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Abstract

YbRh2Si2 is a clean heavy fermion system which displays a magnetic field tuned quantum critical point. We present low-temperature

electrical resistivity, magnetostriction and magnetization measurements on high-quality single crystals with a residual resistivity ratio of

150. The data provide evidence for a low-energy scale T%ðHÞ which vanishes in addition to the boundaries of the magnetic ordering and

Landau Fermi liquid regime at the quantum critical point, indicating unconventional quantum criticality.
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1. Introduction

The tetragonal YbRh2Si2 (YRS) is one of the few clean
and stoichiometric heavy fermion (HF) systems that are
located at ambient pressure and zero magnetic field
extremely close to a quantum critical point (QCP) [1]. It
shows an antiferromagnetic (AF) ordering at a very low
Néel temperature of TN ¼ 70mK and a very small
magnetic field of 0.05 T tunes its ground state across the
QCP into the paramagnetic Landau Fermi liquid (LFL)
regime [2]. In this paper, we focus on low-temperature
thermodynamic, magnetic and transport measurements on
YRS which hint at unconventional quantum criticality in
this system.

The conventional theory for AF QCPs in HF systems
considers itinerant f-electrons at both sides of the QCP.
Their scattering off the critical spin-density-wave (SDW)
fluctuations gives rise to non-Fermi liquid behavior [3–5].
Since singular scattering is restricted to certain ‘‘hot lines’’
at the Fermi surface (connected by the critical Q-vector of
the nearby SDW), large parts of the Fermi surface remain
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‘‘normal’’ for 3D critical fluctuations in this scenario, and
the quasiparticle mass saturates in the approach of the
QCP (for 2D critical fluctuations, the theory predicts a
logarithmic mass divergence). Motivated by experiments
on CeCu6�xAux [6], unconventional scenarios for quantum
criticality in HF systems have been proposed [7–11]. They
consider a localization of the f-electrons at the QCP. As a
consequence, the Fermi surface volume shows a jump
across the QCP. These ideas are supported by recent
studies of the de Haas–van Alphen effect. Upon tuning AF
systems like CeRhIn5 by hydrostatic pressure through their
QCPs drastic changes of the Fermi surface have been
detected [12]. Since the Hall effect should be a sensitive
probe of the evolution of the Fermi surface volume [7],
results of this quantity on YRS are discussed below.
The high-temperature and high-magnetic field properties

of YRS are summarized in Ref. [13]. The single-ion Kondo
scale of the system amounts to 25K. Magnetic fields larger
than 10T, applied along the easy direction perpendicular to
the c-axis, are sufficient to the suppress HF behavior. The
boundary of the very weak AF state is located well inside
this regime: TN ¼ 70mK and the critical field Hc � 0:05T
(for fields along the easy plane). Hydrostatic pressure
increases TN, as expected for Yb-systems, whereas a partial
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Fig. 1. Low-temperature electrical resistivity of high-quality YbRh2Si2
single crystal at H ¼ 0 and 0.05T (applied perpendicular to the c-axis).

The inset shows the temperature-field phase diagram determined from

measurements of the same sample at various magnetic fields. The

boundaries of the antiferromagnetically ordered (AF) and Landau Fermi

liquid (LFL) regime have been determined from the position of a kink in

rðTÞ (cf. arrow in main part of Fig. 1) and upper limit of T2 behavior,

respectively.
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substitution of Si by the isoelectronic but larger Ge reduces
TN to 20mK in YbRh2(Si0.95Ge0.05)2 [14]. For the latter
system, a detailed thermodynamic analysis close to the
QCP has been performed: a stronger than logarithmic mass
divergence [14] as well as fractional exponent in the
divergence of the Grüneisen ratio [15] exclude the conven-
tional description of quantum criticality in YRS.

Very recently it has been proposed that the weak AF
ordering in YRS may result from a minor (few percent)
volume fraction of Yb3þ ions with a very low single-ion
Kondo temperature [16]. However, clear phase transition
anomalies observed e.g. in specific heat [14] or thermal
expansion [17] provide evidence for the bulk nature of the
transition. Furthermore, a continuous increase of TN and
the entropy SðTN) is observed under hydrostatic pressure
[18,19] which could hardly be explained within such an
impurity scenario. Also, Ge-doping on the Si-site [14], as
well as La-doping on the Yb-site [20] lead to a suppression
of TN that is consistent with the effect of the volume
expansion but inconsistent with the impurity scenario.
Further on, there is no indication that TN depends on the
residual resistivity of the studied YRS single crystals, which
itself would be very sensitive to Yb3þ ions with very low
TK. In fact previous studies have been done on single
crystals with a residual resistivity ratio (RRR) of 25 [1]
and the newest generation exhibit a RRR up to 150,
i.e. r0 � 0:5 mO cm.

