
                                                                                       
                                                                                     

                                                                                    
                

                                                                              
                                                                   

                                                                                           
                                                     

                                                                                       
                                                    

                                                                                    
                               

                                                                               
                                          

                                                                                
                                                                                        

                
                                                                                              

                                                              
                                                                                        

       
                                                                                            

                                                                        
                                                                                         

                                                        
                                                                                       

                          
                                                                                     

                                                           
                                                                                       

                                                                                  
       

                                                                                      
                                                                                       

                                                                                   
                                                           

                                                                       
                                       

                                                                           
          

                                                              
                                 

                                                              
Hall-effect evolution across a heavy-
fermion quantum critical point
S. Paschen1, T. Lühmann1, S. Wirth1, P. Gegenwart1, O. Trovarelli1,
C. Geibel1, F. Steglich1, P. Coleman2 & Q. Si3

1Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40,
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A quantum critical point (QCP) develops in a material at absolute
zero when a new form of order smoothly emerges in its ground
state. QCPs are of great current interest because of their singular
ability to influence the finite temperature properties of materials.
Recently, heavy-fermion metals have played a key role in the
study of antiferromagnetic QCPs. To accommodate the heavy
electrons, the Fermi surface of the heavy-fermion paramagnet is
larger than that of an antiferromagnet1–3. An important unsolved
question is whether the Fermi surface transformation at the QCP
develops gradually, as expected if the magnetism is of spin-
density-wave (SDW) type4,5, or suddenly, as expected if the
heavy electrons are abruptly localized by magnetism6–8. Here
we report measurements of the low-temperature Hall coefficient

(RH)—a measure of the Fermi surface volume—in the heavy-
fermion metal YbRh2Si2 upon field-tuning it from an antiferro-
magnetic to a paramagnetic state. RH undergoes an increasingly
rapid change near the QCP as the temperature is lowered,
extrapolating to a sudden jump in the zero temperature limit.
We interpret these results in terms of a collapse of the large Fermi
surface and of the heavy-fermion state itself precisely at the QCP.

The compound YbRh2Si2 investigated here appears to be one of
the best suited heavy-fermion metals known in which to study the
evolution of the Hall effect across a QCP. Magnetic susceptibility
and specific heat indicate that this compound orders antiferro-
magnetically via a second-order phase transition at very low
temperatures (Néel temperature T N ¼ 70 mK)9. The antiferro-
magnetic nature of the transition is supported by NMR data10.
Neutron scattering experiments to directly detect the magnetic
order are not available to date, presumably owing to the smallness
of the ordered moment11. T N is continuously suppressed down to
the lowest experimentally accessed temperatures by application of a
small magnetic field Bc (B 1c < 0.7 T for a field along the magneti-
cally hard c axis, B 2c < 60 mT for a field within the easy tetragonal
plane)12. In addition, isothermal magnetostriction measurements
indicate that the transition remains of second order down to at least
15 mK (ref. 13). Although a change from second to first order at
even lower temperatures can, of course, not be strictly ruled out, the
non-Fermi liquid behaviour observed for three decades of tempera-
ture (10 mK , T , 10 K)12 is best described within a quantum
critical picture. The use of tiny fields permits one to reversibly access
the QCP without the introduction of additional disorder and
without altering the character of the underlying zero-field tran-
sition14. Moreover, unlike the case of several other heavy-fermion
compounds15 (and the high-T c superconductors), the QCP is not
hidden by superconductivity. This is in spite of the high quality of
the YbRh2Si2 single crystals investigated here (residual resistivities
of ,1mQ cm, ref. 12). The scaling analysis of the thermodynamic
and dynamical properties (specific heat, magnetic susceptibility,
electrical resistivity) suggests12 that the field-induced QCP in
YbRh2Si2 is of local6–8 rather than of itinerant4,5 type, similar to
the doping-induced QCP in CeCu62xAux (ref. 6). Hall-effect
measurements may be used to access a static electronic property,
namely the Fermi surface volume, for which clear-cut theoretical
predictions exist for different types of QCP7,8,16. The study presented
here is, to our knowledge, the first systematic Hall-effect measure-
ment at a heavy-fermion QCP.

