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ABSTRACT

BACKGROUND AND PURPOSE: The optic nerve sheath diameter (ONSD) is a promis-

ing surrogate marker for the detection of raised intracranial pressure (ICP). However,

inconsistencies in manual ONSD assessment are thought to affect ONSD and the corre-

spondingONSD cutoff values for the diagnosis of elevated ICP, hereby hampering the full

potential of ONSD. In this study, we developed an image intensity-invariant algorithm to

automatically estimateONSD fromB-mode ultrasound images at multiple depths.

METHODS: The outcomes of the algorithm were validated against manual ONSD mea-

surements by two human experts. Each expert analyzed the images twice (M1 andM2) in

unknown order.

RESULTS: The algorithm proved capable of segmenting the ONSD in 39 of 42 images,

hereby showingmean differences of−.08± .45 and−.05± .41mmcompared to averaged

ONSDvalues (M1+M2/2) ofOperator 1 andOperator 2, respectively, whereas themean

difference between the two experts was .03 ± .26 mm. Moreover, differences between

algorithm-derived and expert-derived ONSD values were found to be much smaller than

the 1 mm difference that is expected between patients with normal and elevated ICP,

making it likely that our algorithm can distinguish between these patient groups.

CONCLUSIONS: Our algorithm has the potential to improve the accuracy of ONSD as a

surrogate marker for elevated ICP because it has no intrinsic variability. However, future

research shouldbeperformed to validate if the algorithmdoes indeed result inmore accu-

rate noninvasive ICP predictions.
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INTRODUCTION

The optic nerve sheath diameter (ONSD) is a promising surrogate

marker for noninvasive estimationof intracranial pressure (ICP)1–6 and

is therefore often measured in clinical practice. The ONSD is manu-

ally assessed from ultrasound B-mode images, mostly at a depth of

3 mm from the papilla because that region is assumed to be most sen-

sitive to changes in ICP.7 Although intra- and interobserver variability
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in ONSD estimation can be lowwithin individual studies,8,9 ONSD cut-

off values for the diagnosis of elevated ICP (>15mmHg) vary between

studies.10–13 A possible explanation could be discrepancies in ONSD

assessment methodologies between different centres12–14 and dis-

crepancies in the interpretation of the echoic behavior of the differ-

ent layers of the optic nerve sheath.12,15,16 Although ONSD assess-

ment might be improved by standardization according to respective

guidelines, ONSD values would still be dependent on the compliance
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of operators. Differences in manual ONSD measurements might be

overcome by constructing an automated framework for ONSD assess-

ment. Automated approaches onONSD segmentation fromultrasound

images have already been reported in literature.17–19 In contrast to

Gerber et al17 and Soroushmehr et al,18 Meiburger et al19 developed

an algorithm that was able to segment the outlines of both the optic

nerve and the optic nerve sheath instead of determining only a single

ONSD value at a depth of 3mm, thereby opening possibilities to inves-

tigate the sensitivity of ONSD to changes in ICP at multiple depths.

Although the approach by Meiburger et al19 is promising, we

observed that our ocular ultrasound images displayed a less clear dis-

tinction between the hyperechoic bands and the retrobulbar fat in 37

of 42 images. Hence, detecting the outline of the hyperechoic bands

using intensity thresholds as proposed by Meiburger et al19 would

be difficult in our images. Moreover, image intensities and contrast

can differ between ultrasound images due to, for example, differences

in ultrasound machine settings, which might hamper the applicabil-

ity of intensity-based algorithms when deployed in different clinical

centres. In this study, we therefore developed and evaluated an auto-

matic ONSD algorithm that is less dependent on differences in image

intensities.

