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The growth of sputter deposited UPt3 thin films on AlcOa (i0i2), LaAIOa (111) and SrTiO3 (111) was 
investigated. We found strongly 0001-textured growth of UPta in a small compositional range of 23 - 25% 
uranium content. For A1203- and LaAlO3-substrates no in-plane order could be observed whereas epitaxial 
growth was initiated on SrTiO3 (111). The growth can be identified as Vollmer-Weber like resulting in 
the formation of large lateral strain as a consequence of the growth mode and a lattice misfit of -4 .3  % 
between UPt3 (0001) and SrTiOa (111). Strong deviations from the typical heavy-fermion characteristics in 
electronic transport properties like resistivity, magnetoresistivity and Hall-effect are attributed to changes of 
the hybridization between the localized 5f- and itinerant states.* 

I. I N T R O D U C T I O N  
Different experimental techniques, like specific 

heat and ultrasonic velocity measurements [1, 2], give 
evidence for the unconventional nature of the super- 
conducting pair state in UPt3. The conclusion on 
possible knots in the energy gap by means of tunne- 
ling experiments revealed to be rather subtle up to 
now [3]. This is one reason why the preparation of 
UPts thin films can be promising since tunnel junc- 
tions can be prepared under controlled conditions. 
This approach has already proven to be successful in 
superconducting tunneling spectroscopy experiments 
on UPd2A]3 thin film samples [4]. The growth of 
UPt3 on different substrate materials and substrate 
orientations by means of a sputter process from high 
purity targets (see [5] for details) revealed epitaxial 
growth on SrTiOa in (111) orientiation whereas only 
textured growth could be observed on A1203 (10i2)- 
and LaAIO3 (111). In all cases the film's c-axis is ori- 
ented perpendicular to the film plane. The films were 
deposited onto heated substrates (T, ub ~-- 1 0 0 0 K )  
which resulted in an island growth mode (epitaxial 
Vollmer-Weber mode on SrTiOa (111)). The combi- 
nation of epitaxial growth despite a lattice misfit at 
the film-substrate interface and the coalescence of 
the film islands without grain-boundary formation 
resulted in the development of a strong lateral com- 
pressive strain. This phenomenon is well known for 
metal films on insulating substrates [6]. As a conse- 
quence we assume the growth mode to be responsible 
for a renormalized electronic structure of the UPt3 

films. This point will be further corroborated by the 
following resistivity and magnetoresistivity data. 

2. R E S U L T S  
The temperature dependent resistivity of UPt3 

films on AI203 and SrTiO3 is shown in figure 1. 
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Figure 1: Temperature dependent resistivity of 
UPtz-films on different substrate materials. 

As compared to typical results on bulk samples 
the room temperature specific resistivity is strongly 
reduced by about a factor of 8 to 15. Especially for 
the film on SrTiOa the whole course of the resistivity 
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has no resemblance to the typical bulk behaviour. 
The residual resistivity is as low as 13 nflcm with 
a residual resistance ratio R R R  = p(300K)/p0 = 
612 (sample # 88). The low temperature resistivity 
shows no increased value of the coefficient of the ty- 
pical T2-behaviour in the Fermi-liquid regime. Su- 
perconductivity was found in a comparable sample 
at 128mK (midpoint) with a strongly reduced up- 
per critical field Be2(0) - 0.1T. Due to the high 
purity of the samples the low temperature magne- 
toresistivity (transveral geometry) showed quantum 
oscillations as function of the applied field. In figure 
2 the oscillatory part of the resistivity, Rose(B) = 
R ( B )  - R ( B ,  T = 1.3 K), is shown for different tem- 
peratures (sample # 94, R R R  = 451). 
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Figure 2: Oscillatory part of magnetoresistivity as a 
function of the magnetic field. 

A spectral analysis of the magnetoresistivity for 
different temperatures and field orientations parallel 
and perpendicular to the film's c-axis was perfor- 
med in order to determine the effective masses m* 
of the observed main branches by means of the tem- 
perature dependent damping part of the Lifshitz-  
Kosevich formula [7]: 

A I ( T )  m* 1 
- -  K T ~   9 

AI(O) mo s inhQcTm*/mo) 

(~ = 2~r2kBmo/heB). 
In this analysis the influence of the collision broade- 
ning of the Landau levels was neglected. As can be 
seen in figure 3 the fits on the experimental data are 
quite satisfactory. 

3. D I S C U S S I O N  
Within the observable mass regime m* < 35mo 

(T > 0.3 K, B < 13.2 T) the analysis yielded 10.2 mo 
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Figure 3: Temperature dependent main spectral 
components of the magnetoresistivity (see text for 
details). 

for the largest effective mass. These only slightly in- 
creased effective masses are compatible with the as- 
sumption of a strongly altered electronic structure in 
the films due to lateral compressive strain. Neverthe- 
less the mass enhancement is clearly more pronoun- 
ced than in pure platinum [8] giving further evidence 
that the observed properties are not due to pure pla- 
tinum as an impurity phase. We propose rather a 
strongly renormatized effective hybridization of the 
itinerant states with the 5f-states to cause a signi- 
ficantly changed Kondo energy scale. Further work 
on the influence of lateral expansion by deposition 
on a different substrate material (MgO3 (111)) and 
expansion experiments are in progress. 
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