The Hall effect, usually a rather complex quantity, appears to be
surprisingly simple here, both in vanishingly small and in finite
magnetic fields. Outside the quantum critical region, the Hall
resistivity is linear in field, resembling the behaviour of simple
metals. Furthermore, our analysis of the temperature-dependent
Hall coefficient in terms of the anomalous Hall effect (Fig. 1a,
Methods, and refs 17 and 18) reveals that the low-temperature
(below about 1 K) Hall coefficient is dominated by its normal
contribution. These features imply that the low-temperature Hall
coefficient can be used, to a good approximation, as a measure of
the Fermi surface volume. In the absence of photoemission and de
Haas–van Alphen studies (the latter presumably never being avail-
able because of the very low critical magnetic field), and of
electronic bandstructure calculations, this is, so far, the only
information on the Fermi surface volume of YbRh2Si2. At zero
magnetic field, the data measured at the lowest temperatures tend to
saturate at the value of the normal Hall coefficient extracted from
the data between 7 K and room temperature (Fig. 1a). This indicates
that, at B ¼ 0, the Fermi surface volume is the same at the lowest
temperatures as it is at high temperatures. Thus, even though there
is evidence for the onset of Kondo screening at approximately 20 K
(refs 9 and 12) and for surprisingly large effective quasiparticle
masses in the antiferromagnetically ordered state close to the QCP12,
the local moments do not, at the lowest temperatures and at B ¼ 0

               

                                                  881                              



appear to be incorporated into the Fermi surface. In the static
sense1–3, YbRh2Si2 may, in its unconventional antiferromagnetic
state at B , B c, therefore not be classified as a ‘heavy-fermion’
metal.

In the intermediate temperature range, between approximately
70 mK and 7 K, there is an additional contribution DRH which is
not due to the anomalous Hall effect (Fig. 1a). In the main part of
Fig. 1b we show that, between 0.7 and 5 K, the cotangent of the Hall

angle is linear in T2 (whileDr / T), indicating that the longitudinal
and transverse scattering rates are different19. This type of behaviour
is well known in high-T c copper oxides, where it has been taken as
evidence for spin-charge separation19. Note, however, that for
YbRh2Si2 the temperature range where this relation holds (inset
of Fig. 1b), is narrower than that where the non-Fermi liquid (NFL)
behaviour Dr / T is observed (from 100 mK to almost 10 K,
ref. 12), even if YbRh2Si2 is field-tuned to quantum criticality

Figure 2 Magnetic field dependence of the Hall effect of YbRh2Si2. a, Single-field

experiment. Typical isotherms of the Hall resistivity r H, corrected for its anomalous

contribution r H,a(B) (equation (6)), versus magnetic field B 1 ¼ m 0H 1 (kc-axis). The solid

curves represent best fits,
R

R̃H(B)dB (see text), to the data. The derivative of the fit at

75mK is plotted on the right axis. b, Crossed-field experiment. Initial slope R H,

normalized to its value at the crossover field B 0, of all measured r H versus B 1 curves as a

function of B 2/B 0, at 45, 65, 75 and 93mK. The solid lines represent best fits (see text) to

the data. R H decreases by a factor of ,1.5 upon going from the zero-field

antiferromagnetic state to the field-induced paramagnetic state. In a spin-density-wave

(SDW) picture, R H is expected to evolve as the magnetic order parameter
7. In YbRh2Si2,

the ordered moment at B ¼ 0 was estimated to be,0.002m B per Yb (ref. 11). Thus, the

change in R H corresponds to a factor of,750m B
21. The corresponding change of R H by

a factor of,30 m B
21 observed for the SDW system Cr12xVx (refs 22 and 26) was already

considered a giant effect, possibly connected with bandstructure nesting effects30. By

comparison, the effect in YbRh2Si2 is about 25 times as large. Even in the absence of both

experimental and theoretical studies of the electronic bandstructure of YbRh2Si2, we

judge this effect far too large to be accounted for within an SDW picture. The same

argument holds even if the second-order transition observed in the measured

temperature range (.15mK) turned over into a first-order one at T , 15mK. The inset in

b displays r H versus B 1 curves at three different values of the tuning field B 2 ¼ m 0H 2

