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Quantum criticality in the normal and superconducting states of the heavy-fermion metal CeCoIn5 is

studied by measurements of the magnetic Grüneisen ratio �H and specific heat in different field

orientations and temperatures down to 50 mK. A universal temperature over magnetic field scaling of

�H in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting

state, the quasiparticle entropy at constant temperature increases upon reducing the field towards zero,

providing additional evidence for zero-field quantum criticality.
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The interplay between magnetism and unconventional
superconductivity is one of the central issues in condensed
matter physics. Several material classes such as cuprates,
iron pnictides, or heavy-fermion metals display non-
Fermi-liquid (NFL) normal-state properties that may arise
from a quantum critical point (QCP) at which a long-range
ordered phase is continuously suppressed to zero tempera-
ture [1–3]. However, NFL properties in the vicinity of such
hidden QCPs cannot be investigated without destroying the
superconducting (SC) state by sufficiently large magnetic
fields, which also strongly influence quantum criticality
[4,5]. On the other hand, if there is universal scaling of the
free energy with respect to temperature and some control
parameter in the normal state, it is possible to prove the
existence and characterize the nature of the hidden QCP.
Most sensitive probes of such scaling behaviors are the
Grüneisen ratios �r ¼ T�1ðdT=drÞS (r, pressure or mag-
netic field; S, entropy), which diverge in the approach of
the QCP [6]. Since magnetic field can easily be varied
in situ and the magnetic Grüneisen ratio which equals the
adiabatic magnetocaloric effect divided by temperature is
directly measurable with high precision, a field-tuned QCP
hidden by superconductivity as proposed for the heavy-
fermion metal CeCoIn5 [7–12] or Ce2PdIn8 [13,14] should
best be characterized by the latter property.

CeCoIn5 undergoes a SC transition at Tc ¼ 2:3 K, which
is the highest among the ambient-pressure heavy-fermion
superconductors [15] but low enough to neglect phononic
contributions to heat capacity and suppress the SC state by
moderate magnetic fields. CeCoIn5 has attracted consider-
able attention as very clean metal close to long-range
magnetic order, which displays intriguing SC and normal
state properties [7–12,16,17]. Electrical resistivity, specific
heat, and thermal expansion display NFL behavior in the
normal state above Tc which extends to mK temperatures
close to the SC upper critical field Hc2 [7–12,18]. On the
other hand, for fields sufficiently larger than Hc2, a cross-
over to Fermi-liquid (FL) behavior has been recovered,
which allows us to extrapolate to a field-induced QCP.

Early electrical resistivity [7] and specific heat [8] mea-
surements suggest a field-induced QCP very close to the
upper critical field, which amounts toHc2 ¼ 5 and 12 T for
the field along and perpendicular to [001], respectively.
Subsequent Hall effect [19] and thermal expansion [11]
measurements, however, have extrapolated the critical field
Hc for the field-tuned QCP to values clearly belowHc2, i.e.,
around 4 T for H k ½001�. A peculiar observation is the
dependence of estimated Hc on the current direction of
electrical resistivity for H k ½001�. The A coefficient of
FL resistivity � ¼ �0 þ AT2, measured with the current
along the basal plane, diverges towards 5 T [7,20,21], while
A with the current along [001] indicates a significantly
lower field for the singularity 1.5–3 T [22]. In view of the
controversy concerning the exact location of a possible
field-induced QCP in CeCoIn5, systematic studies of the
magnetocaloric effect, which is the most sensitive thermo-
dynamic probe of field-tuned quantum criticality, are
highly desirable.
Below, we report a systematic investigation of the tem-

perature, field, and field-angle dependence of the magnetic
Grüneisen parameter in the normal state of CeCoIn5.
Surprisingly, we have discovered universal quantum criti-
cal scaling, indicating a zero-field QCP. This is further
supported by an enhanced quasiparticle entropy, derived
from the magnetic Grüneisen ratio and specific heat within
the SC state in the vicinity of zero field. This implies
that CeCoIn5 is exceptional as clean material at a QCP
without additional fine-tuning of composition, pressure, or
magnetic field.
High quality single crystals were grown by the self-flux