METHODS

Image acquisition and patient data

A total of 42 B-mode transocular ultrasound images were acquired

from 26 comatose patients suffering from traumatic brain injury or

subarachnoid hemorrhage who were admitted to the intensive care

unit of the Maastricht University Medical Centre (Maastricht, the

Netherlands). The study was approved by the local ethical commit-

tee (METC 16-04-243) andwritten informed consent was obtained for

all participants. Images were acquired with a Philips iU22 ultrasound

device (Eindhoven, TheNetherlands) and a17-5MHz linear transducer

by two investigators.

Measurements were performed on both eyes (if possible) by plac-

ing the transducer horizontally on the closed eyelid with the patient in

supine position and the head tilted at an angle of 20-30◦. The trans-

ducer angle was adjusted to find the best possible image of the optic

nerve, that is, the optic nerve in a vertical orientation with the hypere-

choic bands visible on both sides of the nerve. To prevent tissue dam-

age, the mechanical index (MI) was always kept lower than .3. Finally,

the images were exported from the ultrasound machine to a computer

for offline assessment.

Automated algorithm

The algorithmwas developed inMatlab (R2018a, TheMathWorks, Inc.,

Natick, Massachusetts, United States) and consists of six consecutive

steps:

- Step 1: Automatic cropping;

- Step 2: Image enhancement;

- Step 3: Feature calculation;

- Step 4: Initial fat and sheath detection;

- Step 5: Segmentation of the outline using an active contour; and

- Step 6: ONSD calculation.

Step 1: Automatic cropping

To facilitate automatic seedpoint selection later on, the region contain-

ing the optic nerve (ON) and its sheath was localized and extracted

from the original B-mode image. Hereto, a black-white image was cre-

ated using a threshold of .26 [–] (Figs 1A and 1B). Next, the distal

part of the globe and the corresponding retrobulbar structures were

extracted by searching for the boundaries of the largest object within

this image. This was done by locating the first and last white pixel for

each row and column within the image (Fig 1B). Next, an estimation of

the ON location was made by searching for the vertical B-mode inten-

sity linewith themost black pixels. Thereafter, the nervemidpoint, that

is, the intersect between this intensity line and the retina, was deter-

mined. Subsequently, the image was cropped in the x- and y-direction

using an arbitrary chosenwidth of 12mmaround theON location and a

height corresponding to a depth of 10mm from the retina, respectively

(Fig 1C). Next, the pixels corresponding to the retina were detected by

a search for the first white pixel within each of the vertical B-mode

intensity lines followed by the fitting of a second order polynomial

curve through these points (Fig 1D).

Step 2: Image enhancement

In high-quality images, the hyperechoic bands are separated from the

hyperechoic retrobulbar fat by a thin dark line. In practice, this dark line

is not always clearly visible causing the hyperechoic bands and retrob-

ulbar fat to blend into each other, which hampers accurate detection

of the outer border of the hyperechoic striped bands. Therefore, we

first enhanced the image to increase the contrast between these two

structures. Hereto, we applied a 2-dimensional Butterworth bandpass

filter with cutoff frequencies of 5 and 10Hz, respectively (Fig 1E). Sub-

sequently, the image was sharpened by the subtraction of a Gaussian

blurred image (μ = 0 and σ = 20 pixels) from the bandpass-filtered

image (Fig 1F).

Step 3: Feature calculation

Despite image enhancement, segmentation of structures in ultrasound

images can still be difficult due to, for example, small or no differences

in intensities between structures of interest or the presence of speckle

or artifacts that mask the outlines of structures.20 To overcome this

intensity dependency, we chose to detect the borders of the structures

of interest using Kovesi’s signed asymmetry features calculated from

the monogenic signal of the image. These asymmetry features have

values between −1 and +1, where values close to −1 or 1 correspond
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726 AUTOMATEDOPTICNERVE SHEATHDIAMETERASSESSMENT