( ’ c-axis) at 65mK. The solid lines represent best fits, as in a. Similar data have been

obtained at the other temperatures (not shown). The sketches in a and b illustrate the

experimental set-up. Error bars, standard errors.

Figure 1 Temperature dependence of the Hall effect of YbRh2Si2. a, Temperature-

dependent initial Hall coefficient R H(T ), obtained from the initial slope of Hall resistivity

versus field isotherms (Fig. 2a). The red curve corresponds to the red fit to the data from

the inset.DR H designates the difference between the data and the extrapolation of the fit.

The green triangles correspond to R H data obtained from the crossed-field experiment for

large values of the tuning field B 2 (R
1
H values of fits to R H(B 2), see text and Fig. 2b),

suggesting that the Fermi surface volume is distinctly larger in the field-induced

paramagnetic state than in the antiferromagnetic state. Inset in a, initial Hall coefficient

R H versus product of electrical resistivity r and magnetic susceptibility x (lower axis) and

versus x (upper axis), where temperature is an internal parameter. The full red (black) line

is a linear fit according to the anomalous Hall-effect relation equation (3) (equation (5)) to

the data between 7 and 300 K (90 and 300 K), the dashed lines are the extrapolations to

T ¼ 0. b, Cotangent of the Hall angle cot V H (;r/(R HB )) as a function of T 2, taken at

B ¼ 1 T. The red line (also in the inset) corresponds to a fit, cot V H ¼ C 1 þ C 2T
2,

where C 1 and C 2 are constants. Inset in b, difference between data and fit (red line) of

main panel. The black line is a guide to the eye. Below 0.7 K, the data deviate considerably

from the fit. The green squares correspond to cotV H data obtained from the crossed-field

experiment at the respective crossover fields (B 2 ¼ B 0), indicating that, closer to the

QCP, these deviations are even stronger. Thus, the cot V H ¼ C 1 þ C 2T
2 behaviour

appears to be a property of the regime at elevated temperatures where quantum critical

fluctuations start to influence the physical properties, but it does not extend over the entire

temperature region down to the QCP. Error bars, standard errors.
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(green squares in inset). The same may hold true for CeCoIn5

(ref. 20).
In our field-dependent Hall-effect measurements on YbRh2Si2,

the magnetic field plays dual roles, as both a ‘tuning’ and a ‘probe’
field. On the one hand, the coupling between the field and the Yb3þ

moments tends to align the latter: it is this Zeeman-like coupling
that tunes the ground state of the material, ultimately suppressing
the antiferromagnetism and creating the QCP. On the other
hand, the magnetic field also generates a weak Lorentz force on
the underlying electrons, which produces the Hall response. The
weak orbital coupling responsible for the Lorentz force does not
appreciably change the ground state, so that, to a good approxi-
mation, we can discuss the two couplings independently. The single
crystals of YbRh2Si2 are thin platelets oriented along the a–b plane,
and practical Hall-effect measurements require a current and Hall
voltage lying in this plane. This allows for two distinct types of
experiment, namely ‘transverse tuning’ where the tuning field B 1 is
parallel to the c axis, perpendicular to the current, and ‘longitudinal
tuning’ where the tuning field B 2 lies parallel to the current in the
basal plane (compare schematics in Fig. 2a and b). The longitudinal
field B 2 produces essentially no Hall response (see Supplementary
Methods 1), and serves only to tune the state: a separate, crossed
probe field dB 1 along the c axis is required to measure the Hall
response. In this longitudinal (crossed-field) experiment, the Hall
resistivity rH is a direct measure of the field-tuned (linear-response)
Hall coefficient RH(B 2):

