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Can Machine Learning Assist Locating the
Excitation of Snore Sound? A Review

Kun Qian
Zixing Zhang
Yoshiharu Yamamoto

Abstract—In the past three decades, snoring (affecting
more than 30 % adults of the UK population) has been
increasingly studied in the transdisciplinary research com-
munity involving medicine and engineering. Early work
demonstrated that, the snore sound can carry important
information about the status of the upper airway, which
facilitates the development of non-invasive acoustic based
approaches for diagnosing and screening of obstructive
sleep apnoea and other sleep disorders. Nonetheless, there
are more demands from clinical practice on finding meth-
ods to localise the shore sound’s excitation rather than
only detecting sleep disorders. In order to further the rel-
evant studies and attract more attention, we provide a com-
prehensive review on the state-of-the-art techniques from
machine learning to automatically classify snore sounds.
First, we introduce the background and definition of the
problem. Second, we illustrate the current work in detail
and explain potential applications. Finally, we discuss the
limitations and challenges in the snore sound classification
task. Overall, our review provides a comprehensive guid-
ance for researchers to contribute to this area.
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CNN Convolutional Neural Network
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EM Expectation-Maximization
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FNN Feedforward Neural Network

FV Fisher Vector

GAN Generative Adversarial Network
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GRU Gated Recurrent Unit

HMMs Hidden Markov Models

HNR Harmonics to Noise Ratio

HOG Histogram of Oriented Gradients
KELM Kernel based Extreme Learning Machine
KL Kullback-Leibler

LBP Local Binary Pattern

LDA Linear Discriminant Analysis

LLDs Low-Level Descriptors

LPC Linear Predictive Coding

LSTM Long Short-Term Memory

MAP Maximum A Posteriori

MEFCCs Mel-frequency Cepstral Coefficients
ML Machine Learning

MLP Multi-Layer Perceptron

MPSSC Munich-Passau Snore Sound Corpus
MSV Margin Sampling Voting

MV Majority Voting

NB Naive Bayes

OSA Obstructive Sleep Apnoea

PRgo Power Ratio at 800 Hz

RASTA Relative Spectral Transform
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RASTA-PLP Representations Relative Spectra Perceptual
Linear Prediction

RF Random Forest

RMSE Root Mean Square Energy

RNN Recurrent Neural Network

SCAT Deep Scattering Spectrum

SERs Subband Energy Ratios

SF Source Flow

SFD Source Flow Derivative

SFFS Spectral Frequency Features

SP Signal Processing

SVM Support Vector Machine

SnS Snore Sound

TL Transfer Learning

UA Upper Airway

UAR Unweighted Average Recall

UBM Universal Background Model

VOTE Velum, Oropharyngeal lateral walls, Tongue, and
Epiglottis

VQ Vector Quantisation

WEF Wavelet Energy Features

WPTE Wavelet Packet Transform Energy

WTE Wavelet Transform Energy

XAI Explainable Artificial Intelligence

e2e end-to-end

k-NN k-Nearest Neighbour

scGANs semi-supervised conditional Generative Adver-

sarial Networks

[. INTRODUCTION

NORING is a prevalent disorder that affects more than 30 %
S adults of the British population [1]. Due to the fast devel-
opment in methodologies and applications of signal processing
(SP) and machine learning (ML) during the past decades, snore
sound (SnS) has been increasingly studied within a wide com-
munity which includes but is not limited to acoustic/audio SP,
otorhinolaryngology, ML, and biomedical engineering [2]-[4].
It was found that, as a common symptom [5], SnS can be used
to develop a non-invasive approach for automatically screening
obstructive sleep apnoea (OSA) [6], which is a serious chronic
sleep disorder affecting the general adult population ranging
from 6 % to 17 % [7]. When untreated, OSA cannot only result
in morning headache and daytime sleepiness [8], but also be
an independent risk factor for stroke, hypertension, myocardial
infarction, cardiovascular diseases, and even lead to diabetes,
and cause accidents [9], [10].

As indicated in a comprehensive review article by Roe-
buck et al. [3], an audio recording based method (mainly focused
on SnS analysis) can be useful as an inexpensive method for
monitoring sleep. However, most existing literature aimed to use
SnS for detection of OSA rather than localising the snore site.
On the one hand, there are more demands from clinical practice
to determine the accurate snore sound’s excitation location due
to the surgical options, which can be varied among different
snore sites [11], [12] and facilitate a targeted surgical plan for
both of the OSA suffers and the primary snorers [13]. On the

other hand, there is a demand for a low-cost, convenient and
non-invasive substitute for the increasingly used golden stan-
dard, drug-induced sleep endoscopy (DISE) [14]. Multichannel
pressure measurement [15]-[17] is a pioneering method, which
could be efficient and applicable for monitoring natural sleep,
whereas it is still an invasive method that is not well tolerated
by every subject. It is reasonable to leverage ML technologies to
develop an approach for automatic localisation of the snore site
using only SnS. Relevant studies are extremely limited but are
increasingly developing given the recent advances of artificial
intelligence (Al) technologies. During the past three decades,
SnS analysis has witnessed three main trends: First (from 1990
to 2012), simple acoustic features were calculated and analysed
with statistical methods; second (from 2013 to 2016), human
hand-crafted features were used for training conventional ML
models; third (from 2017 to present), state-of-the-art deep learn-
ing (DL) techniques were applied to contribute to extracting
higher level representations from SnS or even leading to end-
to-end learning from SnS raw data without any human expert
knowledge.

In this work, we aim to provide a thorough and comprehensive
review on ML methods applied to the SnS classification task. The
main contributions of this review can be summarised as: First,
to the best of our knowledge, this is the first review on ML based
methods for localising the snore site. Second, we introduce the
reader to the background (including history and definitions) of
the relevant studies. In particular, we will indicate the motivation
of this study and highlight its significance in clinical practice.
Third, we introduce both the conventional ML methods and
the advanced deep learning approaches that were successfully
applied to overcome the challenges of the SnS classification task.
Last but not least, we discuss the current limitations and provide
perspectives on future work. We hope this review article can be
a good guidance for researchers who share the common interest
to improve the understanding about cutting-edge technologies
for other audiences in biomedical and health informatics.

The remainder of this review article will be organised as
follows: First, we give the definition of the problem we are
focusing on in Section II. In Section III, the background and
related work will be introduced. Then, we present methods and
challenges in a comprehensive review of the existing literature in
Section I'V. Finally, we discuss the current work and provide an
outlook in Section V before a conclusion is made in Section VI.

