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We report the low-temperature specific-heat measurements on polydomain Yb4As3 at magnetic fields up to
20 T. Taking into account the Bethe ansatz results, the zero-field data have been used for the estimation of the
lattice specific heat, resulting in a value of the exchange integral for the Heisenberg model of the antiferro-
magnetic spin S= 1

2 chain of J /kB=−28 K. A quantitative agreement has been achieved between the experi-
mental magnetic specific-heat data in magnetic field and the numerical results obtained by the quantum
transfer-matrix �QTM� simulation technique. The finite-size QTM approximants have been analyzed and an
extrapolation procedure recovering the known density matrix renormalization group �DMRG� results down to
very low temperature has been proposed. On the basis of the data in magnetic field and using the earlier
DMRG results, the energy-gap size � has been analyzed as a function of the applied magnetic field B, leading
to an experimental verification of the scaling law ��B2/3 following from the sine-Gordon model.
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I. INTRODUCTION

The problems related to one-dimensional �1D� magnetism
have generated unceasing interests for both theoreticians and
experimentalists. Theoretical description of such simple sys-
tems is less complex than those of higher dimensions and
still their analysis is very useful for comprehension of phe-
nomena taking place in two-dimensional and three-
dimensional systems and for evaluation of the approxima-
tions used for descriptions of the systems of higher
dimensions. Moreover, theoretical models of low-
dimensional systems have increasingly often been confirmed
in real chemical compounds.1 Particularly important have be-
come the results obtained on the basis of Bethe anzatz �BA�,2
and the theoretical analysis of the systems with integer spin
showing the presence of the energy gap between the ground
state and the lowest-excited states,3 which has been realized
in real systems.4 The compound studied in this work Yb4As3
exemplifies systems with the energy gap being a conse-
quence of the effect of staggered magnetic field as has been
evidenced by the sine-Gordon model.5

The role of computer simulations in investigation of the
low-dimensional quantum spin systems has recently in-
creased as a result of progress in the methods of simulations
and increasing computer power.6–8 The restriction to the low
dimensions of the systems studied is imposed by the com-
plexity of the algorithms used. However, for the spin chains
the simulation methods have brought reliable results of high
accuracy,8–10 which can be verified on the basis of the exact
theoretical solutions and can be used to verify the approxi-
mate theoretical results.

At high temperatures, Yb4As3 is a homogeneous interme-
diate valent �IV� metal with a valence ratio of Yb2+ /Yb3+

=3:1. Three quarters of the Yb ions have filled 4f shells with
the valency 2+ and one quarter with the valency 3+ has one
hole in the f shell. Above the charge-ordering �CO� tempera-
ture TCO�295 K the holes in the f shells move between the
Yb ions due to the hybridization with the As-4p holes.
Yb4As3 belongs to a family of R4X3 �R=rare earth and X
=As,Bi,P ,Sb� compounds of the anti Th3P4 structure.11 The
Yb ions occupy the phosphorus sites at the threefold symme-
try axes and the As ions are located at the thorium sites. This
compound has a cubic crystal structure with the lattice con-
stant a=8.788 Å in which the Yb ions reside statistically on
four equivalent families of chains along the space diagonals
of a cube.12

At TCO�295 K, a first-order structural phase transition
has been observed which is accompanied by discontinuities
of the electrical resistivity and the Hall coefficient.11 Below
TCO�295 K, the crystal Yb4As3 shrinks along the �111� di-
rection getting a trigonal structure �the trigonal angle is
90.8°�. The polarized neutron-diffraction study has shown
that the Yb ions occupying the sites aligned along the shrink-
ing �111� direction become trivalent and the rest of Yb ions
are divalent.13 At low temperatures, Yb4As3 is semimetallic
with extremely low carrier concentration of 10−3 As 4p holes
per f.u.14 The Yb3+ ions have one hole in the 4f closed shell
and form a one-dimensional spin S= 1

2 chain along the �111�
direction. The remaining Yb ions occupy nonmagnetic diva-
lent states. The J=7 /2 ground-state multiplet splits into four
doublets as a result of the crystal-field effect. Thus, the low-
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temperature dynamics is described by an effective S= 1
2 spin

chain. The neutron-scattering experiments on Yb4As3 have
actually confirmed that the excitation spectrum is well de-
scribed by the one-dimensional S= 1

2 isotropic Heisenberg
model15 in the absence of a magnetic field. The interchain
interactions are small and ferromagnetic, leading to a low-T
spin-glass freezing.16

