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Abstract
In reoptimization problems, one is given an optimal solution to a problem instance and a local
modification of the instance. The goal is to obtain a solution for the modified instance. The
additional information about the instance provided by the given solution plays a central role: we
aim to use that information in order to obtain better solutions than we are able to compute from
scratch.

In this paper, we consider Steiner tree reoptimization and address the optimality requirement
of the provided solution. Instead of assuming that we are provided an optimal solution, we relax
the assumption to the more realistic scenario where we are given an approximate solution with
an upper bound on its performance guarantee.

We show that for Steiner tree reoptimization there is a clear separation between local modi-
fications where optimality is crucial for obtaining improved approximations and those instances
where approximate solutions are acceptable starting points. For some of the local modifications
that have been considered in previous research, we show that for every fixed ε > 0, approx-
imating the reoptimization problem with respect to a given (1 + ε)-approximation is as hard
as approximating the Steiner tree problem itself (whereas with a given optimal solution to the
original problem it is known that one can obtain considerably improved results). Furthermore,
we provide a new algorithmic technique that, with some further insights, allows us to obtain
improved performance guarantees for Steiner tree reoptimization with respect to all remaining
local modifications that have been considered in the literature: a required node of degree more
than one becomes a Steiner node; a Steiner node becomes a required node; the cost of one edge
is increased.
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1 Introduction

The Steiner tree problem (STP) is one of the most studied problems in the area of network
design. We are given a graph G with nodes V (G), edges E(G), and a cost function
c : E(G)→ R≥0, as well as a set R ⊆ V (G) of required nodes (also called regular nodes or
terminals). The objective is to find a minimum cost tree T within G such that R ⊆ V (T ).
The Steiner tree problem is known to be APX-hard [8], and the currently best approximation
algorithm has a performance guarantee of ln 4 + ε ≈ 1.387 [24].

∗ Research partially funded by Deutsche Forschungsgemeinschaft grant BL511/10-1 and by the Indo-
German Max Planck Center for Computer Science (IMPECS).

© Keshav Goyal and Tobias Mömke;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 10–24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


K. Goyal and T. Mömke 11

We consider the Steiner tree problem with respect to reoptimization, a framework for
dynamic algorithms in the context of NP-hard problems. We are given two related instances
I and I ′ of an algorithmic problem together with a solution Sol to the instance I, and our
goal is to compute a solution to I ′. The relation between I and I ′ is determined by an
operation that we call local modification.

The concept of reoptimization is motivated by the observation that instead of computing
new solutions from scratch, oftentimes we can reuse the effort spent to solve problems similar
to the one at hand. For instance, let us consider a large circuit where certain components
have to be connected. The components are the required nodes and there are points that
may be used by several connections, the Steiner nodes. Now suppose that a long and costly
computation has led to an almost optimal solution. Afterwards the requirements change:
either an additional component has to be placed to a point that previously was a Steiner
node or a component is removed, which turns a required node into a Steiner node. In such a
situation it would seem wasteful to discard the entire previous effort.

Classically, when considering reoptimization problems one assumes that Sol is an optimal
solution. The reason for this assumption is that assuming optimality considerably reduces the
formal overhead and therefore facilitates to concentrate on the main underlying properties of
the reoptimization problem. We show, however, that assuming optimality is not without
loss of generality. Let us assume that c(Sol) is a (1 + ε) factor larger than the cost of an
optimal solution. Then we say that a Steiner tree reoptimization algorithm is robust, if it
is an approximation algorithm and its performance guarantee is α · (1 +O(ε)), where α is
its performance guarantee when ε = 0. Intuitive, this definition ensures that for ε→ 0, the
performance guarantee converges smoothly towards α, independent of the given instance.
We consider robustness of reoptimization algorithms to be a crucial feature, since in real
world applications close to optimal solutions are much more frequent than optimal solutions.

We address all local modifications that have previously been considered for Steiner tree
reoptimization. We classify these modifications into two groups, according to their robustness.
The first group contains those problems where obtaining a robust reoptimization algorithm
implies to provide an approximation algorithm for the (non-reoptimization) Steiner tree
problem with matching performance guarantee. The second group of problems allows for
improved robust reoptimization algorithms compared to STP approximation algorithms.

For all reoptimization problems of the second group that have previously been considered
(and that are known to be NP-hard [15]), we provide robust reoptimization algorithms that,
for ε→ 0, obtain better performance guarantees than the previous results with optimality
assumption [12, 13].

