
Original article

Do gliosarcomas have distinct imaging features
on routine MRI?

Christoph J Maurer1 , Irina Mader2,3, Felix Joachimski1, Ori Staszewski4,
Bruno M€arkl5, Horst Urbach2 and Roland Roelz6

Abstract
Purpose: The aim of this study was the development and external validation of a logistic regression model to differentiate

gliosarcoma (GSC) and glioblastoma multiforme (GBM) on standard MR imaging.

Methods: A univariate and multivariate analysis was carried out of a logistic regression model to discriminate patients

histologically diagnosed with primary GSC and an age and sex-matched group of patients with primary GBM on presurgical

MRI with external validation.

Results: In total, 56 patients with GSC and 56 patients with GBM were included. Evidence of haemorrhage suggested the

diagnosis of GSC, whereas cystic components and pial as well as ependymal invasion were more commonly observed in

GBM patients. The logistic regression model yielded a mean area under the curve (AUC) of 0.919 on the training dataset and

of 0.746 on the validation dataset. The accuracy in the validation dataset was 0.67 with a sensitivity of 0.85 and a specificity

of 0.5.

Conclusions: Although some imaging criteria suggest the diagnosis of GSC or GBM, differentiation between these two

tumour entities on standard MRI alone is not feasible.
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Introduction

Gliosarcoma (GSC) is a rare IDH-wildtype variant of

glioblastoma (GBM) accounting for approximately 1.8

to 8% of all glioblastomas.1–3 The entity is defined by

the coexistence of glial and mesenchymal components.

The glial pattern shows the typical features of GBM,

whereas only the demonstration of a malignant mesen-

chymal component distinguishes GSC histologically

from GBM. In addition to primary GSC, secondary

GSC can occur after resection and radiotherapy of a

GBM or as a radiation-induced tumor.4 Management

and therapy is similar to that of GBMs with surgical

resection and adjuvant radiochemotherapy.3,5,6

Metastatic disease has been reported in GSC.7

Outcome and prognosis, however, seems to be worse

in GSC compared to GBM,8–14 which raises the ques-

tion whether GSC should be treated more aggressively.
The radiological phenotype of GSC can mimic

GBM or anaplastic meningioma15–17 as the main dif-
ferential diagnoses. Owing to the rarity of the disease
as compared to GBM, similar location and heteroge-
neous imaging characteristics, the preoperative diagno-
sis on the basis of imaging features alone is challenging,
but it would be highly desirable to develop specific
therapeutic approaches.

Several case series tried to determine the imaging
characteristics of GSC.15,16,18–20 Predilection of the
temporal lobe, peripheral location and involvement
of the meninges with moderate to marked surrounding
oedema have been described as typical features. GSCs
located deep within the brain parenchyma, however,
are even more difficult to distinguish from GBM.
One study specifically compared imaging features in
48 GSC and 48 matched GBM patients and analyzed
their discriminative power with a focus on Visually
Accessible Rembrandt Images (VASARI) analysis.20

It found no singular characteristic or pathognomonic
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feature for GSC but reported a thicker enhancing
tumour wall, often with a so-called paliform pattern,
a higher rate of haemorrhage and an eccentric cystic
portion in these lesions. In univariate analysis GSC
tended to be larger than GBM with more enhance-
ment, cortical involvement, less necrosis, a lower risk
of ependymal invasion and a lower incidence of
midline-crossing oedema. The authors called for fur-
ther data to better understand the discriminatory
power of neuroimaging.

The present study aims to analyze multiple imaging
features on MRI of histologically proven GSC in com-
parison with an age- and sex-matched cohort of GBM
and to develop and validate a multivariate logistic
model to distinguish the two entities, refining previous
univariate approaches.

Materials and methods

This study was approved by the institutional ethical
review board and conducted according to the princi-
ples of the Declaration of Helsinki. Owing to the ret-
rospective character of data collection and analysis,
written informed consent was waived.

