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Abstract
We study the relationship between the competitive ratio and the tail distribution of randomized
online problems. To this end, we define a broad class of online problems that includes some of
the well-studied problems like paging, k-server and metrical task systems on finite metrics, and
show that for these problems it is possible to obtain, given an algorithm with constant expected
competitive ratio, another algorithm that achieves the same solution quality up to an arbitrarily
small constant error with high probability; the “high probability” statement is in terms of the
optimal cost. Furthermore, we show that our assumptions are tight in the sense that removing
any of them allows for a counterexample to the theorem.
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1 Introduction

In online computation, we face the challenge of designing algorithms that work in environments
where parts of the input are not known while parts of the output are already needed. The
standard way of evaluating the quality of online algorithms is by means of competitive
analysis, where one compares the outcome of an online algorithm to the optimal solution
constructed by a hypothetical optimal offline algorithm. Since deterministic strategies are
often proven to fail for the most prominent problems, randomization is used as a powerful
tool to construct high-quality algorithms that outperform their deterministic counterparts
against an oblivious adversary. These algorithms base their computations on the outcome of
a random source; for a detailed introduction to online problems we refer the reader to the
literature [5].

The most common way to measure the performance of randomized algorithms is to
analyze the worst-case expected outcome and to compare it to the optimal solution. With
offline algorithms, a statement about the expected outcome is also a statement about the
outcome with high probability due to Markov’s inequality and the fact that the algorithm may
be executed many times to amplify the probability of success [11]. However, this amplification
is not possible in online settings. As online algorithms only have one attempt to compute a
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reasonably good result, a statement with respect to the expected value of their competitive
ratio may be rather unsatisfying. As a matter of fact, for a fixed input, it might be the case
that such an algorithm produces results of a very high quality in very few cases (i. e., for a
rather small number of random choices), but is unacceptably bad for the majority of random
computations; still, the expected competitive ratio might suggest a better performance. Thus,
if we want to have a certain guarantee that some randomized online algorithm obtains a
particular quality, we must have a closer look at its analysis. In such a setting, we would like
to state that the algorithm does not only perform well on average, but “almost always.”

Besides a theoretical formalization of the above statement, the main contribution of this
paper is to show that, for a broad class of problems, the existence of a randomized online
algorithm that performs well in expectation immediately implies the existence of a randomized
online algorithm that is virtually as good with high probability. Our investigations, however,
need to be detailed in order to face the particularities of the framework. First, we show
that it is not possible to measure the probability of success with respect to the input size,
which might be considered the straightforward approach. Many of the known randomized
online algorithms are naturally divided into some kind of phases (e. g., the algorithm for
metrical task systems from Borodin et al. [6], the marking algorithm for paging from Fiat
et al. [8], etc.) where each phase is processed and analyzed separately. Since the phases
are independent, a high probability result (i. e., with a probability converging to 1 with an
increasing number of phases) can be obtained. However, the definition of these phases is
specific to each problem and algorithm. Also, there are other algorithms (e. g., the optimal
paging algorithm from Achlioptas et al. [2] and many workfunction-based algorithms) that
use other constructions and that are not divided into phases. As we want to establish results
with high probability that are independent of the concrete algorithms, we thus have to
measure this probability with respect to another parameter; we show that the cost of an
optimal solution is a very reasonable quantity for this purpose. Then again it turns out that,
if we consider general online problems, the notions of the expected outcome and an outcome
with high probability are still not related in any way, i. e., we define problems for which
these two measures are incomparable. Hence, we carefully examine both to which parameter
the probability should relate and which properties we need the studied problem to fulfill to
again allow a division into independent phases; finally, this allows us to construct randomized
online algorithms that perform well with a probability tending to 1 with a growing size of the
optimal cost. We show that this technique is applicable for a wide range of online problems.

Classically, results concerning randomized online algorithms commonly analyze their
expected behavior; there are, however, a few exceptions, e. g., Leonardi et al. [14] analyze the
tail distribution of algorithms for call control problems, and Maggs et al. [15] deal with online
distributed data management strategies that minimize the congestion in certain network
topologies.