[I. DEFINITION OF THE PROBLEM

In this section, we provide a brief introduction of the anatomy
of the upper airways. Then, we explain and compare the different
categories of the snore site.

A. Anatomy

The upper airways are defined as the area from the nostrils
and the lips to the vocal chords. They consist of the nasal and
oral cavities, the pharynx and the upper section of the larynx.
The pharynx is defined as the posterior section of the head and
contains several anatomical landmarks, such as the soft palate
(the velum), the palatine tonsils, the posterior part of the tongue



Fig. 1. The anatomy of the upper airways.

(the tongue base) and the epiglottis. The epiglottis separates the
pharyngeal area from the upper gastric tract (the oesophagus)
and the larynx, which contains the vocal chords. Fig. 1 shows a
schematic overview of the upper airway anatomy.

Snoring is caused by vibrations of the soft tissue structures in
the upper airways, especially at physiological constrictions [18].
During sleep, the muscle tone decreases and the soft tissue
slackens, increasing its tendency to vibrate. The inspiratory
airflow velocity increases at narrow sections within the upper
airways, triggering tissue vibrations and turbulent flows, in turn
causing snoring noise.

Typical areas contributing to the generation of snoring noise
are the soft palate, and its very tip, the uvula, which can vibrate
in anterior-posterior direction, the palatine tonsils which usually
vibrate in a lateral direction, the base of the tongue which can
fall back and restrict the passage between tongue and posterior
pharyngeal wall causing vibrations or sounds caused by the
turbulent air flow, and the epiglottis, which can collapse due
to decreased structural rigidity or posterior displacement against
the posterior pharyngeal wall. Furthermore, the pharyngeal walls
themselves can contribute to snoring by collapsing at different
levels and in different orientations.

For a targeted treatment of snoring and related sleep-related
breathing disorders, it is of essence to identify the mechanisms
and locations actually contributing to the airway narrowing and
causing the snoring noise or the respiratory obstructions in the
individual subject. Acoustic methods to distinguish between
different snoring types can offer a means for tolerable and and
cost-effective diagnostic measures.

B. Classification of Snoring

Numerous schemes have been suggested for classifying dif-
ferent types of snoring and upper airway obstructions [19]-[22].
Early classifications were limited to the distinction between
palatal or non-palatal snoring, i.e., the involvement of soft
palate vibrations in snoring noise generation. It was generally
assumed that palatal snoring mainly occurs in primary snoring
without any obstructive dispositions of the upper airways, while
non-palatal snoring can be an an indicator for OSA [23].

A more accurate and widely used definition of different
snoring and obstruction mechanisms is the VOTE classification
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TABLE |
THE CATEGORIES OF THE VOTE CLASSIFICATION

Level shape of constriction
anterior-posterior lateral concentric
Velum V -ap V-1 V-c
Oropharynx O -ap O0-1 O-c
Tongue T -ap T-1 T-c
Epiglottis E-ap E-1 E-c

developed by Kezirian et al., distinguishing between four pha-
ryngeal levels in which snoring and airway narrowing [24] can
occur. Precisely, these are
o V-Velum: level of soft palate, uvula, lateral pharyngeal wall
tissue at velum level.
® O-Oropharynx: level of palatine tonsils, lateral pharyngeal
wall tissues at tonsillar level.
e T-Tongue: level of tongue base, lingual tonsil, pharyngeal
wall posterior to the tongue.
e E-Epiglottis: level of epiglottis.

For each of the levels, the VOTE classification describes
the shape of airway constriction, using the categories anterior-
posterior (a-p), lateral (), and concentric (c), as well as the
degree of constriction (0, no obstruction; 1, partial obstruction;
2, complete obstruction). In addition, the occurrence of snoring
is noted.

Table I summarizes the resulting twelve categories of the
VOTE classification. It must be noted that certain combinations
of level and constriction shape are extremely rare for anatomical
reasons, such as a lateral narrowing at the velum level.

A general rule in machine learning is, the bigger the number
of samples in the training data set, the better the pattern generali-
sation and the more accurate and robust the resulting model. Fur-
thermore, the demand for training data increases with the number
of different classes that a training problem comprises. In other
words, the expected recognition performance of a machine clas-
sifier on a given training set size gets better with fewer classes.

In most real-world medical ML-tasks, the amount of training
data is limited, as the effort for data acquisition and preparation
is considerably high. First, the raw data itself is often available in
limited quantity only, and second, the effort for data preprocess-
ing and annotation is considerable and often requires manual
work by trained and experienced medical experts. In order to
make best use of the MPSSC dataset, the authors have used a sim-
plified version of the VOTE scheme for the data classification,
ignoring the shape of constriction and only considering the level.
Further, the degree of airway narrowing was not considered, but
only the existence of audible snoring events. This resulted in a
four-class scheme containing the classes V, O, T, and E [13].

The simplified VOTE scheme might present limitations in
diagnostic preciseness. For example, a circular narrowing at
oropharyngeal level is mainly caused by the pharyngeal walls
and might lead to a different therapy decision than a vibration in
lateral orientation at the same level, which indicates contribution
of the tonsils.

For this reason, Janott et. al. developed a modified clas-
sification scheme with five classes, permitting the distinction
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of selected combinations of orientation and level of vibration
derived from the original VOTE classification [25]. The classes
of the so-called ACLTE-scheme are defined as:
e A, Vlevel, anterior-posterior vibration
C, Vor O level, concentric vibration
L, O level, lateral vibration
T, T level, any vibration orientation
E, E level, any vibration orientation.

The resulting ACLTE-corpus contains 1 115 SnS samples
from 343 subjects, and the size of classes is strongly imbalanced
with the A-class making up for almost half of the samples, while
the 7T-class is smallest with only 3 % of the samples. This reflects
the frequency of occurrence of different snoring patterns in the
real world, where velum snoring is relatively common, while
isolated tongue-base snoring is a rare phenomenon [26].