Patient selection

In this retrospective study we searched the electronic
database of the departments of pathology at two
centres for histologically proven GSC between
January 1998 and December 2016. Differentiation of
glioblastoma from gliosarcoma was performed by his-
topathology with dense reticulin fibre networks in sig-
nificant parts of the tumour, not attributable to growth
into the leptomeninges, being the major criteria for the
diagnosis of gliosarcoma. In total, 120 histology
reports were identified. Patients with recurrent GSC,
secondary GSC (developing after radiation therapy of
GBM) and patients without presurgical MRI were
excluded. Fifty-six patients with histological proven
GSC were available for analysis. The pathological
databases were searched for GBM during the same
time period and 1007 cases were identified. Patients
with recurrent or secondary GBM and patients without
presurgical MRI were omitted from this dataset. The
782 remaining patients were matched for age and sex
with the GSC patients, and 56 GBM patients were
identified for further analysis. The study recruitment
process is shown in Figure 1.

MR imaging analysis

MRI was performed with various scanners over the
long study period. All imaging studies included T1-
weighted images with and without contrast enhance-
ment, T2-weighted images, fluid-attenuated inversion
recovery (FLAIR), DWI in 77% (n¼86) and PWI (per-
fusion weighted imaging) in 35% (n¼39). Loss of
signal within the tumour on susceptibility weighted
images (SWI) or T2*-weighted gradient echo sequences

(GRE) was considered haemorrhage. In cases of sever-
al imaging studies, the latest study before surgery was
used. A neuroradiologist (CJM) with 10 years of expe-
rience evaluated MR features for both tumour entities.

Based on the available literature of imaging features
of GSC,15–18,20,21 we selected 24 imaging features for
final analysis described in detail in Table 1.

Statistical analysis

Statistical analyses were performed with R version
3.6.2 (The R Project for Statistical Computing;
http://www.r-project.org/). The primary endpoint was
histological diagnosis, GSC or GBM.

Univariate analysis

Binary features were evaluated using odds ratio (OR)
and Fisher’s exact test, categorical variables using OR
and logistic regression. Odds ratios and 95% confi-
dence intervals (CI) were calculated. Continuous vari-
ables were analyzed using the area under the receiver
operator characteristics curve (AUC) to assess overall
discriminatory power.

Multivariate analysis

Missing data were imputted using the rfPermute pack-
age.22 For continuous variables, the weighted average
of the non-missing observations was used for imputa-
tion, where the weights were the proximities. For cat-
egorical predictors, the imputed value was the category
with the largest average proximity. To select variables
for final analysis we used the importance measures of
the random forest algorithm from the randomForest
package.23 The features with the highest values were
selected for the final model.24 Penalized likelihood esti-
mation for the logistic regression analysis was per-
formed using the least absolute shrinkage and
selection operator (LASSO) method to avoid
overfitting.

We assessed the predictive performance of the final
model by examining discrimination based on the area
under the curve (AUC) of the receiver-operating char-
acteristic (ROC) curve and by examining calibration
based on agreement between predicted and actual
tumour type using a published dataset of VASARI
features for GSC and GBM.20

Results

The analysis compared 56 GSC patients with 56 age-
and sex-matched GBM patients, 43% (n¼24) of whom
were female. Median age was 62 years� 12.8 ranging
from 32 to 85 years (IQR¼58–73). Metastases outside
the brain were not found in either gliosarcomas or glio-
blastomas. PWI results were available in 11 GSC and
28 GBM and showed relative hyperperfusion in all
cases. Results of the univariate analysis of binary and
categorical variables are presented in Table 2.
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Figure 1. Study recruitment. GSC: gliosarcoma; GBM: glioblastoma; MRI: magnetic resonance imaging.

Table 1. Description of radiographic features and Visually Accessible Rembrandt Images (VASARI) coding, if available.