The Hall effect evolution across the QCP has been
studied in great detail [21]. Most remarkably, the suppres-
sion of the tiny magnetic ordering with an ordered moment
of about 10�3mB=Yb [22] by magnetic field leads to a large
(about 30%) change of the Hall coefficient. A new line in
the temperature-field phase diagram has been discovered
across which the isothermal Hall-resistivity as a function of
the applied magnetic field changes. Upon decreasing the
temperature this feature sharpens, suggesting for the zero-
temperature extrapolation a sudden change of the Fermi
surface at the QCP [21]. In the following, we will study the
evolution of the low-temperature electrical resistivity,
magnetostriction and magnetization on high-quality single
crystals upon passing this ‘‘Hall-line’’.

2. Electrical resistivity

Fig. 1 shows low-temperature resistivity data of a high-
quality YRS single crystal. At zero field a sharp anomaly
marks the onset of AF ordering. Upon application of small
magnetic fields perpendicular to the c-axis, TN is con-
tinuously suppressed towards zero at the critical field
Hc ¼ 0:05T. At H4Hc, the low-temperature resistivity
follows Dr ¼ AðHÞT2 for temperatures below TLFLðHÞ.
Approaching the critical field, TLFL ! 0 and A!1 (see
also Ref. [2] for a study on a single crystal with
r0 ¼ 1mO cm). At the critical field, the resistivity shows a
linear temperature dependence down to the lowest mea-
sured temperature of 20mK (cf. red curve in Fig. 1). This is
in contrast to the reported T2 behavior even directly at the
critical field in Ref. [19]. We stress that our observation of a
linear resistivity dependence at H ¼ Hc down to 20mK has
been reproduced on different single crystals [2]. Deviations
from Dr / T could either result from heating effects at the
contacts, a field inhomogeneity, or from a non-precise
determination of the critical field value. Since the
boundaries of the AF and LFL states in the phase diagram
are very steep (cf. inset of Fig. 1), a linear resistivity can
only be obtained for a very precise tuning of the applied
field. Complementary measurements of the low-tempera-
ture specific heat on a crystal of the same batch have
revealed a power-law divergence of CðTÞ=T at H ¼ Hc,
with similar exponent as observed previously for Ge-doped
YRS [23]. This proves the stronger than logarithmic mass
divergence at the QCP in this system.
We now turn to measurements of the isothermal

magnetoresistance (Fig. 2). The maximum for ToTN

marks the boundary of the AF state. At T4TN an
additional signature is observed. The arrows indicate
inflection points, whose positions are marked by the yellow
triangles in the phase diagram shown in the inset. As will be
discussed in the following, these positions agree with the
line of anomalies in the Hall-effect, magnetostriction and
magnetization.

3. Magnetostriction

Measurements on the isothermal magnetostriction
(H ? c) have been performed using an ultrahigh resolution
capacitive dilatometer on a high-quality (RRR ¼ 150)
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Fig. 2. Longitudinal magnetoresistivity of YbRh2Si2 as r vs H (H ? c) at
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single crystal. The magnetostriction coefficient l½1 1 0� ¼
L�1 dL=dH with the sample length L along the [1 1 0]
direction has been determined by calculating the field
derivative of the length change over intervals of 5–20mT.
At very low temperatures, as shown in Fig. 3, the
suppression of AF ordering at Hc ¼ 0:05T results in a
steplike change of l, as expected for a second-order phase
transition. Upon increasing T, this anomaly shifts towards
lower field values and vanishes for temperatures above TN.
However, instead of showing a smooth behavior at T4TN,
a kink-like structure is observed, which broadens and
shifts towards higher fields with increasing temperature
(see Fig. 4). For usual metals, a linear field dependence of
the magnetostriction coefficient is observed [25]. The
observed magnetostriction behavior may thus be inter-
preted as a signature of a change between different metallic
states.
In order to extract an energy scale T% from the

anomalies, we have fitted the data to the integral of
the crossover function f ðH;TÞ ¼ A2 � ðA2 � A1Þ=½1þ
ðH=H0Þ

p
� (cf. Ref. [21]) which reveals a characteristic field

H0 along which the magnetostriction shows a drastic
change in slope [24]. As will be shown later, the positions
H0ðTÞ agree well with the respective anomalies in the Hall
effect [21], magnetization, susceptibility as well as long-
itudinal resistivity, establishing the existence of an intrinsic
energy scale T%ðHÞ which vanishes at the QCP.