Overview
In Section 2, we define the class of symmetric online problems and present the main result
(Theorem 8). The theorem states that, for any symmetric problem that fulfills certain natural
conditions, it is possible to transform an algorithm with constant expected competitive ratio
r to an algorithm having a competitive ratio of (1 + ε)r with high probability (with respect
to the cost of an optimal solution). Section 3 is devoted to proving Theorem 8. We partition
the run of the algorithm into phases such that the loss incurred by the phase changes can be
amortized; however, to control the variance within one phase, we need to further subdivide
the phases. Modelling the cost of single phases as dependent random variables, we obtain a
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supermartingale that enables us to apply the Azuma-Hoeffding inequality and thus to obtain
the result. After these investigations, we provide applications of the theorem in Section 4
where we show that our result is applicable for task systems. For the k-server problem on
unbounded metric spaces and for makespan scheduling, we show that no comparable result
can be obtained. We further elaborate the necessity of the conditions in Section 5. The
outcome is that, even though the conditions may appear strong, a weakening prohibits a
result of the same generality.

Due to space restrictions, many of the proofs are omitted and can be found in the technical
report [12].

2 Preliminaries

In this section, we fix the notation for online algorithms that we use throughout the paper.
Before we start, we need to briefly discuss the way in which online problems and instances are
formally defined. For our investigations, we have to be very careful about these definitions.
In particular, in the literature one often refers to “an online problem” when really a class
of online problems is meant, which is parameterized by some problem-specific parameters.
Let us give a few examples of problems that we study later in the paper. When speaking
about the paging problem, we really mean the class of paging problems for, e. g., different
cache sizes k. Note that there is some inconsistency in the literature as this problem is
usually referred to as “paging” (and not “k-paging”) while we speak of the “k-server problem.”
Here, k denotes the number of servers that are moved in a metric space. However, k alone
is neither sufficient to specify a member from the class of paging problems nor of k-server
problems. For paging, we also need the number of pages that may be requested in total, say
N ; for k-server the metric space (M,d) must be known, where M is a set of points and d is
a distance function.

To define the above problems entirely, we still need to give even more information by
speaking about how problem instances are initialized according to the parameters. For
example, we need to specify how the cache is initialized for the paging problem or where
the servers are located at the beginning when dealing with the k-server problem. We call
this initialization the initial situation; for paging, the initial situation is a k-tupel of distinct
integers between 1 and N , which formalizes which pages are in the cache at the beginning.
Formally, we thus have to speak of an instance of the ((k,N), (s1, . . . , sk))-paging problem.
In general, such a parameterized online problem is given by (C, I)-P where C is a sequence
of problem-specific parameters, I is a set of valid initial situations, and P is the name of the
union of all of theses problems. Formally, I is a set of valid assignments I to some of the
parameters in C and the competitiveness guarantees of any algorithm for P must be satisfied
for any I ∈ I; note that, sometimes, I is also considered a part of the input instance. To end
this discussion, note that in the literature, the initial situation is at times called the initial
configuration; in this paper, we choose another name to distinguish it from the configuration
of an algorithm (Turing machine). In the following, we will use the notation as used in the
literature and omit C; however, the initial situation I plays an important role for us and it is
given together with the actual input sequence x. Let us emphasize that, if we say that some
algorithm has some specific performance for a problem P , this means that this performance
must be guaranteed for all feasible choices of C, I, and x.

We are now ready to define online algorithms on initial situations and input instances. To
keep the presentation concise, we focus on minimization problems. The same ideas translate
to maximization problems by changing the point of view: we show that any optimal solution
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has a low profit instead of showing that the algorithmic solution has low cost. An online
algorithm A computes the output sequence A(I, x) = y = (y1, . . . , yn), where I is an initial
situation, x = (x1, . . . , xn) is an input sequence, and yi = f(I, x1, . . . , xi) for some function
f . The cost of the solution A(I, x) is denoted by Cost(I, x, y) = Cost(I, x, A(I, x)). For the
ease of presentation, we refer to the tuple that consists of the initial situation and the input
sequence, i. e., (I, x), as the input of the problem; also, we abbreviate Cost(I, x, A(I, x)) by
Cost(A(I, x)). As already mentioned, the notion of an initial situation plays an important role
in the relationship between different variants of the competitive ratio; although it is usually
omitted, our definition imposes no restriction on the studied problems and algorithms.