method. The specific heatCðT;HÞ and magnetic Grüneisen
ratio �H ¼ T�1ðdT=dHÞS were measured with very high
resolution in a dilution refrigerator with a SC magnet
equipped with an additional modulation coil by utilizing
heat-pulse and alternating field techniques, respectively, as
described in Ref. [23]. The magnetic field has been applied
along four different field angles ranging from the [001] to
the [100] direction.
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We first focus on the magnetic Grüneisen ratio in
the normal state at various fields and field orientations,
cf. Fig. 1. Upon cooling from high temperatures, �HðTÞ=H
first increases until it passes a maximum and, as most
clearly seen for fields above 6 T, saturates at lowest tem-
peratures. Such temperature dependence is characteristic
for the crossover between NFL behavior at high T and a FL
state at low T [24], which, e.g., at 5 T, occurs near 0.14 K.
The data are thus incompatible with a QCP at Hc2. As
shown in Fig. 1(b), similar behavior is also found
for H k ½100� and all intermediate field orientations.
Within the quantum critical regime, �HðTÞ is expected to
display a power-law divergence upon cooling. However,
for fields H >Hc2, we only observe an almost linear
increase on the semilog scale upon cooling. This indicates

that the QCP must be far belowHc2. Furthermore, �H must
change its sign across a QCP [24], while the measured
normal-state magnetic Grüneisen ratio is always positive
even below 2 T.
Further information on the critical field Hc of the QCP

can be obtained by analyzing the magnetic Grüneisen ratio
in the FL state for T ! 0. For a field-induced QCP which
follows universal scaling, it is expected that �HðH�HcÞ¼
��ðd�zÞ, where d is the spatial dimension, � the
correlation length exponent, and z the dynamical critical
exponent [6,24]. Thus, if the data follow such behavior, we
may determineHc and obtain important information on the
quantum critical exponents. For the analysis, we include
data for fields parallel and perpendicular to the [001]
direction, as well as for two different intermediate field
directions at the respective upper critical fields [cf. inset of
Fig. 1(b)]. The overall temperature dependencies for all
these field directions are similar, and �HH approaches
a common value for T ! 0. As shown below, this is a
consequence of universal quantum critical scaling, since
the above prefactor ��ðd� zÞ characterizes the nature of
quantum criticality and is independent of the direction of
applied field. Furthermore, it indicates a quantum critical
field Hc being close to zero.
In inset (a) of Fig. 2, we plot the inverse of �H for T ! 0

in the FL regime at various different field values. Note that
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FIG. 1 (color online). Magnetic Grüneisen ratio divided by
magnetic field �H=H of CeCoIn5 in the normal conducting state
plotted against temperature for fields applied along (a) [001] and
(b) [100]. The inset displays �HH as a function of temperature
for different field angles close to the respective upper critical
fields. Labels 18� and 70� denote field angles from [100]
towards [001]. The applied magnetic field is 5, 6, 10, and 12 T
for H k ½001�, 70�, 18�, and parallel [100], respectively.
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FIG. 2 (color online). Magnetic Grüneisen ratio of CeCoIn5
for the field along [001] as �HH versus T=H3=2, on double
logarithmic scale. The solid grey line indicates a phenomeno-
logical fit by the function fðxÞ (see the main text for the
definition). The positions of the maximum and inflection points,
respectively, 0.015 and 0:006 KT�3=2, that define the crossover
between the NFL and FL regimes, are indicated by arrows.
Inset (a) shows ��1

H within the FL regime for T ! 0 versus
magnetic field for different field directions. The solid grey line
indicates a divergence of the magnetic Grüneisen ratio as
�H ¼ 0:85=H. Inset (b) shows the weighted mean-square
deviation from the phenomenological function fðxÞ versus the
quantum critical field Hc.
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an intercept of ��1
H ¼ 0 corresponds to the quantum

critical field Hc, analogous to the Weiss temperature in a
Curie-Weiss plot. Remarkably, all data points collapse on a
universal line through the origin, regardless of the field
direction. Given the sizable magnetic anisotropy of this
system [25], this isotropic divergence of the magnetic
Grüneisen ratio towards zero field with a common prefac-
tor provides strong evidence for universal quantum critical
scaling with Hc close to zero.