RHðB2Þ;
B1!0
lim rHðB2;B1Þ=B1 ð1Þ

In the transverse (single-field) case, on the other hand, the

magnetic field simultaneously tunes the state and probes the Hall
response, and the differential Hall coefficient ~RHðB1Þ is:

~R

~RHðB1Þ;
drHðB1Þ

dB1
¼

›rHðB1Þ

›B1

� �
orb

þ
›rHðB1Þ

›B1

� �
zeeman

¼ RHðB1Þþ
›rHðB1Þ

›B1

� �
zeeman

ð2Þ

The orbital (‘probing’) contribution is, according to the Kubo
formalism, just the generalized definition of a Hall coefficient (see
Supplementary Methods 2). The Zeeman (‘tuning’) term is not
related to a readily measurable linear-response quantity.

We first discuss the results of the single-field experiment.
Figure 2a displays several representative isotherms of the Hall
resistivity rH, corrected for its anomalous contribution rH,a(B)
(see Methods), versus B 1. rH – rH;a shows a linear low-B 1 beha-
viour with larger slope, and a linear high-B 1 behaviour with smaller
slope. The crossover between the two regimes broadens and shifts to
higher B 1 with increasing temperature. For a quantitative analysis of
the data we choose ~RHðBÞ ¼ R1

H 2 ðR1
H 2R0

HÞgðBÞ as a fitting func-
tion, where R0

H is the zero-field Hall coefficient and R1
H is the

asymptotic differential Hall coefficient at large fields. g(B) is a
crossover function that changes from unity at low fields to zero at
large fields, which we parameterize as gðBÞ ¼ 1=½1þ ðB=B0Þ

p�:Here,
B 0 is the crossover field and p determines the sharpness of the
transition, which has a width G < B 0/p when p is large. For p ! 1,Ð
~RHðBÞdB has a sharp kink at B ¼ B 0, corresponding to a step in

Figure 3 Temperature–field phase diagrams of YbRh2Si2. a, The red data points

correspond to the B 0 values (crossover positions in the Hall-effect measurements)

determined from the fits to the data in Fig. 2a (single-field experiment). Note that the

horizontal bars represent the error in the determination of B 0 rather than the width of the

crossover. The red dotted line denoted T Hall is the best linear fit to all data up to 0.5 K. It

extrapolates at zero temperature to,0.7 T, the critical field B 1c for the direction parallel

to the c-axis. The green data points correspond to 11B 0 determined from the fits to the

data in Fig. 2b (crossed-field experiment). The full and dotted black curves represent the

field dependence of the Néel temperature T N and the crossover temperature T * to a

Dr / T 2 law, respectively, as determined from iso-field r(T ) data12. The latter differs

qualitatively from the cross-over line determined from a scaling analysis of both specific

heat and resistivity data, yielding T cross / (B 2 B c) (ref. 14). The inset shows the full-

width at half-maximum (FWHM) of dR̃H(B 1)/dB 1 in a log–log plot (red points). The red

solid line, / T a, a ¼ 0.5 ^ 0.1, is a best fit to these data. As in the main panel, the

green dots correspond to the crossed-field experiment. For both the main panel and the

inset, the red and green data points agree within the error bars. b, Three-dimensional

representation of the field derivative of the crossover function g(B) defined in the text. The

coloured curves represent arbitrary isotherms of dg(B)/dB, obtained using both the B 0(T )

fit of a and a power law fit to the corresponding p(T ) data (not shown). The field B

corresponds to B 1kc or to 11B 2 ’ c. The positions B 0 are designated by broken drop

lines and the black dotted line denoted T Hall in the T – B plane. The antiferromagnetic ( AF)

phase and the region where Dr / T 2 ( LFL) are marked as black and hatched areas,

respectively, in the T – B plane. At the lowest temperatures, dg(B)/dB may be

interpreted as indicating the change of the effective carrier concentration. In the limit