1.1 Local Modifications and Our Contribution
There are ten local modifications that previously have been considered for the Steiner tree
problem. The two most studied modifications address the set of required nodes: we either
declare a required node to be a Steiner node, or a Steiner node to be a required node.
Here, STPR− resp. STPR+ denote the corresponding reoptimization problems. We show, in
Section 4, that finding a robust reoptimization algorithm for STPR− is as hard as finding a
Steiner tree approximation algorithm with matching approximation ratio. If one, however,
excludes that the node t declared to be a Steiner node is a leaf in the given instance, we
provide a robust reoptimization algorithm with improved performance ratio (see Table 1 for
an overview of the achieved improvements). We show that in contrast to STPR−, STPR+

always allows for improved robust reoptimization algorithms. The next interesting type of
local modification is to modify the cost of a single edge. We do not require the cost function

FSTTCS 2015



12 Robust Reoptimization of Steiner Trees

to be metric. In particular, in the shortest path metric induced by the modified edge cost,
the cost of several edges may be changed. We call the modification where the cost of one
edge is increased STPE+, and the converse local modification where the cost of one edge is
decreased is STPE−. We provide an improved robust reoptimization algorithm for STPE+

and show that robust reoptimization for STPE− is as hard as approximating the Steiner
tree problem itself (analogous to general STPR−). The two local modifications to remove an
edge from the graph and to add an edge to the graph reduce to STPE+ resp. STPE− in a
straightforward manner.

The remaining four local modifications are the removal or addition of a required node or
a Steiner node. It is known that the local modification where required or Steiner nodes are
removed is as hard as Steiner tree approximation, even if we are given an optimal solution to
the old problem [15]. We show that adding a required node or a Steiner node to the graph
causes robust reoptimization to be as hard as STP approximation.

One of the key insights that leads to our improved algorithms is that for all local
modifications that allow for robust reoptimization algorithms, we can replace the given
Steiner tree by a k-restricted Steiner tree of roughly the same cost. At the same time, we
have the promise that there is an almost optimal Steiner tree for the modified instance that
is k-restricted. This property allows us to handle certain subgraphs of Steiner trees called full
components. (i) We remove entire full components from the given Steiner tree and perform
optimal computations to obtain a feasible solutions to the modified instance, and (ii) we
guess entire full components of the Steiner tree that we aim to compute. The new insights
simplify and generalize the previous approaches to Steiner tree reoptimization and therefore
give raise to more sophisticated analyses than before.1

Due to space constraints, we restrict the presentation to analyzing STPR− and STPE+,
as these local modification give the best overview of the used techniques and ideas.

1.2 Related Work
The concept of reoptimization was first mentioned by Schäffter [29] in the context of
postoptimality analysis for a scheduling problem. Since then, the concept of reoptimization
has been investigated for several different problems, including the traveling salesman problem
[1, 5, 14, 18, 7, 28], the rural postman problem [3], fast reoptimization of the spanning
tree problem [23], the knapsack problem [2], covering problems [11], the shortest common
superstring problem [10], maximum weight induced heredity problems [21], and scheduling
[29, 6, 20]. There are several overviews on reoptimization [4, 22, 17, 31].

The Steiner tree reoptimization problem in general weighted graphs was previously
investigated in [9, 26, 16, 15, 12, 13], see Table 1.

2 Preliminaries

We denote a Steiner tree instance by (G,R, c), where G is an undirected graph, R ⊆ V (G)
is the set of required nodes, and c : E(G) → R≥0 is a cost function. The Steiner nodes of
(G,R, c) are the nodes S = V (G) \R.

Since c is symmetric, we sometimes use the simplified notation c(u, v) = c(v, u) instead
of c({u, v}).

1 We note that with some additional effort, it would also be possible to adapt the technique of Bilò and
Zych [13] and use them for our results.
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Table 1 Comparison of approximation ratios of the Steiner Tree Reoptimization problem for the
different types of local modifications. To increase the readability, all values ε, δ in the approximation
ratios are omitted. The numerical values are rounded up at the third digit and we assume β = 1.387,
the approximation ratio ln(4) + ε of the Steiner tree approximation algorithm of Byrka et al. [24]
with small enough ε.

Local Modification Our Results Previous Results
Sol: (1 + ε)-Approx. Sol: Optimal Solution
Expression Value Expression Value

STPR− (internal node) 10β−7
7β−4 1.204 3β−2

2β−1 [13] 1.219
STPR− (leaf node) not robust 1.204 3β−2

2β−1 [13] 1.219
if ε = 0

STPR+ 10β−7
7β−4 1.204 3β−2

2β−1 [12] 1.219
STPE+ 7β−4

4β−1 1.256 2β−1
β

[13] 1.29
STPE− not robust 1.387 5β−3

3β−1 [9] 1.246
assuming metricity

Add Node not robust 1.387 without [24]: 1.5 [26] 1.387
Remove Node not robust 1.387 As hard as STP approx. [15] 1.387

For two graphs G,G′, we define G ∪G′ to be the graph with node set V (G) ∪ V (G′) and
edge set E(G) ∪E(G′) (i. e., we do not keep multiple edges). For an edge e, G− e is G with
e removed from E(G). We define G−G′ to be the graph with node set V (G) \ (V (G′) ∩ S)
and edge set E(G) \ E(G′). We emphasize that we do not remove required vertices.

