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Bicritical points, at which two distinct symmetry-broken phases become simultaneously unstable, are

typical for spin-flop metamagnetism. Interestingly, the heavy-fermion compound YbAgGe also possesses

such a bicritical point (BCP) with a low temperature TBCP � 0:3 K at a magnetic field of �0HBCP �
4:5 T. In its vicinity, YbAgGe exhibits anomalous behavior that we attribute to the influence of a quantum

bicritical point that is close in parameter space yet can be reached by tuning TBCP further to zero. Using

high-resolution measurements of the magnetocaloric effect, we demonstrate that the magnetic Grüneisen

parameter �H indeed both changes sign and diverges as required for quantum criticality. Moreover, �H

displays a characteristic scaling behavior but only on the low-field side H & HBCP, indicating a

pronounced asymmetry with respect to the critical field. We speculate that the small value of TBCP is

related to the geometric frustration of the Kondo lattice of YbAgGe.
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Exotic quantum states of matter may arise in magnetic
systems when long-range ordering of magnetic moments
is suppressed by either competing interactions or geomet-
rical frustration. A ‘‘strange metallic state,’’ a so-called
non-Fermi liquid, is found in magnetic metals close to a
quantum critical point with competing Ruderman-Kittel-
Kasuya-Yosida and Kondo interactions [1]. Local-moment
systems with geometrical frustration, on the other hand,
remain disordered down to zero temperature and form a
strongly correlated paramagnet, i.e., a quantum spin liquid
[2]. Usually, these two intriguing quantum states of matter
are experimentally studied in different material classes: the
former in heavy fermions and the latter in insulating spin
systems. The current interest of research on heavy fermi-
ons, however, increasingly focuses on the interplay of these
two phenomena [3,4], bridging two distinct fields of
research. It has been proposed that frustrating the magnetic
interaction in Kondo-lattice systems gives rise to a rich
phase diagram that, as an exciting possibility, also contains
unconventional, metallic spin-liquid phases [5,6].

For the exploration of magnetic frustration, heavy-
fermion systems with a geometrically frustrated crystal
lattice are of particular interest. The pyrochlore Kondo-
lattice compound Pr2Ir2O7, for example, indeed does not
order magnetically down to lowest temperatures but exhib-
its anomalous thermodynamics [7] and, interestingly, a
spontaneous Hall effect [8], which have been attributed
to the formation of a metallic chiral spin liquid.

In this work, we investigate the heavy-fermion com-
pound YbAgGe [9–12] that possesses a hexagonal
ZrNiAl-type crystal structure, forming a two-dimensional
distorted kagome lattice [13], which promotes frustration
effects. At high temperatures, the magnetic susceptibility
shows Curie-Weiss behavior with a Weiss temperature

�ab ¼ �15 K for a small magnetic field within the ab
plane [9]. At low temperatures T & 4 K, antiferromagnetic
correlations develop, reflected in a maximum in the sus-
ceptibility �ab. Finally, a sharp first-order transition into a
magnetically ordered phase occurs at TN ¼ 0:65 K
[9,10,12,14,15]. The large factor f ¼ j�abj=TN ¼ 23 indi-
cates frustrated interaction between magnetic moments.
This is corroborated by the structure factor of the damped
spin fluctuations observed at low temperatures, which con-
sists of sheets in reciprocal space corresponding to quasi-
one-dimensional behavior along the c axis [16].
As a function of magnetic field applied within the ab

plane, a complex phase diagram is found with various
regions that were labeled by letters a to f in Ref. [14].
The regions a to d are interpreted as symmetry-broken
phases because their boundaries have been located by
anomalies in thermodynamics and transport [14,15,17],
although some of them are only weak. The antiferromag-
netic ordering wave vectors of the a, b, and c phases were
identified by neutron scattering [16,18,19], whereas the
order parameter of the d phase remains elusive. It is,
however, the latter d phase that exhibits intriguing proper-
ties; see Fig. 1. The linear-T resistivity [20], persisting in
the whole field interval of the d phase, indicates that it is a
rare example of a genuine non-Fermi liquid phase.
Furthermore, its American-muffin-shaped phase boundary
implies a higher entropy than the one of the adjoining
phases similar to the nematic phase in the metamagnet
Sr3Ru2O7 [21,22]. The anomalous behavior is most pro-
nounced close to its lower boundary field at �0Hcd ¼
4:8 T, which was suggested to be caused by field-induced
quantum criticality [10]. Recently, this was confirmed by
the observation of a sign change in the thermal expansion
and an incipient divergence of the Grüneisen parameter
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[14]. Furthermore, at this critical field, an anomalous
reduction of the Lorenz ratio was observed, suggesting a
violation of the Wiedemann-Franz law [23].

