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SUMMARY
During X chromosome inactivation (XCI), the inactive X chromosome (Xi) is recruited to the nuclear lamina at the nuclear periphery.

Beside X chromosome reactivation resulting in a highly penetrant aging-like hematopoietic malignancy, little is known about XCI in

aged hematopoietic stem cells (HSCs). Here, we demonstrate that LaminA/C defines a distinct repressive nuclear compartment for

XCI in youngHSCs, and its reduction in agedHSCs correlates with an impairment in the overall control of XCI. Integrated omics analyses

reveal higher variation in gene expression, global hypomethylation, and significantly increased chromatin accessibility on the X chro-

mosome (Chr X) in aged HSCs. In summary, our data support the role of LaminA/C in the establishment of a special repressive compart-

ment for XCI in HSCs, which is impaired upon aging.
INTRODUCTION

In eukaryotic cell nuclei, chromatin is highly compartmen-

talized and euchromatin occupies the interior of the nu-

cleus, while heterochromatin is located around the nucleoli

andpredominantly at thenuclear periphery associatedwith

lamins (Figure S1A) (Politz et al., 2013; Solovei et al., 2009;

van Steensel and Belmont, 2017; Wilson and Berk, 2010).

Nuclear lamins are type V intermediate filaments separated

into twomajor classes: A (LaminA and LaminC) and B types

(LaminB1 and LaminB2) (Burke and Stewart, 2013; Dechat

et al., 2008). LaminA/C (encoded by the Lmna gene) defi-

ciency results in the loss of the peripheral heterochromatin

silencing compartment (Solovei et al., 2013). Also, it is

knownthat themammalianChrX is recruited to thenuclear

lamina during X chromosome inactivation (XCI) (Chen

et al., 2016). XCI is a process that involves the transcrip-

tional silencing of one Chr X in cells of female mammals

to balance gene expression between XX females and XY

males by embryonic day 6.5 (E6.5) (Brockdorff et al., 2020;

Fang et al., 2019; Galupa and Heard, 2018; Lebon et al.,

1995; Loda andHeard, 2019). The silencingof theXi is regu-

lated by the long non-coding RNA (lncRNA) Xist (Brown

et al., 1992; Marahrens et al., 1998; Penny et al., 1996;
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Sahakyan et al., 2018), which coats the future Xi and then

recruits repressive complexes (Chaumeil et al., 2006; da Ro-

cha and Heard, 2017; Engreitz et al., 2013; McHugh et al.,

2015; Minajigi et al., 2015; Pandya-Jones and Plath, 2016;

Pinheiro and Heard, 2017). In addition to the essential

role of Xist in embryonic development, Xist-mediated

gene silencing in hematopoietic cells is critical for postnatal

survival in mice (Savarese et al., 2006; Yildirim et al., 2013).

Notably, the deletion of Xist in hematopoietic stem cells

(HSCs) after XCI establishment (as HSCs develop at E10.5)