T ! 0, dg(B)/dB is a d-function (dotted line in the T ¼ 0 plane), separating the states of

small and large Fermi surface (FS) at B ¼ B 1c ¼ 11B 2c. Error bars, standard errors.
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~RHðBÞ itself. The fits to the data are shown as solid lines in Fig 2a. For
one temperature the derivative of the fit, corresponding to R̃H(B 1),
is shown as well. The crossover fields B 0 obtained from these fits are
included as red dots in the temperature–field (T – B) phase diagram
of YbRh2Si2 (Fig. 3a). A linear fit to these points (dashed red line in
Fig. 3a denoted THall) extrapolates at zero temperature to the critical
field B 1c < 0.7 T for the disappearance of antiferromagnetic order
and the QCP. Thus, the crossover is directly related to the QCP. The
sharpness of the crossover is best quantified by the full-width at
half-maximum (FWHM) of dR̃H/dB 1, which represents the change
of slope of rH(B 1). The temperature dependence of the FWHM
values is well described by a pure power law, FWHM / Ta,
a ¼ 0.5 ^ 0.1 (inset of Fig. 3a), suggesting that, at zero tempera-
ture, the crossover is infinitely sharp (FWHM ¼ 0).

To understand the origin of this sharp feature, we now turn to the
crossed-field measurement of the linear-response Hall coefficient,
equation (1). The inset of Fig. 2b displays rH(B 1) curves taken at
65 mK for different values of the longitudinal tuning field B 2. With
increasing B 2 the linear-response Hall coefficient RH decreases. For
a quantitative analysis we fit, as above,

Ð
~RHðBÞdB to the rH(B 1) data

(solid lines in the inset of Fig. 2b). As opposed to the single-field
experiment, R0

H ¼ RH is now the only parameter to consider. RH,
normalized to its value at the crossover field B 0, is plotted in the
main panel of Fig. 2b as a function of the normalized tuning field
B 2/B 0. Data obtained in the same way at 45, 75 and 93 mK are
included as well. RH decreases as a function of B 2 by a factor of
,1.5. In a simple one band model, this corresponds to an increase in
the charge carrier concentration from ,2 to ,3 holes per YbRh2Si2

formula unit. The crossover sharpens up as the temperature is
lowered. For a quantitative analysis, we may now fit the crossover
form RHðBÞ ¼ R1

H 2 ðR1
H 2R0

HÞgðBÞ to the R H(B 2) data (solid
curves in main panel of Fig. 2b). The R1

H values obtained for
these four temperatures are included as green triangles in the
main part of Fig. 1a, showing that the Hall coefficient in the field-
induced Landau Fermi liquid (LFL) state (compare Fig. 3a) at very
low temperatures is substantially smaller than in the B ¼ 0 anti-
ferromagnetically ordered state. The 11B 0 and FWHM values
obtained from the above fits are included as green dots in Fig. 3a
and its inset. The factor of 11 accounts for the fact that the tuning
field B 2 is applied in the easy tetragonal plane of YbRh2Si2 where,
owing to the magnetic anisotropy, the action of a magnetic field is
known to be ,11 times as strong as along the magnetically hard
c axis12. For both quantities, the green and red data points agree
within the error bars. Thus, the linear Hall response RH(B 2) of the
crossed-field measurement and the differential Hall response
R̃H(B 1) of the single-field measurement can be described by the
same functional form, and the respective crossover positions and
crossover widths agree quantitatively. This experimental finding
suggests that the second term on the right hand side of equation (2)
plays a minor role, at least in the experimentally accessed part of the
T – B phase diagram. Therefore, here the single-field experiment
appears to probe essentially the same (linear-response) Hall coeffi-
cient as the crossed-field experiment. However, there is a quanti-
tative difference in the jump heights of R̃H(B 1) and RH(B 2), which
probably reflects the anisotropies in the evolution of the electronic
bandstructure under transverse and longitudinal field-tuning21,
amplified by the likely presence of a multisheeted, anisotropic
Fermi surface.