In Steiner tree algorithms, it is standard to consider the edge-costs to be metric. The
reason is that forming the metric closure (i. e., using the shortest path metric) does not
change the cost of an optimal solution: if we replacing an edge of a Steiner tree by the
shortest path between the two ends, we obtain a valid Steiner tree again.

In the context of reoptimization, however, we cannot assume the cost function to be
metric without loss of generality, because the triangle inequality restricts the effect of local
changes. Therefore in the following we have to carefully distinguish between metric and
general cost functions.

For a given Steiner tree, its full components are exactly those maximal subtrees that have
all leaves are in R and all internal nodes are in S. Note that for a given Steiner tree T , we
may remove leaves if they are not in R; we still have a Steiner tree, and its cost did not
increase. Therefore we may assume that T is composed of full components. A k-restricted
Steiner tree is a Steiner tree where each full component has at most k nodes from R.

I Lemma 1 (Borchers, Du [19]). For an arbitrary ε > 0 there is a k ∈ Oε(1) such that for
all Steiner tree instances (G,R, c) with optimal solution Opt of cost opt and c is a metric,
there is a k-restricted Steiner tree T of cost at most (1 + ε)opt which can be obtained from
Opt in polynomial time.

We assume that in k-restricted Steiner trees T where c is a metric, the Steiner nodes
v ∈ V (T )∩S have a degree of deg(v) ≥ 3. This is without loss of generality, since deg(v) ≥ 2
by the definition of k-restricted Steiner trees; if deg(v) = 2 and u,w are the neighbors of v,
c(u, v) + c(v, w) ≥ c(u,w). We replace {u, v}, {v, w} by {u,w} without increasing the cost
of T and without changing the property that T is k-restricted.
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14 Robust Reoptimization of Steiner Trees

Input :A Steiner tree instance (G,R, c),
a Steiner forest F in G with trees F1, F2, . . . , F`

Output :A Steiner tree T
Set G′ := G/F such that Fi is contracted to vi;
Set R′ := {vi : V (Fi) ∩R 6= ∅};
Compute a minimum Steiner tree T ′ of (G′, R′, c);
Obtain T from T ′ by expanding F .

Algorithm 1: Connect

Within the entire text, Opt denotes an optimal solution and opt denotes the cost of
an optimal solution. We will often add sub- and superscripts to Opt and opt in order to
distinguish between various types of (close to) optimal solutions.

3 Connecting Forests and Guessing Components

We state two algorithms that we will use repeatedly within the subsequent sections. The
first algorithm, Connect, was introduced by Böckenhauer et al. [16] and has been used in
all previous Steiner tree reoptimization results. The algorithm connects components of a
Steiner forest F of G in order to obtain a feasible Steiner tree T . The idea is that we start
from a partial solution with few components that together contain all required vertices, and
we use an exact computation to complete the solution. In Connect we use the following
notation. Denote by G/V ′ for V ′ ⊆ V (G) the contraction of V ′ in G. We write G/F instead
of G/V (F ), if F is a subgraph of G. Note that after contracting a component there may
be multiedges. Here, we treat multigraphs as simple graphs, where we only consider the
cheapest edge of each multiedge. For ease of presentation, we slightly abuse notation and
use the cost function c for both the graph before and the graph after the contraction.

Clearly, the graph T computed by Connect is a Steiner tree. If the number of components
` of the forest F given as input is a constant, by using the Dreyfuss-Wagner algorithm [25]2
to compute T ′, Connect runs in polynomial time. The graph T computed by Connect
is the minimum cost Steiner tree that contains F , since all Steiner trees that contain F

determine feasible solutions T ′.
The second algorithm of this section, Guess, which is motivated from the CONNECT

algorithm of [13] and presented here in a different manner, provides a mechanism to profit
from guessing full components of an optimal k-restricted Steiner tree: we compress the
guessed full components to single vertices and this way we obtain a new instance to which
we apply known approximation algorithms. We call Guess by simply writing Guess(`), if
the instance and k are clear from the context and A is a β-approximation algorithm. Note
that for instance Guess(3k) means that ` = 3k.

I Lemma 2. For an arbitrary ε > 0, let k be the parameter obtained from Lemma 1. Let A
be a polynomial time β-approximation algorithm for the Steiner tree problem. Furthermore,
let Optk be an optimal k-restricted solution of cost optk to the Steiner tree instance (G,R, c)
where c is a metric. Then, for ` ∈ Oε(1), Guess runs in polynomial time and computes a
Steiner tree T of cost at most (1 + ε)(β − βζ + ζ)opt, where ζoptk is the total cost of the `
maximum weight full components of Optk and opt is the cost of an optimal solution.