causes a highly penetrant aging-like hematopoietic malig-

nancy (Dzierzak and Bigas, 2018; Sahakyan et al., 2016; Yil-

dirim et al., 2013; Yokomizo and Dzierzak, 2010), implying

the critical role of Xist in the maintenance of XCI postna-

tally. However, little is known about XCI in HSC aging.
RESULTS

The Repressive Nuclear Compartment for XCI Is

Dependent on LaminA/C and Is Impaired upon HSC

Aging

LaminA/C is located at the invaginations of young HSC

nuclei forming pocket-like structures around the

cytoplasmic tubulin pole (Figure 1A) (Grigoryan et al.,
hors.
ecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The Repressive Nuclear Compartment for XCI Is Dependent on LaminA/C and Is Impaired upon HSC Aging
(A) 3D reconstruction of LaminA/C (green) and tubulin (white) in young HSCs. Bar, 2 mm. Arrowheads indicate the deep nuclear (blue)
invagination often seen in young HSCs.
(B) 3D reconstruction of Xist (red) and tubulin (green) in HSC nuclei (blue) from young female mice. Bar, 2 mm.
(C) Percentage of young HSCs with localization of Xist close to tubulin pole. Shown are mean values + 1 SE; n = 4, total 85 cells
(D) 3D reconstruction of Chr X/Y (red and white), Chr X/X (red), mH2A1 (white), and tubulin (green) in HSC nuclei (blue) from young
female and male mice. Bar, 2 mm.
(E) Measurements of the distances between Chr X/Y and tubulin, Chr X/X, and tubulin in youngmale and female HSCs; *p < 0.05; **p < 0.01;
***p < 0.001; n = 3 male mice, total 33 cells; n = 5 female mice, total 47 cells. Shown are mean values + SE.
(F) 3D reconstruction of Pol II Ser2ph (green) and tubulin (white) in polar and apolar HSC nuclei (blue) from young femalemice. Bar, 2mm. The
selected area depicts Pol II Ser2ph depleted region in young HSCs. Lines are drawn to show polar and apolar distribution of Pol II Ser2ph.
(G) Percentage of young HSCs with a polar distribution of Pol II Ser2ph. Shown are mean values + 1 SE; n = 4, total 50 cells.
(H) 3D reconstruction of Xist (red) stained by RNA-FISH in HSCs (blue) of young (10-week-old) female Lmnafl/fl control and
LmnaD/D/Vav�Cre mice and aged (90-week-old) female mice. Bar, 2 mm.
(I and J) Xist distance from the edge of the nucleus and Xist volume measurements, based on Xist staining as depicted in (H); *p < 0.05;
**p < 0.01; ****p < 0.0001; n = 3, total 40 cells for Lmnafl/fl control mice; 49 cells for LmnaD/D/Vav�Cre mice; 48 cells for aged mice. Shown
are mean values +SE.
See also Figure S1.
2018). Thus, we hypothesized that the peculiar and spe-

cific 3D localization of LaminA/C in young HSCs

might establish a distinct repressive compartment for

XCI.
To characterize the LaminA/C-tubulin pole as a repres-

sive nuclear compartment in young HSCs (as described in

the experimental proceduressection), we investigated the

3D localization of Xist by single-HSC RNA fluorescence in
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situ hybridization (RNA-FISH). In these cells, Xist was

located at the nuclear invagination close to the LaminA/

C-tubulin pole (Figures 1B, 1C, and S1B). Next, we analyzed

Chr Xa/Xi (active and inactive) and Chr X/Y co-distribu-

tion relative to the LaminA/C-tubulin pole in young female

and male HSC nuclei respectively (Figures 1D and 1E). To

distinguish Xi and Xa in female HSCs, we used the repres-

sive macro H2A histone variant 1 (mH2A1), which accu-

mulates on the Xi during XCI (Figure S1C) (Costanzi and

Pehrson, 1998; Pandya-Jones and Plath, 2016; Plath et al.,

2002). Immunofluorescence in combination with DNA-

FISH analysis for the whole Chr X consistently showed

that the Xi (mH2A1+) was located significantly closer to

the LaminA/C-tubulin pole than the Xa (mH2A1�) in fe-

male and also compared with the Chr X and Y in male

HSCs (Figures 1D, 1E, and S1D).

Rapid depletion of RNApolymerase II (Pol II) is one of the

first steps duringXCI (Chaumeil et al., 2006;McHugh et al.,

2015). Interestingly, we observed that Pol II Ser2ph (phos-

phorylated at serine 2) is depleted at the LaminA/C-tubulin

pole, showing a polarized localization at the opposite side

of the nucleus, where the active marker H4K16ac was

observed (Figures 1F, 1G, S1E, and S1F) (Florian et al.,

2012). Collectively, these data imply that the LaminA/C-

tubulin pole might possibly define a distinct repressive

compartment for the Xi at one side of the nucleus, which

is separated from the other active compartment of the

HSC nucleus (Figure S1G).

With aging, the activity of HSCs decreases, resulting in

impaired tissue homeostasis, reduced engraftment

following transplantation, and increased susceptibility

to myeloproliferative diseases (with higher incidence of

acute myeloid leukemia and myelodysplastic syndromes

[MDSs]) (Akunuru and Geiger, 2016; Beerman et al.,

2010; Denkinger et al., 2015; Geiger et al., 2013; Guidi

and Geiger, 2017; Rossi et al., 2007; Snoeck, 2013). Since

we recently reported the decrease of LaminA/C expression

as an additional phenotype of aged HSCs (Grigoryan

et al., 2018), we asked whether this could affect

the repressive nuclear compartment for XCI in

aged HSCs. To causally link LaminA/C expression to

XCI, we analyzed young HSCs from mice lacking Lam-

inA/C specifically in the hematopoietic compartment

(LmnaD/D/Vav�Cre) in parallel to aged HSCs (Grigoryan

et al., 2018; Wang et al., 2015). Interestingly, Xist was

significantly further away from the edge of the nucleus,

and the 3D volume of Xist detected by RNA-FISH was

significantly decreased in LmnaD/D/Vav�Cre and aged

HSCs compared with young control HSCs (Figures 1H–

1J). These data indicate a likely alteration of Xist localiza-

tion at the LaminA/C peripheral repressive compartment,

implying that the loss of LaminA/C is linked to the reduc-

tion of Xist expression in HSCs upon aging.
710 Stem Cell Reports j Vol. 16 j 708–716 j April 13, 2021
The XCI Is Impaired upon HSC Aging