F IGURE 1 Region of interest selection and image enhancement. (A) Original B-mode ultrasound image. (B) Detection of the outline of the
retrobulbar structures used for the initial image crop. (C) Detection of the optic nervemidpoint, that is, crossing of the nervemidline and the retina
(white arrow). Next the image is cropped using a width of 12mm and a depth of 10mm around the nervemidpoint. (D) Retina detection and fitting
of a second-order polynomial (white line). (E) Bandpass filtering of the cropped image. (F) Image enhancement of the bandpass filtered image

F IGURE 2 (A) Signed asymmetry features of the enhanced cropped image. The borders corresponding to the retrobulbar fat and the
hyperechoic bands are indicated bywhite solid arrows and dotted arrows, respectively. (B and C) Detection of the edges corresponding to the
border of the retrobulbar fat and the hyperechoic bands, respectively. Yellow points denote the found edges, whereas red points denote outliers.
(D) Detection of the edge corresponding to the “dome” of the nerve (white arrow). The white dotted line denotes the vertical midline of the optic
nerve

to “changes” that are, respectively, troughs or peaks (Fig 2). For more

information about the monogenic signal, we refer the reader to Bridge

et al.21

The signed asymmetry features were derived from the mono-

genic signal calculated using wavelengths (𝜆i) = 12i in mm with i =

0, 1,… , 6, bandpass-shape parameter 𝜎0 = .35,21 and a scale-specific

noise threshold T of .18.21 An example of the x-directed signed asym-

metry features for one of our images can be seen in Fig 2A. As can

be seen in Fig 2A, the left border of the hyperechoic band is a peak

(white=positive), whereas the left border of the fat is a trough (black=

negative).

Step 4: Initial fat and sheath detection

The next step was the detection of the external outlines of the hypere-

choic striped bands and the internal outline of the hyperechoic retrob-

ulbar fat. Initial points corresponding to the outline of the retrobulbar

fat and sheath were located. Hereto, we performed a row-wise search

starting from the middle of the image toward the left side of the image

and annotated the first peak after a trough as “sheath” and the second

trough in each row as “fat” (Figs 2B and 2C). Subsequently, we removed

possible outliers by detecting and removing points that deviated more

than three standarddeviations fromthemedian. The right side edgesof
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AUTOMATEDOPTICNERVE SHEATHDIAMETERASSESSMENT 727

F IGURE 3 Final delineation of the optic nerve and its sheath (left). The corresponding optic nerve sheath diameter (ONSD) as function of the
depth (right)

the hyperechoic band and fatwere detected in the samewaybut taking

into account the change of sign.

To obtain a better estimation of the sheath outline at the top of the

nerve, we also wanted to segment the “dome of the nerve” in the next

stage. Hereto, we determined a point located at the edge of the dome

by finding the crossing of the nerve midline with the first trough found

from the retina down on the y-directed signed asymmetry image (see

Fig 2D).

Step 5: Segmentation

To obtain a better estimate of the edges and to allow detection of the

borders on locations where no initial outline was found, we evolved a

contour along the edges of interest. We used the localized active con-

tour as described by Lankton et al22 and implemented by Pang et al,23

hereby using the annotated points from the previous step as initializa-

tion for the contour.

Using the active contour, the sheath, fat, and domewere segmented,

hereby choosing a penalty constant of .05 for the sheath and the fat,

and .3 for the dome segmentation, and a mask radius of 20 pixels. To

control the computational timeof thegradient-descentmethodused to

minimize the energy of the contour, themaximumnumber of iterations

was set to 100, 400, and 150 for sheath, fat, and dome, respectively.

Step 6: ONSD calculation

After the contours for the sheath, fat, and domewere evolved, an initial

outline of the optic nerve and the sheath was determined. Hereto, the

inner edges of the fat segmentation and the outer edges of the sheath

segmentation were localized at multiple depths perpendicular to the

nerve midline. When no sheath outline was found at a given depth,

the fat outline at that depth was used instead. In addition, the supe-

rior edge of the dome contour was detected by a search in the verti-

cal direction. Subsequently, all outline points were combined into one

curve and smoothed with a smoothing spline (“smoothn” function in

Matlab with a high smoothing parameter). Finally, the ONSD was cal-

culated at multiple depths by taking the distance between the left and

right outline (see Fig 3). The complete automated ONSD estimation

takes between 30 and 60 seconds per image on a personal laptop.