At low temperatures and in the absence of a magnetic
field, the system exhibits a heavy-fermion-like behavior with
a linear specific-heat coefficient ��200 �mJ / �K2 mol��,
which has later been attributed to 1D spin excitations in the
Yb3+ antiferromagnetic Heisenberg chains.16,17 However, as
shown by the neutron-scattering experiment under magnetic
field, a gap in the spin excitation spectrum of Yb4As3 opens
and obeys a power-law dependence B2/3,18 which gives a
strong experimental evidence for the existence of a staggered
field alternating along the Yb3+ chains induced by the
Dzyaloshinskii-Moriya interaction as suggested by the sine-
Gordon model5 and observed also in copper benzoate19 and
copper pyrimidine complex.20 The system seems also inter-
esting as a candidate for the anomalous electron-spin-
resonance behavior.21,22

The gap opening also affects the field-dependent specific
heat at low temperatures. The values of the specific-heat co-
efficient are strongly reduced with respect to the zero-field
results and in C�T� /T some maxima related to the gap open-
ing are found.18,23

However, the experimental specific-heat results have not
been quantitatively explained within the Heisenberg model
with the staggered field yet. Previous calculations24 have sys-
tematically overestimated the experimental specific-heat data
and some deviations from the power-law behavior of the
energy gap have been observed.23 These discrepancies are
addressed in this paper.

II. EXPERIMENTAL DETAILS

The experiments have been carried out on a 20 mg high-
quality single crystal of Yb4As3, prepared as described
previously.11 The specific heat has been obtained by the re-
laxation technique using a commercial microcalorimeter
from Oxford Instruments in combination with a supercon-
ducting 20 T magnet. A miniaturized Cernox chip resistor,
calibrated by Oxford Instruments in magnetic field has been
used. The trigonal lattice distortion accompanying the charge
ordering transition results in a polydomain low-T structure.
We have applied the magnetic field parallel to one of the four
equivalent cubic space diagonals.

III. MODEL AND THE TRANSFER-MATRIX SIMULATION
TECHNIQUE

Computer modeling of the finite-temperature properties of
the Yb4As3 is based on the S= 1

2 anisotropic Heisenberg
model with the antisymmetric Dzyaloshinskii-Moriya
interaction25,26

H = − �J	
i=1

N

�Ŝi
zŜi+1

z + cos�2���Ŝi
xŜi+1

x + Ŝi
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�− 1�i�Ŝi
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The Dzyaloshinskii-Moriya interaction is eliminated by ro-
tating the spins in the x-y plane by the angle �,8

Ŝi
x = cos���Si

x + �− 1�isin���Si
y

Ŝi
y = − �− 1�isin���Si

x + cos���Si
y

Ŝi
z = Si
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Then the model is mapped onto8

H = − J	
i=1

N

SiSi+1 − g��BBx	
i=1

N

Si
x + − g��BBs

y	
i=1

N

�− 1�iSi
y ,

�3�

where Bx=B cos���, Bs
y =B sin���, and B is the uniform ex-

ternal magnetic field perpendicular to the one-dimensional
spin chain. Equation �3� describes the effective isotropic
Heisenberg model with both the uniform field Bx and the
transverse staggered field Bs

y. If the external magnetic field is
applied along the spin chain then �=0 and g�=g� in Eq. �3�.
So far the thermodynamical properties of the compound
Yb4As3 have been described by the model �3� using the fol-
lowing parameters24

J/kB = − 26 K, g� = 2.9, g� = 1.3, tan��� = 0.19.

The thermodynamical mean value of any quantity de-
scribed by the self-adjoint operator A is given by

�A� =
1

Z
Tr�Ae−�H, � =

1

kBT
, �4�

where kB is the Boltzmann constant and T is the temperature
in K. We can also calculate the thermodynamic properties
from the derivatives of the free energy related to the partition
function Z. For the spin system described in Eq. �3� we can
calculate the canonical partition function Z from the defini-
tion

Z = Tre−�H. �5�

The values of matrix elements of e−�H cannot be calculated
for large N because of noncommuting operators in Eq. �3�.
Thus, to eliminate this restriction, we look for systematic
approximants to the partition function Z.