A randomized online algorithm R computes the output sequence Rφ(I, x) = y = (y1, . . . , yn)
such that yi is computed from φ, I, x1, . . . , xi, where φ is the content of a random tape.
By Cost(R(I, x)) we denote the random variable (over the probability space defined by φ)
expressing the cost of the solution Rφ(I, x). When dealing with randomized online algorithms
we compare the expected outcome to the one of an optimal algorithm. Note that, as usual
in such a setting, we only consider computable problems. In the context of this paper
we assume an oblivious adversary and say that a randomized algorithm is r-competitive
if there exists a constant α such that, for every initial situation I and input sequence x,
E[Cost(R(I, x))] ≤ r · Cost(Opt(I, x)) + α. For formal reasons, we define the competitive
ratio of any (randomized) online algorithm to be 1 if both x and y are empty.

In the sequel, we analyze the notion of competitive ratio with high probability. Using
paging, it can be shown that it does not make sense to measure the probability with respect
to the input length [12]. Then again, for the practical use of paging algorithms, the instances
where also the optimal algorithm makes faults are of interest. Hence, it seems reasonable to
define the term high probability with respect to the cost of an optimal solution. In this paper,
we use a strong notion of high probability requiring the error probability to be subpolynomial.

I Definition 1 (Competitive Ratio w.h.p.). A randomized online algorithm R is r-competitive
with high probability (w.h.p. for short) if, for any β ≥ 1, there exists a constant α such that
for all initial situations and input sequences (I, x) it holds that

Pr[Cost(R(I, x)) ≥ r · Cost(Opt(I, x)) + α] ≤ (2 + Cost(Opt(I, x)))−β .

First, note that the purpose of the constant 2 on the right-hand side of the formula is to
properly handle inputs with a small (possibly zero) optimum. The choice of the particular
constant is somewhat arbitrary (however, it should be greater than 1) since the α term
on the left-hand side hides the effects. However, the two notions of the expected and the
high-probability competitiveness are incomparable [12]. Nevertheless, many real-world online
problems share additional properties that guarantee a close relationship between the expected
and high-probability behavior. We now focus on the cost of a solution.

I Definition 2 (Partition Function). A partition function of an online problem is a non-
negative function P such that, for any initial situation I, the sequence of requests x1, . . . , xn,
and the corresponding solutions y1, . . . , yn, we have

Cost(I, (x1, . . . , xn), (y1, . . . , yn)) =
∑n
i=1P(I, x1, . . . , xi; y1, . . . , yi).

In other words, for a problem with a partition function, the cost of a solution is the sum
of the costs of particular answers, and the cost of each answer is independent of the future
input and output. The partition function allows us to speak of the cost of a subsequence of
the outputs. Note that any online problem for which the input instance may stop after each
request has either a unique partition function or none, because the overall cost is fixed after
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each answer. In what follows, we further restrict the behavior, and it will be convenient to
think in terms of the “cost of a particular answer.” We may think of online problems that
have a partition function as a separate class of problems. However, all further properties
depend on specific partition functions and thus requiring a “partitionability” property would
be redundant.

I Definition 3 (Request-Boundedness). An online problem P is called request-bounded if, for
some constant F , it has a partition function P such that

∀I, x, y, i : P(I, x1, . . . , xi; y1, . . . , yi) ≤ F or P(I, x1, . . . , xi; y1, . . . , yi) =∞.

We say that P is request-bounded according to P.

Note that for any problem with a partition function there is a natural notion of a state; for
instance, it is the content of the memory for the paging problem, the position of the servers
for the k-server problem, etc. Now we provide a general definition of this notion. By a · b,
we denote the concatenation of two sequences a and b; λ denotes the empty sequence. An
input (I, x = (x1, x2, . . . , xn)) is feasible with a solution y = (y1, y2, . . . , yn) if starting from
I, x is a request sequence that is in accord with the problem definition and for each i, yi is a
feasible answer to the request xi with respect to I, (x1, x2, . . . , xi−1), and (y1, y2, . . . , yi−1).