Feature Description VASARI feature

Location Frontal, temporal, insular, parietal or occipital lobe, brainstem, cerebellar f1

Side Right, bilateral or left f2

Cyst Presence of a non-necrotic cystic component f8

Multifocal Monofocal, multifocal or multicentric disease f9

Diameter Widest diameter of the contrast enhancing parts as measured on axial

images in mm

n/a

T1/FLAIR ratio Size of pre-contrast T1 hypointensity compared to approximate size of

FLAIR abnormality (expansive, mixed, infiltrative)

f10

Thickness of enhancing margin Maximal thickness measured on axial images in mm n/a

Definition of enhancing margin Well-defined, poorly defined f12

Definition of non-enhancing margin Well-defined, poorly defined f13

Thickness of perifocal oedema Maximal thickness measured on axial images in mm n/a

Oedema/tumour ratio Ratio between thickness of perifocal oedema and tumour diameter n/a

Oedema crosses midline Yes/no n/a

Haemorrhage Yes/no f16

Diffusion characteristics Facilitated/restricted/mixed f17

ADC ratio Ratio of ADC value (solid tumour) compared to contralateral region of

interest at same location

n/a

ADC absolute value Mean ADC value of solid tumour n/a

Pial invasion Enhancement of the overlying pia contiguous to enhancing or non-

enhancing tumour matrix

f18

Ependymal invasion Invasion of any adjacent ependymal surface contiguous to enhancing or

non-enhancing tumour matrix

f19

Cortical involvement Non-enhancing or enhancing tumour extending to the cortex, or cortex no

longer distinguishable from subjacent tumour

f20

Deep white matter invasion Enhancing or non-enhancing tumour extending into the internal capsule,

corpus callosum or brainstem

f21

Tumour crosses midline Enhancing tissue crosses into contralateral hemisphere through white

matter commissures (excluding herniation)

f23

Satellites Area of enhancement within the region of signal abnormality surrounding

the dominant lesion but not abutting any part of the major tumour mass

f24

Calvarial remodelling Erosion of inner table of skull f25

CBV Normal / elevated n/a

CBV ratio Mean CBV compared to contralateral region of interest at same location n/a

Dural involvement Contact of enhancing or non-enhancing tumour with or enhancement of

the overlying dura

n/a

ADC: apparent diffusion coefficient; CBV: cerebral blood volume; n/a¼ not applicable.
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Haemorrhage showed a clear association with GSC

(OR¼ 2.89, p¼ 0.01). Interestingly, the features cyst

(OR¼ 0.21, p< 0.01), pial invasion (OR¼ 0.07,

p< 0.01), ependymal invasion (OR¼ 0.23, p< 0.01),

multifocal or multicentric disease (OR¼ 0.82,

p< 0.01) and definition of non-enhancing border

(OR¼ 0.90, p¼ 0.02) showed significant associations

with GBM histology. The infinite OR for calvarial

remodelling with a p-value of 0.12 is due to the low

incidence of only two cases. Of note, the preference of a

certain lobe, e.g. temporal lobe, was not significant

with an OR of 0.99 (95% CI¼ 0.91–1.08) and a p-

value of 0.87, neither was dural involvement with an

OR of 0.49 (95% CI¼ 0.19–1.23) and a p-value of 0.14.

Of the quantitative features (Table 3) the thickness of

perifocal oedema and the ratio oedema/tumour

showed an AUC of 0.701 and 0.662, respectively,

with GSC being associated with a greater thickness

of the perifocal oedema absolutely and expressed as

ratio. Contrast enhancing border and diameter

showed a worse AUC of 0.599 and 0.603 with a p-

value of 0.03 and 0.04, respectively.

Multivariate analysis with development of the

logistic regression model

Variable importance was measured using the random

forest method. Gini coefficients were calculated and

the sample inbag rates were determined. The following

variables were used for developing the logistic

Table 2. Univariate analysis for binary and categorical features
with odds ratio, lower and higher 95% confidence interval (CI) and
p-value.

