
SD ASVs per microenvironment of 2�2 � 1�1, where dorsal and
volar forearm together weighted one) but abundant associated

variants (mean total sequences of 28�8 � 9�8%). Other promi-

nent bacterial genera were Corynebacterium [n = 8�8 � 5�1
(12�7 � 3%)], followed by Staphylococcus [n = 9�3 � 2�9;
(11�8 � 8�1%)]. Similar association patterns were observed in

KORA FF4 participants (Figure S6 and Table S5).

The associations with bacteria from the Propionibacterium,

Corynebacterium and Staphylococcus genera were further inspected.

With rare exceptions, age, BMI, sex and lifestyle factors

were associated with ASVs from these genera with same

direction and similar effect sizes across sampling sites (Fig-

ure 3; Figure S7; see Supporting Information). Age was pos-

itively associated with bacteria from the genus

Corynebacterium, with exception of one unclassified ASV,

including Corynebacterium mucifaciens, C. kroppenstedtii and C. amy-

colatum (Figure 3a). Age was negatively associated with Propi-

onibacterium acnes (recently renamed Cutibacterium acnes35) and

associated with Staphylococcus variants both positively and neg-

atively. Similarly, BMI was positively and negatively associ-

ated with various Corynebacterium and Staphylococcus variants. In

addition, BMI was negatively associated with P. acnes. Men

were positively associated with Corynebacterium, including C.

kroppenstedtii, and Propionibacterium, including P. acnes and P. gran-

ulosum (renamed Cutibacterium granulosum35). Men were posi-

tively associated with some Staphylococcus variants, including S.

saccharolyticus and S. capitis, but negatively with others, such as

S. hominis.

Dietary intake of macronutrients was associated with 12

ASVs from Corynebacterium and Staphylococcus genera (Fig-

ure 3b). Carbohydrate was positively associated with C. simu-

lans, but negatively associated with unclassified Corynebacterium

variants. Carbohydrate was negatively associated with S. homi-

nis, but positively and negatively associated with unclassified

Staphylococcus variants. Dietary energy, fat and fibre were also

found associated in both directions with Corynebacterium and

Staphylococcus variants. Protein was positively associated with
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Figure 4 Skin physiology was associated with skin bacteria. (a) Associated bacterial marker gene variants. Number of 16S ribosomal RNA gene

amplicon sequence variants (ASVs) significantly associated with each factor is shown (adjusted P-value < 0�05). Skin sites are grouped by

microenvironment, i.e. dry, moist and sebaceous (Seb.). Skin sites shown are dorsal (D.) forearm, volar (V.) forearm, antecubital (A.) fossa and

forehead. (b) Top associated bacterial genera. The x-axis shows the sum of all ASV abundances of a given genus averaged by microenvironment,

where volar forearm and dorsal forearm together weighted one. The number of associated ASVs found in each genus were averaged by

microenvironment. Grey lines represent weighted standard deviations. Bacteria from the family Neisseriaceae that were left unclassified (unc.) at

genus level were also included. Data shown are from analysis of the PopGen cohort. TEWL, transepidermal water loss.
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two Corynebacterium and two Staphylococcus variants, including S.

hominis. Remaining lifestyle factors were associated with up

to five ASVs from these three genera, including smoking,

alcohol consumption, systemic use of antibiotics, washing,

use of lotion/cream and sporting activity (Figure S7).

Remarkably, 47 associations of individual traits with ASVs in

the antecubital fossa from PopGen participants were repli-

cated in the same skin site of KORA FF4 participants,

including the positive association of men with P. acnes

(ASV1) (Figure S8; see Supporting Information). Thirty of

the observed associations had the same direction in both

cohorts and 17 were of opposite directions.

Associations of skin physiology, skin type and

environmental factors with skin bacterial marker gene

variants

After FDR correction, there was no significant association of

skin pH, TEWL or skin type (Fitzpatrick scale) with bacterial

community variation in PopGen participants that went

through dermatological characterization (75 participants, 282

samples) (Tables S1 and S2). Of 239 samples, 61 associa-

tions of these factors with ASVs were found in at least two

sites and were further inspected. Skin pH was associated

with the highest numbers of variants per site (maximum 20

associated ASVs) (Figure 4a), followed by skin type (maxi-

mum 19) and TEWL (maximum 8). The ASVs significantly

associated with these factors represented a small proportion

of the microbiota, where the most prominent genera were

Corynebacterium (mean total sequences per microenvironment

of 3�8 � 1�8%), unclassified genus/genera of the family

Neisseriaceae (3�7 � 5�1%) and Enhydrobacter (2�6 � 3�2%) (Fig-

ure 4b).