I Definition 4 (State). Consider a partition function P , two initial situations I and I ′, two
sequences of requests x = (x1, . . . , xn) and x′ = (x′1, . . . , x′m), and two sequences of outputs
y = (y1, . . . , yn) and y′ = (y′1, . . . , y′m). The triples (I, x, y) and (I ′, x′, y′) are equivalent if,
for any sequence of requests x′′ = (x′′1 , . . . , x′′p) and a sequence of outputs y′′ = (y′′1 , . . . , y′′p ),
the input (I, x · x′′) is feasible with a solution y · y′′ if and only if the input (I ′, x′ · x′′)
is feasible with a solution y′ · y′′, and the cost of y′′ according to P is the same for both
solutions. A state s of the problem is an equivalence class over the triples (I, x, y).

Let (I, x, y) be some triple in a state s. By Opts(x′) we denote an output sequence y′ such
that y·y′ is a feasible solution for the input (I, x·x′) and Cost(I, x·x′, y·y′) ≤ Cost(I, x·x′, y·y′′)
for any feasible solution y · y′′. Note that due to the partition function, the definition of
Opts(x′) is independent of the chosen triple (I, x, y). We sometimes simplify notation and
write Cost(Opts(x′)) instead of Cost(I, x · x′, y · Opts(x′)) − Cost(I, x, y), as it is sufficient
to know the state s and x′ in order to determine the value of the function and the other
parameters are clear from the context.

I Definition 5 (Initial State). A state s is called an initial state if and only if it contains
some triple (I, λ, λ).

We chose this definition of states as it covers best the properties of online computations
as we need them in our main theorem. An alternative definition could use task systems with
infinitely many states, but the description would become less intuitive; we will return to task
systems in Section 4.1.

Intuitively, a state from Definition 4 encapsulates all information about the ongoing
computation of the algorithm that is relevant for evaluating the efficiency of the future
processing. Usually, the state is naturally described in the problem-specific domain (content
of cache, current position of servers, set of jobs accepted so far, etc.). Similar to our
discussion on initial situations, we want to emphasize that a state is independent of the
concrete algorithm. The internal state of an algorithm (Turing machine), which is a part of
its configuration, is a different notion since it may, e. g., behave differently if the starting
request had some particular value. The following properties are crucial for our approach to
probability amplification.
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I Definition 6 (Opt-Boundedness). An online problem is called opt-bounded if there exists a
constant B and a partition function such that ∀s, s′, x : |Cost(Opts(x))−Cost(Opts′(x))| ≤ B.

I Definition 7 (Symmetric Problem). An online problem is called symmetric if it is has a
partition function for which every state is initial.

Note that for symmetric problems, it follows that every sequence of requests is a feasible
input sequence. In particular, the input may end after any time step. Formally, any problem
with a partition function may be transformed into a symmetric one simply by redefining the
set of initial states. However, this transformation may significantly change the properties of
the problem. Now we are going to state the main result of this paper, namely that, under
certain conditions, the expected competitive ratio of symmetric problems can be achieved
w.h.p.

I Theorem 8. Consider an online problem P that is opt-bounded and symmetric according
to a common partition function. Suppose there is a randomized online algorithm A for P with
constant expected competitive ratio r. Then, for any constant ε > 0, there is a randomized
online algorithm A′ with competitive ratio (1 + ε)r w.h.p. (with respect to the optimal cost).

3 Proof Sketch of Theorem 8

For the ease of presentation, we first provide a proof for a restricted setting where the online
problem at hand is also request-bounded.

The algorithm A′ simulates A and, on some specific places, performs a reset operation: if
a part x′ of the input has been read so far, and a corresponding output y′ has been produced,
(I, x′, y′) belongs to the same state as (I ′, λ, λ), for some initial situation I ′, because we are
dealing with a symmetric problem; hence, A can be restarted by A′ from I ′.