Ill. BACKGROUND

Early work can be traced back to Schifer and Pirsig [27], who
involved five children suffering from sleep disorders and one
adult who suffered from ‘simple snoring’ (n = 6). In that study,
the authors claimed that, ‘simple snoring’ of the adult was due in
large part to vibrations of the soft palate while ‘apneic snoring’
of the children had a pathomechanism of enlarged adenoids
and tonsils, which resulted in an impeded movement of the soft
palate [27]. Their conclusions were based on observations of the
frequency spectrum of the SnS. Quinn et al. reported differences
in the waveform and frequency between palatal and tongue
base snoring [28]. However, the number of subjects (n = 6)
involved in their study was limited, therefore their conclusions
cannot be easily generalised. Miyazaki et al. investigated the
fundamental frequency (FO) values in four types of snoring, i.e.,
the soft palate, the tonsil/tongue base, the combined position,
and the larynx [29]. They indicated in their findings (n = 75)
that the average value of the fundamental frequency for the
aforementioned four types of snoring was 102.8 4+ 34.9 Hz
(soft palate type), 331.7 £ 144.8 Hz (tonsil/tongue base type),
115.7 £ 58.9 Hz (combined type), and around 250.0 Hz (larynx
type), respectively [29]. Hill ef al. studied and made a statistical
comparison (n = 11) of the crest factor (ratio of peak to root
mean square value in any given epoch) between palatal and non-
palatal snoring [30]. They concluded that palatal SnS can have
a higher crest factor than non-palatal SnS (p < .01, Student-¢
or MannWhitney tests). In another study by Hill et al. [31],
the values of the crest factor extracted from SnS generated
by patients (n = 5) in natural sleep showed that the snoring
mechanism may change in some individuals during the night,
which means that also the snore site may change. Agrawal et al.
calculated peak frequency, centre frequency and power ratio
for their distinguishing capacity of palatal, tonge-based, and
mixed snoring [32]. In particular, they compared the snoring
sound characteristics between induced and natural sleep (n =
11). They claimed that induced SnS contains higher frequency
components than natural SnS. Saunders et al. indicated that
centre frequency may be efficient to distinguish pure palatal
from tong base snoring (n = 35), but cannot be used to identify
multisegmental snoring (the mixed snoring) [33]. A 2-means

clustering method was used in [34] to discriminate palatal and
non-palatal SnS. In their study, they used a combination of
the statistical moment coefficients of skewness and kurtosis
calculated from the snoring sounds from subjects (n = 15) per-
formed with sleep nasendoscopy evaluation (under anaesthetic
condition). Ng et al. continuously reported their contributions
in studying formants extracted from SnS [35], [36], which are
considered to carry important information about the status of
the upper airway (UA). The first three formant frequencies, i.e.,
F1, F2, and F3 were indicated to be associated with the degree
of constriction in the pharynx, the degree of advancement of
the tongue relative to its neutral position, and the degree of
lip-rounding, respectively [35], [37]-[40].

Nevertheless, the capacity of formants to localise the anatom-
ical site of snoring was not shown in [35] (n = 40) or [36]
(n = 40) while they were demonstrated to be efficient to dif-
ferentiate apneic SnS from benign ones. Moreover, Ng et al.
made their efforts to analyse and model both the source flow
(SF) and its derivative (SFD) of SnS via the usage of an iterative
adaptive inverse filtering approach and Gaussian probability
density function [41]. In that study (n = 40) [41], the shapes
of SF pulses are different between SnS and can be associated
with the dynamic biomechanical properties (e. g., compliance
and elasticity) of the SnS excitation source (ES). Particularly, the
palatal (e. g., SnS from soft palate vibration) and the pharyngeal
snoring (e. g., SnS from pharyngeal wall vibration) can be
explained mainly by the theory of flutter and the concept of
static divergence, respectively [41]-[43]. Nevertheless, Ng et al.
clarified in [41] that clinical experiments were not conducted
to warrant the accuracy of the SFD model for its relation to
the occurrence and development of physiological events, e. g.,
closing, opening, and speed of ES vibration during snoring.
Motivated by the capability of formants to represent the structure
and status of the UA, Qian et al. and Wu er al. analysed the
formants extracted from long duration SnS audio recordings by
the K-means clustering method [44] and hidden Markov mod-
els (HMMs) [45], respectively. Their findings showed possible
differences between the properties of formants extracted from
different SnS related signals which may reflect the changes of
the UA structure during the night while the accurate experts’
annotation was missing. Also, the number of subjects was ex-
tremely small (n = 1). Additionally, Qian et al. found formants
could also be used as an efficient marker to monitor changes
of the UA by observing its tracks [46]. Xu et al. indicated in
their study [47] (n = 30) that the first snoring sound after an
obstructive apnoea of the upper level (above the free margin
of soft palate) may have more energy components in the lower
subband than its counterpart of the lower level (below the free
margin of soft palate). Peng et al. claimed in their study [48]
(n = 74) that, FO and F2 were found to be lower in palatal SnS
than that in non-palatal SnS.

Psychoacoustical properties combined with other acoustical
features, i.e., sound pressure level ([dB], A-weighted), loud-
ness (sone), sharpness (acum), roughness (cAsper), fluctuation
strength (cVacil) and centre frequency (Hz) (mean values for
each parameter), have been applied to SnS analysis in [49].
In that study, the authors summarised the statistical analysis



of the aforementioned features extracted from SnS collected
within drug induced patients (n = 41) that, obstructive SnS had
a higher loudness than non-obstructive SnS (>25 sone); velar
SnS showed a higher roughness (>150 cAsper) than tonsillar
and post-apnoeic SnS, and had the lowest centre frequency
(<3 000 Hz); post-apnoeic SnS had the largest fluctuation
strength (>50 cVacil) whereas tonsillar SnS showed the highest
sharpness values (>1.6 acum).

In summary, the studies reviewed above were mainly based
on statistical analysis of acoustical features extracted from SnS
rather than using ML methods to localise the snore site automat-
ically. Besides, the involved subject numbers were limited (less
than 100). Early work using ML for classifying different SnS
data was done by Qian et al. [S0]-[52]. The acoustic features
(e. g., crestfactor, power ratio, formants, etc.) were investigated,
and a simple machine learning model, i.e., k-nearest neighbour
(k-NN) [53], [54] was used as classifier. Furthermore, the phase
of feature selection was involved in [51], [52], in which the
finally selected features can be superior to the original larger
dimension of features in recognising SnS. Qian e al. found
that frequency-based features (e. g., spectral features, Mel-
frequency cepstral coefficients (MFCCs), or subband energy
ratios (SERs)) performed better than amplitude-based features
(e. g., crest factor). Nevertheless, their study was based on SnS
data without accurate annotation in a low number of subjects
(n = 2,1,201n [50], [52], [51], respectively). Wavelet features
were first introduced to the task of SnS classification in [55]
(n = 24), which was also a first time where a machine learning
based method was proposed for classifying four types of SnS
annotated by ENT (ear, nose, and throat) experts, VOTE, i.e.,
V (Velum), O (Oropharyngeal lateral walls), T (Tongue), and
E (Epiglottis). Qian et al. claimed that their proposed wavelet
features outperformed other frequently-used features (e. g., for-
mants, power ratio, MFCCs) by achieving a highest unweighted
average recall (UAR, which is thought to be more suitable than
accuracy for imbalanced data) [56] at 71.2 % by two-fold cross
validation in twenty-four subjects [55]. This record was soon
beaten by a bag-of-audio-words (BoAW) approach (reaching an
UAR of 79.5 % using the same database as in [55]) proposed by
Schmitt et al. [57].

