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Abstract

We investigate a new route to quasi-one-dimensional spin-chain systems which originates from the charge-ordering
transition out of a homogeneous mixed-valence state. We present evidence that Yb4As3 and P, Sb doped mixed crystals

are well described by this mechanism. Many thermodynamic and low-temperature transport heavy-fermion-like
properties can be explained by the existence of low-lying quasi-one-dimensional spin excitations in the Yb3þ-chains.
The observation of soliton excitations in a transverse external field gives further support to the existence of spin chains
in Yb4As3: We also present recent results on spin-glass behavior at very low temperature caused by the interchain

coupling and disorder. In addition, the yet unexplained magnetotransport effects are discussed.                     
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1. Introduction

The study of one-dimensional spin systems is of
great interest for the understanding of generic
quantum many-body effects which have no classi-

cal counterparts. An example is the connection
between long-range behavior of spin correlation
functions and the low-lying spin excitations in one-
dimensional Heisenberg antiferromagnetic chains.
While for S ¼ 1 a ‘‘Haldane gap’’ in the excitation
spectrum exists, leading to an exponential decay of
the spin correlations, spin chains with S ¼ 1

2 show
the gapless two-spinon continuum excitations as
described by des Cloizeaux and Pearson [1] which
is connected with the quasi-long-range order
characterized by an algebraic decay of the
spin correlations at long distance. Perturbations
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like exchange anisotropies, interchain coupling,
staggered fields caused by Dzyaloshinskii–Moriya
interactions and alternating g-tensors as well as
lattice dimerization can lead to a gap formation
also for S ¼ 1

2 chains. In some cases the low-lying
excitations in the continuum limit can be well
described by a quantum sine-Gordon model which
leads to localized soliton-like excitations in addi-
tion to the extended spinon excitations. Most
observations of these fundamental properties of
spin chains have so far been studied in insulating
Cu oxides or halides (S ¼ 1

2) or Ni ðS ¼ 1Þ
compounds where the spin chains are dictated by
the crystal structure of the insulator at all
temperatures.
Recently, an exciting new route to one-dimen-

sional spin physics has been found in compounds
that exhibit a charge-ordering transition. In such
compounds no localized spins on fixed atomic
positions exist at high temperatures. They rather
are homogeneous mixed-valence (semi-)metals or
valence-fluctuating insulators at high tempera-
tures. Their 3d or 4f electrons are strongly
correlated and close to localization, i.e., having a
low effective kinetic energy. If the intersite
Coulomb repulsion is large enough it may
dominate the kinetic energy and, once the
charge-disorder entropy due to hopping is low
enough, lead to a charge-ordering transition at a
critical temperature Tco below which the valence
fluctuations are suppressed. The resulting inho-
mogeneous mixed-valence state consists of two
species of ions with valence Z and ðZ þ 1Þ: This
transition may be compared to a Wigner crystal-
lization on a lattice [2], and its earliest example is
the Verwey transition in magnetite [3], although
this picture turned out to be too simplified for this
compound.
If one of the valence species, say Z; has no

magnetic moment, a fascinating possibility arises.
The charge ordering transition may lead to a
structure where the species ðZ þ 1Þ with spin S
occupies only sites which lie on well-isolated
chains (not necessarily linear) with only weak
exchange interactions between the chains, thus
creating a one-dimensional system of localized
atomic spins at low temperature out of the high-
temperature state.

This new scenario has recently been found to be
realized in the 3d-layer compound sodium vana-
date [4] where in addition an exchange dimeriza-
tion in the chains leads to a spin-gap formation.
The best studied and well confirmed system for the
charge-ordering route to one-dimensional spin
physics is the 4f-pnictide compound Yb4As3: It is
the aim of this article to review the existing
experimental and theoretical research to support
this picture in detail.
Yb4As3 is a semimetallic pnictide compound

which belongs to a whole family of R4X3 ðR ¼
rare earth;X ¼ As;Bi;P; Sb) compounds which
have anti-Th3P4 structure, see Table 1. They have
first been systematically investigated by Ochiai et al.
[5]. These mixed-valence compounds may both be
insulating or (semi-)metallic depending on the
number of holes present in the pnictide p-valence
bands. The more metallic compounds stay in a
homogeneous mixed-valence state for all tempera-
tures investigated. If only a few hole carriers are
present, the intersite Coulomb interactions between
the R-ions will be badly screened and a charge
ordering of the two ionic species R2þ and R3þ at a
temperature Tco is observed. If one species has no
magnetic moment, the other species of ions with
nonzero moment will form a single family of
parallel antiferromagnetic spin chains. This is the
case for all compounds in Table 1 which have finite
Tco; except for Eu4As3; where the Eu

2þ-ions carry
the nonzero magnetic moment. If the magnetic
interchain coupling is large enough, magnetic
order will appear at low temperatures as, e.g., is
the case in Sm4Bi3 with TCC2:7 K: On the other
hand, for very weak interchain coupling one has a
quasi-one-dimensional Heisenberg antiferromag-
net down to very low temperatures. This unique
case is realized in Yb4As3 and also presumably in
Yb4P3 and the mixed systems. In contrast to this
scenario, Eu4As3 forms a three-dimensional mag-
netic system, with the magnetic ordering tempera-
ture being substantially larger than in Sm4Bi3:
This article is organized as follows. In Section 2,

we discuss the charge-ordering transition and its
description within a mean-field model. Section 3
investigates the crucial concept how one-dimen-
sional spin physics, which dominates the low-
temperature thermodynamics of Yb4As3; emerges
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from the charge-ordering transition. In Section 4,
we discuss the evidence for localized soliton-like
spin excitations as obtained from the field depen-
dence of the specific heat, thermal expansion and
transport coefficients. This lends further support
to the one-dimensional spin-chain picture of
Yb4As3: In Section 5, we present recent results
for the collective magnetic behavior, i.e., spin-glass
freezing found at very low temperatures where the
interchain coupling becomes important. In Section
6, we discuss recent results on transport properties,
notably their field dependences, which are not
understood so far, but are likely to be connected
with the existence of light and heavy carriers found
in the lsda+u band-structure calculations. Section
7 finally gives our conclusion and outlook.

2. Charge-ordering transition

The high-temperature phase of Yb4As3 is cubic
(lattice constant a ¼ 8:788 (AA) and has the anti-
Th3P4 crystal structure with space group I%443d: The

Yb-ions occupy the phosphorus sites on the
three-fold symmetry axes, the As-ions are located
on the Thorium sites. The arrangement of the
Yb-sites can be viewed as being aligned on four
families of interpenetrating chains oriented paral-
lel to the space diagonals of a cube, known as
body-centered cubic rod packing [18] which is
illustrated in Fig. 1.
Chemical-valence counting assuming that the

As-ions are trivalent shows that three quarter of
the Yb-ions have filled 4f shells with a valency 2þ;
and one quarter with valency 3þ has one hole in
the f-shell (f13-configuration). In the high-tem-
perature phase, all Yb-sites are equivalent, and the
holes in the f-shells are moving between the Yb-
ions due to hybridization with the As-4p holes: the
compound is in a metallic intermediate-valence
state with an average valency of 2:25þ :
M .oossbauer spectroscopy data on 170Yb give
clear evidence that below 50 K the system
contains about 20% Yb3þ-ions characterized by a
4f13-configuration and a J ¼ 7=2 ground-state
multiplet [9].