In Ref. [14], the origin of quantum criticality was attrib-
uted to a quantum critical endpoint (QCEP), i.e., an iso-
lated endpoint of a line of first-order metamagnetic
quantum phase transitions [24–26]. However, this scenario
does not account for the presence of both symmetry-broken
phases c and d close to the critical field Hcd. Similarly, a
standard quantum critical point (QCP), whose phase dia-
gram only involves a single symmetry-broken phase, can
also be excluded. Interestingly, closer inspection of the
phase diagram reveals that the phase boundaries of the c
and d phases merge at a bicritical point (BCP) located at a
temperature TBCP � 0:3 K and field �0HBCP � 4:5 T; see
Fig. 1. Below TBCP, a direct first-order transition between
the two phases emerges, signaled by the appearance of
hysteresis in magnetostriction [14]. As the hysteresis
becomes very weak close to the BCP and the slope of the
d-phase boundary is relatively steep so that its signatures
are hard to follow in the thermal expansion [14], we
estimated the location of the BCP with an uncertainty in
TBCP and �0HBCP of about �0:1 K and �0:1 T,
respectively.

Bicriticality typically arises in local-moment antiferro-
magnets with weak magnetic anisotropies resulting in spin-
flop metamagnetism [27], as illustrated in Fig. 2(a). We
envision that TBCP can be tuned to zero by increasing the
strength of frustration, giving rise to a quantum bicritical
point (QBCP); see Fig. 2(b). Further increase of the frus-
tration strength would naturally cause a separation of the
two ordered phases, leading to a field-induced quantum
spin-liquid state existing in a finite interval of magnetic
field; see Fig. 2(c). We propose that in YbAgGe, such a
QBCP is close in parameter space and at the origin of the
pronounced anomalies observed near Hcd; see Fig. 2(d).
In order to further investigate the field-induced quantum

bicriticality, we measured the magnetocaloric effect
ðdT=dHÞS ¼ T�H. The quantity �H is a magnetic ana-
logue of the Grüneisen parameter that necessarily diverges
at a QCP [28,29]. Compared to the latter that was already
determined for YbAgGe in Ref. [14], �H has the important
advantage that it does not necessitate additional assump-
tions about the magnetoelastic coupling, and it directly
provides information about the entropy distribution within
the H-T phase diagram via the relation ð@S=@HÞT ¼
��H=CH. In particular, maxima in entropy are reflected
in sign changes of �H [29]. For the prototypical field-
induced QCP material YbRh2Si2, a divergence of �H at
its critical field was reported in Ref. [30].
Single crystals were grown from high temperature ter-

nary solutions rich in Ag and Ge [9]. The magnetocaloric
effect was measured with very high resolution in a dilution
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FIG. 1 (color online). H-T phase diagram of YbAgGe for
fields within the ab plane focusing on the region with the
BCP. Black and red symbols are obtained in this and previous
studies [14,15,17], respectively. The solid red lines are guides for
the eye. The dotted black line HcrðTÞ shows maxima in entropy
identified by the location of zeros of �H (diamond). Solid black
symbols denote anomalies in T sweeps (filled circle) and
H sweeps (filled square) of �H . Red symbols are transitions
observed in magnetization (M, open triangle), specific heat
(C, open square), thermal expansion coefficient and magneto-
striction (� and �, respectively, open circle) and thermoelectric
power (TEP, filled triangle). Within the shaded area, �H exhibits
scaling behavior (see Fig. 4) with a crossover indicated by the
dotted green line. The inset shows the magnetic Grüneisen ratio
�H as a function of temperature for fields applied parallel to the
ab plane; arrows indicate phase transitions.
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FIG. 2 (color online). Schematic phase diagrams with spin-
flop bicriticality at different frustration strengths Q. (a) Bicritical
point at a finite temperature TBCP > 0. (b) Frustration suppresses
the transition temperatures and thus TBCP, leading to a QBCP;
the dotted line represents a crossover line separating two para-
magnetic states with different short-range orders of frustrated
moments. (c) Suppressing the transition temperature further
results in a field-induced quantum spin liquid (QSL) present in
a finite window of magnetic field. (d) Schematic T-H-Q phase
diagram. Field-induced phase transition at HBCP is of first order.
QSL phase for strong frustration Q is indicated by orange color.
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refrigerator with a superconducting magnet equipped with
an additional modulation coil by utilizing the alternating
field technique [31].