A comprehensive study on the comparison of features
and classifiers for recognising VOTE SnS was conducted by
Qian et al. in [58]. In their study (n = 40), nine kinds of fea-
tures, i.e., crest factor, FO, formants, spectral frequency features
(SFFs), power ratio at 800 Hz (PRgg0), SERs, MFCCs (0-12),
empirical mode decomposition [59] based features (EMDF), and
wavelet energy features (WEF) were investigated and compared.
As classifiers, seven models were selected, i.e., k-NN [53], [54],
linear discriminant analysis (LDA) [60], support vector ma-
chine (SVM) [61], random forest (RF) [62], feedforward neural
network (FNN) [63], extreme learning machine (ELM) [64]-
[66], and kernel based extreme learning machine (KELM) [66].
Finally, an early fusion (direct concatenation) of the overall
features selected by the ReliefF algorithm [67], [68] built on
a RF classifier reached the highest UAR at 78.0 % in a rigorous
subject-independent case [58].

1237

10

(=)

Publications: #
S

2 III III
0
2015 2016 2017

2018 2019

Year

Fig. 2. The number of publications on ML for SnS classification over
the recent five years (one paper officially published in January 2020
was calculated into the year of 2019 for its first online publishing time).
Literature searching was under a strict manually selection processing
based on Google Scholar, IEEE Xplore, and PubMed with the keywords
‘snore sound, ‘snore site classification, ‘machine learning, and ‘deep
learning’ from the years 2015 to 2019.

The results of the aforementioned published work are encour-
aging and promising. However, one challenge is still unresolved:
We are still lacking a standard publicly accessible annotated
SnS database, which makes it difficult to develop and compare
relevant algorithms and approaches for the SnS classification
task. One milestone was reached by Janott et al. in [13], who
introduced the first accurately annotated and publicly accessible
SnS database, the Munich-Passau snore sound corpus (MPSSC).
MPSSC was first released in the INTERSPEECH 2017 Com-
putational Paralinguistics Challenge (COMPARE) [69], which
dramatically promoted the relevant studies in recent years (see
Fig. 2). In Section IV, we will introduce and summarise the
published literature based on MPSSC, which includes both con-
ventional ML methods and the state-of-the-art DL approaches.
On the one hand, MPSSC makes the study on SnS classification
sustainable and comparable in terms of establishing the standard
(subject-independent data partitioning), defining the task (V, O,
T, and E types of SnS by performing DISE), and benchmarking
the fundamental studies (official baseline). On the other hand,
there are still several challenges to be addressed in MPSSC and
among the relevant studies: First, the number of participating
subjects might be sufficient (n = 219) whereas the number of
available SnS audio instances is quite low (only 828), which
constrains the capacity to learn robust higher representations
by deeper models. Second, DL based methods may achieve
comparable or even better performance than conventional ML
methods in SnS classification, but they are not perfectly ex-
plainable. Third, the fundamental mechanism of different SnS
generated from a variety of locations in the UA is not well
modelled or explained. In particular, as Hill ef al. [31] indicate,
the snore site may change during night, which makes locali-
sation of SnS using non-invasive audio based methods more
complicated and difficult. Fourth, early studies [32], [70] raised
an issue that the SnS collected during induced sleep may not
share the same characteristics as the SnS generated under natural
sleep. Nevertheless, most of the current work were based on
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(e.g.,functionals, BOAW) (e.g.,SVMs, k-NNs) e.g., VOTE

Human Hand-Crafted LLDs
(e.g., MFCCs, formants, FO)

T Classifier (Dynamic) Predictions
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Spectrogram

raw SnS dM

End-to-End Learning

RNN

N ja [(LSTM or GRU)

or only CNN/RNN

Fig. 3.

Predictions
e.g., VOTE

Overview of conventional ML (top) and DL (bottom) based paradimgs for the SnS classification task. In conventional ML paradigms,

human hand-crafted features (low-level descriptor (LLD) or higher representations) are extracted from the SnS audio signal via human expert
domain knowledge. Then, a classifier will make predictions using its prior knowledge acquired via the training phase. In DL paradigms (except the
DNN models trained on human hand-crafted features), DL models learn features by themselves without any human expert domain knowledge.
Then, a classifier (or a fully connected layer combined with a softmax layer) will make the final predictions based on the outputs of the trained DNN

models.

SnS annotated by performing the DISE (e. g., MPSSC), which
means the achievements might not be directly applicable to the
development of natural smart home devices. Last but not least,
more attention and efforts should be contributed to this research
(see Fig. 2).

In the following parts of this review, we will systematically
introduce the problems, methods, and challenges. Moreover, we
will discuss the current findings and limitations, and point out
our perspectives for future work.

IV. METHODS

In this section, we present the methods applied to SnS classifi-
cation. The ML techniques including conventional methods and
state-of-the-art DL approaches will be illustrated and described
in detail. Fig. 3 shows the general diagram of the conventional
ML and the DL based paradigms for the SnS classification task.

A. Human Hand-crafted Low-Level Descriptors

In the conventional ML paradigm, features are designed
by human experts with a specific domain knowledge (e. g.,
medicine). Due to the similar characteristics of speech and SnS,
early work on SnS classification tended to process the SnS data as
speech. The low-level descriptors (LLDs) were firstly extracted
from frame-based SnS signals. Those LLDs may have specific
physiological meanings in SnS analysis, and can be seen as
the raw representations extracted from short-time frames of the
analysed SnS. Table II lists the main LLDs used in published
literature on SnS classification task and their corresponding
findings.