The general idea to boost the probability of acquiring a low cost is to perform a reset
each time the algorithm incurs too much cost and to use Markov’s inequality to bound the
probability of such an event. However, the exact value of how much is “too much” depends
on the optimal cost of the input which is not known in advance. Therefore, the input is first
partitioned into phases of a fixed optimal cost, and then each phase is cut into subphases
based on the cost incurred so far. A reset may cause an additional expected cost of r ·B for
the subsequent phase compared to an optimal strategy starting from another state, where
B is the constant of the opt-boundedness (Definition 6), i. e., B bounds the different costs
between two optimal solutions for a fixed input for different states. We therefore have to
ensure that the phases are long enough so as to amortize this overhead.

From now on let us consider ε, r, B, F , and α to be fixed constants; recall that F originates
from the request-boundedness property of the online problem at hand (Definition 3) and α is
the constant from the definition of competitiveness. The algorithm A′ is parameterized by
two parameters C and D that depend on ε, r, B, F , and α. These parameters control the
lengths of the phases and subphases, respectively, such that C + F delimits the optimal cost
of one phase and D + F delimits the cost of the solution computed by A′ on one subphase;
we require that D > r(C + F +B + α).

Consider an input sequence x = (x1, . . . , xn), an initial situation I, and let the optimal cost
of the input (I, x) be between (k−1)C and kC for some integer k. Then x can be partitioned
into k phases x̃1 = (x1, . . . , xn2−1), x̃2 = (xn2 , . . . , xn3−1), . . . , x̃k = (xnk

, . . . , xn) in such a
way that ni is the minimal index for which the optimal cost of the input (I, (x1, . . . , xni

)) is
at least (i− 1)C. It follows that the optimal cost for one phase is at least C −F and at most
C + F , with the exception of the last phase which may be cheaper. Note that this partition
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can be generated by the online algorithm itself, i. e., A′ can determine when a next phase
starts. There are only two reasons for A′ to perform a reset: at the beginning of each phase
and after incurring a cost exceeding D since the last reset. Hence, A′ starts each phase with a
reset, and the processing of each phase is partitioned into a number of subphases each of cost
at least D (with the exception of the possibly cheaper last subphase) and at most D + F .

Now we are going to discuss the cost of A′ on a particular input. Let us fix the input (I, x)
which subsequently also fixes the indices 1 = n1, n2, . . . , nk. Let Si be a random variable
denoting the state of the problem (according to Definition 4) just before processing request
xi, and let W (i, j), i ≤ j, be a random variable denoting the cost of A′ incurred on the input
xi, . . . , xj . The following claim is obvious.
I Claim 9. If A′ performs a reset just before processing xi, then Si captures all the information
from the past W (i, j) depends on. In particular, if we fix Si = s, W (i, j) does not depend on
W (l1, l2), for any l1 ≤ l2 ≤ i and any state s.

The overall structure of the proof is as follows. We first show in Lemma 11 that the
expected cost incurred during a phase (conditioned by the state in which the phase was entered)
is at most µ := r(C +F +B+α)/(1− p), where p := r(C +F +B+α)/D < 1. We can then
consider random variables Z0, Z1, . . . , Zk such that Z0 := kµ and Zi := (k − i)µ+

∑i
j=1 W j

for i > 0, where W i is the cost of the ith phase, clipped from above by some logarithmic
bound, i. e., W i := min{W (ni, ni+1 − 1), c log k}, for some suitable constant c. We show in
Lemma 12 that Z0, Z1, . . . , Zk form a bounded supermartingale, and then use the Azuma-
Hoeffding inequality to conclude that Zk is unlikely to be much larger than Z0. By a suitable
choice of the free parameters, this implies that Zk is unlikely to be much larger than the
expected cost of A. Finally, we show that w.h.p. Zk is the cost of the algorithm A′. In order
to argue about the expected cost of a given phase in Lemma 11, let us first show that a
phase is unlikely to have many subphases. For the rest of the proof, let Xj be the random
variable denoting the number of subphases of phase j.

I Lemma 10. For any i, s, and any δ ∈ N we have Pr[Xi ≥ δ | Sni
= s] ≤ pδ−1.