Xist expression was significantly reduced by RT-PCR in

aged HSCs compared with young HSCs and it remained

significantly decreased in more differentiated aged short-

term HSCs (ST-HSCs) compared with young ST-HSCs (Fig-

ures 2A and 2B).

To gain further insights into possible X-linked gene

expression alterations upon aging, we analyzed RNA

sequencing (RNA-seq) datasets from young and aged

HSCs and ST-HSCs (Grigoryan et al., 2018). Although there

were no significant differences in X-linked gene expression

across all samples (Figure 2C), we could observe a higher

gene expression variability along Chr X in aged HSCs

compared with young samples (Figure 2C). Indeed, as can

be noted in Figure 2C, the running mean difference of

gene expression profile along Chr X shows subtle or no de-

viation from zero in the young samples, while the aged

samples show higher variability. This implies that there is

higher gene expression variation in X-linked genes among

aged samples than young ones. Although not conclusive

regarding reactivation of Chr X upon aging and limited

to only three biological replicates per sample, this result

supports a higher overall transcriptional variation and ac-

tivity on Chr X in aged HSCs in contrast to their young

counterparts.

To understand if the increased heterogeneity of X-linked

gene expression observed in bulk aged HSCs is allele spe-

cific, we performed an allele-specific expression analysis us-

ing previously published single-cell RNA-seq (scRNA-seq)

data of young and aged HSCs (Florian et al., 2018). This

approach allows us to overcome the averaging-out effect

that typically exists in bulk cell analysis and thus provides

a more accurate profile of the allele-specific quantification.

Also, it provides significant statistical power as each cell is

analyzed independently and summarization across age

groups is based on hundreds of single cells.

Therefore, for each single cell, first we counted the num-

ber of reads covering high-confidence heterozygous single

nucleotide variants (SNVs) according to the murine data-

base of SNP(dbSNP; see experimental procedures section

for details) (Figure 2D upper panel). A correlation analysis

of thedistributionof SNV/SNPonbothalleles (i.e., the refer-

ence allele, which is the allelic state as annotated in the

reference genome, versus the alternate allele) was then per-

formed to assess the overall allelic representation frequency

(Figure 2D upper and lower left panel depict a representa-

tive plot showing respectively weak and strong correlation

between reference and major Chr X alleles of a given cell).

We observed that the median Kendall’s correlation coeffi-

cients were approximately 0.4 and �0.3 for reference and

alternate allele respectively, indicating that themajor allele

is primarily represented by the reference allele (Figure 2D

lower left panel). We also confirmed that there is no
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Figure 2. The XCI Is Impaired upon HSC Aging
(A and B) Xist transcript levels in young and aged female HSCs and ST-HSCs measured by RT-PCR. Shown are mean values + 1 SE; n = 3;
***p < 0.001.
(C) MACAT analysis showing differentially regulated genes on Chr X. Gene expression patterns for all four arms are shown. Y axis shows fold
differential regulation when HSCs were compared with ST-HSCs in young and in aged samples. Positive values indicate upregulation, while
negative values indicate downregulation. Dots represent individual genes. Gray lines indicate the minimum score for differential gene
expression and the red line indicates the level of differential regulation of genes along Chr X.
(D) Diagram showing the scRNA-seq allele-specific expression (ASE) analysis workflow. See experimental procedures section for details.
(E) Boxplot showing ASE profile in young (green) and aged (blue) HSC single cells (red points). Cutoff of significance (supporting ASE) is
shown by the dotted red line (p value < 0.05). Blue triangle on right side highlight that the closer cells are to zero along the y axis, the
higher the evidence supporting ASE. A test of the proportion of aged HSCs with no significant ASE was statistically significant (p value
0.0003085, c2 test = 13.018, df = 1).
See also Figure S1 and Table S1.
statistically significant difference inmajor allele representa-

tion between the age groups (Figure 2D lower left panel).