Most of the studied LLDs are typical acoustical features (e. g.,
MFCCs, FO, formants), while some others are not originally
designed for audio analysis (s. g., WEF, local binary pattern
(LBP), histogram of oriented gradients (HOG)). Note that, SnS
has similar characteristics as speech, whereas it also has some
properties belonging to physiological signals. These human
hand-crafted LLDs carry important information about the snore
site and can be interpreted in the time and the frequency domain
of the SnS. A large scale acoustical feature set, i.e., COMPARE,
and a simplified acoustical feature set, i.e., EGEMAPS, were in-
vestigated for the SnS classification task (summarised in Table II
). Both the two feature sets can be extracted by our open-source
toolkit, OPENSMILE [95], [96].

B. Higher Representations

The aforementioned LLDs can be used directly for dynamic
ML models (e. g., HMMs [97] and Recurrent Neural Networks
(RNNs) [98]), while higher representations (independent of the
SnS audio clip length) containing the statistical information of
the LLDs over a given time are needed for training static models
(e. g., SVMs [61], or ELMs [65]). In this subsection, we will
introduce the higher representations investigated in the literature
that can be extracted from LLDs for the SnS classification task.

1) Statistical Functionals: The statistical functionals are cal-
culated from the frame based LLDs from a given period of the
audio signal, which include the arithmetic mean, standard devi-
ation, extremes (minimum value, maximum value), and further
more [99]. Some more advanced functionals, e. g., moments,
percentiles, kurtosis, skewness, slope, and bias of the linear
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TABLE Il
HUMAN HAND-CRAFTED LOW-LEVEL DESCRIPTORS (LLDS) FOR SNS CLASSIFICATION IN PUBLISHED LITERATURE. LPC: LINEAR PREDICTIVE CODING.
SFFS: SPECTRAL FREQUENCY FEATURES. SERS: SUBBAND ENERGY RATIOS. EMDF: EMPIRICAL DECOMPOSITION BASED FEATURES. WTE: WAVELET
TRANSFORM ENERGY. WPTE: WAVELET PACKET TRANSFORM ENERGY. WEF: WAVELET ENERGY FEATURE. GMM: GAUSSIAN MIXTURE MODEL.
RASTA-PLP: REPRESENTATIONS RELATIVE SPECTRA PERCEPTUAL LINEAR PREDICTION. SCAT: DEEP SCATTERING SPECTRUM. LBP: LOCAL BINARY

PATTERN. HOG: HISTOGRAM OF ORIENTED GRADIENTS

Name

Definition

Findings

Literature

Crest Factor

the ratio of peak to root mean square value

not a strong marker

[50], [58], [71]

the cumulative spectrum energy below 800 Hz

PRgoo divided by its counterpart above 800 Hz not a strong marker (501, [38], [71]
FO the lowest frequency of a periodic waveform not a strong marker [58], [71]
the spectral peaks (usually the first three) might be useful, [51], [52], [55]
Formants of the sound spectrum extracted but very limited [571, [58], [71]
by the LPC approach [38], [72], [73] [74], [75]
the Mel-scale frequency (in Mels) cepstrum coefficients, might be useful, [13], [51], [52]
MECCs calculated by mapping the real scale frequency (in Hz) further study needed [551, [571, [58]
via triangular overlapping filters, widely and successfully [69], [71], [74]
used in speech recognition [76] [751]
the peak frequency, the centre frequency, and the mean might be useful, [51], [52], [58]
SFFs frequency of the whole spectrum, the mean frequencies but very limited [71], [74], [75]
in each subband spectrum
SERs the ratios of subband spectrum energy to the might be useful, [511, [52], [58]
whole spectrum energy but inconsistent [711, [74], [75]
EMDF the energy and entropy based EMD coefficients [59] further study needed [511, [52], [58]
i, - , [57], [71], [74]
WTE the energy based WT coefficients [77] useful (75]. [78]
WPTE the energy based WPT coefficients [79] useful gé}’ [74]. [75]
. . [55], [58], [71]
WEF the early fusion (concatenation) of WTE and WPTE useful (74]. [75]. [78]
Filter Coefficients the estimated parameters from a dual with limited usage [80]
°  source-filter model of SnS ’
the modified PLP analysis [81] with a spectral estimate might be useful,
RASTA-PLP in which each frequency channel is band-pass filtered by  further study needed [82]
a filter with a sharp zero at the zero frequency [83]
the time-averaged coefficients extracted from
SCAT deep scattering spectrum analysis [85], [86] useful 84]
LBP & HOG the LBP [87] descriptors extracted from the spectrogram useful (LBP is better than HOG, (88]
the HOG [89] descriptors extracted from the spectrogram  fusion is better than individual)
might be useful, [13], [71], [74]
COMPARE the large scale acoustic feature set [90], cf. Table III but limited [75], [78], [82]
[25], [91]-[93]
EGEMAPS the simplified acoustic feature set [94], cf. Table IV with limited usage [71]

regression estimation of the LLDs can also be applied in this
method [99]. For details on OPENSMILE LLDs (i.e., COM-
PARE and EGEMAPS), interested readers are referred to [99].
Qian et al. further investigated and compared nine functionals
(maximum, minimum, and mean values, range, standard devi-
ation, slope and bias of linear regression estimation, skewness,
kurtosis) in [55], [58].

2) Bag-of-Audio-Words: The bag-of-audio-words (BoAW)
approach originates from the Bag-of-Words (BoW, cf. [100])
approach, which had been demonstrated to be efficient in natural
language processing [101] and computer vision [102], [103]. In
the BOAW approach, the numerical LLDs or alternatively the
higher level derived features extracted from the SnS data will
first undergo a vector quantisation (VQ) step, which employs

a codebook of template LLDs which was previously learnt from
a certain number of training data [74]. For generating the code-
book, Schmitt e al. and their followers used the initialisation
step of k-means++ clustering [104], which is comparable to
an optimised random sampling of LLDs [105] instead of the
traditional k-means clustering [106], [107] method to improve
the computational speed and at the same time guarantees a
comparable performance. To improve the robustness of this ap-
proach, the N, (assignment number) words (i.e., LLDs) with the
lowest Euclidean distance are considered instead of assigning
each LLD to only the most similar word in the codebook. Finally,
the term frequency histograms (logarithm with a bias of one) are
used as higher representations extracted from the SnS via the
BoAW approach. The BoAW approach was first introduced by
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TABLE I
THE HUMAN HAND-CRAFTED LOW-LEVEL DESCRIPTORS (LLDS) IN THE
COMPARE FEATURE SET. RASTA: RELATIVE SPECTRAL TRANSFORM;
HNR: HARMONICS TO NOISE RATIO; RMSE: ROOT MEAN SQUARE ENERGY