The phase diagram in the magnetic field–temperature parameter
space can now be illustrated by a three-dimensional representation
of dg(B)/dB (Fig. 3b). g(B) is calculated at arbitrary temperatures
from the linear B 0 versus T fit (dashed red line in Fig. 3a) and a
power law fit (not shown) to the p(T) data obtained from the fits to
rH(B 1) (Fig. 2a) and to RH(B 2) (main panel of Fig. 2b). With
decreasing temperature, the dg(B)/dB curves sharpen up and their
crossover position B 0, designated by drop lines, shifts to lower fields
such that, at zero temperature, a d-function (dashed line in the

T ¼ 0 plane in Fig. 3b) is situated at the QCP.
Thus, the extrapolation of our finite temperature data to zero

temperature indicates the presence of a finite discontinuity (‘jump’)
in the Hall coefficient at the QCP, even though the change in the
magnetic order parameter is infinitesimal11. By contrast, in an
itinerant SDW scenario, the Fermi surface is expected7 to fold
over at the QCP; the Hall coefficient is then continuous across the
QCP, evolving gradually with the size of the antiferromagnetic order
parameter, as is indeed observed experimentally22. (For a more
quantitative comparison, see Fig. 2b legend). Our results hint at a
sudden reconstruction of the Fermi surface at the QCP, correspond-
ing to the sudden loss of ‘mobile’ 4f electrons7,8,16. Loosely speaking,
the volume of the Fermi surface has changed discontinuously. Here
of course, the concept of Fermi surface volume needs to be treated
with some care, for antiferromagnetism breaks translational sym-
metry. YbRh2Si2 may well be an easy-plane incommensurate anti-
ferromagnet, and for this class of antiferromagnet, to linear order in
the magnetic order parameter, the Fermi surface volume is well-
defined in the paramagnetic unit cell. From our data we infer that
the antiferromagnetic ground state has a ‘small’ Fermi surface,
which is the same as the one extracted from the high-temperature
Hall effect data (main panel of Fig. 1a), while the paramagnetic
ground state has a ‘large’ Fermi surface, which presumably incor-
porates the new heavy-fermion states injected by the local moments.

The crossover line THall(B) (Fig. 3) is then interpreted as the finite
temperature signature of the ‘jump’ in the Fermi surface volume. It
delineates the position at which a new large Fermi surface emerges
in the incoherent electron fluid. It is interesting that this precursor
to heavy quasiparticle formation takes place at temperatures well
above the temperature T* (dashed black curve in Fig. 3a) below
which the coherent LFL develops. The existence of a large Fermi
surface in the absence of well-defined quasiparticles is well known in
one-dimensional Luttinger liquids23. It is also reminiscent of the
marginal Fermi liquid behaviour in copper oxide superconductors,
where a large Fermi surface is seen in the angle-resolved photo-
emission studies, but the scattering rate grows linearly, rather than
quadratically, in temperature24,25. Note also that the crossover line
T Hall(B) does not follow the antiferromagnetic transition line
T N(B) (Fig. 3a). Indeed, within experimental resolution, the initial
Hall coefficient shows no change at the zero field Néel temperature
of 70 mK (Fig. 1a). This behaviour contrasts markedly with that
expected in an itinerant SDW, where changes in the Hall coefficient
should coincide with the Néel transition—as is indeed observed for
Cr12xVx (refs 22 and 26). Thus we may discard the possibility that
the observed crossover in the Hall coefficient of YbRh2Si2 is due to a
unit-cell doubling in a symmetry breaking antiferromagnetic
transition.