We express the Hamiltonian �3� as a sum of the spin-pair
operators Hi,i+1, where

Hi,i+1 = − JSiSi+1 −
1

2
g��BBx�Si

x + Si+1
x �

+ −
1

2
g��B�− 1�iBs

y�Si
y − Si+1

y � . �6�
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In the checker-board decomposition �CBD� we divide the
Hamiltonian �3� into two noncommuting parts7

H = Hodd + Heven

= �H1,2 + . . . + HN−1,N�

+ �H2,3 + . . . + HN,1� , �7�

where each part is defined by the commuting spin-pair op-
erators Hi,i+1. Then the series of the classical approximants
of the quantum thermal values can be found using the gen-
eral Suzuki-Trotter formula.7 The partition function is calcu-
lated from the expression

Z = lim
m→�

Zm = lim
m→�

Tr��
i=1

N/2

V2i−1,2i�
i=1

N/2

V2i,2i+1�m

, �8�

where Vi,i+1=e−�Hi,i+1/m, i=1,2 , ¯ ,N, and m is a natural
number �referred to as the Trotter number�.

The approximant Zm can be calculated numerically with-
out any restrictions on the value of N, by the quantum
transfer-matrix �QTM� method. The computation of Zm is
possible for relatively small values of m, because of com-
puter storage limitation, but the leading errors in taking a
finite m approximant are on the order of 1 /m2 and therefore,
extrapolations to m→� can be performed.

For infinite chains �the macroscopic limit� it is better to
reverse the transfer direction and to calculate the partition
function from the largest eigenvalue of the transfer matrix. In
order to reverse the transfer direction we must define a new
local transfer matrix Lr,r+1 whose elements depend on the
local transfer-matrix Vi,i+1 elements

�Sr,i
z Sr+1,i

z �Lr,r+1�Sr,i+1
z Sr+1,i+1

z � = �Sr,i
z Sr,i+1

z �Vi,i+1�Sr+1,i
z Sr+1,i+1

z � .

�9�

These operators act in a Hilbert space H2m whose dimen-
sion is independent of N.

Now we define a unitary shift operator. In the case of the
nonuniform spin chains we define also a unitary shift opera-
tor D, acting in the space H2m which is a direct product of
2m single-spin spaces Hr, similarly to that for the uniform
chain7

D � 	
S1

z

. . . 	
S2m

z

�S3
z . . . S2m

z S1
zS2

z��S1
zS2

zS3
z . . . S2m

z � . �10�

Using Eq. �10� we can express the operators Lr,r+1 in
terms of the operators L1,2 and L2,3

L2r−1,2r = �D+�r−1L1,2Dr−1,

L2r,2r+1 = �D+�r−1L2,3Dr−1. �11�

In this case the global transfer matrices can be expressed
in terms of two operators L1,2 and L2,3,

Wr = �Lr,r+1D+�m, r = 1,2. �12�

Finally, the mth classical approximant to the partition func-
tion can be written in the following form:

Zm = Tr�W1W2�N/2. �13�

In the limit N→� the partition function Z is equal to the
highest eigenvalue of the global transfer matrix W=W1W2.

IV. DESCRIPTION OF THE EXTRAPOLATION
PROCEDURE

The fundamental assumptions of the QTM technique have
been described above. As follows from them, in order to
obtain a certain value of specific heat or any other thermo-
dynamical quantity calculated from the partition function
�Eq. �13��, one should analyze for a given temperature the
dependence of the calculated specific heat on Trotter index m
and extrapolate the dependence C�1 /m2� in the limit m→�.
Figures 1�a�–1�c� present the numerical results of C /T�1 /m2�
obtained without an external magnetic field �Fig. 1�a�� and in
the presence of an applied magnetic field B� perpendicular
to the direction of the chain �Fig. 1�b�� and B� parallel to it
�Fig. 1�c��. Each figure shows the plots for different tempera-
tures, assuming J /kB=−28 K or J /kB=−26 K as defined in
the legend. For high temperatures the dependence C�1 /m2� is
linear in the whole range of the Trotter index values �e.g.,
T=8 K� as shown in Figs. 1�a�–1�c�. Moreover, the specific-
heat changes with increasing m are small, so the extrapola-
tion results are very accurate in these conditions. For low
temperatures �T�4 K� the dependence C�1 /m2� signifi-
cantly deviates from linear character and with increasing m
the specific-heat values change substantially, so the accuracy
of the estimated specific heat is affected and more careful
extrapolation analysis is needed.