Table 1

Compilation of the properties of R4X3 compounds
a

Composition Tco ðKÞ TC ðKÞ JðR2þÞ JðR3þÞ n3þ a ð (AAÞ n ðf :u:Þ�1 g ðmJ=mol K2) Ref.

(Yb0:85Lu0:15Þ4As3 F F F F 8.786 100 [6]

Yb4P3 330 F 0 7/2 8.564 250 [6]

Yb4ðAs0:6P0:4Þ3 295 F 0 7/2 8.700 0 250 [7]

Yb4ðAs0:7P0:3Þ3 290 F 0 7/2 8.720 [7]

Yb4ðAs0:95P0:05Þ3 285 F 0 7/2 8.780 [8]

Yb4As3 295 F 0 7/2 0.25 8.788 0.001 200 [5,9,10]

Yb4ðAs0:94Sb0:06Þ3 260 F 0 7/2 8.823 [8]

Yb4ðAs0:88Sb0:12Þ3 231 F 0 7/2 8.851 0.004 220 [11]

Yb4ðAs0:76Sb0:24Þ3 110 F 0 7/2 8.916 200 [8]

Yb4ðAs0:71Sb0:29Þ3 F F 0 7/2 8.944 0.036 300 [12]

Yb4ðAs0:36Sb0:64Þ3 F F 0 7/2 9.128 220 [6]

Yb4Sb3 F F 0 7/2 0.34 9.322 0.567 40 [5,10,13]

Yb4Bi3 F F 0 7/2 0.10 9.573 0.395 10 [5,10,13]

Eu4As3 340 18 7/2 0 0.25 9.176 [5,14]

Eu4Bi3 7/2 0 (0) 10.00 [13]

Sm4As3 F 160 0 5/2 (1) 8.822 50 [15,16]

Sm4Sb3 F 160 0 5/2 (1) 9.300 [13,15]

Sm4Bi3 260 2.7 0 5/2 0.30 9.814 0.011 0 [5,13,15,17]

aSymbols used: Tco: charge-ordering transition temperature accompanied by a structural transition I%443d-R3c; TC: magnetic

ordering transition temperature (ferromagnetic for all compounds except for Sm4Bi3; where the type of magnetic ordering is

unknown), n3þ: number of trivalent R-ions per formula unit estimated from photoemission and/or M .oossbauer spectroscopy (values in

parentheses: estimated from the lattice constant), a: cubic lattice constant, except for Eu4As3: trigonal lattice constant, n: carrier

concentration at low temperatures estimated from the inverse Hall coefficient, g: linear specific-heat coefficient.
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At TcoC295 K; a first-order structural phase
transition has been observed which is accompanied
by discontinuities of various quantities, e.g., the
electrical resistivity and the Hall coefficient, see
Figs. 2 and 3. At the structural transition, Yb4As3
shrinks along one of the four equivalent chain
directions, in the following called the ‘‘short’’
chain [19]. This transition is approximately vo-
lume-conserving. The resulting trigonal unit cell
has space group R3c with the short chain being
parallel to the main axis. The trigonal angle is
90:81 [19,5].
Along with the transition to the trigonal phase,

a charge ordering of the Yb-ions occurs. The 4f

electronic state of Yb4As3 changes from a valence-
fluctuating state in the cubic phase to a slightly
incomplete charge-ordered state which can be
expressed as Yb3þYb2þ3 As3�3 ; where the Yb3þ-ions
are arranged predominantly on the short chain
parallel to, e.g., the former cubic /1 1 1S direc-
tion. The low-temperature Hall coefficient RH is
positive, implying hole conduction and has a value

Fig. 1. Top: crystal structure of Yb4As3 in the cubic phase.

Large balls denote the Yb-ions, small balls the As-ions. Bottom:

the four families of chains formed by the Yb-ions of Yb4As3;
represented by four families of interpenetrating rods oriented

parallel to the space diagonals of a cube.

Fig. 2. Temperature dependence of the electrical resistivity of

Yb4As3: The jump at 295 K indicates the charge-ordering

transition. The solid line extrapolates the linear T-dependence

observed in the high-temperature phase [5].

Fig. 3. Temperature dependence of the Hall coefficient of

Yb4As3: The insert shows the abrupt change at 295 K [5].
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of ðeRHÞ
�1 ¼ 7� 1018 cm�3 [5]. Assuming the

presence of only one type of charge carriers, their
density is as small as approximately 0.001 per
Yb3þ-ion.
The model to explain the transition is based on a

band Jahn–Teller effect of correlated electrons
(cbjt) [20]. The 56 Yb 4f-bands have an overall
width of B0:2 eV which arises from effective f–f
hopping via hybridization with pnictide valence
states [21]. To reduce the complexity of the f-bands
the assumption is made that they can be described
by four degenerate quasi-one-dimensional bands
associated with the chains. The filling of each of
these bands corresponds to the number of Yb-4f13

states in the chain associated with it.
Such a model is rather similar to the Labb!ee–

Friedel model for 3d states in A15 compounds
[23] where chains parallel to the cubic axes are
the dominant structural elements. Although
such models may not be literally true due to the
three-dimensionality of the electronic states, they
describe the important aspect that a strain
coupling to the degenerate band states may easily
lead to distortions of the cubic structure and
simultaneous repopulation among the 4f states of
Yb4As3:
There is a strong deformation-potential cou-

pling typical for intermediate-valence systems
which removes this degeneracy by a trigonal
cbjt-distortion. When the Jahn–Teller transition
takes place, the crystal shrinks in the /1 1 1S-
direction, lifting the four-fold degeneracy. The
four equivalent chains are subdivided into one
along the /1 1 1S-direction and the three remain-
ing ‘‘long’’ chains. Since the Yb3þ-ions have a
smaller radius than the Yb2þ-ions, it is natural to
think of the cbjt transition as being related to the
ordering of Yb3þ-ions along the space diagonal
/1 1 1S:
The cbjt transition is described by an effective

Hamiltonian of the form

H ¼ � t
Xmf
m¼1

X
/ijSs

f wimsfjms

þ eG
Xmf
m¼1

X
is

Dmf
w
imsfims þNLmfc0e

2
G; ð1Þ

where m labels the summation over the mf ¼ 4
different chains, and /ijS denotes the summation
over nearest-neighbor sites along one chain. The
f wims create f-holes with spin s at site i of chain m:
The bandwidth 4t ¼ 0:2 eV is chosen as obtained
from lda calculations [21] and an effective spin
degeneracy of 2S þ 1 ¼ 2 is used. The second term
in Eq. (1) describes the volume-conserving cou-
pling of the trigonal strain eG (G � G5) to the
f-bands characterized by a deformation potential
Dm ¼ D dm1 � ð1� dm1Þ=ðmf � 1Þ