Now we can argue about the expected cost of a phase.

I Lemma 11. For any i and s it holds that E[W (ni, ni+1 − 1) | Si = s] ≤ µ.

Once the expected cost of a phase is established, we can construct the supermartingale
as follows.

I Lemma 12. For any constant c > 0, the sequence Z0, . . . , Zk is a supermartingale.

Proof. Consider a fixed c. We have to show that for each i, E[Zi+1 | Z0, . . . , Zi] ≤ Zi. From
the definition of the Zi’s it follows that Zi+1 − Zi = W i+1 − µ. Consider any elementary
event ξ from the probability space, and let Zi(ξ) = zi, for i = 0, . . . , k, be the values of the
corresponding random variables. We have

E[Zi+1 | Z0, . . . , Zi](ξ) = E[Zi+1 | Z0 = z0, . . . , Zi = zi]
= E[Zi +W i+1 − µ | Z0 = z0, . . . , Zi = zi]
= zi − µ+ E[W i+1 | Z0 = z0, . . . , Zi = zi]
= zi − µ+

∑
s E[W i+1 | Z0 = z0, . . . , Zi = zi, Sni+1 = s]

· Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi]
≤ zi − µ+

∑
s E[W (ni+1, ni+2 − 1) | Sni+1 = s] · Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi]

≤ zi − µ+ µ
∑
s Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi] = zi = Zi(ξ),

where the last inequality is a consequence of Lemma 11. J
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Now we use the following special case of the Azuma-Hoeffding inequality [1, 10].

I Lemma 13 (Azuma, Hoeffding). Let Z0, Z1, . . . be a supermartingale, such that |Zi+1−Zi| <
γ. Then for any positive real t, Pr[Zk − Z0 ≥ t] ≤ exp

(
−t2/(2kγ2)

)
.

In order to apply Lemma 13, we need the following bound.
I Claim 14. Let k be such that c log k > µ. For any i it holds that |Zi+1 − Zi| < c log k.

We are now ready to prove the subsequent lemma.

I Lemma 15. Let k be such that c log k > µ. There is a constant C (depending on F , B, ε,
r, α) such that Pr[Zk ≥ (1 + ε)rkC] ≤ exp

(
−(k ((1 + ε)rC − µ)2)/(2c2 log2 k)

)
.

Proof. Applying Lemma 13 for any positive t, we get

Pr[Zk − Z0 ≥ t] ≤ exp
(
− t2

2kc2 log2 k

)
.

Noting that Z0 = kµ and choosing t := k((1 + ε)rC − µ) the statement follows. The only
remaining task is to verify that t > 0, which can be shown by some simple calculations
[12]. J

To prove the claim of the main theorem, we show the following bound.

I Lemma 16. For any c and β > 1 there is a k0 such that for any k > k0

exp
(
−k ((1 + ε)rC − µ)2

2c2 log2 k

)
≤ 1

2(2 + kC)β .

Proof. Note that the left-hand side is of the form exp(−ηk/ log2 k) for some positive constant
η. Clearly, for any β > 1 and large enough k, it holds that exp(ηk/ log2 k) ≥ 2(2 + kC)β . J

Combining Lemmata 15 and 16, we get the following result.

I Corollary 17. There is a constant C (depending on F , B, ε, r, α) such that for any β > 1
there is a k0 such that for any k > k0 we have

Pr[Zk ≥ (1 + ε)rkC] ≤ 1/(2(2 + kC)β).

To finish the proof of the theorem we show that w.h.p. Zk is actually the cost of the
algorithm A′.

I Lemma 18. For any β > 1 there is a c and a k1 such that for any k > k1 Pr[Zk 6=
Cost(A′(I, x))] ≤ 1/(2(2 + kC)β).

Proof. Since Zk =
∑k
j=1 min{W (nj , nj+1 − 1), c log k} the event that Zk 6= Cost(A′(I, x))

happens exactly when there is some j such thatW (nj , nj+1−1) > c log k. Consider any fixed
j. Since the cost of a subphase is at most D+F , it holds that W (nj , nj+1− 1) ≤ Xj(F +D).
From Lemma 10 it follows that for any c,

Pr[W (nj , nj+1 − 1) > c log k] ≤ Pr
[
Xj ≥

⌈
c log k
F +D

⌉]
≤ p

c log k
F +D −1.