In order to improve the accuracy of the extrapolation
for low temperatures, the analysis of the specific heat as a
function of 1 /m2 was made as follows. A function described
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FIG. 1. Specific heat as a function of 1 /m2 for different tem-
peratures and magnetic field intensities: �a� B=0 T; �b� B�=6 T;
and �c� B� =4 T.
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by the extrapolation polynomial of the degree k �k
=1, . . . ,kmax�

Cm/T = 	
j=0

k

a j · � 1

m2� j

�14�

was developed to approximants Cm corresponding to mmin
	m	mmax. For practical reasons, in our procedure kmax
	10. The value of the highest Trotter index mmax is fixed and
amounts to 14 or 15 in low temperatures and 13 in high
temperatures. The value mmin is subject to variation in the
region 2	mmin	mmax−1.

The extrapolation procedure starts with mmin=2 and is
continued till m=mmax−1. In each step the number of fitted
points n �n=mmax−mmin+1� is fixed and a number of ex-
trapolations are performed with polynomials of the degree k
�1	k	n−1, but not more than 10�. In this way for a given
field and temperature we obtain a set of extrapolated values
for different values of n and k and we can present the varia-
tion in the data with n for the fixed degree k of the polyno-
mial.

The results of the analysis of the extrapolated specific-
heat values according to the above procedure are shown in
Figs. 2�a�–2�f�. The first two plots, Figs. 2�a� and 2�b�, cor-
respond to the condition of zero magnetic field and two dif-
ferent temperatures �T=1.5 K and T=3.0 K�. To check the
accuracy of the extrapolations performed the plots were re-
ferred to the value obtained on the basis of the Bethe ansatz
approach2 which is shown as a dotted line in Figs. 2�a� and
2�b�. As shown, the convergence depends significantly on the
degree k of the polynomial. The curves corresponding to k
=1 cannot be shown here because they are beyond the scale
in Figs. 2�a�–2�f�. The convergence of the extrapolated val-
ues is much better for higher temperatures �T=3 K, Fig.
2�b�� and implies higher accuracy of the numerical estimates.

The next two figures present the variation in results of the
extrapolation for two different temperatures �T=2.0 K and
T=3.0 K� and for the field direction perpendicular to the
chain. Figures 2�c� and 2�d� give a comparison of the ex-
trapolated results with those obtained by density-matrix
renormalization group �DMRG� �Ref. 8� �dotted line�. Again,
the convergence toward expected DMRG values is improved
with increasing value of the polynomial degree k. For k
4
and n being small enough, the QTM estimates agree with the
DMRG value within 1%. The last two figures show the re-
sults of the extrapolation for two different temperatures �T
=2.0 K and T=3.0 K� but for the magnetic field direction
parallel to the chain. No exact reference data are known but
the behavior of the extrapolated data is the same, so that we
expect that even down to temperatures kBT /J=0.077 we can
reach accuracy on the order of 1%.

The results of our numerical asymptotic analysis extrapo-
lations and the estimated errors have been compared with the
best-known literature values2,8 in Table I. For the perpen-
dicular magnetic field, the QTM results are compared with
the DMRG ones read off Fig. 9 in Ref. 8. The read off results
are given with the errors introduced by the graphical analy-
sis. The above analysis reveals an excellent agreement be-
tween our numerical results and those obtained by the other

two methods: BA �Ref. 2� and DMRG.8 The accuracy of the
present QTM results is comparable with that of DMRG re-
sults for temperatures as low as T=2.0 K, �kBT /J=0.077�
and is better than 1% �the relative error is smaller than 1%�.
This consideration confirms that our QTM technique is a
reliable tool for analysis of the specific-heat measurements of
the systems modeled by the Hamiltonian �3�.

V. MODELING OF THE POLYDOMAIN SAMPLE USING
THE ZERO-FIELD DATA

The zero-field specific-heat data are presented in Fig. 3 as
C�T� /T. Since the nonmagnetic reference system Lu4As3
does not show a charge ordering accompanied by a lattice
distortion, it could not be used as reference for the phonon
contribution to the specific heat of Yb4As3. Therefore, we
have first estimated the lattice contribution and the exchange
coupling J by exploiting the BA results.2 The BA method27 is
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FIG. 2. The extrapolated values of specific heat versus the num-
ber of points n for which the polynomials are constructed. Each
particular plot corresponds to the polynomial of a given degree k.
The figures ��a�–�f�� have been drawn for different magnetic fields:
Figs. �a� and �b� for B=0 T, J /kB=−28 K, and the QTM results in
reference to the Bethe ansatz results �Ref. 2�; Figs. �c� and �d� for
B�=6 T �J /kB=−26 K� and the QTM results in reference to the
DMRG results �Ref. 8�; and Figs. �e� and �f� for B� =4 T �J /kB

=−28 K�, only the QTM results.
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exact and can be used to calculate the thermodynamic prop-
erties of the S= 1