2 We refer to Hougardy et al. [27] for an overview of further exact Steiner tree algorithms that, depending
on the given parameters, may be faster than Dreyfuss-Wagner.
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Input :A Steiner tree instance (G,R, c) with c metric, numbers `, k ∈ N,
and a Steiner tree approximation algorithm A

Output :A Steiner Tree T
Run A on (G,R, c) and obtain a Steiner tree T ;
foreach S = {S1, S2, . . . , S`} such that
Si ⊆ V with |Si| ≤ 2k and 2 ≤ |Si ∩R| ≤ k for 1 ≤ i ≤ ` do

For each i, compute a minimum spanning tree Ti with V (Ti) = Si;
Contract each Ti to a required node ri;
Run A on the resulting instance;
Obtain T ′ by expanding the contracted components of each ri;
if c(T ′) < c(T ) then

Replace T by T ′.
Algorithm 2: Guess

Proof. We first analyze the running time of the algorithm. Since A runs in polynomial time,
we only have to consider the number of families S that we have to test. This number is
bounded from above by

(∑2k
i=2
(
n
i

))`, since we only choose sets of size at most 2k. Since
both k and ` are constants, this number is polynomial in n.

Next we analyze the cost of T . Since we assume that for each Steiner node v ∈ S∩V (Optk),
deg(v) ≥ 3, we conclude that all full components of Optk have at most 2k nodes. Therefore
there is a family S considered by Guess such that the classes of S are exactly the node sets of
the ` maximum weight full components of Optk. Contracting a minimum spanning tree Ti is
equivalent to contracting the full component with required nodes R ∩ Si in Optk. We finish
the proof by applying a standard argument that was used, for instance, by Böckenhauer et
al. [14]. The cost of an optimal Steiner tree before expanding the full components is bounded
from above by optk − ζoptk, and expanding the full components adds ζoptk. Therefore we
obtain c(T ) ≤ β(optk− ζoptk) + ζoptk = (β−βζ + ζ)optk. By our choice of k and Lemma 1,
optk ≤ (1 + ε)opt and therefore c(T ) ≤ (1 + ε)(β − βζ + ζ)opt. J

In the subsequent proofs, we will repeatedly obtain a value η such that ζ ≥ (α− 1− ε)η,
where α is the actual performance ratio of the considered approximation algorithm. By
simple arithmetics and assuming that (1 + ε)(β − βζ + ζ) tends to (β − βζ + ζ) for ε chosen
sufficiently small, Lemma 2 implies

α ≤ β + βη − η + ε(βη − η)
1 + βη − η

. (1)

The reason for our assumption is that we can choose k in Lemma 1 and therefore the
additional error is arbitrarily small.3 We avoid complicated formalisms and instead slightly
relax the approximation ratios in theorem statements by adding an arbitrarily small value
δ > 0 whenever the proofs use (1).

4 A Required Node Becomes a Steiner Node

The variant of the minimum Steiner tree reoptimization problem where a node is declared to
be a Steiner node (STPR−ε ) is defined as follows.

3 Note that in contrast to the error from Lemma 1, we cannot control the error of the given solutions.
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16 Robust Reoptimization of Steiner Trees

Input :An instance (G,R, c,Optold
ε , t) of STPR−ε

Output :A Steiner tree T
while degOptold

ε
(t) = 1 do // We assume that either ε = 0 or degOptold

ε
(t) > 1

Set t′ := child(t); // The node adjacent to t in Optold
ε

Remove t from Optold
ε and R, rename t′ to t, and set t ∈ R;

// Now (G,R, c, Optold
ε , t) is the changed instance

Transform Optold
ε to a k-restricted solution Optold

ε,k such that optold
ε,k ≤ (1 + εk)optold

ε ,
where εk tends to 0 for large enough k;
Set T1 := Optold

ε ; // Note that optold
ε ≤ optold

ε,k

Let Ct1, Ct2, . . . be the full components of Optold
ε,k such that

t ∈ V (Cti ) for all i and c(Cti ) ≤ c(Ctj) for i < j;
Set F := Optold

ε,k − Ct1 − Ct2 − Ct3; // Ignore Ct3 if it does not exist
Set T2 := Connect(F );
Set T3 := Guess(3k);
Set T = Ti with i = min argj∈{1,2,3}{c(Tj)}.

Algorithm 3: DeclareSteiner

Given: A parameter ε > 0, a Steiner tree instance (G,R, c), a solution Optold
ε to (G,R, c)

such that optold
ε ≤ (1 + ε)optold, and a node t ∈ R.

Solution: A Steiner tree solution to (G,R \ {t}, c).
An instance of STPR−ε is a tuple (G,R, c,Optold

ε , t). If ε = 0, we skip the index and write
STPR−. Without loss of generality we assume that c is a metric: we may use the metric
closure since the local modification does not change G or c.

The algorithm DeclareSteiner starts with reducing the instance to one where the
changed required node has a degree of at least two, using a known technique. Afterwards
it transforms the given solution to a k-restricted Steiner tree (note that the order of these
two steps is important). The remaining algorithm outputs the best of three solutions that
intuitively can be described as follows: we either keep the old solution; or we remove up
to three full components incident to t to obtain a partial solution that we complete again
using Connect; or we guess a partial solution that is at least as large as the 3k largest
full-components of an optimal solution and complete these components to a solution using
the best available approximation algorithm.