Consider the function

g(k) :=
log
(

2k
p (2 + kC)β

)
log k .
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It is decreasing, and limk 7→∞ g(k) = 1 + β. Hence, it is possible to find a constant c and a k1
such that for any k > k1 it holds that

c ≥ F +D

log(1/p) · g(k).

From that we obtain

(1/p)
c log k
F +D −1 ≥ 2k(2 + kC)β .

Thus, for this choice of c and k1, it holds that Pr[W (nj , nj+1 − 1) > c log k] ≤ p
c log k
F +D −1 ≤

1/(2k(2 + kC)β). Using the union bound, we conclude that the probability that the cost of
any phase exceeds c log k is at most 1/(2(2 + kC)β). J

Using the union bound, combining Lemma 18 and Corollary 17, and noting that the cost
of the optimum is at most kC, we get the following statement.

I Corollary 19. There is a constant C such that for any β > 1 there is a k2 such that for
any k > k2 we have

Pr[Cost(A′(I, x)) ≥ (1 + ε)rCost(Opt(I, x))] ≤ (2 + kC)−β .

To conclude the proof by showing that for any β > 1 there is some α′ such that

Pr[Cost(A′(I, x)) > (1 + ε)rCost(Opt(I, x)) + α′] ≤ (2 + kC)−β

holds for all k, we have to choose α′ large enough to cover the cases of k < k2. For these
cases, Cost(Opt(I, x)) < k2C, and hence the expected cost of A is at most rk2C, and due to
Lemma 11, the expected cost of A′ is constant. The right-hand side (2 + kC)−β is decreasing
in k, so it is at least (2 + k2C)−β , which is again a constant. From Markov’s inequality
it follows that there exists a constant α′ such that Pr[Cost(A′(I, x)) > α′] < (2 + k2C)−β
finishing the proof of the restricted setting.

3.1 Avoiding Request-Boundedness
All that is left to do is to show how to handle problems that are not request-bounded [12].
The main idea is to apply the restricted Theorem 8 to a modified request-bounded version
of the given problem. We show that there is a modified version of the algorithm such that
the computed solution has an expected competitive ratio matching the original one for the
modified problem. By ensuring that any solution to the modified problem translates to a
solution of the original problem with at most the same competitive ratio, it is enough to
apply our theorem to the modified problem to obtain an analogous result for the original
problem.

4 Applications and Lower Bounds

We now discuss the impact of Theorem 8 on task systems, the k-server problem, and paging.
Despite being related, these problems have different flavors when analyzing them in the
context of high probability results. We show that makespan scheduling does not allow for
similar results.
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4.1 Task Systems

The properties of online problems needed for Theorem 8 are related to the definition of task
systems. There are, however, some important differences.

To analyze the relation, let us recall the definition of task systems as introduced by
Borodin et al. [6]. We are given a finite state space S and a function d : S × S → R+ that
specifies the (finite) cost to move from one state to another. The requests given as input to
a task system are a sequence of |S|-vectors that specify, for each state, the cost to process
the current task if the system resides in that state. An online algorithm for task systems
aims to find a schedule such that the overall cost for transitions and processing is minimized.
From now on we will call states in S system states to distinguish them from the states of
Definition 4. The main difference between states of Definition 4 and system states is that
states depend on the sequence of requests and answers; this way there may be infinitely many
states. States are also more general than system states in that specific state transitions may
be impossible.

I Theorem 20. Let A be a randomized online algorithm with expected competitive ratio r
for task systems. Then, for any ε > 0, there is a randomized online algorithm A′ for task
systems with competitive ratio (1 + ε)r w.h.p. (with respect to the optimal cost).