4. Magnetization

It has been shown previously [1,26] that the magnetic
susceptibility wðTÞ shows characteristic maxima in the
temperature dependence at H4Hc. This signature results
from a strongly nonlinear low-temperature magnetization
behavior MðHÞ which is smeared out with increasing
temperature [27]. Fig. 5 displays MðHÞ for a high-quality
(RRR ¼ 150) single crystal which strongly resembles the
change of the magnetostriction coefficient discussed in the
previous section. In order to extract the crossover field H0,
we have analyzed ~M �M þ wH, which is the field
derivative of the magnetic free energy contribution
(�M �H) [24]. The magnetization itself shows a similar
crossover as M þ wH does, cf. Fig. 5. Compared to the ~M
case, its linear H dependence in the measured high-field
regime is somewhat less robust, making the fit by the
function f ðH ;TÞ to be of a slightly lower quality [24].
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The causal relationship between the observed magneti-
zation signature and the Hall effect change has been
discussed in Ref. [24]. For H ? c the ‘‘kink-like’’ signature
in MðHÞ is too weak to explain the smeared jump as a
function of the tuning field (parallel to the current
direction) in the Hall coefficient [21]. For Hkc, the
magnetization is almost linear [27]. Thus, it is natural to
view the magnetization and magnetostriction anomalies as
thermodynamic signatures of the same change of the Fermi
surface volume indicated by the Hall data.

5. Phase diagram

We have shown previously, that ~MðHÞ, lðHÞ, and the
Hall resistivity rHðHÞ (measurements for Hkc, which have
been scaled by the anisotropy ratio 13.2) all show similar
crossovers, which can be described by the integral of the
function f ðH;TÞ [24]. In the limit T ! 0 and for all
different properties the full-width at half-maximum and the
ratio A2=A1 extrapolate to zero and a value different from
1, respectively (cf. supplementary information to Ref. [24]).
This indicates that the differentials of each quantity exhibit
a jump across the QCP.

The positions of the crossovers observed in the various
measurements [24] are summarized in Fig. 6. The data
establish a thermodynamic energy scale T% that vanishes at
the magnetic field tuned QCP in YRS.

6. Conclusion

The conventional theory for quantum criticality is based
on an itinerant description in which magnetic-order
parameter fluctuations in spatial and temporal dimensions
are considered only [3–5]. This theory predicts a phase
diagram with a boundary of LFL behavior that vanishes at
the QCP. Our results on YRS prove the existence of an
additional energy scale T%ðHÞ vanishing at the QCP, too.
The comparison with Hall-effect measurements [21] in-
dicates that this scale is a finite-T manifestation of the
localization of the f-electrons at the QCP [24]. Our results
thus prove that magnetic slowing-down near the QCP can
be accompanied by an additional slowing down, i.e. an
electronic one, due to the f-localization. A description
based solely on magnetic order parameter fluctuations is
then insufficient and unconventional scenarios are needed.
To date there exist different proposals which are based
either upon a complete [7–9] or partial [11] breakdown of
the Kondo effect at the QCP or upon the extension of
‘‘deconfined quantum criticality’’ in quantum magnets to
the case of HF systems [10].
The interesting question arises whether the magnetic

QCP can be separated from the f-localization transition.
We plan to investigate the evolution of TNðHÞ, T%ðHÞ and
TLFLðHÞ as a function of small changes of the unit cell
volume. Such studies could be done on YbðRh1�xMxÞ2Si2
(M ¼ Ir, Co), in which a fraction of Rh-atoms is
substituted isoelectronically by either larger Ir- or smaller
Co-atoms [28].
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[6] A. Schröder, et al., Nature 407 (2000) 351.
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