Low-temperature magnetostriction of Sr₃Ru₂O₇

P. Gegenwart^{a,b,*}, F. Weickert^a, R.S. Perry^{b,c,d}, Y. Maeno^{c,d}

^aMax-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany ^bSchool of Physics and Astronomy, University of St. Andrews, Fife KY16 9SS, Scotland ^cInternational Innovation Center, Kyoto University, Kyoto 606-8501, Japan ^dDepartment of Physics, Kyoto University, Kyoto 606-8502, Japan

Abstract

Itinerant-electron metamagnetism in the bilayer ruthenate $Sr_3Ru_2O_7$ is studied by *c*-axis magnetostriction measurements on a highquality single crystal in magnetic fields up to 18 T and at temperatures down to 20 mK. The positive linear magnetostriction coefficient suggests an initial decrease of the magnetization under *c*-axis uniaxial pressure. A highly enhanced magnetic Grüneisen parameter $\Gamma_H = 106$ indicates a strong magnetoelastic coupling. The system is particularly sensitive to *c*-axis strain.

Keywords: Quantum criticality; Metamagnetism; Sr₃Ru₂O₇

The coupling of magnetic and lattice degrees of freedom leads to interesting phenomena such as incommensurate lattice distortions in spin-Peierls systems [1] or first-order metamagnetic transitions in metals [2]. Recently, the bilayer ruthenate Sr₃Ru₂O₇ attracted much interest because of a new type of quantum critical point that arises from the continuous suppression of the critical temperature $T_{\rm c}$ of a first-order itinerant-electron metamagnetic transition towards absolute zero [3,4]. In this specific case, the field angle acts as tuning parameter and the quantum critical end point occurs for a magnetic field of about 8 T applied along the c-axis. Subsequent investigations on high-quality single crystals ($\rho_{res} = 0.4 \,\mu\Omega \,cm$) have revealed an anomalous region of enhanced and temperatureindependent electrical resistivity, which is bounded by two first-order transitions at 7.85 and 8.07 T and possibly related to novel phase formation linked to quantum critical fluctuations [5].

In this paper, we use high-resolution capacitive dilatometry to study the magnetoelastic coupling in $Sr_3Ru_2O_7$. The linear magnetostriction $\Delta L_c(H, T = \text{const.})/L_c$ along the *c*-axis has been measured on a high-quality single crystal at temperatures down to 20 mK and fields $H \parallel c$ up to 18 T. The magnetostriction coefficient $\lambda_c(B) =$ $d(\Delta L_c/L_c)/d(\mu_0 H)$ is determined from the differential length change in field intervals of 0.01 T.

The magnetostriction is displayed in Fig. 1. In the metamagnetic region near 8 T, three step-like increases of the length are resolved, whose positions in field perfectly match with those of peaks in the real part χ' of the acsusceptibility [5]. Whereas the first anomaly is possibly a cross-over, clear peaks in χ'' at the second and third anomalies are indicative of (weak) first-order transitions. They mark the boundaries of a state in which the electrical resistivity is highly enhanced and almost temperature-independent indicative of dominating elastic scattering [5].

The Maxwell relation $\lambda_c V_m = -\partial M/\partial P_c|_{P_c \to 0}$ with the molar volume V_m and *c*-axis uniaxial pressure P_c relates the magnetostriction coefficient to the uniaxial pressure dependence of the magnetization in the limit of zero pressure [1]. Since $\lambda_c > 0$, the magnetization *initially* decreases under uniaxial pressure along the *c*-axis and the system is tuned away from the metamagnetic quantum critical end-point towards the paramagnetic regime. Interestingly, a first-order pressure-induced ferromagnetic

^{*}Corresponding author. Max-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany. Tel.: +49 351 4646 2324; fax: +49 351 4646 2360.

E-mail address: gegenwart@cpfs.mpg.de (P. Gegenwart).

Fig. 1. Linear magnetostriction $\Delta L_c/L_c$ of Sr₃Ru₂O₇ measured at T = 20 mK for $H \parallel c$ along the *c*-axis. Inset enlarges metamagnetic transitions.