Odds ratio 95% CI p-value

Cyst 0.21 0.085 0.491 <0.01

Defined border 0.15 0.003 1.333 0.11

Midline-crossing

oedema

0.70 0.244 1.953 0.49

Haemorrhage 2.89 1.242 6.956 0.01

Pial invasion 0.07 0.021 0.184 <0.01

Ependymal invasion 0.23 0.094 0.531 <0.01

Cortical invasion 1.80 0.623 5.541 0.33

Deep WM invasion 0.40 0.102 1.380 0.18

Midline-crossing 0.35 0.074 1.315 0.09

Satellites 0.60 0.214 1.602 0.36

Remodelling Inf 0.675 Inf 0.12

Lobe 0.99 0.91 1.08 0.87

Side 0.96 0.87 1.05 0.38

Multifocal 0.82 0.73 0.92 <0.01

Non-CE border 0.90 0.82 0.98 0.02

Diffusion# 1.05 0.93 1.18 0.44

Dural involvement 0.49 0.19 1.23 0.14

CE: contrast enhancing; WM: white matter.

Table 3. Univariate analysis for continuous variables with area
under the curve (AUC), lower and higher 95% confidence interval
(CI) and p-value.

AUC 95% CI p-value

Diameter 0.599 0.492 0.706 0.04

CE border 0.603 0.496 0.709 0.03

Border 0.555 0.448 0.663 0.16

Oedema 0.701 0.603 0.799 <0.01

Oedema/tumour 0.662 0.561 0.764 <0.01

ADC ratio 0.549 0.426 0.671 0.22

ADC absolute 0.536 0.408 0.663 0.72

CE: contrast enhancing; ADC: apparent diffusion coefficient.

Table 4. Results of the logistic regression model.

OR 95% CI p-value

Cyst 0.13 0.03 4.01 <0.001

Pial invasion 0.03 0.01 1.04 <0.001

Haemorrhage 14.65 3.92 7.26 <0.001

Ependymal invasion 0.15 0.04 4.71 <0.001

Observations 112

AIC 87.39

BIC 100.98

AIC: Akaike-Information-Criterion; BIC: Bayesian-Information-Criterion.

Figure 2. Calibration plot for the training dataset.
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regression model: pial invasion, oedema, ependymal

invasion, cyst, multifocal disease, definition of enhanc-

ing margin, haemorrhage and ratio oedema/tumour.

After penalized likelihood ratios were estimated for

the logistic regression analysis, the following parame-

ters – all VASARI features – were included in the final

model: presence of a cyst, pial invasion, haemorrhage

and ependymal invasion. Table 4 shows the results of

the logistic regression analysis for this final model. The

calibration curve showed good agreement in the train-

ing dataset (Figure 2). The final model yielded a mean

AUC of 0.919 on the training dataset and 0.746 on the

validation dataset. The accuracy in the validation data-

set was 0.67 with a sensitivity of 0.85 and a specificity

of 0.5.

Discussion

Previous studies focused on the description of imaging

features of GSC to determine certain specifics of this

tumour entity and to discriminate GSC and GBM

using univariate analysis. The multivariate model

developed in this work tries to discriminate GSC and

GBM on MR imaging. Still, only haemorrhage pre-

dicted GSC whereas pial and ependymal invasion and

– opposing previous studies20,21,25 – the detection of a

cystic component rather suggested GBM. We could

not reproduce the association of dural involvement

and predilection for the temporal lobe with GSC as a

distinguishing feature from GBM suggested by other

investigations;1,17,26 both did not predict GSC in our

model. External validation with a well-studied dataset

underscores the relevance of these results. We conclude

that the discrimination of GSC and GBM is associated

with a high error margin. This is illustrated by the four

examples of GSCs shown in Figure 3.
Yi et al.20 analyzed 48 patients harbouring a GSC

