

Pressure effect on antiferromagnetism in CeRhIn5-xSnx studied by thermal expansion

J.G. Donath, Philipp Gegenwart, F. Steglich, E.D. Bauer, J.L. Sarrao

Angaben zur Veröffentlichung / Publication details:

Donath, J.G., Philipp Gegenwart, F. Steglich, E.D. Bauer, and J.L. Sarrao. 2007. "Pressure effect on antiferromagnetism in CeRhIn5–xSnx studied by thermal expansion." *Physica C: Superconductivity and its Applications* 460-462: 661–62. https://doi.org/10.1016/j.physc.2007.03.030.

Pressure effect on antiferromagnetism in CeRhIn_{5-x}Sn_x studied by thermal expansion

J.G. Donath a,*, P. Gegenwart , F. Steglich , E.D. Bauer , J.L. Sarrao b

^a Max-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
^b Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

We present low-temperature thermal expansion measurements on the Sn-substituted heavy fermion antiferromagnet CeRhIn_{5-x}Sn_x for $0 \le x \le 0.36$ in which $T_N(x)$ is linearly suppressed from 3.8 K at x = 0 to zero at $x_c \approx 0.4$. The application of the Ehrenfest relation allows to calculate the initial uniaxial and hydrostatic pressure dependences dT_N/dP at various x. The observed non-linear variation with x is interpreted in terms of the Doniach diagram by an increase of the 4f-conduction electron hybridization induced by Sn-doping. As no traces of superconductivity are observed close to x_c , this system is ideally suited for the study of the magnetic quantum critical point.

Keywords: CeRhIn₅; Heavy fermion system; Quantum critical point; Antiferromagnetism

CeRhIn₅ [1] belongs to the family of "115" heavy fermion compounds Ce MIn_5 (M = Rh, Ir, Co) which crystallize in a tetragonal layered structure giving rise to rather pronounced two-dimensionality in various physical properties. It shows antiferromagnetic (AF) order below $T_N =$ 3.8 K. The application of hydrostatic pressure leads to an abrupt suppression of T_N for pressures (P) above 1.5 GPa [1]. This quantum phase transition is masked by a "dome"-like superconducting (SC) region in the P-Tphase diagram, with a maximum transition temperature of about 2.2 K. Recently, the interplay of AF order and superconductivity in this pressure-regime has been studied in great detail by specific heat measurements in magnetic fields [2]. Different regimes of coexistence and competition between superconductivity and AF order have been observed in temperature-pressure-field phase space.

E-mail address: donath@cpfs.mpg.de (J.G. Donath).

In order to uncover the (zero-field) quantum critical point (QCP) in this system the superconductivity needs to be destroyed by disorder. For this purpose, we have studied the series $CeRhIn_{5-x}Sn_x$. The Sn-substitution of the Insites increases the 4f-conduction electron hybridization, leading to a suppression of AF order, similar as found e.g. in cubic $CeIn_{3-x}Sn_x$ [3]. In this paper, we use thermal expansion measurements in order to follow the evolution of $T_N(x)$ for single crystals with $0 \le x \le 0.4$ grown by a flux method [4]. Furthermore, we estimate the initial pressure dependences dT_N/dP (both uniaxial and hydrostatic). The thermal expansion coefficient $\alpha(T) = d(\Delta L(T)/L)/dT$ has been determined with the aid of a high-resolution capacitive dilatometer, attached to a dilution refrigerator.

Fig. 1 shows the temperature dependence of the linear thermal expansion along and perpendicular to the c-axis for various different Sn concentrations. Clear second-order phase transition anomalies are observed at the respective Néel temperatures (cf. arrows in Fig. 1) which are determined from equal-area (length conserving) constructions for the broadened steps in α vs T. For x = 0 perfect

^{*} Corresponding author. Tel.: +49 351 4646 2323; fax: +49 351 4646 2360

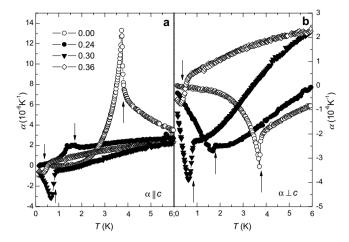


Fig. 1. Temperature dependence of the linear thermal expansion coefficient along (a) and perpendicular (b) to the c-axis for various concentrations of CeRhIn_{5-x}Sn_x. Arrows indicate Néel temperatures.

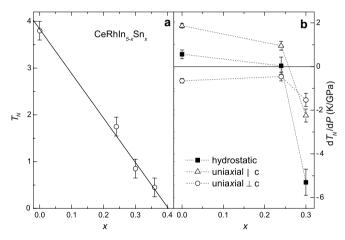


Fig. 2. Evolution of the Néel temperature $T_N(x)$ in CeRhIn_{5-x}Sn_x (a). Note that for x = 0.4 no indication for AF order has been observed above 0.05 K. (b) Corresponding variation of the initial uniaxial and hydrostatic pressure dependences dT_N/dP .

agreement is found with previous thermal expansion measurements [5]. The same samples have also been studied by low-temperature specific heat measurements [4], revealing similar transition temperatures.