Temperature scans of �H of YbAgGe are shown in the
inset of Fig. 1 at different magnetic fields 3 T � �0H �
6 T. The arrows indicate the anomalies associated with the
phase transitions into the c and d phases. The most notice-
able feature, however, is the spreading of the set of �H

curves as the temperature is lowered down to the transition
temperatures with a sign change around Hcd. Such a
behavior originates from an accumulation of entropy close
to the critical magnetic field and is characteristic for meta-
magnetic quantum criticality [24–26]. At the low-field side
H <Hcd for �0H ¼ 4 and 4.5 T, �H is strongly tempera-
ture dependent and develops a pronounced peak whose
height and width increases and decreases, respectively, as
criticality is approached. The peak position for �0H ¼
4:5 T is located at 0.18 K well below the transition tem-
perature, indicating that the quantum critical fluctuations
are hardly quenched upon entering the ordered phase.
In contrast, for H >Hcd, such a peak is absent as �HðTÞ
is substantially suppressed upon entering the d phase,
e.g., at 6 T.

Magnetic field sweeps of �H for temperatures T < 0:7 K
are shown in Fig. 3. Whereas the signatures at the transi-
tions b-c and d-e are minor, the transition between c and d
phases is clearly revealed. In the field sweep, the sign
change of �H close to the critical field Hcd is particularly
evident. A sign change of �H coincides with a maximum in
entropy SðHÞ as illustrated in the inset of Fig. 3. Here, the
entropy was obtained by integrating ð@S=@HÞT ¼
��H=CH using the specific heat data of Ref. [15]. The
position of sign changes �H ¼ 0, obtained from the T and

H sweeps, defines the entropy ridge HcrðTÞ that is shown
by the dotted black line in Fig. 1. In the low temperature
limit, it extrapolates to the critical field HcrðTÞ ! Hcd for
T ! 0. Its temperature dependence HcrðTÞ is rather weak,
as it starts with an infinite slope. Nevertheless, it is con-
siderably stronger (20% reduction at 2 K from its zero
temperature limit) as compared to other itinerant quantum
critical metamagnets like CeRu2Si2 (� 0:5% increase at
1.5 K) [25] and Sr3Ru2O7 (no change up to 3 K) [21].
As already anticipated from the T sweeps, the field

dependence of �H around the critical field becomes highly
asymmetric at low temperatures with a rounded shoulder
for H >Hcd but a pronounced negative peak on the low-
field side. Strikingly, for temperatures in the range 0.24 up
to 0.64 K, �HðHÞ first nicely traces a common curve
�H � �GH=ðH �HcdÞ as expected for quantum critical-
ity [28] with a fitted prefactor of GH � �0:31. Closer to
the critical field, it crosses over towards positive values
with a sign change at the critical field that persists down to
lowest temperatures. Finally, at a temperature T ¼ 0:14 K,
well below the bicritical point, �H still exhibits a sharp
decrease towards the critical field but deviates from the
common scaling curve.
In the case of a metamagnetic QCEP, an Ising symmetry

emerges, resulting in symmetric behavior between low
and high fields [25]. Such an approximate symmetry is
observed in Sr3Ru2O7 [21], CeRu2Si2 [25], and
Ca2�xSrxRuO4 [32]. The QBCP also terminates a line of
first-order transitions that, in contrast to the QCEP, sepa-
rates, however, two distinct symmetry-broken phases. As a
consequence, quantum bicritical behavior is generically
expected to be asymmetric with respect to the critical field,
which apparently applies to YbAgGe. Such an asymmetry
might be induced, in particular, by distinct dynamical
exponents z for critical fluctuations associated with the
two adjacent phases, so that the QBCP is generally char-
acterized by multiple dynamics [33,34].
In order to investigate the properties of the QBCP in

