Low-temperature resistivity and susceptibility of the low-carrier density, one-dimensional $S = \frac{1}{2}$ antiferromagnet Yb₄As₃

P. Gegenwart^{a,*}, T. Cichorek^a, J. Custers^a, M. Lang^a, H. Aoki^{a,b}, A. Ochiai^b, F. Steglich^a

^aMax-Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 48, D-01187 Dresden, Germany ^bDepartment of Material Science and Technology, Niigata University, Niigata 950-2181, Japan

Abstract

We report on low-T ($T \ge 0.02$ K) measurements of the electrical resistivity, $\rho(T, B)$, and the magnetic AC-susceptibility, $\chi_{ac}(T, B)$, on the low-carrier density, one-dimensional $S = \frac{1}{2}$ antiferromagnet Yb₄As₃ in magnetic fields $B \le 19$ T. For $2 K \le T \le 20$ K we find $\rho - \rho_0 = AT^2$ (ρ_0 : residual resistivity), with a large coefficient $A \approx 0.75 \,\mu\Omega \,\text{cm/K}^2$ followed by a minimum around 1 K and a 0.1% increase for $T \to 0$. In finite fields and below about 5 K, $\rho(T, B)$ shows a historydependent hysteretic behavior. The oscillatory behavior superimposed is attributed to the Shubnikov-de Haas effect arising from a low density of mobile As-p holes. For $T \ge 0.4$ K, $\chi_{ac}(T)$ follows the prediction of the quantum sine-Gordon model. A cusp-like anomaly is found at 0.15 K.

The low-carrier density system Yb₄As₃ has recently attracted the interest of many researchers due to its quantum-spin chains. At room temperature Yb₄As₃, crystallizing in the cubic anti-Th₃P₄ structure, is an intermediate-valent metal with Yb²⁺ and Yb³⁺ ions residing on the four interpenetrating families of the cubic space diagonals. A charge ordering of the Yb ions below $T_{co} = 293 \text{ K}$ [1], accompanied by a trigonal lattice distortion leads to the formation of one-dimensional Yb³⁺ $(S = \frac{1}{2})$ chains along one of the four $\langle 1 1 1 \rangle$ directions. The low-energy excitations measured by inelastic neutron scattering [2] agree well with the des Cloizeaux-Pearson spectrum of antiferromagnetic (AF) $S = \frac{1}{2}$ Heisenberg chains and give rise to a large, heavyfermion (HF) like, in-T linear specific heat, γT . Most remarkably, the electrical resistivity, $\rho(T)$, follows a T^2 behavior between 2 and 40 K, with a giant coefficient $A \approx 0.75 \,\mu\Omega \,\text{cm/K}^2$ that fulfils the Kadowaki-Woods scaling [1] found for usual HF metals. However, the low-carrier concentration of only about 0.001 per formula unit [1] excludes the usual Kondo effect. Light $(m = 0.6-0.8 \,m_0$ [3], m_0 : free-electron mass) As-p holes dominate the electrical conductivity in Yb₄As₃ [1,3]. As shown below, the origin of the HF-like behavior in resistivity is not yet understood.

All experiments were carried out on high-quality single crystals prepared as described in [1] with the current and magnetic field aligned along the cubic $\langle 1 1 1 \rangle$ direction. The trigonal lattice distortion going along with the charge ordering usually results in the formation of a *polydomain* low-*T* structure. To investigate *monodomain* samples, a CuBe pressure clamp was used. A preferential orientation of the domains was achieved by the application of a uniaxial pressure of about 100 bar along one of the $\langle 1 1 1 \rangle$ directions prior to cooling through T_{co} . Electrical contacts were made by point welding 50 µm Au wires on the polished crystal surface.

For the monodomain sample a 25% smaller residual resistivity ρ_0 compared to the polydomain sample was found (Fig. 1a). For both samples $\rho(T)$ deviates from the

^{*}Corresponding author. Tel.: +49-351-871-1616; fax: +49-351-871-1612.

E-mail address: gegenwart@cpfs.mpg.de (P. Gegenwart).

Fig. 1. Electrical resistivity for polydomain (\bullet) and monodomain (\bigcirc) Yb₄As₃, plotted as ρ vs. *T* (a) and ρ vs. *B*² (b). Broken line in (a) represents a *T*² dependence. Thermal history of data at *B* \neq 0 is indicated by arrows. (c). FFT of the SdH oscillations measured at different temperatures.