and 48 matched GBM patients with a partly overlap-

ping set of variables and also found the association of

GSC with haemorrhage, while ependymal invasion was

related to GBM. The increased occurrence of cystic

features could not be reproduced in our data. The

results show that the use of SWI/GRE sequences for

haemorrhage detection may be helpful for the diagno-

sis of GSC.
Pathologically, GSC is a clearly defined tumour

entity with stem cells that are able to differentiate

into glial and mesenchymal components.27 The differ-

ent components of GSC and the resulting histopatho-

logical polymorphism is demonstrated in Figure 4. The

extent of the mesenchymal component varies signifi-

cantly21 so that sampling errors have to be taken into

Figure 3. Imaging examples. Four patients with gliosarcoma (GSC) illustrating the spectrum of radiological phenotypes. Upper row shows
contrast enhanced T1-weighted images, lower row the corresponding T2-weighted images. (a) Large tumour with typical GSC aspect in
the temporal lobe, contact to the surface of the brain and large cystic components. (b) Peripheral, partial necrotic tumour without cystic
component and pronounced oedema. (c) Small temporal tumour with only diffuse signal changes on T2-weighted – initially suspected
grade 3 to 4 glioma. (d) large tumour associated with the right ventricle – classic glioblastoma aspect. All tumours were proven to be GSC
on histological analysis.
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account, particularly in cases where only biopsies or

partial resections were performed.28 Several authors

in the literature also raised the possibility of mis- or

underdiagnosed secondary GSC after radiothera-
py.29–31 Since the ratio of secondary transformation

cases is unclear, the gold standard of histology is

questionable.
Histologically, the sarcomatous part can express the

pattern of spindle cell sarcoma, and other lines of mes-

enchymal differentiation have been described, e.g. for-

mation of cartilage, bone, osteoid-chondroid tissue and
muscle tissue or even lipomatous features.32 This poly-

morphism is mirrored in tumour morphology which

might easily prevent the formation of homogeneous or

distinct imaging characteristics. Adding to these quali-
tative features, quantitative variation of tumour parts

plays an important role: the percentage of the mesen-

chymal component has been reported to correlate with
improved survival time.12,33 The ratio of different com-

ponents might also influence the radiological phenotype,

and GBM can have atypical imaging features as well;34

however, a correlation of the extent or the subtype of
the mesenchymal part with imaging parameters has not

been established. The broad spectrum of possible cell

differentiation in combination with the close relation-

ship to GBM might explain our difficulties in discrimi-
nating the imaging characteristics of GSC and GBM.

In contrast to GBM and secondary GSC, primary

GSC exhibits IDH(-) in molecular analysis and is

therefore considered a wild-type GBM variant,21,35

which raises the fascinating possibility of identifying

correlations of this molecular marker with imaging

characteristics. Unfortunately, Peckham et al.’s analy-

sis could not find a specific imaging pattern in their

case series.21 However, advanced MRI imaging techni-

ques may be able to determine the IDH status non-

invasively in the future.36

There are several limitations to our study. First, this is a

retrospective analysis of patients in just two centres over a

long period of time, which accounts for a large variety of

different MR scanning techniques and protocols with

implications for imaging quality and analysis. We aimed

to analyze imaging features of standardMRI sequences in

order to make the results applicable in daily practice.

Second, MR reading was performed by only one neuro-

radiologist, unblinded to histological diagnosis which

might lead to observer or confirmation bias. The third

limitation lies in the low number of 56 cases, only slightly

offset by our attempt at external validation of results. Still,

our cohort represents the largest cohort for imaging fea-

tures of GSC on MRI and is not only a descriptive case

series but the first multivariatemodel to explicitly focus on

differentiation between GSC and GBM.

Conclusion

We developed a multivariate logistic regression model

to differentiate GBM and GSC by imaging features on

Figure 4. Histopathological features of both the glial and the mesenchymal components of gliosarcoma. (a) H&E stain of the glial
compartment of a gliosarcoma with prominent vessels. (b) Mesenchymal compartment of the same tumour with collagenous fibres and
spindle-cell-type nuclei. (c) GFAP (glial fibrillary acidic protein) immunohistochemistry staining the glial compartment, the mesenchymal
compartment remains negative. (d) Silver stain (Tibor–Pap stain) shows dense reticulin fibre networks in the mesenchymal compartment
(upper right), while the glial compartment is largely devoid of reticulin fibres (lower left).
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standard MRI sequences with only poor accuracy on

external validation. The broad spectrum of histological

differentiations and the close histological, molecular

and genetic relationship to GBM in combination with

the rarity of the disease prevents a definite diagnosis

based on standard imaging criteria.
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