

Suppression of the Kondo state in YbRh2Si2 by large magnetic fields

Y. Tokiwa, Philipp Gegenwart, F. Weickert, R. Küchler, J. Custers, J. Ferstl, C. Geibel, F. Steglich

Angaben zur Veröffentlichung / Publication details:

Tokiwa, Y., Philipp Gegenwart, F. Weickert, R. Küchler, J. Custers, J. Ferstl, C. Geibel, and F. Steglich. 2004. "Suppression of the Kondo state in YbRh2Si2 by large magnetic fields." *Journal of Magnetism and Magnetic Materials* 272-276: E87–88. https://doi.org/10.1016/j.jmmm.2003.12.398.

Suppression of the Kondo state in YbRh₂Si₂ by large magnetic fields

Y. Tokiwa*, P. Gegenwart, F. Weickert, R. Küchler, J. Custers, J. Ferstl, C. Geibel, F. Steglich

Max-Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, D-01187 Dresden, Germany

Abstract

We present DC-magnetization, M(B), magnetostriction, $\Delta L(B)/L$, and magnetoresistance $\rho(T,B)$ measurements on high-quality single crystals of YbRh₂Si₂ in magnetic fields up to 18 T and at temperatures down to 15 mK. At $B^{\bigstar} \approx 9.5$ T, both M(B) and $\Delta L(B)/L$ show pronounced changes of their slopes, indicative for a broadened phase transition. For fields above B^{\bigstar} , the coefficient A of the Fermi liquid behavior $\Delta \rho = \rho_0 + A(B)T^2$ is reduced to very small values, indicating the suppression of the Heavy Fermion state.

High-field studies in Ce- and U-based compounds have revealed interesting phenomena such as metamagnetic transitions in CeRu₂Si₂ and UPt₃ [1,2]. In the case of Yb-based valence-fluctuating compounds with characteristic temperatures $T_0 \gtrsim 70 \text{ K}$ like YbCu_{5-x}Ag_x, the application of large magnetic fields induces a metamagnetic-like cross-over to a stable Yb3+ state with localized magnetic moments [3]. Here we report on the high-field behavior of YbRh₂Si₂ which is the only stoichiometric Yb-based HF system with a characteristic Kondo temperature of the order of 25 K [4]. It is located very close to a quantum critical point (QCP), related to very weak antiferromagnetic order at $T_N = 70 \,\mathrm{mK}$. A very small critical magnetic field $B_c = 0.06 \,\mathrm{T}$, applied perpendicular to the tetragonal c-axis, i.e. in the magnetic easy-plane, is sufficient to drive the system through the field-induced QCP [5]. For $B > B_c$ a Landau Fermi liquid (LFL) state is induced with a strongly fielddependent heavy quasiparticle mass [5].

In order to study the high-field properties in YbRh₂Si₂, we performed DC-magnetization M(B),

magnetostriction $\Delta L(B)/L$, and magnetoresistance $\rho(T,B)$ measurements on high-quality single crystals ($\rho_0=1\,\mu\Omega\,\mathrm{cm}$) of YbRh₂Si₂, prepared as described earlier [4]. For the magnetization and magnetostriction measurements a high-resolution Faraday magnetometer and a CuBe dilatometer have been adapted to dilution refrigerators, respectively. The resistivity was measured with the standard four-terminal AC technique.

The low-T magnetization M(B) shows two anomalies (Fig. 1). The low-field anomaly near at 0.09 T is related to the QCP and indicates the polarization of a small moment of $0.1\mu_{\rm B}$. The remaining moment is still fluctuating and contributes to the strongly enhanced Pauliparamagnetic susceptibility [5]. Here, we concentrate on the high-field anomaly. The susceptibility $\gamma = dM/dB$ and magnetostriction coefficient $\lambda = d(\Delta L(B)/L)/dB$ show step-like anomalies at $B^* \approx 9.5 \,\mathrm{T}$, indicative for a broadened second-order phase transition. The polarization at B^{\star} amounts to $1\mu_{\rm B}$. With increasing temperature, the kink in M(B) becomes broader but B^* is not shifted up to 2 K. For B^* the magnetostriction coefficient λ is negative, indicating a shrinking of the Yb-ions. Since the ionic radius of magnetic Yb³⁺ configuration is smaller than that of the non-magnetic

^{*}Corresponding author. Fax: +49-351-4646-3119. *E-mail address:* ytokiwa@cpfs.mpg.de (Y. Tokiwa).

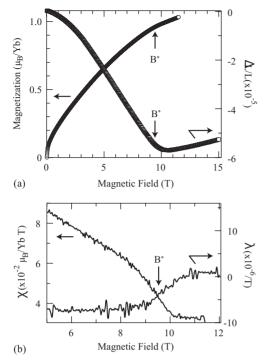


Fig. 1. Magnetization (at 80 mK, left axis) and magnetostriction (at 15 mK, right axis) vs magnetic field $(B \perp c)$ (a). Susceptibility $\chi = dM/dB$ and magnetostriction coefficient $\lambda = d(\Delta L(B)/L)/dB$ vs B (b). Arrows indicate critical field B^{\star} .

Yb²⁺ one, the effective valency increases with increasing field and reaches 3+ at B^{*} . The localization of the felectrons leads to a reduction of the Pauli-paramagnetic contribution to the susceptibility and therefore results in a kink of the magnetization curve.

To get more information on the properties of the heavy quasiparticles around B^* , we analyze the field dependence of the coefficient A, derived from the LFL behavior of the electrical resistivity [5]. As shown in Fig. 2, A(B) is drastically reduced upon increasing B from below to above B^* . Since it has been shown that

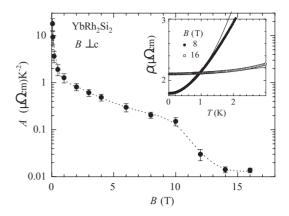


Fig. 2. Magnetic-field dependence of coefficient A (on a logarithmic scale) from Fermi liquid behavior $\rho(T) = \rho_0 + AT^2$ in the electrical resistivity, observed for B > 0.06 T ($B \perp c$) [5]. Dotted line is intended as guide to the eyes. Inset shows ρ vs. T for 8 and 16 T. Solid lines represent T^2 behavior.

the scaling relation $A \propto \gamma^2$ holds at least up to 4 T [5], this indicates a step-like decrease of the quasiparticle mass. Using the value for A/γ^2 determined in [5], a γ -coefficient of about 70 mJ mol⁻¹ K^{-2} , only, is estimated at 16 T.

To conclude, a broadened phase transition at $B^* = (9.5 \pm 0.5) \,\mathrm{T}$ is observed in YbRh₂Si₂ for fields applied in the easy magnetic plane, which indicates the complete localization of the 4f-electrons and the suppression of the HF state.

References

- [1] P. Haen, et al., J. Low Temp. Phys 67 (1987) 391.
- [2] P.H. Frings, et al., Phys. Rev B 31 (1985) 4355.
- [3] N. Tsujii, et al., Physica B 294-295 (2001) 284.
- [4] O. Trovarelli, et al., Phys. Rev. Lett. 85 (2000) 626.
- [5] P. Gegenwart, et al., Phys. Rev. Lett. 89 (2002) 056402.