Search for a quantum critical end-point in $\text{CeRu}_2(\text{Si}_{1-x}\text{Ge}_x)_2$ F. Weickert^{a,*}, P. Gegenwart^a, J.A. Mydosh^{a,1}, F. Steglich^a, C. Kanadani^b, Y. Tabata^b, T. Taniguchi^b, S. Kawarazaki^b

^aMax-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany ^bOsaka University, Toyonaka 560-0043, Japan

Abstract

We use high-resolution dilatometry and electrical resistivity down to 20 mK and millitesla magnetic field steps to search for a possible quantum critical (end-) point (QC(E)P) in $CeRu_2(Si_{1-x}Ge_x)_2$ with x = 0.00 and 0.02 at the metamagnetic transition (MMT), $B_m = 7.8$ and 6.8 T, respectively. We do not find any evidence for QCEP since (i) the peak height and FWHM of the magnetostrictive anomaly saturate below 0.2 K and (ii) the thermal expansion and the electrical resistivity indicate the formation of a Landau–Fermi liquid (LFL) state below 0.3 K even at $B = B_m$. We speculate that the metamagnetic crossover represents a Fermi surface reconstruction that is fully completed below 0.2 K.

Keywords: CeRu₂(Si_{1-x}Ge_x)₂; Heavy fermion; Metamagnetism; Quantum critical end-point

Due to the great interest in itinerant electron metamagnetism and its putative quantum critical (end-) point (QC(E)P), exhibited by a variety of different materials (MnSi [1], URu₂Si₂ [2], Sr₃Ru₂O₇ [3]), there has been a "resurrection" of the CeRu₂Si₂ [4] system. This prototype 4f heavyfermion compound, long known to exhibit a metamagnetic transition associated with large changes in both Fermi surface and magnetism at 7.8 T, has been proposed as a direct analogue to the above materials [4]. If valid, the low-temperature properties should display the characteristics of a QCP, i.e., diverging experimental and non-Fermi liquid (NFL) behavior or the formation of novel phases.

In this work we determine, systematically and on an ultrafine field scale, the magnetostriction, thermal expansion and resistivity in a narrow field interval spanning the metamagnetic transition down to 20 mK on CeRu₂(Si_{x-1}Ge_x)₂ with x =0.00 and 0.02. The single crystal samples were grown by travelling floating zone for x = 0.00 and

^{*}Corresponding author. Fax: +4935146462360.

E-mail address: weickert@cpfs.mpg.de (F. Weickert).

¹Also at Kamerlingh Onnes Lab, Leiden University.

the tri-arc Czochralski method for x = 0.02. Residual resistivities (RR) are very similar: 1.6 and $1.8 \mu\Omega$ cm with RR ratios 43 and 37, respectively. Length changes and resistivity were detected utilizing a high resolution capacitive dilatometer and an AC four-point probe, both adapted to a dilution cryostat reaching 15 mK at fields up to 18 T.

In the magnetostriction coefficient $\lambda = (1/L)\partial\Delta L(T, B)/\partial B$ we observe a sharp anomaly at the metamagnetic transition (MMT) for both concentrations (Fig. 1). This maximum shifts for x = 0.02 to 6.8 T and broadens. At lower temperatures the anomalies become sharper. However, below 0.2 K the peak height and the FWHM of the maxima saturate according to a T^2 law (solid and dotted lines in the inset of Fig. 1). This means that there is no observable change of the MMT to a first-order or continuous phase transition with decreasing temperature.

In Fig. 2 the linear thermal expansion coefficient $\alpha = (1/L)\partial \Delta L(T, B)/\partial T$ of the undoped system is shown for magnetic fields very close to the MMT. For temperatures below 0.3 K the coefficient α displays a linear temperature dependence, thus

Fig. 1. Coefficient of linear magnetostriction λ along the *c*-axis of CeRu₂(Si_{1-x}Ge_x)₂ for x = 0 (open symbols) and x = 0.02 (closed symbols) vs. magnetic field $B \parallel c$ at different temperatures. Inset displays temperature dependence of peak height λ_{max} (circles) and FWHM (triangles). Solid and dotted lines indicate T^2 dependence and the saturation as $T \rightarrow 0$.

Fig. 2. Coefficient on linear thermal expansion α as α/T vs. *T* (logarithmic scale) at various magnetic fields $B \parallel c$ for CeRu₂Si₂.

 α/T is constant—a hallmark of Landan–Fermi liquid (LFL) behavior. By fine-tuned magnetic fields we can demonstrate that α changes continuously from large positive ($B < B_m$) to large negative ($B > B_m$) values and not suddenly as in previous publications [5,6]. The α -coefficient in the doped system shows generally the same behavior (not displayed) but with about 40% smaller values.

The resistivity of CeRu₂(Si_{1-x}Ge_x)₂ (Fig. 3) exhibits LFL behavior for both Ge concentrations (a) x = 0.00 and (b) x = 0.02. Here the temperature-dependent part of the resistivity has a T^2 behavior ($\Delta \rho = AT^2$). The LFL region of CeRu₂Si₂ is smaller ($T \le 0.3$ K) than that for the doped system ($T \le 0.5$ K). From the $T \rightarrow 0$ intercept, the *A* coefficient can be determined which is a measure of the quasiparticle scattering cross section and proportional to the quasiparticle mass. For fields near the MMT (7.75, resp. 7 T in Fig. 3), the *A* coefficient increases in comparison to lower fields, but does not diverge; after the transition *A* decreases strongly (e.g. 8.1, resp. 7.5 T).

In conclusion, by studying the thermal expansion and resistivity of $\text{CeRu}_2(\text{Si}_{1-x}\text{Ge}_x)_2$ it is not possible to tune the system from a MMT to a QCEP or even to a first-order phase transition. Thus a different tuning parameter would be needed. Yet, the pseudo-diverging behavior of

Fig. 3. Temperature dependent part of electrical resistivity $\Delta \rho = \rho(T, B) - \rho_0(B)$ as $\Delta \rho/T^2$ vs. *T* (logarithmic scale) for (a) CeRu₂Si₂ and (b) CeRu₂(Si_{0.98}Ge_{0.02})₂ at different magnetic fields $B \parallel c$.

CeRu₂(Si_{1-x}Ge_x)₂ at $T \ge 0.5$ K misleadingly suggests that the system appears to be close to a QCP. From our experiments, the low temperature region

 $(T \le 0.3 \text{ K})$ of the *B*-*T* phase diagram clearly forms a LFL state in strong contrast to the other materials. This, we attributed to a Fermi surface reconstruction [7] that leads to spin polarization and a local-moment ferromagnetism above $B_{\rm m}$.

We acknowledge Huang Ying Kai and T.J. Gortenmulder for their help in the sample preparation and analysis.

References

- [1] C. Pfleiderer, et al., Nature 414 (2001) 6862.
- [2] N. Harrison, et al., Phys. Rev. Lett. 90 (2003) 096402.
- [3] S. Grigera, et al., Science 294 (2001) 329.
- [4] J. Flouquet, et al., Physica B 319 (2002) 251;
- J. Flouquet, et al., J. Magn. Magn. Mater. 272–276 (2004) 27.
- [5] K. Matsuhira, et al., J. Phys. Soc. Japan 68 (1999) 7.
- [6] C. Paulsen, et al., J. Low Temp. Phys. 81 (1990) 317.
- [7] H. Aoki, et al., Phys. Rev. Lett. 71 (1993) 2110.