The following theorem indicates that in general we have to require ε = 0 for instances of
STPR−ε with deg(t) = 1.

I Theorem 3. For an arbitrary ε > 0, let A be a polynomial time α-approximation algorithm
for STPR−ε . Then there is a polynomial time α-approximation algorithm for the Steiner tree
problem.

Proof. Given a Steiner tree instance (G,R, c), let optnew be the cost of an optimal solution.
We construct a STPR−ε instance (G′, R′, c′, Optold

ε , t) from (G,R, c). We first compute a
minimum spanning tree T̃ of G[R]. Note that G[R] is a complete graph since we assume c
to be metric, and c(T̃ ) ≤ 2optnew, as shown by Takahashi and Matsuyama [30]; we assume
w. l. o. g. that α < 2. We obtain G′ by combining G and a new node t as follows. We set
V (G′) := V (G) ∪ {t} and E(G′) = E(G) ∪ {t, t′} for a node t′ ∈ R. Then we obtain c′ from
c by setting c′(t, t′) = c(T̃ ) · (1− ε)/ε and forming the metric closure. We set R′ = R ∪ {t}
and obtain a solution Optold

ε to (G′, R′, c′) by adding {t, t′} to T̃ . Finally, we obtain the
Steiner tree T by applying A to (G′, R′, c′,Optold

ε , t).
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Observe that T cannot contain an edge incident to t, since all of those edges are more
expensive than T̃ . Therefore T is a Steiner tree of (G,R, c). Conversely, all Steiner trees of
(G,R, c) are feasible solutions to (G′, R′, c′,Optold

ε , t). We conclude that T provides an α
approximation, i. e., T is a feasible solution to (G,R, c) and c(T ) ≤ αoptnew.

To finish the proof, we have to show that Optold
ε was a valid solution given to A, i. e., its

cost optold
ε is at most a factor (1 + ε) larger than optimum. Clearly, Optold

ε is a Steiner tree
of (G′, R′, c′). Let optold be the cost of an optimal Steiner trees for (G′, R′, c′).

optold
ε

optold = c(T̃ ) + c(t, t′)
optnew + c(t, t′) ≤

2optnew + c(t, t′)
optnew + c(t, t′) ≤ 1 + optnew

optnew + optnew · 1−ε
ε

= 1 + ε.

J

For all remaining cases, DeclareSteiner profits from knowing Optold
ε .

I Theorem 4. Let (G,R, c,Optold
ε , t) be an instance of STPR−ε with degOptold

ε
(t) ≥ 2 or

ε = 0. Then, for an arbitrary δ > 0, DeclareSteiner is an approximation algorithm for
STPR−ε with performance guarantee

(10β − 7 + 2ε− 2εβ)(1 + ε)
7β − 4 + 5ε− 2εβ + δ.

For the approximation ratio β = ln(4) + ε′′ from [24] with ε′′ and δ chosen sufficiently
small, we obtain an approximation ratio of less than 1.204 · (1 + ε).

4.1 Proof of Theorem 4
Since k is a constant, all steps of DeclareSteiner except for the call of Connect clearly
run in polynomial time. To see that also the call of Connect does, observe that removing the
edges and Steiner nodes of a full component increases the number of connected components
by at most k − 1.

We continue with showing the claimed upper bound on the performance guarantee. Before
we show the main result, we introduce two simplification steps. First, we show that we can
restrict our attention to the case deg(t) = 2 in Optold

ε,k . Our analysis simultaneously gives a
new proof for the previous best reoptimization result [13]. Subsequently we reduce the class
of considered instances to those where all optimal solution to (G,R \ {t}, c) have a special
structure.

We start with analyzing the case where deg(t) = 1. If this case appears in the while loop,
by our assumption we have ε = 0 and thus Optold

ε is an optimal solution. The transformation
of DeclareSteiner within the while loop reduces the instance to one where deg(t) ≥ 2
[16]. When transforming the resulting solution Optold

ε to Optold
ε,k , generally t could become a

degree-one vertex. We use, however, that this is not the case when applying the algorithm of
Borchers and Du [19]: The algorithm considers the full components separately, which implies
that initially the degrees of all required vertices are one. Each full component is replaced by
a graph where each required vertex has a degree of at least one. Consequently, the degree of
no required vertex is decreased.

For the remaining proof, we assume degOptold
ε,k

(t) ≥ 2. We prove the following technical
lemma, which is needed for our subsequent argumentation.

I Lemma 5. There is a collection C of at most 3k full components of Optnew
k such that

F ∪ C is a connected graph.
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18 Robust Reoptimization of Steiner Trees

Proof. Observe that F has less than 3k connected components, and each of them contains
nodes from R. We use that the full components of Optnew

k only intersect in R. Since Optnew
k

is connected, by the pigeonhole principle it has a full component C that contains required
nodes from two distinct components of F . Thus adding C to F reduces the number of
components. Now the claim follows inductively. J

Let α = c(T )/optnew ≥ 1 be the performance ratio of DeclareSteiner. Thus, in the
following we want to determine an upper bound on α. We may assume

optold
ε,k ≥ αoptnew (2)

since otherwise, T1 already gives an approximation ratio better than α.
We define γ = c(Connect(F ))− c(F ), the cost to connect F . Let d be the number of

full components removed from Optold
ε,k to obtain F , i. e., d ∈ {2, 3}.