� �
: This deforma-

tion potential describes the effect of the nearest-
neighbor Coulomb repulsion between the Yb-sites.
(Note that the three nearest Yb-neighbors of an
Yb-ion on one chain are located on chains
belonging to the other three families.) Writing this
interaction as an attractive nearest-neighbor Cou-
lomb interaction within the chains with an energy
gainpV ; one has, after Hartree–Fock decoupling,
the relations D2=c0 ¼ 6V and DeG ¼ �2Vðnm¼1 �
1=8Þ: Here, c0 is the background elastic constant
for one chain. Changes of the bandwidths due to
the distortion are small and can be neglected.
The third term in Eq. (1) is the elastic energy

associated with the distortion. Here NL is the
number of sites in a chain and c0=O ¼
1011 erg=cm3 is chosen, where O denotes the
volume of a unit cell. Note that the bulk elastic
constant c0G ¼ 4c0 which is close to the experi-
mental value of 3:57� 1011 erg=cm3 [22].
The Hamiltonian (1) does not yet contain the

strong intra-ionic Coulomb interactions between
the holes at the Yb-sites. Therefore, it is applicable
only above Tco; where the number of holes per Yb-
site is 1=4 and somewhat below Tco: At low
temperatures, the Coulomb interactions and the
strong correlations which they imply are crucial
(see below). However, for modeling the cbjt phase
transition the Hamiltonian (1) is sufficient. The
condition for a phase transition to occur is
D2=ð4tc0Þ > 3: In Ref. [20] D ¼ 5 eV was chosen,
which corresponds to a reasonable Gr .uuneisen
parameter O � D=ð4tÞ ¼ 25: From this, a transi-
tion temperature of TcoC250 K is obtained which
is close to the observed T exp

co C295 K: The
approach to the phase transition is signified by a
strong softening of the trigonal-symmetry elastic
constant c44 [22].
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Below the phase-transition temperature, one
obtains a trigonal strain-order parameter eGðTÞ
whose temperature variation, together with the
band occupation nmðTÞ; is shown in Fig. 4. At Tco;
the four degenerate bands split with an associated
shift of holes from the upper three-fold degenerate
bands into the lower fourth band. The energy
difference between the respective band centers is
4
3jeGDj: The equilibrium strain at low temperature is
eG ¼ �D=ð8c0ÞC� 0:02: The increase in the hole
occupation number of the lower band shows a
similar behavior as jeGðTÞj until, at low T ; the upper
bands are empty (of holes) while the lower band is
becoming half-filled. Note that in this model,
charge ordering on chains and the band Jahn–
Teller effect are completely equivalent pictures.
The particular ordering of the Yb3þ-ions de-

scribed here was confirmed clearly by perturbed
angular-correlation (PAC) measurements [24]. A
direct proof for the charge ordering in Yb4As3 was
given by polarized-neutron scattering [25,26]. The
stabilization of the Yb3þ states on the short chains
was further supported by temperature-dependent
spectral changes in high-resolution photoemission
spectroscopy [27]. A recent resonant X-ray dif-
fraction experiment on the Yb L3-absorption
edge gave an additional direct evidence for the
particular one-dimensional charge order described
here [28].

3. Low-temperature thermodynamic and transport

properties at B=0: magnons

For B ¼ 0 and at temperatures below about
10 K; the thermodynamic properties of Yb4As3
resemble that of a typical heavy-fermion metal.
Above TE0:5 K; the specific heat is dominated by
a term linear in temperature, C ¼ gT ; with
gE200 mJ=ðK2 molÞ [29], cf. Fig. 5. Upon low-
ering the temperature, CðTÞ=T shows a steep
increase with a low-temperature asymptotic T�3

dependence and a shoulder-like anomaly near T ¼
0:2 K: We shall return to these low-T results in
Section 5. The static magnetic susceptibility is
almost T-independent between 10 and 2 K and
extrapolates for T-0 to a rather large value of
wðT-0ÞE3� 10�2 emu=mol: The Sommerfeld–
Wilson ratio R ¼ p2k2BwðT-0Þ=ð3m2effgÞ is of the
order of unity. For very low temperatures,
however, wðTÞ like CðTÞ=T shows a strong
increase with decreasing temperature.
For 4 KoTo100 K; the electrical resistivity of

Yb4As3 exhibits a temperature dependence that
can be described well by rðTÞ ¼ r0 þ AT2; with a
strongly enhanced A-coefficient, cf. Fig. 2. One
usually would expect this behavior for metals with
an enhanced density of states for low-energy
fermionic charge degrees of freedom. In contrast

Fig. 4. Temperature dependence of the strain order parameter

eGðTÞ: Inset: occupation numbers nmðTÞ of the four f-bands [20].

Fig. 5. Temperature dependence of the specific heat of a

polydomain single-crystalline Yb4As3 sample in an applied

magnetic field, shown as C=T vs. T [30,31].

                                       126



to these, Yb4As3 has, according to the extremely
large value of the Hall coefficient (cf. Fig. 3),
almost no charge carriers, implying that the
standard Kondo picture for the origin of these
low-energy excitations of ‘‘heavy-fermion’’ metals
cannot be applied. Instead, the low-temperature
thermodynamics of Yb4As3 can be understood
within the framework of the model introduced in
the preceding section as follows:
As the short chain is approaching half-filling,

the strong on-site Coulomb interaction in this
chain must be taken into account. This is
incorporated by an on-site Hubbard term with
UB10 eV which can be eliminated by making a
canonical transformation onto a t-J-like Hamilto-
nian acting on states with no Yb2þ-sites in the
short chain. Introducing an auxiliary boson bwi to
parameterize this constraint [32,33], the Hamilto-
nian in k-space, after a mean-field approximation,
reads

HMF ¼
X
mn

X
ks

EmnðkÞf
w
kmsfkns þHconst; ð2Þ

EmnðkÞ ¼ dmnemðkÞ þ rVmn; ð3Þ

with e1ðkÞ ¼ ðr2 þ JZ=tÞeðkÞ þ lþ E0; em>1ðkÞ ¼
eðkÞ � �2t cosðkÞ; and Hconst ¼ NLðJZ2 � l
ð1� r2ÞÞ: The mean-field approximation consists
of the replacement /bwi S-r and of a saddle-point
approximation to the Hubbard–Stratonovi$cc field
/
P

s f
w
i1s fj1sS-Z: Here l is an average Lagrange

multiplier enforcing the above-mentioned con-
straint. The remaining parameters are J ¼ 4t2=U;
and E0 being the band-center of mass distance of
the lower and upper bands due to the distortion.
The matrix Vmn ¼ Vðdm1 þ dn1Þð1� dmnÞ serves for
the coupling between the short chain and the other
three.
For low temperatures, the thermodynamics of

this effective Hamiltonian is essentially governed
by a renormalization of the quasi-particle mass in
the lower band,

m*

mb
¼

t

dtþ ZJ
C100; Z ¼ Oð1Þ; ð4Þ

where mb is the bare band mass of the Hamilto-
nian (1), and d denotes the deviation of the filling
of the short chains from one hole per site.