4 energy related LLDs | Group
RMSE, zero-crossing rate Prosodic
Sum of auditory spectrum (loudness) Prosodic
Sum of RASTA-filtered auditory spectrum Prosodic
6 voicing related LLDs | Group
Fp (SHS and Viterbi smoothing) Prosodic

Prob. of voicing
log HNR, jitter (local and §), shimmer (local)

Voice quality
Voice quality

55 spectral LLDs | Group

MFCCs 1-14 Cepstral
Psychoacoustic sharpness, harmonicity Spectral
RASTA-filtered auditory spectral bands. 1-26 (-8 kHz) | Spectral
Spectral energy 250-650Hz, 1 k-4 kHz Spectral
Spectral flux, centroid, entropy, slope Spectral
Spectral roll-off point 0.25, 0.5, 0.75, 0.9 Spectral
Spectral variance, skewness, kurtosis Spectral

TABLE IV
THE HUMAN HAND-CRAFTED LOW-LEVEL DESCRIPTORS (LLDS) IN THE
EGEMAPS FEATURE SET. RASTA: RELATIVE SPECTRAL TRANSFORM,;
HNR: HARMONICS TO NOISE RATIO; RMSE: ROOT MEAN SQUARE ENERGY

3 energy/amplitude related LLDs

Group

Prosodic
Voice quality

Sum of auditory spectrum (loudness)
log. HNR, shimmer (local)

8 frequency related LLDs \ Group

Fo (linear and semi tone) Prosodic
Jitter (local), formant 1 (bandwidth) Voice quality
Formants 1, 2, 3 (frequency) Voice quality

Formants 2, 3 (bandwidth) Voice quality

14 spectral LLDs | Group

Alpha ratio (50-1000 Hz/1-5 kHz) Spectral
Hammarberg index Spectral
MFCCs 1-4 Cepstral

Formants 1, 2, 3 (relative energy)
Harmonic difference H1-H2, H1-A3
Spectral flux

Spectral slope (0-500Hz, 0-1kHz)

voice quality
voice quality
Spectral
Spectral

Schmitt ef al. to the SnS classification task in [57]. Qian et al.
extended this study on wavelet-based features [55], [78] and
extended the findings by involving the BoAW approach into
their multi-resolution analysis for SnS classification in [75].

3) GMM Supervectors: The GMM supervecors are gener-
ated by the GMM approach [108], [109], which was success-
fully applied to text-independent speaker recognition tasks. In
essence, the GMM supervectors are the stacked mean vec-
tors of Gaussian mixture components [110]. In this paradigm,
a universal background model (UBM) is first trained by the
expectation-maximization (EM) algorithm [111] from a back-
ground dataset, which includes a wide range of corpora. Then,
the GMM supervectors (usually the mean vectors) can be ex-
tracted from the models that are adapting the UBM model via
the maximum a posteriori (MAP) criterion [112]. This approach
was used for the SnS classification task in [84], [91]. In par-
ticular, Nwe et al. extracted not only the first-order statistics

of mean (representing the acoustical characteristics), but also
the second-order statistics of covariance (representing the shape
of the distribution) [91], [110]. Specifically, in their study, the
Bhattacharyya distance [113] was used instead of the widely
used Kullback-Leibler (KL) divergence [114] to measure the
dissimilarity between two GMM distributions.

4) Fisher Vectors: The aim of the Fisher vector (FV) method
is to quantify the gradient of the parameters from a gener-
ative probability model [115]. Actually, the gradient of the
log-likelihood describes the direction that the parameters should
be adapted to in order to fit the data (LLDs) [115] best. Kaya
and Karpov introduced the FV method into the SnS classification
task in [82]. In their study, only the gradients of a K-component
GMM are used as Fisher vectors.

C. Deep Learning

In the past decade, DL [116] has become a very hot and
popular subject of the ML community due to its continuous
breakthroughs in speech recognition [117], image classifica-
tion [118], and object detection [119]. With the help of a series of
nonlinear transformation of the inputs, DL. models can usually
learn more robustly and generalise higher representations from
a big data size compared with the classical ML models (shal-
low architectures). Specifically, DL models can facilitate the
technique development in the domain of biomedical and health
informatics with the ever-increasing big data [120]-[122]. For
the SnS classification task, DL was found efficient in several
studies even with a limited size of data. In summary, among
those DL based models for SnS classification, there are two
typical paradigms: First, training the models with human hand-
crafted features under a deep architecture (e. g., a more hidden
layers based multi-layer perceptron (MLP) [71], [74], [78], [84],
stacked autoencoders [71], [74], [78], or deep recurrent neural
networks [123]); second, using a pre-trained deep convolutional
neural network (CNN) [124] model to learn higher representa-
tions from the SnS data (its spectrograms), or learn the higher
representations from the raw SnS data (its audio) via the CNN
plus a RNN structure (end-to-end). In the first paradigm, the
human hand-crafted features are still needed, which restrains
the strength of DL compared with the traditional ML models.
Therefore, we will emphasize successful applications for the
SnS classification task via transfer learning (TL — see next Sub-
section) [125] and end-to-end learning (e2e) [126]. In addition, a
recent study using generative adversarial network (GAN) [127]
for addressing the data scarcity in SnS will be introduced.

1) Transfer Learning: This method was first introduced to
SnS classification in [128], [129], by which the authors used
the TL paradigm to extract deep spectrum features from
spectrograms of snoring. By leveraging pre-trained CNNs
(AlexNet [118], and VGG 19 [130]), high level representations
of the spectrograms can be extracted from the activations of
the fully connected layers of the aforementioned deep models.
It was demonstrated that these CNN descriptors can achieve
excellent performance on SnS classification without any human
expert domain knowledge. Moreover, to reduce the redundancy



of the learnt deep spectrum features, Freitag et al. [129] in-
volved a feature selection phase by applying the competitive
swarm optimisation (CSO) algorithm [131] to a wrapper based
paradigm [132].