I Lemma 6. For an arbitrary δ > 0, the performance ratio α of DeclareSteiner is
bounded from above by 1 + β−1+ε(β−1)(d+1)

1+(β−1)d+ε + δ.

Proof. We have c(Ct1) + c(Ct2) + c(Ct3) ≥ d · c(Ct1) assuming c(Ct1) ≤ c(Cti ) for i ≤ d.
We determine the following constraints. Since Ct1 + Optnew contains a feasible solution

to (G,R, c),

optnew + c(Ct1) ≥ optold. (3)

Furthermore,

optold
ε,k − c(Ct1)− c(Ct2)− c(Ct3) + γ ≥ αoptnew (4)

since c(T2) is at most as large as the left hand side of (4).
We assume optold

ε,k tends to optold
ε for large enough k and then use (3) to replace optold in

(2) to obtain

c(Ct1) ≥ α− 1− ε
1 + ε

optnew. (5)

By applying (3) and (5) to (4), we obtain

γ ≥ d

1 + ε
· (α− 1− ε)optnew. (6)

Finally, ζ ≥ γ/optnew
k , by Lemma 5. Therefore, due to Lemma 2 and assumption that ε

due to transformation to k-restricted tree tends to zero for large enough k,

β − βγ/optnew
k + γ/optnew

k ≥ α. (7)

Now the claim follows if we assume optnew
k tends to optnew for large enough k and replace γ

in (7) by the right hand side of (6), where we used that β ≥ 1. J

We note that for d = 2 and ε = 0, the upper bound on the performance guarantee due to
Lemma 6 matches the previously best performance guarantee [13]. For d = 3, the value is
better than the aimed-for value from Theorem 4. Observe that a straightforward extension
of DeclareSteiner would allow us to consider values of d larger than three.

Due to Lemma 6, in the following we may assume that deg(t) = 2. Next, we analyze the
structure of Optold

ε,k and Optnew. Let R1 = (R ∩ V (Ct1)) \ {t} and R2 = (R ∩ V (Ct2)) \ {t}.
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t

v1 v2

e1 e2

F1 F2

Figure 1 Structure of Optold
ε,k . The paths P1 and P2 are drawn with thick lines.

We partition F into forests F1 and F2 such that F1 contains exactly the trees T of F with
V (T ) ∩R1 6= ∅ and F2 contains the remaining trees T ′, with V (T ′) ∩R2 6= ∅ (see Fig. 1).

Let v1 ∈ V (Ct1) and v2 ∈ V (Ct2) such that e1 = {t, v1} ∈ E(Ct1) and e2 = {t, v2} ∈ E(Ct2).
Let P1 be a minimum cost path in Optold

ε,k from t to R1 and let P2 be a minimum cost path
in Optold

ε,k from t to R2. Observe that P1 contains e1 and that P2 contains e2. We define
κ1 := c(P1), κ′1 := c(e1), and κ′′1 = c(P1)− c(e1). Analogously, κ2 := c(P2), κ′2 := c(e2), and
κ′′2 = c(P2)− c(e2). Note that we do not exclude that v1 ∈ R1 or v2 ∈ R2. In this case κ′′1
resp. κ′′2 are zero.

To simplify the presentation, we define κ′ := (κ′1 + κ′2)/2 and κ′′ := (κ′′1 + κ′′2)/2. Since
P1, P2 are minimum cost paths, c(Ct1) ≥ κ′1 + 2κ′′1 and c(Ct2) ≥ κ′2 + 2κ′′2 , which implies

c(Ct1) + c(Ct2) ≥ 2κ′ + 4κ′′. (8)

We have optnew + κ′1 + κ′′1 ≥ optold and optnew + κ′2 + κ′′2 ≥ optold. Therefore,

optnew + κ′ + κ′′ ≥ optold. (9)

I Lemma 7. Suppose there are at least two edge disjoint paths in Optnew
k between V (F1)

and V (F2). Then, for an arbitrary δ > 0, the performance guarantee of DeclareSteiner
is bounded from above by (11β−8)(1+ε)

8β−5+3ε + δ.