Finally, we assessed if the frequency of SNPs per cell sup-

porting allele-specific expression is significantly higher or

lower than those indicating no allele specificity (Figure 2D

lower right panel). Goodness-of-fit test was used to reach a

decision on whether Chr X data for a given cell support

allele-specific expression (Table S1; significant p value indi-

cates allele-specific expression significance). By comparing

the number of young and aged single cells supporting

allele-specific expression, the data show a higher propor-

tion of aged stem cells with no significant allele-specific

expression compared with young HSCs (Figure 2D lower

right panel, 2E and S1H), supporting overall an impairment

in XCI in aged stem cells.
Assay for Transposase-Accessible Chromatin

Sequencing Profiling Shows the Epigenetic

Deregulation of Chr X in Aged HSCs

Xist expression and consequently XCI aremainly regulated

by epigenetic mechanisms (Panning and Jaenisch, 1998).

Since HSCs undergo an epigenetic drift upon aging (Beer-

man et al., 2013; Florian et al., 2018; Grigoryan et al.,

2018; Mejia-Ramirez et al., 2020; Sun et al., 2014; Taiwo

et al., 2013), we hypothesized that epigenetic alterations

might underlie the changes in XCI upon HSC aging.

Xist expression is controlled by DNAmethylation at spe-

cific CpGs (Plath et al., 2002). To investigate whether the

epigenetic regulation of XCI is altered in aged HSCs, we

generated a tagmentation-based whole-genome bisulfite

sequencing (TWGBS) dataset. Chr X methylation levels
Stem Cell Reports j Vol. 16 j 708–716 j April 13, 2021 711
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Figure 3. ATAC-Seq Profiling Shows the Epigenetic Deregulation of Chr X in Aged HSCs
(A) Venn diagrams showing ATAC-seq peaks overlap between biological replicates of young (left) and aged (right) samples.
(B) PCA based on ATAC-seq peaks feature counts both genome-wide (left) and Chr X-specific (left) peaks, which shows segregation of
young and aged samples. In detail, the data display the intra-cluster distance between the samples (i.e., how far apart the aged samples
are from each other compared with the relative distance between the young samples).

(legend continued on next page)
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remained comparatively unchanged upon HSC aging and

we observed a significant correlation between young and

aged samples’ methylation profiles along Chr X (Fig-

ure S2A). The Xist promoter was also not differentially

methylated in young compared with aged samples (Fig-

ure S2B). To further assess if there was any variation in

the methylation levels between young and aged HSCs, we

looked at the distribution of the methylation profiles and

their corresponding standard deviations along Chr X in

young and aged HSCs, but did not observe significant dif-

ference between samples (Figures S2C and S2D). Indeed,

the variability of the methylation level on Chr X in young

and agedHSCswas similar and did notmatch the increased

transcriptional variability observed for the transcriptome

of aged HSCs (Figure 2C). Then, we performed principal

component analysis (PCA) based selectively on Chr X

methylation. Interestingly, the top three principal compo-

nents (PCs) revealed that aging is indeed a primary source

of variation, andwe observed by this approach a separation

of young and agedHSCs based solely onChrXmethylation

profiles (Figure S2E). We then performed Chr X-based dif-

ferential methylation analysis and identified 5,835 differ-

entially methylated regions (DMRs) at a q-cutoff value of

0.05, of which 113 had a mean difference greater than or

equal to 0.1 with at least three methylation marks repre-

senting them (Table S2 and Figure S2F). Genomic annota-

tion of the DMRs revealed that genomic regions were

largely hypomethylated in aged HSCs compared with

young HSCs (Figure S2G). These data would support that

Chr X in aged HSCs, in addition to hypomethylation in in-

tergenic regions, might be more transcriptionally permis-

sive compared with young HSCs.

To further dig into the epigenetics of the alterations inXCI

skewing uponHSC aging, and in particular to link the obser-

vations of decreased Xist expression (Figures 1J and 2A) to

the change from a peripheral to a central nuclear location

upon decreased LaminA/C expression and aging (Figures

1H and 1I), we performed assay for transposase-accessible

chromatin sequencing (ATAC-seq) (Buenrostro et al., 2015;