Assessment of the algorithm performance

To assess the quality of the automated ONSD algorithm, we compared

the automatic algorithm-derivedONSDvalueswithONSDvalues from

manual assessments performedby twohuman experts (Operator 1 and

Operator 2). These experts were not involved in the image acquisition

but solely determined theONSDon these images.Manual assessments

by the experts were performed inMatlab using an in-house-developed

framework built such that it resembled ONSD segmentation on a real

ultrasound scanner as closely as possible. Both experts analyzed the 42

ultrasound images twice in unknownorderwhile blinded to any patient

information.

First of all, we assessed the intraobserver variability, that is, the

agreement between ONSD values obtained when the same image is

analyzed twice by the same rater, for each expert and for the auto-

mated algorithm. Hereto, we calculated the coefficient of determina-

tion (R2) for the linear regression model y= x, where x and y represent

the first and second measurement (M1 and M2), respectively. In addi-

tion, we determined themean difference and limits of agreement using

Bland-Altman plots. Logically, the intraobserver variability of the algo-

rithm is zero as the algorithm yields the same ONSD value every time

the same image is analyzed.
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TABLE 1 Optic Nerve Sheath Diameters Obtainedwith the
Algorithm and by the TwoOperators

ONSD Algorithm Operator 1 Operator 2

First measurements 5.42± .54 5.30± .40 5.40± .46

Secondmeasurements 5.38± .54 5.34± .50

Averagedmeasurements 5.34± .47 5.37± .45

Data representsmean± standard deviation of the optic nerve sheath diam-

eter (ONSD) values (mm) obtainedwith the algorithmandby the twoopera-

tors. No significant differences (P> .05) were found between the algorithm

and the experts using theWilcoxon signed rank test.

Second, we examined the interobserver variability, that is, the

agreement between ONSD values obtained when the same image is

analyzed by two different raters, between the experts and the algo-

rithm, and between the experts themselves. However, two different

analyses were carried out. In the first analysis, we calculated the mean

of the two repeatedmanualONSDassessments for each expert (mOp1

and mOp2) and compared these values between the two experts

(mOp1 – mOp2) and with the ONSD values derived by the algorithm

(mOp1 – A and mOp2 – A). In the second analysis, we only considered

the first measurement of the operators (Op1 and Op2) to evaluate

the effect of repeated measurements and to enable comparison with

reported results in literature that were based on singlemeasurements.

Similarly as for the intraobserver variability, linear regressionmodels y

= x were made for each analysis, that is, for the comparisons between

Operator 1 and the algorithm, Operator 2 and the algorithm, and

Operator 1 and Operator 2. Subsequently, the corresponding coeffi-

cients of determination were calculated. Moreover, the corresponding

mean difference and limits of agreement were derived from Bland-

Altman plots. Finally, we investigated if the mean ONSD values of the

Algorithm, Operator 1, and Operator 2 were statistically different,

hereby using the Wilcoxon signed rank test because the data were

not normally distributed. Statistical analysis was performed in Matlab

(R2018a, TheMathWorks, Inc., Natick, Massachusetts, United States).

RESULTS

Accurate segmentation of the B-mode ultrasound images was possi-

ble in 39 out of the 42 images, resulting in a success rate of almost

93%. In two images, the segmentation clearly failed because of a dark

image artifact just below the retina that masked the true outline of the

hyperechoic band and retrobulbar fat on one side, whereas in another

image the physical orientation of the optic nerve deviated largely from

the vertical midline assumed in our algorithm, resulting in a very large

ONSD value. In contrast to the algorithm, the experts were able to

obtain ONSD values in these three images by means of extrapola-

tion. However, for comparison between the automated and the man-

ual ONSD assessments these three imageswere excluded from further

analysis.