Proof. Let P ′ and P ′′ be two edge-disjoint paths within Optnew
k between V (F1) and V (F2)

such that none of their internal nodes are in V (Optold
ε,k ). Without loss of generality, we

assume that c(P ′) ≤ c(P ′′). We will also assume that optnew
k tends to optnew for large enough

k. Then, additionally to the previous constraints, we obtain the following.

optold
ε,k − 2κ′ + c(P ′) = optold

ε,k − κ′1 − κ′2 + c(P ′) ≥ αoptnew (10)

ζ · optnew
k ≥ c(P ′) + c(P ′′) ≥ 2c(P ′) (11)

From (9) and (10) and assuming optold
ε,k tends to optold

ε for large enough k, we obtain

c(P ′) ≥ (α− 1− ε)optnew + (1− ε)κ′ − (1 + ε)κ′′, (12)

and thus, due to (11) and (2),(9),

ζoptnew
k ≥ 2((α−1−ε)optnew +(1−ε)κ′−(1+ε)κ′′) ≥ 4

(1 + ε) (α−1−ε)optnew−4κ′′. (13)
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Furthermore, by using (8) and (9) in (4), we obtain

γ ≥ (α− 1− ε)optnew + (1− ε)κ′ + (3− ε)κ′′.

and thus, due to (2) and (9) and the fact that ζoptnew
k ≥ γ,

ζoptnew
k ≥ 2

(1 + ε) (α− 1− ε)optnew + 2κ′′. (14)

A linear combination of (13) and (14) with coefficients one and two gives ζ ≥ 8(α−1−ε)
3(1+ε) , by

assuming that optnew
k tends to optnew for large enough k. Using (1) we obtain

α ≤ (11β − 8)(1 + ε)
8β − 5 + 3ε + δ. J

Since the value obtained by Lemma 7 is better than the aimed-for ratio, from now on we
can restrict our focus to instances where in Optnew

k , there are no two edge-disjoint paths
between F1 and F2. In particular, this means that there is exactly one full component L
in Optnew

k that connects F1 and F2. Since we assumed that there are no Steiner nodes of
degree two in Optnew

k , there is exactly one edge eL in L such that removing eL leaves two
connected components of Optnew

k , one containing R1 and the other one containing R2. Let
PL be a minimum cost path between V (F1) and V (F2) in L (and thus PL clearly contains
eL). Let P 1

L be the subpath of PL between F1 and eL and let P 2
L be the subpath of PL

between F2 and eL. We define λ := c(PL), λ′ := c(eL), λ′′1 := c(P 1
L), and λ′′2 := c(P 2

L).
Similar to above, we define λ′′ := (λ′′1 + λ′′2)/2. Note that λ − λ′ = 2λ′′. It follows easily
that c(L) ≥ λ′ + 4λ′′. Let L′ be a forest with a minimum number of full components from
Optnew

k such that Optold
ε,k − Ct1 − Ct2 + L′ is connected. From Lemma 5, we obtain that L′

contains at most 3k full components and thus we considered guessing L′ when computing T3
in DeclareSteiner. We define ξ := c(L′)−λ′−4λ′′. Since L′ contains L, ξ is non-negative.

To find an upper bound on the value of α, we maximize α subject to the constraints (2),
(9) and the following constraints.

By removing eL from Optnew
k and adding the paths P1 and P2, we obtain a feasible

solution to (G,R, c); conversely, by removing e1 and e2 from Optold
ε,k and adding PL, we

obtain a feasible solution to (G,R \ t, c) that is considered in T2. Therefore

optnew
k + 2κ′ + 2κ′′ − λ′ ≥ optold, (15)

optold
ε,k − 2κ′ + λ′ + 2λ′′ ≥ αoptnew. (16)

In T2 we also consider to remove Ct1, Ct2 completely and to add L′. Therefore

optold
ε,k − 2κ′ − 4κ′′ + λ′ + 4λ′′ + ξ ≥ αoptnew. (17)

Due to Lemma 2 and assumption that ε due to transformation to k-restricted tree tends
to zero for large enough k, we may assume

β − βζ + ζ ≥ α. (18)

In T3, one of the considered guesses is L′ and therefore

ζ · optnew
k ≥ λ′ + 4λ′′ + ξ. (19)

We assume that optnew
k and optold

ε,k tends to optnew and optold
ε respectively for large

enough k and then scale the values such that optnew = 1. Then we perform the following
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replacements. We replace optold in (9) and in (15) by using (2); we use (9) to replace optold

in (16); we use (9) to replace optold in (17). We keep (18) and (19). This way we obtain a
linear program that maximizes α subject to the following constrains.

−κ′ − κ′′ + α/(1 + ε) ≤ 1
−2κ′ − 2κ′′ + λ′ + α/(1 + ε) ≤ 1

(1− ε)κ′ − (1 + ε)κ′′ − λ′ − 2λ′′ + α ≤ 1 + ε

(1− ε)κ′ + (3− ε)κ′′ − λ′ − 4λ′′ − ξ + α ≤ 1 + ε

(β − 1)ζ + α ≤ β
λ′ + 4λ′′ + ξ − ζ ≤ 0

Now we obtain the dual linear program

minimize y1 + y2 + (1 + ε)y3 + (1 + ε)y4 + βy5
s.t.: −y1 − 2y2 + (1− ε)y3 + (1− ε)y4 ≥ 0