YbAgGe quantitatively, we proceed with analyzing the
scaling of �H observed experimentally. As the critical
signatures for high fields are rather weak, we concentrate
in the following on the scaling that is apparent on the low-
field side H <Hcd. Similarly, as suggested for the QCEP
[26], we consider two scaling parameters given by tem-
perature T and h ¼ H�HcrðTÞ, i.e., the distance in field to
the location of entropy maxima HcrðTÞ. The weak T de-
pendence of HcrðTÞ is irrelevant in the limit T ! 0, but the
extracted scaling sensitively depends on it. Using the
temperature-dependent scaling field h, it is possible to
reveal scaling behavior in a larger temperature regime
otherwise hidden by the temperature drift of the entropy
ridge HcrðTÞ.
For data on the low-field side H <Hcd and T > 0:2 K

within the shaded regime of Fig. 1, we find that �H obeys
T=jhj1:1 scaling behavior; see Fig. 4. The linear scaling plot
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FIG. 3 (color online). �H as a function of magnetic field
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phase transitions at T ¼ 0.
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shown in the inset of Fig. 4 displays a high quality of
collapse also at high values of h�H. The scaling can be

described by a function of the form �H ¼ 1
hGðh=T1=ð�zÞÞ

with an exponent �z ¼ 1:1. The excellent collapse of data
with the absolute temperature T as a scaling field confirms
in particular that the anomalous behavior around Hcd is
indeed caused by a quantum (bi-)critical point and not by
the classical counterpart at TBCP � 0:3 K. For classical
bicriticality instead data collapse in terms of the differ-
ences T � TBCP and H �HBCP would be expected.

Two scaling regimes separated by a crossover at
T=j�0hj1:1 � 0:5 K=T1:1 can be distinguished. For low tem-
peratures and large negative h, �Hh approaches a constant
with the value �GH ¼ 0:31. For high temperatures and
small h, on the other hand, it is expected that �H vanishes
analytically, i.e., linearly with h because the line HcrðTÞ is
only a crossover where thermodynamics remains smooth
[35]. Analyticity thus requires the function G to behave for
small arguments as GðxÞ / x2. This determines the asymp-

totics�H � h=T2=ð�zÞ � h=T1:8, which is indeed observed at
high temperatures, as indicated by the solid line in Fig. 4.

Interestingly, in the mixed-valence compound
�-YbAlB4, a T=h scaling with a similar exponent (�z ¼
1) and a divergence �H � h=T2 was observed but with
Hcr ¼ 0 [36]. Effective one-dimensional degrees of free-
dom have been invoked there for its explanation [37].
Quasi-one-dimensional fluctuations have already been
observed in YbAgGe but in zero field probably promoted
by the geometrical frustration [16]. This low dimension-
ality of fluctuations might also survive in finite field and
drive the critical behavior at Hcd. A hint in this direction is

provided by the strong temperature dependence of the
magnetization ð@M=@TÞH [15] and the thermal expansion
� [14] that both behave as �h=T1:7 close to the critical
field [38]. From a quantum critical scaling point of view,
such a strong divergence as a function of T implies a low
spatial dimensionality d [28].
A neutron scattering study in the bicritical regime would

be useful not only to determine the dimensionality but also
the dynamics of the critical fluctuations. This might also
shed light on the pronounced asymmetry of the quantum
bicritical behavior with respect to the critical field.
Moreover, in order to construct a basic theory of the
QBCP and to test its spin-flop character, the experimental
identification of the order parameter of the d phase is
mandatory. Further experimental and theoretical work
will be required to elucidate the origin of the QBCP and
the observed scaling exponents.
To summarize, we propose that YbAgGe is situated

close to a QBCP that controls thermodynamics in its
vicinity. We verified that the magnetic Grüneisen parame-
ter �H exhibits the corresponding quantum critical signa-
tures and identified a characteristic scaling behavior.
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