The means and standard deviations of the ONSD calculated over

all the images are given in Table 1. Although the mean ONSD value of

the algorithm is slightly higher than the ONSD values derived by the

experts, these differences were found to be nonsignificant.

The Bland-Altman plots used to analyze the interobserver variabil-

ities between the averaged repeated ONSD measurements of Opera-

tor 1 (mOp1), Operator 2 (mOp2), and the ONSD values obtained with

the algorithm (A) are given in Figure 4 and in Table 2. The ONSD val-

ues determined by the automatic algorithm were on average slightly

higher than the manually derived values, that is, mean differences of

−.08± .45 and−.05± .41mmwhen comparedwith the averagedman-

ual expert assessments of Operator 1 and Operator 2, respectively. In

comparison, Operator 1 showed a mean difference of −.03 ± .26 mm

with respect to Operator 2. In addition, the corresponding R2-values

are .37, .44, and .71 for Operator 1 versus Algorithm, Operator 2 ver-

sus Algorithm, andOperator 1 versus Operator 2, respectively.

The interobserver variabilities of the comparison between the first

measurement of Operator 1 (Op1), Operator 2 (Op2), and the algo-

rithm (A) are alsogiven inTable2.Comparingonly the firstmanualmea-

surements slightly increased the interobserver variabilities between

the observers and the algorithm to −.12 ± .47 and −.02 ± .41 mm

for Operator 1 and Operator 2, respectively, whereas the difference

between the experts increased to−.1± .30mm.

The intraobserver variabilities of Operator 1 and Operator 2 are

shown in Figure 5. The first measurements of Operator 1 showed

a mean difference of −.08 ± .33 mm compared to the second mea-

surements. In addition, the first measurements of Operator 2 showed

a mean difference of .06 ± .30 mm compared to the second measure-

ments. The corresponding R2-values were .63 for Operator 1 and .65

for Operator 2. Obviously, the algorithm has no intraobserver variabil-

ity because the algorithm yields exactly the same ONSD value when

the same image is analyzed twice.

DISCUSSION

Major findings

In this study, we developed an algorithm that allows for automatic

ONSD assessment from B-mode ultrasound images. Using asymmetry

features, we were able to segment the ONSD at a range of depths

in 93% of the images in which the sheath outline was often poorly

visible.

To validate theONSD values obtainedwith the algorithm, these val-

ues were compared to manual ONSD assessements performed by two

experts. The intraobserver variability of both our operators (.33 and

.30 mm) was only a bit larger than the ones reported by Bäuerle et al8

(.22 mm) and the R2 of both operators was comparable to the values

reported in two studies of Bäuerle et al,8,16 indicating representative

expert assessments.

Mean ONSD values derived by the algorithm were slightly higher

than themeanONSDvalues derivedby the experts; however, these dif-

ferences were not statistically significant and the ONSD values were

within clinically observed ranges, indicating that the algorithm-derived

ONSD values were representative for the clinical situation.
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F IGURE 4 Bland-Altman plots comparing
the automatic optic nerve sheath diameter
(ONSD) with themanual assessments by
Operator 1 (A), and themanual assessments by
Operator 2 (B), and comparing themanual
assessments byOperator 1 withmanual
assessments byOperator 2 (C). Solid lines
depict themean of the differences and dashed
lines denote the limits of agreement.Moreover,
mOp1 andmOp2 denote the averagedONSD
value of repeatedmeasurements performed by
Operator 1 andOperator 2, respectively

The interobserver variabilities obtained in our study and the ones

found in literature are given in Table 2. Overall, the interobserver

variabilities between the two experts found in this study are compa-

rable with values reported in literature. The interobserver variabili-

ties between the experts and the algorithm are a bit larger than our

interobserver variabilities between the two experts; however, similarly

as Meiburger et al,19 the difference between expert-derived ONSD

values and algorithm-derived ONSD values is much smaller than the

1 mm differences in ONSD values between patients with normal and

elevated ICP reported in literature.24–26 This makes it likely that our

algorithm can detect differences in ONSD values between patients

with elevated ICP and patients with normal ICP. Also, use of an auto-

mated algorithm is not subject to observer variability and therefore the

objective detection of elevated ICP compared to normal ICP based on

a cutoff value could bemore accurate.