For d51; as it is the case for Yb4As3; the
effective mass for the low-energy excitations
responsible for the very large specific heat is
determined almost exclusively by the magnetic
exchange energy J: These excitations correspond
to the magnetic excitations (‘‘magnons’’) of an
antiferromagnetic quasi-one-dimensional ‘‘S ¼ 1

2’’
Heisenberg chain, where S is the pseudo-spin
describing the lowest Kramers doublet of Yb3þ;
slightly modified by the presence of dE0:001 holes
per Yb3þ-ion. This leads naturally to an enhanced
linear specific heat for kBT=J51 as, in fact, is
observed (cf. Fig. 5).
Thermal and transport measurements on P- and

Sb-doped samples gave further experimental evi-
dence for the scenario described here [7,12,30]
(Fig. 6): With increasing concentration x of phos-
phorus, the electrical resistivity of Yb4ðAs1�xPxÞ3
grows drastically, and with x ¼ 0:3 it is nearly
insulating, while the specific heat and the magne-
tic susceptibility are almost the same as those of
pure Yb4As3: With increasing Sb content x; the
absolute value of the resistivity of Yb4ðAs1�xSbxÞ3
decreases due to the increase of the number of
charge carriers and the system becomes more
metallic while again the specific-heat g value is
roughly the same as in the pure compound and
thus almost independent of the carrier concentra-
tion. However, at 29% Sb-doping, the charge
ordering seems to disappear, i.e., no discontinuity
in thermodynamic and transport properties could
be observed.
The crossover to the low-T spin-chain structure

was well confirmed by inelastic-neutron scattering
experiments by Kohgi et al. [25,34], see Fig. 7.
They show that the low-temperature magnetic
excitations in Yb4As3 are indeed very well
described by the one-dimensional spin-excitation
spectrum oðqÞ ¼ ðp=2Þ sinðaqÞ as described by des
Cloizeaux and Pearson [1] where q is the wave
number in /1 1 1S-direction and a the distance
between the Yb3þ-ions along the short chains.
More precisely, this dispersion describes the lower
boundary of the two-spinon continuum, i.e., a
continuum of spin excitations whose spectral
function for a fixed momentum q diverges at this
lower boundary [35,36]. From the maximum
observed spin excitation energy of 3:8 meVEkB	
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40 K at q ¼ p=ð2aÞ one obtains JEkB 	 25 K in
good agreement with the energy scale kBT *

estimated from the value of the specific-heat
coefficient as measured.
In the following we discuss the thermal con-

ductivity kðTÞ of a polydomain single-crystalline
sample of Yb4As3: Its temperature dependence
is shown in Fig. 8 on a double-logarithmic scale,
in zero magnetic field and at B ¼ 1 T and

B ¼ 6 T: The zero-field data may, between 0.4
and 6 K, be well approximated by aT þ bT2; with

Fig. 7. Dispersion relation of the inelastic neutron-scattering

peaks of Yb4As3 along the /1 1 1S-direction. The dashed curve
represents the relation oðqÞ ¼ ðp=2ÞJ sinðaqÞ [34].

Fig. 8. Thermal conductivity k vs. temperature T for Yb4As3;
in zero magnetic field and at 1 and 6 T. The meaning of the

different lines is explained in the text. The inset shows the

deviation of the data from the aT þ bT2 dependence at

temperatures somewhat below 0:5 K:

Fig. 6. Temperature dependence of the electrical resistivity (left) and the low-temperature specific heat divided by temperature (right)

of Yb4As3 (bullets), Yb4ðAs0:7P0:3Þ3 (diamonds), and Yb4ðAs0:88Sb0:12Þ3 (triangles). Note the logarithmic ordinate for the resistivity
plot.
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a ¼ 0:65 mW=cm K2 and b ¼ 0:33 mW=cm K3

(cf. solid curve in Fig. 8 and its inset). We use
some estimates to determine the mechanism
responsible for this temperature dependence. The
electronic contribution to the thermal conductivity
calculated, with the help of the Wiedemann–Franz
law, from the residual resistivity r0E1 mO cm is
more than one order of magnitude smaller than
the measured kðTÞ (cf. dotted line in Fig. 8),
suggesting that the experimentally observed linear-
in-T term is not due to an electronic thermal
conductivity. Owing to the small Wiedemann–
Franz contribution it is also improbable that
electrons are important scatterers for the phonons.
The phonon contribution can be estimated from

the gas kinetic equation k ¼ 1=3� CvL; taking
C ¼ 3 mJ=mol K4 � T3 for the phonon specific
heat and v ¼ 2975 m=s for the sound velocity [37].
If boundary scattering from the smallest sample
dimension of approximately 800 mm determined
the mean free path L; much higher kðTÞ values
should be observed (cf. dashed line in Fig. 8).
Thus, the phonons appear to be subject to an
additional scattering mechanism.
We propose that magnons play an important

role in the thermal conductivity of Yb4As3: They
act both as heat carriers at the lowest temperatures
(aT term) and as scatterers for the phonons at
higher temperatures (bT2 term). Applying the gas
kinetic equation to magnon thermal conductivity
with the above-mentioned magnon specific heat
CE200 mJ=ðK2 molÞ � T and the magnon velo-
city v ¼ 2020 m=s [34], our fit yields a magnon
mean free path L ¼ 500 (AA; corresponding to 130
times the Yb3þ–Yb3þ distance. This mean free
path, which is much smaller than the domain size
of approximately 1 mm [16], is most probably due
to scattering from static point defects on the Yb3þ

chains. Due to the finite homogeneity range of
Yb4As3; Yb (and also As) vacancies at concentra-
tions of up to several percent per formula unit are
expected in single-phase samples [38], in agreement
with our findings.
Two observations provide additional evidence

for our interpretation of kðTÞ: Firstly, the thermal
conductivity drops below the aT þ bT2 law at
temperatures somewhat below 0:5 K (cf. inset of
Fig. 8), in agreement with the deviation from the

magnon-related gT term in the specific heat
(Fig. 5) due to the spin-glass freezing. Secondly,
the observed magnetic-field dependence is plausi-
ble within this interpretation. At B ¼ 1 T; the
magnon thermal conductivity is reduced, but the
reduction of the phonon–magnon scattering rate
reinforces the phonon conductivity and, thus,
overcompensates this effect in higher fields such
that, at B ¼ 6 T; the zero-field thermal conductiv-
ity is almost recovered. We shall address the broad
minimum in kðTÞ; found when a magnetic field is
applied, in the subsequent section.