2 Heisenberg spin chain. The experimental
specific heat Cexp is a sum of two components: the magnetic
and the lattice specific heat. The magnetic part depends on J,
its temperature behavior was found within the BA approach2

and can be fitted by the Pade approximants listed in Table I
of Ref. 2. The agreement of this approximation with BA in
the temperature range 0.01	kBT /J	5 is estimated to be
0.5·10−4%.2 On the basis of the experimental results in zero
magnetic field, the lattice contribution to the specific heat
Cph in the form

Cph = �T3 + �T5 �15�

can be estimated assuming that the magnetic contribution
CBA is given by the BA results for the Heisenberg model in
zero magnetic field.2

As shown in Fig. 3, the magnetic contribution to specific-
heat coefficient corresponding to J /kB=−26 K and J /kB
=−27 K at low temperatures �T	4 K� is greater than the
experimental data, so these values of the exchange integral
cannot be accepted because the lattice contribution to the
specific heat obtained would be negative. The lowest accept-
able value is J /kB=−28 K which is still consistent with the
neutron-scattering data.18 Having fixed J /kB=−28 K, we fit-
ted the differences Cph /T=Cexp /T−CBA�J /kB=−28 K� /T,
and found values of the coefficients in expression �15�

� = 1.11 � 10−3 �J/�mole K4��

and

� = 4.9 � 10−6 �J/�mole K6�� .

Figure 4 presents the experimental values of the total spe-
cific heat, the experimental data minus the estimated contri-
bution of the lattice specific heat �i.e., the magnetic contri-
bution to the specific heat� and the lattice contribution to the
specific heat. The experimental values are presented by full
and open circles, while the results of numerical and analyti-
cal analyses are illustrated by curves of different types.

The estimation of the lattice contribution to the specific
heat was based on the experimental results obtained for
Yb4As3 in a wide range of temperatures 2.5–14 K. From now
on, we consider the specific-heat data found from the sub-
traction of the lattice contribution as the experimental mag-
netic contribution.

VI. COMPARISON BETWEEN THE MODEL AND
EXPERIMENT IN THE PRESENCE OF MAGNETIC FIELD

In our subsequent simulations of the low-temperature spe-
cific heat of Yb4As3 in external magnetic fields, we assumed

TABLE I. Comparison between the QTM estimates and the corresponding BA and DMRG results.

B=0 T, J /kB=−28 K B�=6 T, J /kB=−26 K

T
�K�

C /T�BA�
�J / �K2 mole��

C /T�QTM�
�J / �K2 mole��

T
�K�

C�J� /T�DMRG�
�J /K�

C�J� /T�QTM�
�J /K�

1.5 0.2014085 0.2000.002 2.0 0.7870.010 0.7820.001

2.0 0.2033790 0.20340.0001 2.6 0.9440.005 0.94740.0002

3.0 0.2092113 0.20930.0001 3.0 0.9670.005 0.96940.0001

7.0 0.2586549 0.258650.00003 9.1 0.9020.005 0.902550.00001
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FIG. 3. Temperature dependence of the measured specific-heat
coefficient C /T in zero magnetic field plotted using open symbols
and a comparison with BA results for different values of the ex-
change integral.
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the intrachain exchange coupling J /kB=−28 K, while the
other parameters in the model Hamiltonian �3� were taken
from literature. The g factors parallel and perpendicular to
the spin chain of Yb4As3 were estimated as g� =3.0 and
g�=1.3 from the analysis of the inelastic scattering vector
dependence of the response in zero field and the magnetic
moment induced on the Yb3+ ions, measured by polarized
neutron diffraction in a magnetic field.18 As to the transfor-
mation angle, the magnetization measurements led to the
value tan���=0.19 �Ref. 8� so that the uniform field was
about five times stronger than the effective staggered field
induced by the Dzyaloshinskii-Moriya interaction. The ex-
perimental data for the field-dependent specific-heat coeffi-
cient have been reported elsewhere.24 Here we have reana-
lyzed them by subtracting the phonon contribution according
to Eq. �15�, using the coefficients � and � calculated here.