Following the theory of Refs. [6,24,26], we assume that
critical behavior is governed by a single diverging time
scale near the QCP. The critical contribution to the free
energy Fcr for magnetic field as a tuning parameter can
then be expressed by

Fcr ¼ aTðdþzÞ=z�
�
bh

T1=vz

�
; (1)

where h ¼ H �Hc, and a and b are nonuniversal con-
stants. The thermodynamic properties are then expressed
by derivative(s) of the free energy and therefore should
collapse on a scaling function of T=h�z. All our �H data
collapse on a single curve in a log-log scaling plot of the

form �HH versus T=H3=2 (Fig. 2), indicating that h ¼ H
equivalent to Hc ¼ 0 and implying �z ¼ 3=2. Within the
FL regime at low temperatures and H > 0, the data scatter
around a constant value of �HH � 0:85 (consistent with
the slope of the line in the inset of Fig. 2), whose meaning
is addressed below.We first focus on the universal behavior

within the NFL regime at large T=H3=2, for which we

observe �HH / ðT=H3=2Þ�4=3.

By expanding the dimensionless argument ðbhÞ=T1=�z

of the scaling function � for high temperatures

ðbhÞ=T1=�z � 1, we obtain �HH � ðT=H�zÞ�2=�z [27].
The experimentally observed high-temperature exponent
�4=3 ¼ �2=�z (cf. dashed black line in Fig. 2) is
perfectly consistent with �z ¼ 3=2, obtained from the

argument of the scaling function �ðT=H3=2Þ. Previously,
it has been shown that within the NFL regime, the
‘‘thermal’’ Grüneisen parameter given by the ratio of ther-

mal expansion to specific heat diverges like T�2=3 for
CeCoIn5 [9]. The quantum critical scaling predicts that
this exponent equals �1=ð�zÞ [6,24]. Thus, �z ¼ 3=2 is
fully consistent with the thermal expansion study. By con-
trast, a previous specific heat study analyzed their data
within the three-dimensional antiferromagnetic Hertz-
Millis-Moriya (3D AF HMM) model for which �z ¼ 1
[6]. However, about 70% of the total specific heat is
nuclear in origin at 0.1 K and fields near 5 T [8].

Therefore, it seems very difficult to distinguish a C=T �
1� c

ffiffiffiffi
T

p
dependence, predicted by the 3D AF HMM

model [6] (c is a constant) from a saturation of C=T at
low temperatures due to the crossover to Fermi-liquid
behavior. The magnetic Grüneisen ratio is more sensitive
to such a crossover, since at the critical field it would
diverge as 1=T for the 3D AF HMM model.

A further constraint on the critical exponents character-
izing quantum criticality in CeCoIn5 is obtained from the
magnetic Grüneisen behavior in the FL state following
�HH � 0:85. Since scaling predicts �H ¼ ��ðd� zÞ=
ðH �HcÞ [6,24], i.e., ��ðd� zÞ � 0:85, it follows that
�d � 0:65, which provides a strong constraint for the
nature of quantum criticality in this system.
In order to examine how close the quantum critical field

(Hc) is to zero, we investigated the optimum collapse
of the data in the scaling plot by tiny variations of Hc.

The phenomenological function fðxÞ ¼ c1=ðx1 þ x4=3Þ �
c2=ðx2 þ x2Þ, shown in Fig. 2, fits very well the experi-

mental data for the whole parameter range. Here, x ¼
T=ðH �HcÞ3=2, and c1, c2, x1, and x2 are fitting parameters
(Hc ¼ 0 in Fig. 2). The first term in f represents the
expected behavior for x � 1 [27], while the second one
is a phenomenological correction for the low x region.
Inset (b) of Fig. 2 shows weighted mean-square deviation
(�2) of the data from the phenomenological function as a
function of Hc (see the definition of �2 in Ref. [27]). The
minimum of �2 represents the best collapse and is located
at Hc ¼ 0:06 T. Importantly, the main contribution to �2

arises from the scattering of the data, while the quality
of the collapse is subleading for small values of the
critical field. In particular, the difference between the �2

values for 0.06 T and zero field is marginal, which justifies
us to conclude upon zero-field quantum criticality in the
system.
Our observation of zero-field quantum critical scaling

sheds new light on the recent proposals of a field-induced
QCP near 4 T (for H k ½001�), which has been obtained
from linear extrapolation of the NFL-FL crossover in
thermal expansion, magnetoresistance, and Hall effect
measurements [11,19]. Clearly, the magnetic Grüneisen
ratio, which is the most sensitive thermodynamic probe
for a field-induced QCP, does not diverge in the approach
of 4 T but in the approach of zero field (cf. insets of Fig. 2).
If we thus exclude a QCP at 4 T, we need to demonstrate
that all the previous measurements would also be compat-
ible with zero-field quantum criticality. For this purpose,
we consider the T-H phase diagram shown in Fig. 3, where
the color coding represents the size of �H=H in the normal
state, which indicates the entropy accumulation due to
quantum criticality [6,24]. Previous NFL to FL crossovers
are included as circles, whose linear extrapolation would