4. Field-induced spin gap and solitons

In the following we discuss the response of the
S ¼ 1

2 spin chains to external magnetic fields.
Concerning the dependence of the specific-heat
coefficient g for an antiferromagnetic S ¼ 1

2 Hei-
senberg chain on an applied magnetic field B; one
would expect deviations from gðB ¼ 0Þ of the order
ðB=JÞ2; i.e. about 1% at 4 T uniformly for all
temperatures with kBT=J51: As is demonstrated
in Fig. 5, the behavior of the specific heat is quite
different.
Above 2 K changes in g are indeed compara-

tively small. At lower temperatures, however, its
field dependence is dramatic. Upon increasing the
field, CðTÞ=T becomes progressively reduced
slightly above the temperature at which the low-
T upturn sets in, while at somewhat higher
temperatures a broad hump forms which is
continuously shifted towards higher T : After
subtracting a T�3 term from CðTÞ=T due to
nuclear contributions, the data are found to level
off below TE0:2 K at a constant value gðBÞ
[30,31]. Already at 4 T ; gðBÞ is strongly sup-
pressed, indicating that an additional energy scale
much smaller than J (kB 	 25 K) should exist.
This observation can be incorporated by intro-

ducing a small interchain-coupling J 0 between
adjacent parallel short chains, leading immediately
to a field-dependent excitation gap DB

ffiffiffiffiffiffiffiffiffi
jJJ 0j

p
and

hence to a field dependence of the thermodynamic
quantities like the specific heat [39]. In Fig. 9, the
corresponding field dependence of the g-coefficient
is shown together with the experimental gðBÞ
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values. As long as kBTbD; this field dependence is
insignificant, see the dashed line. Upon lowering
the temperature to values around D; a strong field
dependence in the range jJ 0j5TpD is observed,
most pronounced for a transverse field direction.
The validity of this approach is restricted to
jJ 0j5T due to the ‘‘three-dimensionality’’ of the
crystal introduced by the interchain coupling at
very low temperatures. For the size of magnetic
fields considered here, the sign of J 0 is unimpor-
tant.
An alternative mechanism leading to the open-

ing of a gap in the magnon-excitation spectrum
was discussed by Uimin et al. [40]. They assigned
the additional small energy scale to an intrachain
dipolar interaction, which also results in a spin gap
in an applied transverse magnetic field.
A field-induced opening of a gap in the

excitation spectrum has been also observed for
the quasi-one-dimensional system Cu benzoate
[41], and a staggered field perpendicular to the S ¼
1
2 chains was proposed [42] as the driving force for
the gap opening in this case. In an external
transverse field, both an alternating g tensor and

the Dzyaloshinskii–Moriya (dm) interaction may
account for this staggered field.
In the case of Yb4As3; if one takes into account

the presence of the As atoms, cf. Fig. 10, one finds
the following situation [43,44]. The local C3

symmetry at the Yb sites on the short chains,
and the absence of a center of inversion symmetry
between two adjacent Yb3þ-ions allow for a
uniaxial anisotropy in the symmetric part of the
spin exchange as well as for the presence of an
additional antisymmetric dm spin exchange inter-
action. The glide reflection with the glide vector
parallel to the Yb3þ-chains requires an alternating
sign for this antisymmetric part, if present. The
same symmetry constraints apply to the g-tensor.
The most general form of the Hamiltonian
describing the low-energy magnetic degrees of
freedom with an effective spin 1=2 therefore is
given by

H ¼
X
i

JðiÞSiSiþ1 þ gðiÞBSi; ð5Þ

where the matrix JðiÞ has the form

JðiÞ ¼

J> ð�ÞiD 0

�ð�ÞiD J> 0

0 0 Jjj

0
B@

1
CA; ð6Þ

and gðiÞ correspondingly.
A detailed investigation of the wavefunctions

for the J ¼ 7=2 multiplet given by Shiba et al. [44]
uncovered a hidden isotropy of the effective
Hamiltonian above. The parameters Jjj; J>; and
D are not independent from each other. In fact,

Fig. 9. Magnetic-field dependence of the g-coefficient for the

trigonal-chain structure. Bottom solid line: field applied

perpendicular to the /1 1 1S direction, top solid line: field

applied parallel to the /1 1 1S direction, both at TE0:5 K:
Dashed line: field dependence at TE5 K: A ratio J 0=J ¼ 10�4

was used [39]. The filled circles denote the data for Yb4As3
[30,31].

Fig. 10. Arrangement of the Yb3þ-ions along a short chain of

Yb4As3: The distance Yb(1)–As(1) is smaller than the distance

Yb(1)–As(2) [8].
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there is only one energy scale J � Jjj; and one has
the relations J> ¼ J cosð2yÞ; D ¼ J sinð2yÞ with
the phase angle y to be determined experimentally.
Additionally, they showed that the g-tensor is
axially symmetric around the short chains and
does not contain any antisymmetric part.
An alternating rotation of the local coordinate

system around the chain direction by an angle 7y
eliminates the DM interaction in JðiÞ: At zero field,
the effective Hamiltonian is equivalent to the one-
dimensional isotropic S ¼ 1

2 Heisenberg antiferro-
magnet. In addition, the uniform magnetic-field
component perpendicular to the short chains
induces a staggered field which reads

b ¼ g> sinðyÞn� B; ð7Þ

where n is a unit vector pointing in the chain
direction.
A low-energy effective-field theory of the Hei-

senberg model is given by the quantum sine-
Gordon (SG) model with a Lagrangian density

L ¼ 1
2ðð@tfÞ

2 � v2SWð@xfÞ
2Þ � bC cosðbfÞ: ð8Þ

Here, f is a boson field, vSW is the spin-wave
velocity, C is a constant, and b is the projection of
the externally applied field onto the plane perpen-
dicular to the chain in Yb4As3: According to Refs.
[42,43], the staggered field induces an excitation
gap

DpJ1=3b2=3: ð9Þ

The quantum SG model was originally used to
explain the opening of the spin gap clearly seen in
Cu-benzoate when measured in a field of 3:5 T;
applied perpendicularly to the Cu2þ chains [41].
However, the quantum SG model is a continuum
approximation valid only for temperatures T
appreciably lower than J: Its validity at elevated
temperatures where field-induced humps occur in
both Cu-benzoate [41] and Yb4As3 (Figs. 5 and
11a) has yet to be demonstrated.
These specific-heat maxima have their corre-

spondence in even more pronounced peaks in the
coefficient of the thermal expansion, aðT ;BÞ;
(Fig. 11b). Since there are four equivalent cubic
space diagonals at T > Tco; the samples exhibit a
polydomain structure in the charge-ordered state.
Monodomain crystals are obtained if a uniaxial

pressure of the order of 100 bar is applied parallel
to one of the four cubic space diagonals prior to
cooling well below Tco: In our thermal-expansion
measurement we can also apply uniaxial pressures
(1–10 bar) along the measuring direction. In this
way the polydomain structure can be varied
deliberately. A detailed quantitative analysis of
the field-induced peaks in aðT ;BÞ for samples with
different domain structures revealed unequivocally
that a finite field component perpendicular to the
short axis (i.e., the S ¼ 1