After FDR correction, no environmental factor (Table 2)

was significantly associated with bacterial community varia-

tion in KORA FF4 participants (349 participants, 685 sam-

ples from two skin sites; Table S1). Although skin sites

shared more than 73% of the bacterial 16S rRNA gene

sequences recovered (Table S3), 336 of the 350 unique

associations of environmental factors with ASVs were found

in a single given sampling site. Considering all of the asso-

ciations found, most of them were recovered in the antecu-

bital fossa (n = 208) in comparison with the retroauricular

fold (n = 156) (Figure 5a). Interestingly, hours spent out-

doors in summer during weekends were associated with

more variants from the retroauricular fold than from the

antecubital fossa (n = 15 and n = 8, respectively). In addi-

tion, hours spent outdoors in summer were associated with

more ASVs in the antecubital fossa (week, n = 14 vs. week-

end, n = 8) than in winter (n = 4 vs. n = 5). Other envi-

ronmental factors with most associations found in a single

site, i.e. antecubital fossa, included animal contact (15 ASVs;

i.e. ownership or regular contact), housing location (15

ASVs; city vs. rural areas) and belonging to a cohabiting

couple (14 ASVs). The most prominent genera associated

with environmental factors included Staphylococcus (mean total

sequences per microenvironment of 29�7 � 2�6%), Propioni-

bacterium (24�2 � 32�9%) and Corynebacterium (6�3 � 2%)

(Figure 5b).
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Figure 5 Environmental factors were associated with skin bacteria. (a)

Associated bacterial marker gene variants. Number of 16S ribosomal

RNA gene amplicon sequence variants (ASVs) significantly associated

with each factor is shown (adjusted P-value < 0�05). Skin sites are

grouped by microenvironment, i.e. moist and sebaceous (Seb.). Skin

sites shown are antecubital (A.) fossa and retroauricular (R.) fold. (b)

Top associated bacterial genera. The x-axis shows the sum of all ASV

abundances of a given genus averaged by microenvironment. The

number of associated ASVs found in each genus were averaged by

microenvironment. Grey lines represent weighted standard deviations.

Absence of deviation bars indicate that the associations were found in

a single skin site. Bacteria from the family Neisseriaceae and order

Actinomycetales that were left unclassified (unc.) at genus level were also

included. Data shown are from analysis of the KORA FF4 cohort. voc.

qual., vocational qualification; UV, ultraviolet.
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Discussion

We show known and unknown associations in two

population-based German cohorts. The skin microenvironment

was the most prominent trait associated with the skin bacterial

community variation (beta diversity). In addition, age, BMI

and sex were also associated with beta diversity and with the

highest numbers of ASVs. Their community-wide effects are

supported by previous association reports.1,8–10 However,

washing and use of emollients (< 24-h period) were not asso-

ciated with beta diversity but rather with few ASVs, agreeing

with their previously shown limited effects.36,37 Altogether,

our results confirm that host factors and skin microenviron-

ments are potential confounders for skin bacterial communi-

ties and should be acknowledged in future clinical studies.

We provide the first direct evidence of the association of

diet with skin bacteria. Although effect sizes were low, the

amount of total energy and macronutrient intake was signifi-

cantly associated with ASV abundances. Because our study is

cross-sectional, further work is required to establish the causal

nature of the diet–skin microbiome relationship. Hypotheti-

cally, diet could influence skin bacteria by changing skin bio-

chemical composition. For instance, a high fat diet in mice

was reported to lead to a change in skin lipid composition

and be associated with an increase in Corynebacterium.38 How-

ever, such a mechanism has not been studied in humans.

Additionally, dietary components may act on skin bacteria by

modulating the immune response39 and through production

of gut microbiota metabolites that may reach skin tissue.40

The abundance of many bacterial variants was significantly

associated with several aspects of human lifestyle, including the

surrounding environment. In addition to the likely influence of

the domestic environment on skin bacteria, suggested by associ-

ations with pets and cohabiting couples also found previ-

ously,41,42 our results indicate the influence of nondomestic

environments. For instance, we observed more variants associ-

ated with hours spent outdoors in summer compared with win-

ter at the antecubital fossa, which could be explained by

seasonal variation in exposure of this skin site. However, no

associations of environmental factors with beta diversity were

found, suggesting lack of their impact at the community level.

Although no causal effects were investigated, our results

allow us to hypothesize that the skin microenvironment and

host physiology would shape the skin microbiota to a greater

extent in comparison with a single skin physiological feature,

lifestyle and environmental exposure (Figure 6). Alterations of

the former, as in the case of disease onset43 or due to age-

ing,10 would lead to alterations in skin microbiota. Effects on

bacteria variants may occur indirectly through modulation of

the skin microenvironment and host physiology, for instance

by diet44 or smoking.45 Bacterial species abundance may also

be modulated by direct exposure to external forces, which are

a source of potential colonizer species46 and physicochemical

stimuli, such as ultraviolet. Here, bacterial variants with a

broad abundance range (1–30% of skin sites total sequences)

were associated with internal and external factors, suggesting

that these may influence bacteria from diverse community

structural roles.
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Although this study is a comprehensive survey of the factors

associated with human skin microbiota, it has limitations. Our

investigations were based on PCR amplification of the V1 and

V2 variable regions of the 16S rRNA gene, which is subject to

primer bias47,48 and has limited taxonomic classification reso-

lution, particularly at the species level.49 This issue could be

addressed by shotgun metagenomics.50 We observed that a

rather small proportion of skin microbiota variation was

explained by the factors analysed here, which agrees with pre-

vious observations.10 These findings suggest that additional

underexplored factors, such as human genetics, may act on

the skin microbiome.

In conclusion, our results expand the current understanding

of factors associated with the skin bacterial community. The

association of diet with skin bacteria was shown for the first

time. The observation of similar association patterns across

skin sites, as well as two independent populations, indicates

that these results could be generalized to other populations of

similar characteristics. Furthermore, we hypothesize that a

large proportion of the known putative forces shaping the skin

microbiota act through stable structures, such as skin microen-

vironment and host physiology, rather than by direct influence

on the microbial community. Finally, we suggest that these

factors should be acknowledged when conducting future clini-

cal research.
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