 T^2 -behavior below 2 K with a small upturn for $T \rightarrow 0$. Interestingly enough, the large HF-like coefficient A remains almost unchanged up to 18 T, while the zero-field γ coefficient rapidly decreases due to the gap formation [4]. This observation appears to be in conflict with the interpretation of a large A coefficient resulting from the scattering of light carriers off the spin excitations [3]. The isothermal resistivity (Fig. 2b) roughly follows a B^2 behavior. Both samples show a pronounced hysteresis upon increasing and decreasing B as well as upon warming and cooling (in B > 0). SdH oscillations, recently found by Ochiai et al. [5], were hardly visible for the polydomain sample but clearly seen for the monodomain crystal, cf. Fig. 1b. A fast-Fourier transformation (FFT) of $d^2 \rho/dB^2$ yields two characteristic frequencies $F_1 = (40 \pm 10) T$ and $F_2 = (112 \pm 5) T$ (Fig. 1c). To prove the existence of the small Fermi-surface (FS) cross section associated with F_1 , however, the experiments have to be extended to higher fields since between 10 and 18 T only 1.5 oscillations with that frequency were recorded. Assuming only one spherical FS, F₂ would correspond to a hole concentration of $(6.7 \pm 0.4) \times$ 10¹⁸ cm⁻³ in good agreement with the value inferred from Hall-effect measurements [1]. From the T-dependence of the oscillation amplitude at F_2 (Fig. 1c) we estimate an effective carrier mass of $m_{\rm eff} = (0.75 \pm 0.1)$ m_0 in accordance with the values found in cyclotronresonance experiments [6] and LSDA + U band-structure calculations [3]. Our results confirm the existence of a low-density system of mobile As-p holes that determines $\rho(T)$.

The susceptibility, χ , of Yb₄As₃ for $T \ge 2$ K being dominated by the spin excitations of the $S = \frac{1}{2}$ AF Heisenberg chains is well described by the quantum sine-Gordon model [7]. At temperatures sufficiently low that the interchain coupling becomes relevant, deviations

Fig. 2. Magnetic susceptibility as χ vs. *T* (on a logarithmic scale) (a) and specific heat as *C*/*T* vs. *T* (b), taken from Ref. [4], for polydomain Yb₄As₃. Broken line in (a) shows χ as calculated by the quantum sine-Gordon model using an intra-chain exchange-coupling J = 26 K [2], a *g*-factor g = 2 and a constant $\chi_0 = 16.5 \times 10^{-3}$ emu/mol [7]. Solid line in (b) shows data after subtraction of nuclear contributions.

from this behavior are expected. For the temperature range $2 K \leq T \leq 6 K$ the χ_{ac} data, taken at a low frequency of 16.67 Hz on a polydomain sample, were scaled to $\chi = M/B$ results obtained by using a commercial SQUID magnetometer at B = 0.01 T. As shown in Fig. 2a, $\chi_{ac}(T)$ for $T \ge 0.4$ K agrees well with the theoretical curve using the same parameters as in Ref. [7]. The deviations at lower temperatures might result from interchain-coupling effects. Around 0.15 K, a cusp-like anomaly occurs which broadens substantially in B = 0.01 T, shifts to lower temperature and vanishes for B > 0.04 T. In ¹⁷⁰Yb Mössbauer spectroscopy the absence of AF ordering with moments larger than $0.15 \,\mu_B$ was inferred for $T \ge 0.045$ K [8]. On the other hand, a broad peak in the low-T specific heat measured [4] on a polydomain sample around 0.17 K (Fig. 2b) was attributed to spinglass-type effects. Whether these may also explain the field dependence found for the χ_{ac} anomaly remains questionable. To clarify the situation, low- $T\chi_{ac}(T)$ and C(T) measurements on monodomain crystals are in preparation.

To summarize, SdH oscillations have been found which are consistent with a low-density system of mobile As-p holes. Surprisingly, the resistivity does not show any signatures of the field-induced gap in the excitation spectrum found in the specific heat [4]. A cusp-like anomaly in $\chi_{ac}(T)$ at 0.15 K is found the origin of which has to be clarified by further experiments.

References

- [1] A. Ochiai, T. Suzuki, T. Kasuya, J. Phys. Soc. Jpn. 59 (1990) 4129.
- [2] M. Kohgi, K. Iwasa, J.-M. Mignot, A. Ochiai, T. Suzuki, Phys. Rev. B 56 (1997) R11388.

- [3] V.N. Antonov, A.N. Yaresko, A.Ya. Perlov, P. Thalmeier, P. Fulde, P.M. Oppeneer, H. Eschrig, Phys. Rev. B 58 (1998) 975.
- [4] R. Helfrich, M. Köppen, M. Lang, F. Steglich, A. Ochiai, J. Magn. Magn. Mater. 177–181 (1998) 309.
- [5] A. Ochiai, H. Aoki, N. Kimura, T. Terashima, C. Terakura, Y. Shima, submitted for publication.
- [6] H. Matsui, T. Yasuda, A. Ochiai, H. Harima, H. Aoki, T. Suzuki, N. Toyota, Physica B 246–247 (1998) 460.
- [7] M. Oshikawa, K. Ueda, H. Aoki, A. Ochiai, M. Kohgi, Phys. Soc. Jpn. 68 (1999) 3181.
- [8] P. Bonville, A. Ochiai, T. Suzuki, E. Vincent, J. Phys. France I 4 (1994) 595.