yield Hc � 4 T [11,19]. However, our T=H3=2 scaling
(Fig. 2) proves that such a linear extrapolation is not
justified, since the temperature scale in the critical scaling
regime does not depend linearly on H but rather super-

linearly on H3=2. The superlinear crossover between the
NFL and FL states is indicated by the two dashed lines in
the phase diagram, which correspond to the positions of the
maxima and inflection points of the magnetic Grüneisen
ratio data of Fig. 2. We note that the previously determined
crossovers all lie between these two lines, indicating that
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these experiments are also compatible with zero-field
quantum criticality.

In order to investigate signatures of zero-field quantum
criticality on SC quasiparticles, we studied the low-field
SC state by combined measurements of �H and specific
heat. Since @S=@H ¼ �Cel�H, we obtain the isothermal
field evolution of the entropy by integration. In our pre-
vious work, we focused attention near the SC upper critical
field and found for H k ½001� a broad kink in the field
dependencies of �H and Cel near 4.4 T [28]. Since this
anomaly vanishes upon rotating the field towards the [100]
direction, it cannot be related to the isotropic quantum
critical scaling. We now concentrate on the behavior close
to zero field. Figure 4 displays the measured heat capacity
and magnetic Grüneisen ratio at low temperatures, together
with the evolution of the entropy (see the inset). In nodal
superconductors, quasiparticles exist at the gap nodes.
Within the Shubnikov phase, the applied magnetic field
creates vortices whose cores host additional quasiparticles.
We therefore expect an increase of the entropy with
increasing field for superconductors and a related negative
sign of �H. As shown in Fig. 4, remarkably, the magnetic
Grüneisen ratio is positive and the entropy decreases with
increasing field, contrary to the expectation for nodal
superconductors and multiband superconductivity [29].

Relatedly, the isothermal field dependence of the spe-
cific heat coefficient Cel=T at 0.1 K (cf. Fig. 4) differs from

the expected monotonic increase proportional to
ffiffiffiffiffi
H

p
for

superconductors with line nodes of the gap [30,31]. The
pronounced reduction of Cel=T with increasing field indi-
cates that the quasiparticle mass is strongly enhanced near

zero field. Thus, the peak in the field dependence of Cel=T

arises from superposition of the usual
ffiffiffiffiffi
H

p
dependence with

a quantum critical contribution. Near zero field, the latter
vanishes due to the disappearance of vortices. �H also
shows a steep increase towards low fields consistent with
zero-field quantum criticality. The anomalous decrease of
quasiparticle entropy with increasing field (cf. inset of
Fig. 4) is thus a consequence of this QCP near H ¼ 0.
This is compatible with measurements of magnetic

penetration depth, which found evidence for nodal quan-
tum criticality at weak magnetic fields [32]. Previously, a
pressure study of the SC upper critical field in CeCoIn5
found a maximum in the SC coupling parameter near a
pressure of 0.4 GPa, which has been interpreted as signa-
ture of a pressure-tuned QCP [33]. However,Hc2ðTÞ at low
temperatures is also influenced by an unidentified high-
field anomaly [28,34]. Therefore, such indirect conclusion
on a QCP is rather uncertain.
To conclude, a systematic study of the magnetic

Grüneisen ratio of CeCoIn5 has revealed quantum critical
scaling behavior in the normal state that indicates a critical
field very close to zero in contrast to previous claims of a
critical field only slightly below the upper critical field of
superconductivity. The anomalous field dependence of the
quasiparticle entropy within the SC state near zero field
further supports this conclusion. It has been discussed in
several classes of unconventional superconductors that Tc

reaches its maximum near magnetic QCPs [1,3,35–39].
Since CeCoIn5 exhibits nearly the highest Tc ¼ 2:3 K
among not only the 115 family but also all the structural
variants of CenMmIn3nþ2m (M, transition metal) [40], it is
not surprising that CeCoIn5 is located at a QCP without
tuning any control parameters like composition or pressure
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or magnetic field. The observed scaling provides strong
constraints on the critical exponents: �z ¼ 3=2, consistent
with previous thermal Grüneisen parameter studies [9], and
�d ¼ 0:65. Independent information of either d or z could
then fully characterize quantum criticality in this system.
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