Compared to the algorithm presented by Meiburger et al,19 we

found a slightly smaller interobserver variability between the ONSD

values derived with the algorithm and the expert ONSD values,

whereas the R2s of the linear regression between our algorithm and

experts were comparable to the values reported by Meiburger et al.19

Similarly asMeiburger et al,19 our approachallows segmentationof the

outline of the optic nerve sheath when the hyperechoic bands are non-

continuous, that is, not visible on every depth. In contrast toMeiburger

et al,19 our intensity-invariant features enable us to also segment the

outline of the optic nerve sheath when the thin dark line separating

the retrobulbar fat and the hyperechoic bands is poorly visible, that is,

the retrobulbar fat andhyperechoic bandsblend into eachother.More-

over, our algorithm is not hindered by differences in image intensities

due to discrepancies in, for example, ultrasoundmachine settings. This

facilitates the deployment of the algorithm in different clinical centres.

The comparison between single and repeatedONSDmeasurements

shows that ONSD measurements performed by two observers devi-

atemore from each other when theseONSD values are obtained using

nonrepeated measurements. In line with this observation, most stud-

ies calculate themeanofmultipleONSDmeasurements. This, however,

increases the time it takes to performmanual ONSDmeasurements.19

Similarly as the algorithm of Meiburger et al,19 our algorithm has no

intrinsic variability and therefore one singular measurement is suffi-

cient to obtain an accurate ONSD value. This does not only reduce

the time it takes to perform ONSD assessments but also overcomes

the variation within the ONSD values due to intra- and interobserver

variabilites associated withmanual ONSD assessment.

Limitations and future work

Our study has a few limitations. Most important is the fact that we did

not investigate if our algorithm does indeed lead to a more accurate
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TABLE 2 Comparison of the Interobserver Variability Found in
Literature and the Current Study

Interobserver Variability

Author Comparison Bias SD LOA R2

Lochner et al9 Op1 –Op2 (L) .08 .28 .48 –.64 –

Op1 –Op2 (R) .09 .40 .71 –.90 –

Bauerle et al16 Op1 –Op2 .25 .51 1.25 –.75 .67

Bauerle et al8 Op1 –Op2 (L) .10 .38 .84 –.64 .66

Op1 –Op2 (R) .04 .37 .77 –.69 .71

Meiburger

et al19
Op1 –Op2 .44* .52 1.46 –.58 .42

Op1 – A .06 .52 1.07 –.95 .41

Op2 – A –.38 .55 .69 –1.44 .37

Our work mOp1 –mOp2 –.03 .26 .48 –.54 .71

mOp1 – A –.08 .45 .81 –.96 .37

mOp2 – A –.05 .41 .76 –.86 .44

Op1 –Op2 –.10 .30 .48 –.67 .63

Op1 – A –.12 .47 .81 –1.04 .31

Op2 – A –.02 .41 .78 –.82 .46

SD and LOA denote standard deviation and limits of agreement, respec-

tively. In addition, mOp1 andmOp2 denote the average of repeatedmanual

optic nerve sheath diameter (ONSD) measurements performed by Opera-

tor 1 and Operator 2, respectively, whereas Op1 and Op2 denote that only

the first ONSD measurements of Operator 1 and Operator 2 are consid-

ered, respectively. Furthermore, the letter A stands for Algorithm and the

letters L and R denotemeasurements of the left or right eye only.