2) End-to-End Learning: The e2e model was introduced in
the baseline work by the INTERSPEECH COMPARE snoring
sub-challenge [69]. As indicated by Schuller et al., one attractive
characteristic of the e2e model is that the optimal features can
be learnt automatically from the data at hand [69]. In other
words, feature engineering work needing much of human ex-
perts’ efforts (e. g., acoustic and medical knowledge for snoring)
is excluded in that paradigm. In the baseline e2e model [69],
a convolutional neural network was used to extract features
from raw time representations of SnS data, and a subsequent
recurrent neural network (with long short-term memory (LSTM)
cells [133]) was adopted to perform the final classification,
which was similar to the model first applied successfully to a
speech emotion recognition task [134]. A dual convolutional
layer topology was proposed by Wang et al. in [135], by which
the outputs of two separate convolutional layers (having different
kernel dimension on the frequency axis, but equal dimension on
the time axis) were merged via the element-wise average. Subse-
quently, a channel slice model (instead of fully connected layers)
and two reccurrent layers (with a gated recurrent unit (GRU)
cell [136]—a simpler structure compared to LSTM) were used
to implement the classification capacity. Schmitt and Schuller
made an in-depth investigation on different topologies of e2e for
SnS classification [137]. They claimed in their findings that a
convolutional layer followed by a pooling step was superior to
an LSTM layer.

3) Generative Adversarial Network: Zhang et al. were the
first group introducing GANs [127] to the SnS classifica-
tion task [123], which provides a solution for addressing the
data scarcity (specifically the annotated data) problem in al-
most all intelligent healthcare topics. The authors proposed
the semi-supervised conditional generative adversarial networks
(scGANSs), which can automatically generate data by mapping
a random noise space to the original data distribution. In doing
this, one can simulate an infinite number of training data without
the need of an additionally exhausting human expert annotation
process due to a generation process.

Further, by integration of the semi-supervised paradigm, sc-
GANSs require only one model to synthesise different categorical
SnS data. Moreover, an ensemble of scGANs are employed to
overcome the model collapse issue when generating the data.

V. DISCUSSION

In this section, we discuss the findings showing interesting
scientific significance of the current studies. Also limitations
in the work covered by this literature review will be given. In
addition, we indicate some possible future directions, which may
help facilitate attracting more work to this topic.

A. Current Findings

Generally speaking, in the conventional ML paradigm, there
is no huge gap between the performance among different ML
models, while the features matter indeed [74]. As demonstrated
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in [75], very well designed features can be excellent repre-
sentations for recognising SnS even with a simple classifier
like Naive Bayes (NB) [54]. Among the features, spectrum
based descriptors (e. g., MFCCs) outperformed amplitude based
representations (e. g., crest factor). Qian et al. investigated the
effects of frame sizes and overlap lengths of the analysed audio
chunk for extracting LLDs from SnS [71]. They indicate that
WEF may need a longer frame size (64 ms) than other feature
sets (16 ms or 32 ms). In addition, the higher representation
extraction methods (cf. Section IV-B) are essential for final
performance. But a direct comparison between methods (e. g.,
BoAW vs FV) is still missing.

For the DL paradigm, the main limitation is data size, which
constrains the power of deep models to learn robust and gen-
eralise representations from the SnS data. Encouragingly, DL
has demonstrated that some efficient high level representation
can be extracted automatically from the SnS without any hu-
man expert knowledge [128], [129], [135], [137]. In particular,
CNN layers were found superior to RNN layers in extracting
features for SnS classification [137]. In fact, directly using a
CNN+LSTM architecture did not reach an excellent perfor-
mance in an early study [69]. The RNN based models were
found to be efficient when a data augmentation phase was in-
volved [123]; they reached a UAR at 67.4 % on the development
set, while the performance decreased on the test set (UAR at
54.4 %). But likely their main contribution to the SnS literature
were their proposed scGANSs, which were successfully validated
in both the static acoustic data and the sequential acoustic
data [123], which was demonstrated to outperform other conven-
tional data augmentation methods (e. g., the synthetic minority
oversampling technique (SMOTE) [138], and a transformation
method [139]).

One significant finding is that the multi-resolution method
(e..g, wavelets) is very efficient for SnS classification. Qian ez al.
extensively validated their wavelet based approaches for SnS
classification in [55], [58], [71], [74], [75], [78]. This finding
was also supported by the work in [135], in which Wang et al.
found that fusing the global and local frequency information by
using different kernel sizes of CNN models can facilitate the
extraction of deep representations from snoring.

Fig. 4 shows the UARs achieved by different models which
achieved better results than the MPSSC baseline in recent years.
The current best result on the test set (p < .001 by one-tailed
z-test, compared to the baseline) was achieved by Demir et al.
in [88]. They used the LLDs extracted from spectrograms of SnS
via image processing methods. However, we should note that
there was a big gap between the performance on the development
and test sets (37.8 % vs 72.6 % of UAR) in their study. We can
find this phenomenon in almost any other studies based on the
MPSSC database. We think this could be due to the factor that
MPSSC has different data collection environment conditions
and acoustic property distributions among the partitions. One
exception is the work done by Vesperini et al. [84], in which their
model had an excellent performance on both the development
and the test sets (67.1 % vs 67.7 % UAR). In their proposed
method, a well designed MLP based deep model (with specifi-
cally tuned hyper-parameters) was used, which might need large
amount of efforts from experienced Al experts.
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LBP+HOG, SVM [88]
WEF, BoAW, NBJ[75]
SCAT, DNN [84]
Wavelets, SVM, ELM [74]
CNN[137]

AlexNet, SVM [128]
AlexNet, CSO, SVM[129]
FV, WKELM [82]
ComParE*, SVM [92]
CNN+GRU [135]
ComParE, SVM [60]

69.4
67.7
67.1
67.0
67.0
66.5
64.2
64.0
63.8

Ref.

58.5
50 60 70
UARs: [%]

Fig. 4. The UARs (in [%]) achieved by models (on the test set) in
published work based on the MPSSC Database. Only the work which
achieved better results than the MPSSC baseline [69] (in blue bar) are
shown. Wavelets here means the late fusion of WTE, WPTE, and WEF.
The work in [92] used a slightly different COMPARE feature set as used
in [69].

Another point which should be noted is that feature selection
may help improve or at least keep a comparable performance
when using a much lower dimension than the original feature
space [58], [91], [129]. Nevertheless, this step may dramatically
increase the computational complexity of the whole paradigm,
and may result in inconsistent feature selection results on devel-
opment and test sets.