−y1 − 2y2 − (1 + ε)y3 + (3− ε)y4 ≥ 0
y2 − y3 − y4 + y6 ≥ 0
−2y3 − 4y4 + 4y6 ≥ 0

−y4 + y6 ≥ 0
(β − 1)y5 − y6 ≥ 0

y1/(1 + ε) + y2/(1 + ε) + y3 + y4 + y5 ≥ 1

To finish the proof, we consider the following feasible solution. We set

y1 = 2(β − 1)(1 + ε)(1− 2ε)
7β − 4 + 5ε− 2εβ ; y2 = y1/2;

y3 = y1/(1− 2ε); y4 = y1/(1− 2ε);

y5 = 3(1 + ε)(1− 2ε)
(1− 2ε)(7β − 4 + 5ε− 2εβ) ; y6 = 3y1

2(1− 2ε) .

With these values, the objective function value matches the claimed value in Theorem 4. By
weak duality, we obtained an upper bound on the value of α in the primal linear program,
which finishes the proof.

5 Increased Edge Cost

We now consider the reoptimization variant where the edge cost of one edge is increased,
STPE+

ε . If e is the edge of G with increased cost, we define cnew : E(G)→ R≥0 as cnew(e′) =
c(e′) for all edges e′ ∈ E(G)\{e} and cnew(e) is the increased cost. Then the formal definition
of the reoptimization variant is as follows.

Given: A parameter ε > 0, a Steiner tree instance (G,R, c), a solution Optold
ε to (G,R, c)

such that optold
ε ≤ (1 + ε)optold, and a cost cnew(e) ≥ c(e) for an edge e ∈ E(G).

Solution: A Steiner tree solution to (G,R, cnew).

Observe that the cost function obtained after applying the local modification in general
is not a metric, and Optnew

ε,k is assumed to live in the metric closure according to the new
cost function.

I Theorem 8. Let (G,R, c,Optold
ε , e, cnew(e)) be an instance of STPE+

ε . Then, for an
arbitrary δ > 0, EdgeIncrease is a

( 7β−4+ε(4β−4)
4β−1 +δ

)
-approximation algorithm for STPE+

ε .
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Input :An instance (G,R, c,Optold
ε , e, cnew(e)) of STPE+

ε

Output :A Steiner tree T
Transform Optold

ε to a k-restricted solution Optold
ε,k such that optold

ε,k ≤ (1 + εk)optold
ε

where εk tends to 0 for large enough k;
Set T1 := Optold

ε ;
Set T2 := Guess(k + 1), with respect to cnew(e);
Set T = Ti with i = min argj∈{1,2}{c(Tj)}.

Algorithm 4: EdgeIncrease

Proof. Let us introduce the following notation. To emphasize which of the two instances
we consider, we write cold(e) instead of c(e), where e is the edge with increased cost. We
assume that e ∈ E(Optold

ε,k ), as otherwise T1 would be good enough already. Therefore the
graph Optold

ε,k − e has exactly two connected components F1 and F2. Similar to the previous
proof, we define R1 := R ∩ V (F1) and R2 := R ∩ V (F2).

In Optold
ε,k , let K be the full component that contains e. Let P be a minimum cost path

from R1 to R2 within K. Then we set κ := c(P )− cold(e).
In Optnew

k , there is a full component L of cost λ such that V (L) contains nodes from both
R1 and R2. If L has two edge-disjoint paths between R1 and R2, we define λ′ = 0. Otherwise
there is an edge eL ∈ E(L) such that eL is a cut edge in F1 ∪ F2 ∪ L, and λ′ := c(eL). We
obtain the following inequalities, where as before α = c(T )/optnew.

Removing e and adding a shortest path between R1 and R2 within L gives a feasible
solution to (G,R, cnew). Therefore T2 is good enough unless

optold
ε,k − cold(e) + λ/2 + λ′/2 ≥ αoptnew. (20)

One feasible solution to the original instance is to remove eL and to add P . Therefore we
obtain

optnew
k − λ′ + cold(e) + κ ≥ optold. (21)

We obtain an additional constraint by observing that in addition to using eL, within
Optnew

k the required vertices of K have to be connected. Let K1 be the tree of K − e that
contains R1 ∩ V (K). We see K1 as a rooted tree with the root r1 contained in e = {r1, r2}.
Let us fix any two vertices u 6= u′ ∈ V (K1) \ {r}, with parents v, v′. Then the minimum
distance between the two subtrees rooted at u, u′ is at least max{c(u, v), c(u′, v′)}. The
same argumentation holds for K2, which we define analogous to K1 (it contains R2 ∩ V (K),
and has the root r2). By traversing a path from V (K1) ∩ R1 to r1 within K1 and from
V (K2) ∩ R2 to r2, and adding the distances, we conclude that there is a collection of at
most k full components in Optnew

k that without counting eL have a total cost of at least κ.
Therefore, using T2,

ζoptnew
k ≥ λ′ + κ.

From these constraints, we obtain the claimed result using arguments similar to those of the
previous section. J
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