Giorgetti et al., 2016). ATAC-seq can offer a readout of chro-

matin architecture accessibility, which is more directly

linked to the control of transcription (Liu et al., 2019), and
(C) Distribution of ATAC-seq peaks by genomic regions. Analysis at
dominant enrichment in distal intergenic, intronic, and promoter (%
specific DARs increase in the proportion of distal intergenic peaks an
(D) Genome-wide and Chr X-specific differential peak occupancy/a
differentially accessible regions (open in aged HSCs), while blue points
higher fold change; orange/red = lower fold change or lower accessib
(E) Tables depicting motif enrichment analysis using HOMER.
(F) Table showing statistically significantly enriched chromosomal reg
analysis of Chr X DARs). The associated p values are shown in the firs
See also Figure S2 and Tables S2, S3, and S4.
it readily reflects changes in HSC function upon aging (Flo-

rian et al., 2018). Our data on bulk sorted young and aged

HSCs revealed that, while globally there is a higher amount

of open chromatin regions in aged HSCs (Figure S2H), the

overall number of reproducible peaks (across biological rep-

licates) representing open regions along Chr X were fairly

equal in amount between samples (356 for aged and 319

for young HSCs; Table S3 and Figure 3A). PCA based on the

genome-wide peaks segregated the two age groups into

distinct clusters (Figure3B).Also, agedHSCsshowedahigher

heterogeneity compared with young HSCs (Figure 3B, left

panel; cumulative explained variance z75%). In line with

the genome-wide findings, PCA based on Chr X peak sets

also separated the two age groups (Figure 3B; cumulative ex-

plained variancez76%).We thenperformeddifferential oc-

cupancyanalysis andidentified1,302 (genome-wide) and64

(Chr X-specific) statistically significant ATAC-seq different

accessible regions (DARs) (p value <0.05) (Table S4). By look-

ing at the genomic regions’ distributions of the signal

before and after differential analysis, we noticed that both

genome-wide and Chr X-specific peaks show predominant

enrichment in the same region sub-types (distal intergenic,

intronic [other intron], promoter [% 1 kb], and first intronic

regions; Figure3C). Interestingly, comparedwith thepre-dif-

ferential analysis, Chr X-specific DARs increased dramati-

cally in the proportions of distal intergenic (from 49% to

66%) and decreased at promoter (%1 kb) (from 16% to

2%) regions (Figure 3C, lower right panels). Overall, most

of the DARs (both genome-wide and Chr X-specific DARs)

predominantly fall in distal intergenic and affect promoters

only minimally.

Notably, 91% (1,186/1,302) of genome-wide DARs in

aged HSCs were open regions, which is statistically highly

significant against the null hypothesis of equal represen-

tation of open and closed regions (c2 = 879.34; p value <

0.001; Figure 3D). Similarly, we observed a statistically

significant over-representation of open DARs (90.6% or

58 out of 64) along Chr X (c2 = 42.25; p value < 0.001;

Figures 3D and S2I).

Finally, we performed motif and gene ontology (GO)

enrichment analyses on DARs. Although we could see sta-

tistically significant enrichment of various motifs
the genome level (left panel) and Chr X (right panel) shows pre-
1kb) regions. Differential analysis (lower panels) revealed Chr X-

d a reduction in the promoter (%1 kb) regions.
ccessibility. Red points on the scatterplots (upper panels) show
show those that are more accessible in the young samples (yellow =
ility in the samples indicated below).

ions and gene signatures associated with Chr X (based on HOMER GO
t column.
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associated with transcription factors for whole-genome

DARs (Figure 3E, for top 10), we saw enrichment of Srebp1,

RUNX1, and bZIP:IRF motifs along Chr X, although that

was not significant (p < 0.05; q value [BH: Benjamini-Hoch-

berg] not significant; Figure 3E). This lack of enrichment in

transcription factors’ motifs was not surprising, since more

than 90% of the DARs along Chr X fall into either distal in-

tergenic or intronic regions (Figure 3C, lower right panels).

In line with this, GO analysis of Chr X-specific DARs pri-

marily showed enrichment of terms related to position

rather than function (Figure 3F, for top 10 significant

sets), further strengthening the possibility that the open

chromatin distribution changes on Chr X reveal mainly

chromatin architectural alterations in HSCs upon aging.

DISCUSSION

Altogether, these data demonstrate that LaminA/C defines a

polar repressive compartment for XCI in young HSC nuclei

and its reduction in aged HSCs correlates with an impair-

ment in the overall control of the Xi localization and inac-

tivation. These alterations are known to be critical for XCI

(Galupa and Heard, 2018) and in HSCs they appear to be

rather general to the whole Chr X and not gene specific.