*The large bias ismost likely causedbecauseOp1was experienced,whereas

Op2was less experienced.

detection of elevated ICP. Although our algorithm eliminates the intra-

and interobserver variabilities present within the manually derived

ONSD values, automated ONSD assessment might not be enough to

obtain accurate ONSD cutoff values for the detection of elevated ICP

because the inconsistencies in manual delineation of the optic nerve

sheath only represent part of the methodological differences reported

in literature.12,14,27,28 Also differences in image acquisition, such as the

ultrasound machine, and the experience of the operator can have an

impact on the ONSD values. In order to obtain more accurate ONSD

values, it is therefore necessary to not only utilize automatic segmen-

tation algorithms, but also to standardize the transocular ultrasound

acquisition.14,19

Moreover, for now we assumed the nerve midline to be vertically

oriented. Though the optic nerve was orientated approximately ver-

tical in most of our ultrasound images, it would be more accurate to

calculate the ONSD using a correctly angled optic nerve midline. This

would also allow us to obtain correct ONSD values from images with

a very tilted optic nerve, such as the image we now excluded. This will

probably further improve the agreementwith the expertONSDvalues.

Another limitation is that the automatic segmentation failed in two

images because a dark image artifact below the retina obscured the

outline of the hyperechoic band and the retrobulbar fat.Where, in such

cases, the human brain is able to approximate these edges using infor-

mation from regions where this distinction is visible, the algorithm is

not able to correctly estimate these edges. Nevertheless, thesemanual

approximations are also subject to observer variability. Although our

algorithm should be improved to allow more accurate extrapolation

in such images, mimicking the extrapolation capabilities of the human

brain is not easy. Though one could resort tomachine learning, the per-

formance of such algorithms is highly dependent on the quality and

number of images used to train themachine learning algorithm.29

In this study, the ultrasound images had to be exported for offline

analysis. Although exporting images is relatively easy, this extra step

might limit the use of automated ONSD algorithms in the clinic. It

might therefore be useful to incorporate the algorithm in ultrasound

machines, making it available while performing transocular sonog-

raphy. Implementing algorithms on commercial devices is often not

possible without involvement of the manufacturer but should be

F IGURE 5 Bland-Altman plots comparing the repeated optic nerve sheath diameter (ONSD)measurements (M1 andM2) for Operator 1 (A)
andOperator 2 (B). Solid lines depict themean of the differences and dashed lines denote the limits of agreement
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encouraged because it can increase the application of automated

ONSD estimation in the clinical setting.

Improving the accuracy of ONSD estimation is not the only use of

our algorithm. Because our algorithm yields ONSD values not only at

the conventionally used 3mm but also at a wide range of other depths,

it allows us to investigate the sensitivity of ONSD to changes in ICP

at multiple depths. This might give answer to the question if ONSD

assessment at 3 mm is the best practice in all patients.30,31 Moreover,

the use of transocular ultrasonography is not limited to the assessment

of elevated ICP but can also be used to aid in the diagnosis and follow-

up of patients with intracranial hypotension32 or idiopathic normal

pressurehydrocephalus.33Moreover, there are also studies that report

the assessment of optic nerve diseases such as inmultiple sclerosis34,35

by measuring swelling of the optic nerve and the ONSD. Also in these

cases, automated algorithms can be used to reduce the variability asso-

ciated withmanual assessments.

In conclusion, we developed an automated intensity-invariant algo-

rithm capable of estimating the ONSD from B-mode ultrasound

images. TheONSDderivedwith the algorithmshowedgoodagreement

with manual expert assessments. Moreover, the differences between

the automatically and manually derived ONSD values were within the

ranges of interobserver variabilities reported in literature. Because the

algorithm has no intrinsic variability, it eliminates the intra- and inter-

observer variabilities in ONSD values associated with manual ONSD

assessment. Therefore, we believe that our algorithm can be used to

derivemore accurateONSD cutoff values for the detection of elevated

ICP.
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