2 chains) is required to
induce the anomaly [45]. Since this unique
orientational dependence can neither be explained
by the effect of the field on the extended magnon
excitations nor by Schottky-type contributions
(due to, e.g., isolated frozen magnetic moments
on the long chains), the CðT ;BÞ and aðT ;BÞ
maxima displayed in Fig. 11 were ascribed [45] to
localized soliton excitations. This appears natural,
for they, too, require a finite field component
perpendicular to the spin chains [46].
Because we want to investigate aðT ;BÞ and

the thermal conductivity kðT ;BÞ in addition to
CðT ;BÞ; we use the classical SG solutions of a one-
dimensional Heisenberg antiferromagnet with
weak uniaxial anisotropy to fit our experimental
data shown in Fig. 11. These solutions, usually
called solitons, are described by their mass, ms;
and their rest energy, Es: As discussed in Refs.
[45,47], excellent fits are achieved if one allows for
msðBÞ; EsðBÞ; and a third adjustable parameter,

Fig. 11. Specific heat CðTÞ=T (a) and thermal expansion aðTÞ
(b) of Yb4As3 at varying magnetic fields. Solid lines are fits

using a classical model, including both magnons and solitons

[45,47].
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i.e., the spin gap in the magnon spectrum, DðBÞ;
and a soliton-derived Gr .uuneisen parameter, GðBÞ;
in the case of CðT ;BÞ=T and aðT ;BÞ; respectively.
In the thermal conductivity kðB;TÞ � kBðTÞ

normalized to the zero-field data k0ðTÞ; as
discussed in Section 3, we find a flat minimum
which becomes progressively deeper and shifted
towards higher temperatures upon increasing the
field (Fig. 12). The positions of these minima agree
well with those of the CðT ;BÞ and aðT ;BÞ maxima
shown in Fig. 11. We, therefore, attribute the
minima in kB=k0 vs. T to the scattering of
the three-dimensional phonons by the magnetic
solitons [45]. This scattering process was already
held responsible previously [48] for similar ob-
servations in the S ¼ 5

2 spin-chain systems TMMC

and DMMC. Here, a phonon–soliton resonance
scattering was assumed, acting independently from
the usual phonon-boundary scattering. Again,
three fit parameters, msðBÞ; EsðBÞ; and the relative
strength of this resonance-scattering mechanism
were used. Following Ref. [48], we can fit the
experimental data of Fig. 12 reasonably well.
We can, therefore, state that our results of the

specific heat, thermal expansion and thermal
conductivity are well explained assuming solitary
excitations for magnetic fields containing a non-
zero component perpendicular to the spin chains.
There exists a qualitative difference between the
localized soliton and the extended magnon excita-
tions concerning the thermal conductivity. Both
types of excitations act as scattering centers for
the dominant heat carriers, i.e., the phonons. In

contrast, only the magnons appear to act as heat
carriers as well, as can be seen from the analysis of
our thermal-conductivity measurements.
Naturally the application of the classical SG

theory to quantum spin chains is strongly limited.
In contrast to the prediction of the classical model
where the soliton rest energy should be propor-
tional to the field, our experimental results reveal
EsBBn with nE0:66; see Fig. 13. This agrees with
the field dependence of the spin gap obtained in the
quantum sg model, cf. Eq. (9). We conclude that
(1) solitons exist in antiferromagnetic quantum-
spin chain systems and (2) in Yb4As3; the spin gap,
opening in the magnon spectrum, and the soliton
rest energy are not independent of each other as
they are in the classical model (cf. our above
analysis of the CðB;TÞ=T results), but they are
identical, except for a constant prefactor: DðBÞ ¼
const:� EsðBÞ:
The presence of free carriers may change the

exponent n as shown in Ref. [58], where nB0:64
was proposed to be more adequate. We would also
like to note that recent neutron-scattering experi-
ments [49,50] provide direct evidence for the field-
induced gap opening in the spin excitation
spectrum of Yb4As3 with a magnetic field applied
perpendicular to the short-chain direction, see
Fig. 13.

Fig. 12. Thermal conductivity of Yb4As3 at varying magnetic

fields, kBðTÞ; normalized to the data at B ¼ 0; k0ðTÞ: Solid lines
are fits for a resonant phonon–soliton scattering model [45]. Fig. 13. Left ordinate: field dependence of the soliton rest

energy Es as derived from the fits in Figs. 11 and 12 with a

transverse field component Beff ¼ B sinð701Þ: Right ordinate:

spin-excitation gap D as derived from inelastic neutron

scattering (INS) [49]. The solid line is a fit EsðBÞ ¼ bB2=3
eff with

b ¼ 3:74 K T�2=3 [47] and DðBÞ ¼ b0B2=3
eff with b0 ¼

2:97 K T�2=3; respectively.
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5. Ferromagnetic interchain coupling and spin-glass

freezing

The anisotropy of the magnetic susceptibility of
a single-domain Yb4As3 crystal was first measured
by Aoki et al. from room temperature down to
2 K in a commercial SQUID magnetometer by
applying uniaxial pressure along one of the
/1 1 1S directions in an acrylic resin pressure cell
[8,51], see Fig. 14. In this measurement, the single-
domain formation was almost perfect since (1)
with increasing uniaxial pressure a saturation
of the pressure-induced anisotropy wjjð15 KÞ=
w>ð15 KÞ was observed (wjj; w> denote the sus-
ceptibility along and perpendicular to the trigonal
axis) and (2) the average susceptibility %ww ¼ wjj=3þ
2w>=3 coincided with that of the polydomain state
(wm), studied without uniaxial pressure [8,51].
Above 7 K the T-dependence of wjj is well

described by the sum of a constant van Vleck
contribution and the uniform susceptibility of the
S ¼ 1

2 antiferromagnetic Heisenberg chain [52]
assuming an intrachain exchange coupling J ¼
26 K [53] (see dotted line in Fig. 14). On the other
hand, the huge upturn of w> is in accordance with
the prediction of the staggered-field model which

causes a 1=T divergence of the susceptibility [43].
Since no staggered field is induced for magnetic
fields applied parallel to the trigonal axis, i.e.,
parallel to the spin chains, the upturn of wjjðTÞ
below 7 K; i.e. the deviation from the dotted line
in Fig. 14, cannot be explained within the stag-
gered-field SG model.
Fig. 15 shows the inverse of this deviation Dwjj ¼

wjj � ðw1D þ wvVÞ as a function of temperature. Dwjj
follows a Curie–Weiss law Dwjj ¼ C=ðT �YÞ with
a positive Weiss temperature, Y; indicating a
dominating ferromagnetic interaction [8]. This is
not related to possible magnetic impurities. The
upturn does not significantly increase with de-
creasing sample quality [8]. Since the charge
ordering in Yb4As3 is not perfect one might relate
Dwjj to a contribution of the ‘‘free spins’’ at the
chain edges. Doping with Lu3þ-ions on the Yb3þ-
sites in ðYb1�xLuxÞ4As3; one can increase the
number of edges of the one-dimensional chains.
This leads to an additional Curie–Weiss contribu-
tion in the low-temperature susceptibility which is
proportional to x [8]. This contribution, however,
shows a negative Weiss temperature indicating an
antiferromagnetic interaction between the ‘‘free
spins’’ at the chain edges. Edge effects can,
therefore, not explain the ferromagnetic Curie–
Weiss term in wjjðTÞ:We, therefore, believe that the
upturn in wjjðTÞ is intrinsic to Yb4As3 and is caused
by a weak ferromagnetic interchain coupling.