Fig. 2. Linear *c*-axis magnetostriction coefficient λ_c of Sr₃Ru₂O₇ vs field $H \parallel c$ at various different temperatures. Inset displays temperature dependence (on a log-scale) of λ_c at main peak. Solid line indicates $T^{-1.5}$ divergence.

ordering transition at $T_c \approx 80$ K, probably related to a change in the RuO₆ octahedron rotation angle, has been observed at a small *c*-axis uniaxial pressure of only 0.1 GPa [6]. Thus, Sr₃Ru₂O₇ is very sensitive to structural modifications.

Fig. 2 displays the linear magnetostriction coefficient $\lambda_c(B)$ at various temperatures for fields close to the metamagnetic region. The field and temperature depen-

dence of λ_c strongly resembles that of the real part of the ac-susceptibility [5] and differential magnetization [7]. The low-temperature λ_c value at the main peak is of the same order of magnitude as that observed at the metamagnetic cross-over in CeRu₂Si₂ [8,9] providing evidence for a similar strong magnetoelastic coupling in both systems. In CeRu₂Si₂, the λ_c peak value follows a smooth T^2 dependence below 1.5 K, indicative of a cross-over that saturates in a Fermi-liquid ground state [9]. In contrast, for Sr₃Ru₂O₇ a $T^{-1.5}$ divergence is cut off around 0.7 K (see inset of Fig. 2) in agreement with a critical point at that temperature [5].

We now turn to the analysis of the magnetic Grüneisen parameter that is defined as $\Gamma_H = -(d \log H^*/d \log V)_S$ and quantifies at constant entropy the volume dependence of a characteristic field H^* . For Sr₃Ru₂O₇, using the isothermal compressibility $\kappa_T = 6.7 \times 10^{-12} \text{ Pa}^{-1}$ [10] and hydrostatic pressure dependence of the metamagnetic field $\mu_0 dH_m/dp = +5.6 T/GPa$ [11], the magnetic Grüneisen ratio equals $\Gamma_H = (\kappa_T \cdot H_m)^{-1} (d H_m/dp) = +106$. Γ_H can also be derived from the ratio of the volume magnetostriction to the magnetic susceptibility: $\Gamma_H = V_{\text{mol}}/(\kappa_T \mu_0 H)$. λ_V/χ . At present, we cannot investigate ab-plane length changes upon applying the field along the c-axis. If the volume magnetostriction is determined by λ_c only, using the differential susceptibility data of [7], a value of 160 ± 30 that exceeds Γ_H is obtained. Thus, the in-plane magnetostriction coefficient must be negative and around five times smaller in magnitude than λ_c . This also suggests an increase of the lattice anisotropy upon tuning through the metamagnetic transitions.

To summarize, a highly enhanced magnetic Grüneisen parameter indicative of a strong magnetoelastic coupling has been observed in $Sr_3Ru_2O_7$. The system is particularly sensitive to *c*-axis length changes.

We thank A. P. Mackenzie for helpful discussions and the Deutsche Forschungsgemeinschaft and Royal Society (UK) for financial support.

References

- [1] U. Ammerahl, et al., Z. Phys. B 102 (1997) 71.
- [2] T. Goto, K. Fukamichi, H. Yamada, Physica B 300 (2001) 167.
- [3] S.A. Grigera, et al., Science 294 (2001) 329.
- [4] S.A. Grigera, et al., Phys. Rev. B 67 (2003) 214427.
- [5] S.A. Grigera, et al., Science 306 (2004) 1154.
- [6] S.-I. Ikeda, et al., J. Phys. Soc. Japan. 73 (2004) 1322.
- [7] T. Tayama, R.S. Perry, T. Sakakibara, unpublished results.
- [8] A. Lacerda, et al., Phys. Rev. B 40 (1989) 8759.
- [9] F. Weickert, et al., Physica B 359-361 (2005) 68.
- [10] H. Shaked, et al., Phys. Rev. B 62 (2000) 8725.
- [11] M. Chiao, et al., Physica B 312-313 (2002) 698.