As displayed in Fig. 2a, we observe a linear suppression of $T_{\rm N}(x)$, extrapolating to a QCP at $x_{\rm c}\approx 0.4$. Detailed studies of the low-temperature thermal expansion and Grüneisen ratio at $x_{\rm c}$ will be presented elsewhere. Here, we focus on the thermodynamic analysis of the pressure dependences of the AF phase transition. The Ehrenfest relation, $\partial T_{\rm N}/\partial P_{\parallel,\perp} = V_{\rm mol}T_{\rm N}\Delta\alpha_{\parallel,\perp}/\Delta C$ ($V_{\rm mol}$: molar volume) relates the step sizes $\Delta\alpha_{\parallel,\perp}$ and ΔC in thermal expansion and specific heat with the initial ($P\to 0$) uniaxial pressure dependences of the AF phase transition temperature parallel (\parallel) and perpendicular (\perp) to the c-axis. The initial hydrostatic pressure dependence follows then from $\partial T_{\rm N}/\partial P_{\rm h} = \partial T_{\rm N}/\partial P_{\parallel} + 2\partial T_{\rm N}/\partial P_{\perp}$. For CeRhIn₅ this re-

Table 1 Values for the superconducting transition temperature $T_{\rm N}$ and uniaxial and hydrostatic pressure dependences determined from the Ehrenfest relation, see text

X	$T_{N}(K)$	$\frac{\partial T_{\rm N}}{\partial P_{\parallel}}$ (K/GPa)	$\frac{\partial T_{\rm N}}{\partial P_{\perp}}$ (K/GPa)	$\frac{\partial T_{\rm N}}{\partial P_{\rm h}}$ (K/GPa)
0.00	3.8 ± 0.2	1.9 ± 0.1	-0.7 ± 0.1	0.6 ± 0.2
0.24	1.75 ± 0.2	1 ± 0.2	-0.5 ± 0.2	0 ± 0.4
0.30	0.85 ± 0.2	-2.2 ± 0.3	-1.5 ± 0.3	-5.3 ± 0.6
0.36	0.45 ± 0.2			

sults in a value of 0.6 K/GPa, in agreement with electrical resistivity measurements under hydrostatic pressure [1]. The evolution of hydrostatic and uniaxial pressure dependences with x is displayed in Fig. 2b with the values given in Table 1.

Whereas the in-plane pressure dependence $\partial T_{\rm N}/\partial P_{\perp}$ is always negative, a sign change is observed for the pressure dependence along the c-axis, as well as for the hydrostatic pressure dependence at $x\approx 0.24$. Interpreting this observation in terms of the Doniach diagram suggests the x=0 system to be located on the left side of the maximum in $T_{\rm N}(P)$. Increasing the 4f-conduction electron hybridization with Sn-substitution of In shifts the system towards the non-magnetic side, thus yielding $\partial T_{\rm N}/\partial P_{\rm h} < 0$. Interestingly, the strongest effect of Sn-doping is observed for the c-axis uniaxial pressure dependence indicating that the ground state properties are most sensitive to changes of the c-axis parameter. A similar observation has also been made for CeCoIn_{5-x}Sn_x [6].

To summarize, we have studied the HF antiferromagnet $\operatorname{CeRhIn}_{5-x}\operatorname{Sn}_x$ by low-temperature thermal expansion measurements. A linear suppression of $T_{\rm N}(x)$ has been observed extrapolating to a QCP at $x_{\rm c}\approx 0.4$. For the hydrostatic pressure dependence $\partial T_{\rm N}/\partial P$, a sign change near x=0.24 is found, compatible with the Doniach diagram and an increase of the 4f-conduction electron hybridization with x. $\operatorname{CeRhIn}_{5-x}\operatorname{Sn}_x$ is ideally suited to study the nature of the QCP in "115" systems, because no magnetic fields are needed to suppress superconductivity which covers the QCP in $\operatorname{CeCoIn}_5(P=0)$ and CeRhIn_5 close to its critical pressure.

Acknowledgements

Work at Dresden supported in part by the Fonds der Chemischen Industrie. Work at Los Alamos performed under the auspices of the US Department of Energy Office of Science.

References

- [1] H. Hegger et al., Phys. Rev. Lett. 84 (2000) 4986.
- [2] T. Park et al., Nature 440 (2006) 65.
- [3] R. Küchler et al., cond-mat/0606406.
- [4] E.D. Bauer et al., Physica B 378–380 (2006) 142.
- [5] T. Takeuchi et al., J. Phys. Soc. Jpn. 70 (2001) 877.
- [6] J.G. Donath et al., Physica B 378-380 (2006) 98.