Fig. 14. Temperature dependence of the susceptibility of

Yb4As3 along (wjj) and perpendicular (w>) to the trigonal axis

as well as that of a polydomain sample (wm) [51]. The dotted line
shows a fit to the wjj data including the uniform susceptibility of

the S ¼ 1
2 antiferromagnetic Heisenberg chain w1D [52] with

exchange coupling J ¼ 26 K [53] and a constant van Vleck

term wvV:

Fig. 15. Inverse of the static magnetic susceptibility Dwjj ¼
wjj � ðw1D þ wvVÞ (see dotted line in Fig. 14) vs. T [8].
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To investigate the susceptibility of Yb4As3 at
sufficiently low temperatures, where the inter-
chain-coupling effects become important, we used
a low-frequency ð15:9 HzÞ ac technique and scaled
the wacðTÞ data in the temperature range
2 KpTp6 K to wðTÞ ¼ MðTÞ=B results obtained
by using a commercial SQUID magnetometer at
B ¼ 0:01 T: As shown in Fig. 16a [54], for
TX0:4 K; wacðTÞ agrees well with the theoretical
curve using the same parameters as in Ref. [43].
Below TE0:15 K; a cusp-like anomaly occurs
which broadens substantially in B ¼ 0:01 T; shifts
to lower temperature and vanishes for B > 0:04 T:
This temperature range is somewhat higher than
T ¼ 0:045 K; which is the upper boundary for
magnetic ordering with moments larger than
0:15mB as inferred from 170Yb M .oossbauer spectro-
scopy [9].
On the other hand, a broad peak in the low-T

specific heat measured [30,31] on a polydomain
sample around 0:17 K (Fig. 16, part (b)) was
attributed to spin-glass-type effects as well. (i)
The upturn in CðTÞ=T measured at fixed field can
be well described by a 1=T3 dependence. This
describes the high-T tail of a nuclear Schottky
anomaly involving an average ‘‘internal field’’
BavE56 T which is forming in the spin-glass state
and is acting on the nuclear spins of the 171Yb;
173Yb; and 75As isotopes [30]. In accordance with
neutron-scattering data [49], the effective magnetic
moment of the Yb3þ-ions amounts to meffE0:5mB:

(ii) The field dependence of the peak at T ¼ 0:17 K
which is obtained after subtracting the ‘‘upturn’’
from the raw data in Fig. 16b is typical [30,31] for
spin glasses [56].
Further evidence of spin-glass freezing arises

from subsequent wacðT ; nÞ measurements on a
different (polydomain) single crystal at various
frequencies n [55]. From the data shown in Fig. 17,
the frequency shift Dn ¼ DTf=ðD logð2pnÞTf Þ of the
freezing temperature Tf per decade in n; is
estimated to be Dn ¼ 0:0370:005: This value is
just between typical values for the frequency shift
in metallic spin glasses, e.g., CuMn: Dn ¼ 0:005;
and insulating ones, e.g. (EuSr)S: Dn ¼ 0:06 [56].
Since each S ¼ 1

2 chain has six neighboring S ¼ 1
2

chains (see Fig. 1), the antiferromagnetic intra-
chain coupling together with the ferromagnetic
interchain coupling leads to strong frustration.
Taken together with the disorder that is present on
the Yb3þ-chains as inferred from the thermal-
conductivity measurements described above, the
spin-glass effects can be understood quite natu-
rally.
To investigate whether domain disorder affects

the spin-glass behavior we studied the anisotropy
of wacðTÞ by using a small CuBe uniaxial pressure
cell that fits in both the commercial squid

magnetometer as well as in our low-T wac coil
system. Our preliminary result is that the low-T
susceptibility for a monodomain Yb4As3 crystal
measured parallel to the Yb3þ-chains wjjð0:1 KÞ

Fig. 16. Magnetic susceptibility as w vs. T on a logarithmic

scale (a) and specific heat as C=T vs. T (b), taken from Ref.

[31], for polydomain Yb4As3: The solid line in (b) shows the

data after subtraction of nuclear contributions.

Fig. 17. Magnetic ac-susceptibility (Bac ¼ 10 mT) at Bdc ¼ 0

measured for different frequencies n:
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equals that of about 0:6wmð0:1 KÞ; where wmð0:1 KÞ
is the value found for a polydomain Yb4As3
crystal [55]. The spin-glass cusp is also present in
wjjðTÞ; and the freezing temperature is not changed.
This provides evidence that disorder on a smaller
scale than the domain disorder is the cause for the
spin-glass effects in Yb4As3:

6. Resistivity and magnetoresitivity

The electrical resistivity of Yb4As3;rðTÞ; was
reported to follow a T2 law between 2 and 100 K
with a large coefficient AE0:75 mO cm=K2 that
fulfills (within a factor of 2) the Kadowaki–Woods
scaling [5] found for typical heavy-fermion metals.
However, the low carrier concentration of only
about 0.001 per formula unit [5] excludes the usual
Kondo effect underlying the formation of heavy
quasiparticles in metallic strongly correlated elec-
tron systems. Light [m ¼ ð0:6y0:8Þm0 [57], m0:
free-electron mass] As-4p holes dominate the
electrical conductivity in Yb4As3 [5,57]. Another
striking evidence against the Kondo scenario is
obtained comparing the specific-heat with the
resistivity data of the P- and Sb-doped compounds
shown in Fig. 6: The low-temperature resistivity in
these crystals varies by four orders of magnitude
and changes to an activated behavior in the
P-doped case, while the specific-heat g value is
roughly the same. As discussed below, the origin
of the heavy-fermion-like behavior of the resistiv-
ity of Yb4As3 is not yet clear.
All experiments were carried out on high-quality

single crystals prepared as described in Ref. [5]
with the current and magnetic field aligned along
one of the cubic /1 1 1S axes. Electrical contacts
were made by point welding 50 mm Au wires on
the polished crystal surface.
As shown in Fig. 18, part (a), the resistivity

follows an AT2 temperature dependence with A ¼
3:4 mO cm=K2 down to 4K. At lower tempera-
tures, rðTÞ deviates from the T2 dependence,
passes a minimum at 2K followed by an 0.15%
increase which saturates below 0.1K, see Fig. 18b.
Compared to the early measurement by Ochiai
et al. [5], our recent experiments reveal a roughly
three times higher residual resistivity r0 and a

more than two times larger Hall coefficient [55].
The mobility of the charge carriers remains
virtually unchanged.
The large coefficient A remains almost

unchanged in an applied magnetic field up to
18T [54], while the specific-heat coefficient g
rapidly decreases due to the gap formation
[30,31] (Fig. 19). This observation seems to be
in conflict with the interpretation of a large
A coefficient resulting from the scattering of
light charge carriers off the magnon excitations
[57,58].