The omics datasets support that, upon HSC aging, whole-

genome chromatin accessibility increases, also affectingChr

X. These findings imply that many regions on Chr X are

significantly more accessible in aged HSCs compared with

young. Indeed, our data also support an increased transcrip-

tional activity and higher heterogeneity in Chr X gene

expression in aged HSCs compared with young stem cells.

Surprisingly, this increased accessibility does not appear to

be specific to any transcription factor, gene, pathway, or

direct molecular function and instead seems to be linked

to structural alterations in Chr X architecture. The observa-

tion of increased accessibility supports the view of a general

relocalization of theXi to amore active region of thenucleus

and decreased Xist levels. In addition, based on the TWGBS

dataset, we observed that promoter regions onChrX of aged

samples show hypomethylation, further supporting the

enhanced accessibility and transcriptional heterogeneity of

this Chr in aged HSCs. In summary, our findings altogether

argue that Chr X is epigenetically deregulated in aged HSC

samples and that this epigenetic deregulation ismainly asso-

ciated to a change in localization and a disruption innuclear

compartmentalization in aged HSCs.

Interestingly, deregulation of XCI in the hematopoietic

compartment causes an aging-like MDS with 100% pene-

trance in mice (Yildirim et al., 2013). Therefore, the exis-

tence of an age-dependent alteration of XCI may raise

important implications for understanding the physiology

of hematopoiesis during aging and the pathogenesis of

age-related hematopoietic malignancies. Interestingly, we
714 Stem Cell Reports j Vol. 16 j 708–716 j April 13, 2021
report here that the chromatin architecture (ATAC-seq da-

taset) senses this change in XCI upon HSC aging and this

aspect might deserve further attention, since it could offer

possibilities to dissect the epigenetic changes underlying

aging and disease in the hematopoietic system.

Further studies are needed to unravel mechanistically

which of these epigenetic components might be more rele-

vant to drive the enhanced disease predisposition in aged

HSCs.
EXPERIMENTAL PROCEDURES

Mice
C57BL/6 mice (2–4 months old) were obtained from Janvier. Aged

C57BL/6mice (20–26months old) were obtained from the internal

divisional stock (derived from mice obtained from both The Jack-

son Laboratory and Janvier) as well as from NIA/Charles River.

Congenic C57BL/6.SJL-Ptprca/Boy (BoyJ) mice were obtained

from Charles River Laboratories or from the internal divisional

stock (derived from mice obtained from Charles River Labora-

tories). To obtain the hematopoietic-specific knock out of Lam-

inA/C, the Lmna flox mice (kindly provided by Dr. C. Stewart;

Wang et al., 2015) were crossed with mice bearing the hematopoi-

etic specific Vav-Cre transgene (B6.Cg-Tg (Vav1-Cre) A2Kio/J)

(Croker et al., 2004; Grigoryan et al., 2018; Wang et al., 2015).

All mice were housed in the animal barrier facility under path-

ogen-free conditions either at the University of Ulm or at CCHMC.

All mouse experiments were performed in compliance with the

German Law forWelfare of Laboratory Animals andwere approved

by the Institutional Review Board of the University of Ulm and by

the Regierungspräsidium Tübingen.

Cell Isolation
Bone marrow mononuclear cells were isolated by low-density

centrifugation (Histopaque 1083, Sigma) and stained with a cock-

tail of biotinylated lineage antibodies. Biotinylated antibodies

were all rat anti-mouse antibodies: anti-CD11b (clone M1/70),

anti-B220 (clone RA3-6B2), anti-CD5 (clone 53–7.3), and anti-Gr-

1 (clone RB6-8C5) from eBioscience, and anti-Ter119 (clone TER-

119) and anti-CD8a (Clone 53–6.7) from Invitrogen. In order to

isolate HSCs (gated as LineagenegSca1+cKit+CD34�/lowFlk2�) and

ST-HSCs (gated as LineagenegSca1+cKit+CD34+Flk2�), lineage

depletion was performed to enrich for lineage-negative cells by

magnetic separation (Dynabeads, Invitrogen). Lineage-negative

cells were stained with anti-Sca-1 (clone D7) (eBioscience), anti-c-

kit (clone 2B8) (eBioscience), anti-CD34 (clone RAM34) (eBio-

science), anti-CD127 (clone A7R34) (eBioscience), anti-Flk-2

(clone A2F10) (eBioscience), and streptavidin (eBioscience) and

sorted using a BD FACSAria III (BD Bioscience).
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able in DRYAD at https://datadryad.org/stash/share/I0GPdlDTkD
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GSE167214.
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