Our magnetic specific-heat results for B=4, 8, 12, 16, and
19.5 T are shown in Figs. 5�a�–5�e�. The open symbols rep-
resent the experimental results for a polydomain sample with

the magnetic field applied along the cubic �111� direction.23

The other symbols represent numerical results.
In order to calculate the field-dependent magnetic contri-

bution to the specific heat which would correspond to the
experimental results for the polydomain sample, the follow-
ing simulation was performed. It was assumed that 25% of
the domains are oriented in parallel to the direction of the
spin chain, and the external magnetic field B is also applied
in parallel to the chain direction. For 75% of domains the
effective magnetic field

Beff = B sin�70°�

is assumed to be oriented in perpendicular to the direction of
the chain. This field generates the uniform field Bx

=Beff cos��� and the staggered field Bs
y =Beff sin���. Finally,

the numerical results include two contributions

C/T�B� = 0.75C�/T�Beff� + 0.25C�/T�B� . �16�

Figures 5�a�–5�e� present the experimental results �open
circles� and the numerical results obtained using Eq. �16�
�full circles�. Each figure also presents the results for the
components 0.75C� /T�Beff� and 0.25C� /T�B� of the field di-
rected in perpendicular and parallel direction, respectively.
For all values of the magnetic field applied, the results of the
present simulations are in good agreement with the experi-
mental values in the whole range of temperatures considered.

The analysis of the energy-gap size on the basis of the
specific-heat data is indirect. Since the gap is determined by
the staggered field,8 its size is related to the position Tmax of
the peaks in the temperature dependence of C�B� /T. These
positions depend, however, only on the value of the uniform
field component Bx, whereas our experimental data for the
polydomain sample contain the component C� /T which
originates from the chains parallel to the field. This longitu-
dinal component can be estimated numerically and sub-
tracted, yielding the transverse part

C�/T = Cexp/T − C�/T . �17�

The peak positions found from the expression �17� can be
related to those following from Fig. 9 of Ref. 8, taking into
account that for Yb4As3 J /kB=−28 K. From Fig. 9 of Ref. 8
we can find the nonlinear relation between the gap � /J and
Tmax /J in the form

�/J = a�Bs
y�Tmax/J , �18�

where

�/J = 1.78�g��BBs
y/J�2/3 · �ln�g��BBs

y/J��1/6. �19�

Having determined the dependence a�Bs
y�, the position

Tmax of the maxima in our C��B� /T can be read out as fol-
lows. First we calculate the value Beff for any applied field,
next we find Bs

y related to Beff, and then the corresponding
value a�Bs

y� which enables estimation of � for a given Tmax.
Figure 6 presents the energy-gap values obtained in this

way on the basis of our experimental data �full squares� as a
function of Beff

2/3. Full circles present the values obtained from
the inelastic neutron scattering �INS�.18 In both experiments
the energy-gap values found fulfil the power law B2/3 and
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confirm the agreement with the field theory predictions for
different ranges of fields. However, the slopes of the lines in
Fig. 6 are different, indicating different values of the propor-
tionality coefficient b=� /B2/3. For the direct INS data b
=2.97 K T−2/3, whereas our specific-heat-based estimation
gives b=2.01 K T−2/3. The latter is closer to b
=1.89 K T−2/3 which can be inferred from Eq. �19� neglect-
ing the logarithmic correction and assuming J /kB=−28 K.
The gap values derived from INS have been obtained from
peak positions in the spectra of the inelastic response at q
=1 versus energy.18 Since for a given magnetic field this
peak is located beyond the energy at which zero intensity is
observed in the spectrum, this analysis should overestimate

the size of the gap, explaining the discrepancy to our esti-
mate of ��Beff�.

VII. CONCLUSIONS

The QTM method has been applied to the one-
dimensional Heisenberg model with DM interactions in the
S= 1

2 spin chain. New measurements of the specific-heat co-
efficient of a polydomain sample of Yb4As3 have been ana-
lyzed. The lattice contribution has been determined using the
Bethe ansatz solution for the magnetic specific-heat contri-
bution with an exchange coupling constant of J /kB=−28 K.

Next the field-dependent data of the low-temperature spe-
cific heat have been reanalyzed, taking into account our es-
timates of the lattice contribution. It has been shown that the
resulting magnetic specific heat can be quantitatively ac-
counted for by the Heisenberg model without additional ad-
justable parameters. It is also demonstrated that the energy
gap develops according to the sine Gordon prediction in the
range of the fields applied.

A new approach to the analysis of the QTM simulation
results has been proposed, based on the polynomial extrapo-
lation. This approach has significantly improved the accuracy
of the simulation results, which permitted getting reliable
numerical results for temperatures lower than those hitherto
considered within QTM, fully consistent with those known
from the Bethe ansatz and DMRG calculations. We observed
that the variation in the data decreases with increasing degree
of the extrapolation polynomial k and the reliability of the
estimates increases for k
4.
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