Fig. 18. Electrical resistivity for polydomain Yb4As3; plotted
as r vs T (a), r vs log(T/K) (b), and r vs B2 (c). The dashed line

in (a) represents a T2 dependence, the arrows in (c) indicate the

magnetic history of the data. The offset at maximum field is due

to relaxation [55]. (d) Shubnikov–de Haas oscillations at two

different temperatures.

Fig. 19. Linear coefficient of low-T specific heat g ¼ C=T
[30,31] as well as the coefficient A of the rðTÞ ¼ r0 þ AT2-

behavior between 2 and 6 K [54], normalized to their values at

B ¼ 0: The lines are guides to the eyes.
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For heavy-fermion metals, like CeCu6; UPt3;
CeRu2Si2; and CeCu2Si2; both light (m*Bme) and
heavy (m *B100me) quasiparticles were found in
de Haas–van Alphen experiments [59–62]. In a
heavy Fermi liquid, it is the scattering of the light
and mobile charge carriers by the heavier ones that
gives rise to the large A coefficient [63]. We
propose that in Yb4As3 it is the scattering of the
light and mobile As-4p holes by the heavy Yb-4f
electrons [57] that leads to the large A coefficient in
the resistivity.
Fig. 20 shows the LSDA+U energy band

structure of Yb4As3 for energies close to the Fermi
level calculated by Antonov et al. [57]. The U value
in this case was adjusted to U3þ

eff ¼ 9:6 eV; and the
f shell of the Yb2þ-ions was treated as a core shell.
Due to the gap between the As 4p and the Yb 5d
bands, an extremely narrow marginally occupied
Yb3þ 4f hole band is pinned to the top of the As 4p
valence band via the charge balance between Yb
and As. This charge balance also pins the Fermi
level close to the bottom of the 4f hole band,
leading to the extremely low carrier concentration
in Yb4As3: The Fermi surface therefore consists of
(1) a hole pocket of As 4p states centered on the G
point with an effective mass of meff ¼
ð0:6y0:8Þm0; and (2) an electron pocket of Yb 4f
states with a heavy mass centered on the G–P
symmetry line (Fig. 21).
The band structure, and thus the scattering

mechanism described above, should not be af-
fected by magnetic fields of the order of 10 T:
Therefore, the A coefficient also remains almost
constant and does not show any signatures of the

field-induced gap in the spin excitation spectrum
found in the specific heat [31].
The isothermal resistivity (Fig. 18c) roughly

follows a B2-behavior which is typical for com-
pensated semimetals. Shubnikov–de Haas oscilla-
tions with a frequency of 25T, also found by
Ochiai et al. [64], are clearly seen in the magnetic-
field interval B ¼ 4:5y12 T (Fig. 18d). For larger
fields, additional oscillations are visible [54,55]
which might be related to spin splitting because,
due to the extremely low carrier concentration, the
system is very close to the quantum limit.
Both the hole and the electron sheets of

the Fermi surface are almost spherical. Since the
mobility of the heavy 4f electrons is assumed to be
almost negligible in comparison to the mobility
of the As 4p holes, the Shubnikov–de Haas
oscillations should arise from the most isotropic
part of the As 4p bands. From the charge-carrier
concentration nE3� 1018 cm�3 determined
from our new Hall effect measurements [55],
assuming a single spherical spin-orbit split pair
of As 4p hole orbits, a Shubnikov–de Haas
frequency of 44 T is expected. In contrast, the
observed frequency of 25T leads to a carrier
concentration of nE7� 1017 cm�3 only. The
reason for this discrepancy is yet unclear and
deserves further investigations.
From the T-dependence of the oscillation

(Fig. 18d) we estimate an effective carrier mass of
meff ¼ ð0:27570:005Þm0 [55]. Our results confirm

Fig. 20. Self-consistent LSDA+U energy band structure of

Yb4As3 for energies close to the Fermi level [57].
Fig. 21. Cross sections of the calculated Fermi surface of

Yb4As3 [57]. The Fermi surface consists of a hole pocket of As

4p states centered on the G point, and an electron pocket of Yb

4f states on the G–P symmetry line.

                                       136



the existence of a low-density system of mobile As
p holes that determines rðTÞ:

7. Conclusion and outlook

We have presented an interpretation of the
exceptional thermodynamic, magnetic and trans-
port properties of Yb4As3 and its Sb and P
substituted crystals. These mixed-valent pnictides
exhibit a charge ordering of Yb2þ and Yb3þ driven
by intersite Coulomb interactions and a defor-
mation potential coupling to the lattice. This
transition is of central importance for its low-
temperature physical properties. The observation
of spin excitations which can be described by the
des Cloizeaux–Pearson two-spinon continuum as
evident from the q-dependence and the typical
one-dimensional asymmetry of the spectral shape
[35], the compelling evidence for soliton excita-
tions in a transverse field and the presence of the
large g value even for P-doped insulating crystals
proves beyond any reasonable doubt that Yb4As3
is a quasi-one-dimensional antiferromagnetic spin-
chain system. Furthermore, the observation of a
very low spin-glass freezing temperature proves
that the interchain coupling is indeed very weak
due to the large distance between the parallel
chains.
It must be kept in mind, however, that Yb4As3

is not an ideal one-dimensional Heisenberg anti-
ferromagnet because of its semimetallic character.
This has interesting consequences with respect to
transport behavior which suggest a two-band
model of current-carrying 4p holes and heavy,
almost localized, 4f states of the electron pocket
that act as scattering centers, presumably leading
to a field-independent T2 coefficient in the
resistivity. This mechanism still needs a more
detailed theoretical investigation.
The same is true for the zero-field low-tempera-

ture thermal conductivity which appears also to be
dominated by the spin excitations. In contrast to
the electrical resistivity, here the scattering from
static point defects seems to play an important
role.
That the number of carriers can be reduced by

doping with P is well understood from band-

structure calculations [57]. Eventually, pure Yb4P3
is an insulator and should be an ideal quasi-one-
dimensional Heisenberg antiferromagnet below
Tco: It still exhibits a large g value, presumably
determined by the one-dimensional spin excita-
tions. It would be important to confirm this
conjecture directly by determining their spectrum
by inelastic neutron scattering as presented in
Fig. 7 for the case of Yb4As3:

8. Uncited Reference
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