4.2 The k-Server Problem

The k-server problem, introduced by Manasse et al. [16], is concerned with the movement
of k servers in a metric space. Each request is a location and the algorithm has to move
one of the servers to that location. If the metric space is finite, this problem is well known
to be a special metrical task system. Recent progress by Bansal et al. [3] suggests that
randomization might lead to an expected competitive ratio exponentially better than the
deterministic lower bound.

Theorem 20 directly implies that all algorithms with a constant expected competitive
ratio for the k-server problem in a finite metric space can be transformed into algorithms
that have almost the same competitive ratio w.h.p.

If the metric space is infinite, an analogous result is still valid except that we have to
bound the maximum transition cost by a constant. This is the case, because the proof of
Theorem 20 uses the finiteness of the state space only to ensure bounded transition costs.
Without the restriction to bounded distances, in general we cannot obtain a competitive
ratio much better than the deterministic one w.h.p.

I Theorem 21. Let (M,d) be a metric space with |M | = N constant, s ∈M be the initial
position of all servers, ` a constant and let r be the infimum over the competitive ratios of
all deterministic online algorithms for the k-server problem in (M,d) for instances with at
most ` requests. For every ε > 0, there is a metric space (M ′, d′) where for any randomized
online algorithm R for the k-server problem there is an oblivious adversary against which the
solution of R has a competitive ratio of at least r − ε with constant probability.

I Corollary 22. If we allow the metric to be infinite, then there is no (k − ε)-competitive
online algorithm w.h.p. for the k-server problem for any constant ε.

We simply use that the lower bound of Manesse et al. [16] satisfies the properties of
Theorem 21.
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4.3 Paging

Analogous to the k-server problem also the paging problem allows for the application of
Theorem 8. Thus for any paging algorithm with expected competitive ratio r there is an
algorithm with competitive ratio r(1 + ε) w.h.p.

Note that the marking algorithm is analyzed based on phases that correspond to k + 1
distinct requests, and hence the analysis of the expected competitive ratio immediately
gives the 2Hk − 1 competitive ratio also w.h.p. However, e. g., the optimal algorithm with
competitive ratio Hk due to Achlioptas et al. [2] is a distribution-based algorithm where the
high probability analysis is not immediate; Theorem 8 gives an algorithm with competitive
ratio Hk(1 + ε) w.h.p. also in this case.

4.4 Makespan Scheduling

Let us consider the classical online makespan scheduling problem P||Cmax where jobs arrive
one by one. It is well known that there is a tight deterministic bound 2− 1/m for m ∈ {2, 3}
on the competitive ratio, where m is the number of machines [9, 7]. Similar to Theorem 21,
we can show the following.

I Theorem 23. For any m, let `, k be constants depending on α and let r be the infimum
over the competitive ratios of all deterministic online algorithms for the online makespan
scheduling problem with m machines for instances with at most ` requests such that each
request is a job with an integer processing time at most k. Then for any constant ε > 0, the
lower bound on the competitive ratio w.h.p. is at least r − ε.

The restriction to integers does not weaken the result, as we may choose a suitable scaling
factor of the processing costs that allows to hide the deviation in the ε. In particular, for
m = 2 we already obtain the tight bound on the competitive ratio for ` = 3 [7] and thus
there is no (3/2− ε)-competitive algorithm w.h.p. for m = 2 and any constant ε whereas
there is an online algorithm with an expected competitive ratio of 4/3 [4].

5 Necessity of Requirements

As mentioned above, our result holds with large generality as many well-studied online
problems meet the requirements we imposed. However, the assumptions of Theorem 8 require
that for the problem at hand (1) every state is initial, and (2) ∀s, s′, x : |Cost(Opts(x)) −
Cost(Opts′(x))| ≤ B. We can show that removing any of the conditions (1) and (2) allows
for counterexamples to the theorem [12].

We would like to emphasize that the applicability of Theorem 8 is a property of problems
and not of algorithms. There are problems that do not fit the assumptions of the theorem
and still can be solved almost optimally by specific randomized online algorithms with high
probability; for instance, albeit using a weaker notion of high probability than in the previous
sections, online flow shop scheduling with unit-length tasks, F|pij = 1|Cmax, allows for such
algorithms with respect to the number of machines [12].
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