Even though the crossover at T Hall(B) broadens rapidly with
temperature (compare FWHM(T) in the inset of Fig. 3a and width
of dg(B)/dB in Fig. 3b), so that it can not be followed beyond about
0.5 K, the additional contribution DRH to the initial Hall coefficient
(main panel of Fig. 1a), which we attribute to fluctuations of the
Fermi surface volume, can be discerned up to much higher
temperatures of the order of 10 K. This is precisely the temperature
below which NFL behaviour is observed in thermodynamic and
dynamical properties9,12. This observation makes it very tempting to
hold fluctuations of the Fermi surface volume responsible for the
NFL behaviour observed over this same temperature window. The
fact that the NFL behaviour is observed in the entire phase diagram
above TN and T* (and below 10 K) can be related to the broadness of
the crossover. Interestingly, the spin fluctuation scale T0 (extracted
from a logarithmic fit DC p/T / ln(T0/T) to the specific heat data
for 0.3 K , T , 10 K) and the single-ion Kondo temperature
(which marks the onset of magnetic screening) extracted from a
magnetic entropy measurement are of the same order of magni-
tude9,12.

To summarize, we observe a rapid crossover of the Hall coefficient
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as a function of a control parameter. By extrapolation to T ¼ 0 of
both the Hall crossover and the magnetic phase transition12, we infer
that a large jump of the Hall coefficient occurs at the QCP. We
expect this new insight, made possible primarily by the absence of
superconductivity, to have broad implications for other strongly
correlated electron systems27.  

Methods
Anomalous Hall effect
In general, the Hall effect of materials containing localized magnetic moments is
dominated at high temperatures by an anomalous Hall effect produced by the left-right
asymmetry in incoherent electron scattering processes28. The initial or linear-response
Hall coefficient RH (Hall coefficient in zero-field limit) scales for many materials with the
product of electrical resistivity r and magnetic susceptibility x,

RH ¼ R0 þCrx ð3Þ

where R 0 is the normal Hall coefficient and C is a constant28. The term Crx represents the
anomalous Hall effect due to intrinsic scattering. The temperature-independent extrinsic
anomalous Hall coefficient Rex due to skew scattering by residual defects may be estimated
from

Rex ¼ Cr0x0 ð4Þ

where r0 is the residual resistivity and x0 the residual volume magnetic susceptibility28. A
model including crystalline electric field effects valid in the incoherent regime29, on the
other hand, predicts

RH ¼ R0 þRsx ð5Þ

instead of equation (3). Here R s is a constant and R sx the anomalous Hall-effect term.
In Fig. 1a we have shown that also in YbRh2Si2 the high-temperature Hall coefficient is

dominated by the anomalous Hall effect. Between 7 and 300 K (90 and 300 K), equation
(3) (equation (5)) holds (compare inset of Fig. 1a). The R 0 value obtained for both models
is (2.4 ^ 0.1) £ 10210 m3 C21, which corresponds, in a simple one band model, to a
charge carrier concentration of 2.6 £ 1028 m23 (approximately 2 holes per formula unit of
YbRh2Si2). Considering only the magnetic contribution to r in equation (3) yields similar
values for R0 (ref. 18). Below about 1 K, where the extrapolation of the fit according to
equation (3) (red dashed curve in Fig. 1a) becomes temperature independent and
saturates at the value of the normal Hall coefficient R 0, the intrinsic anomalous Hall effect
is negligible. The extrinsic anomalous Hall effect estimated from equation (4) with
r0 < 1mQ cm and x0 ¼ 0.0035 (Bkc, T ¼ 40 mK) (ref. 12) is less than 4% of R0 and thus
plays a negligible role. Therefore, below about 1 K, the initial Hall coefficient of YbRh2Si2 is
essentially free of any anomalous contribution.

The anomalous Hall effect in finite magnetic fields may, in analogy with equation (3),
be estimated from

rH;aðBÞ ¼ CrðBÞm0MðBÞ ð6Þ

where r(B) and M(B) are the field-dependent electrical resistivity and magnetization,
respectively.

For YbRh2Si2, r(B) (not shown) and M(B) (ref. 12) have been measured in the relevant
geometry (Bkc, current I ’ c). For the parameter C we use the value extracted from the
temperature dependence of the initial Hall coefficient (inset of Fig. 1a). rH,a is less than
20% of rH at all temperatures and fields.
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