B. Limitations and Outlook

Even though the existing studies have shown encouraging and
promising results, there are still some directions that require
in-depth research. Based on the limitations of the existing work,
we give a brief summary on the future outlook as follows:

1) Fundamental Studies: To the best of our knowledge, there
is not a thorough and solid conclusion revealing the relationship
between acoustical properties of SnS and the anatomical posi-
tions of snore sites. We still lack a fundamental understanding
about the characteristics of SnS, particularly, for discriminating
snore sites. Pevernagie et al. presented a comprehensive review
on the acoustics of snoring [2] while the main attention was given
to OSA diagnosis. Similarly, mechanism modelling of SnS was
built on the target of OSA detection rather than the localisation
of the snore site [36], [41]. Therefore, the acoustical analysis of
SnS based on large scale investigations should be given more
attention in future investigations. This will not only enrich the
knowledge of experts in acoustics and medicine, but also help
the ML community to design more efficient and robust features
specifically for snore site localisation.

It is a matter of ongoing discussion in the medical community
to what extent SnS collected during drug-induced sleep resem-
ble those generated in natural sleep [2], [32], [70]. There are
indications that the type of snoring changes during the course
of the night in normal sleep [31], and it is known that the
type of snoring and the mechanisms of obstructions observed
during DISE do to a certain extent change with the depth of
sedation. On the other hand, it can be argued that the actual
sound of different types of snoring sound should remain very

similar independent of the type of sleep, since the underlying
pathomechanical properties are no different. Comparing snoring
during artificial and natural sleep in the same subjects using an
ML model of sufficient accuracy might even help contributing
to this problem. Also, making use of multichannel pressure
measurement in combination with DISE for the annotation of
SnS types in artificial and natural sleep might help to shed more
light to this unanswered question.

Last but not least, it is known that snoring properties depend
on anthropometric parameters [140], but little is known on the
differences of SnS properties between different ethnicities. The
MPSSC is assembled using recordings from three German hos-
pitals with patients predominantly coming from central Europe.
Comparing acoustic properties from different SnS databases
using raw data form different parts of the world can be an
interesting aspect of future snoring research.

2) Explainable Models: Explainable Al (aka XAI [141])
aims to improve the trust and the transparency of Al-based sys-
tems by making the ML algorithms interpretable. As highlighted
in [141], knowing the reasons behind a critical decision is impor-
tant in disease diagnosis. Recently, scholars in the community
of biomedical engineering are making efforts to improve the
interpretability in both conventional ML models [142] and DL
models [143]. Looking back at the SnS classification task, the
lack of interpretability in existing successful methods limit the
power of Al in clinical practice. In particular, compared with
conventional ML models, DL models have their own black-box-
like characteristics, which makes the explanation dramatically
difficult once the model is sufficiently complex. Moreover,
there is a trade-off between interpretability and accuracy [144].
Current studies in SnS focused more on the interpretability of
features (both the conventional ML and DL methods) rather
than the models. Adadi et al. systematically summarised the
emerging techniques used in XAI [141]. We think visualisation
appears as a promising method for understanding the higher
representations extracted from SnS by DL models, which has
already been successfully applied to the field of acoustic scene
classification [145].

3) Fusion Strategies: As summarised by Han er al., the
main fusion strategies can be categorised into three groups, i.e.,
feature-level fusion, decision-level fusion, and model-level fu-
sion [146]. Among these strategies, feature-level fusion (a. k. a.
early fusion) and decision-level fusion (a. k. a. late fusion) have
already been applied to the SnS classification task. Model-level
fusion means fusing the intermediate representations of different
modalities (e. g., audio, and video) [147]. The authors believe
that in the future, other non/less-invasive modalities (e. .g, audio,
scalp electroencephalography, respiratory, heart rate, and blood
pressure) can be fused together for a better localisation of the
snore site. In particular, with the fast development of wearables
and technologies of distributed/edge computing, we can easily
collect and get more useful modalities for the SnS classification
task. For this review article, we mainly focused on using audio
based methods. Adding other features requires work in early and
late fusion. For early fusion, we should learn from previous work
that ‘more’ does not always mean ‘better’ when concatenating
features. We should take both the final prediction performance



and the dimensionality of the feature space into account. To this
end, selecting efficient and robust features, or feature reduction
methods, can be a good direction in future SnS classification
tasks. Qian et al. systematically evaluated the contributions of
each feature set to SnS classification, but their method involved
human experts’ effects [58]. In future work, automatic feature
selection approaches will be more telling. For late fusion, finding
an efficient voting strategy is the key to a successful imple-
mentation. In a recent doctoral thesis [74], two popular voting
strategies were compared, i.e., majority voting (MV) and margin
sampling voting (MSV). The former one is based on the major
prediction made by an ensemble of ML models while the latter
one is based on the prediction made by the ML model which
achieved the highest margin sampling value [ 148] (the difference
between the first and the second highest posterior probability).
In that study [74], MV outperformed MSV in late fusion of
multiple ML models for SnS classification. Future work could
explore more generalised late fusion strategies, specifically, for
evaluating the confidence level of the trained ML models.

4) Data Enrichment: We need to face and address one seri-
ous challenge almost for all Al applications in medicine: data
scarcity. It is relatively easy to collect a large amount of SnS,
whereas the annotation work is expensive, time-consuming,
and even not sufficiently accurate. In particular, for SnS, its
natural imbalanced characteristic [26] cannot be ignored. Take
the VOTE-category as an example, SnS belonging to the V and
the O class occupy 84.5 % in MPSSC while T and E type snoring
samples only account for 4.7 %, and 10.8 %, respectively [13].
To overcome this issue, Zhang et al. proposed the sScGANs based
system, which was demonstrated to be more efficient than other
classical data augmentation methods. In future work, some other
state-of-the-art methods like unsupervised learning [149], semi-
supervised learning [ 150], active learning [151], and cooperative
learning [152] are worth being explored for the SnS classification
task.

5) Open Resources: Reproducibility is crucial for a sus-
tainable research. We encourage more researchers who share
the same interests in SnS classification to contribute to open
resources (e. g., databases, toolkits). Before MPSSC, there was
no significant public SnS database available. We also released
our toolkits like OPENSMIE [95], [96], OPENXBOW [153], AU-
DEEP [154], and END2YOU [155], which include both the state-
of-the-art conventional ML and DL paradigms. It will be very
helpful to make a fair and efficient comparison on algorithms
and systems for automatically localising SnS. Specifically, we
hope SnS collected in natural sleep can be added into this field,
which will significantly facilitate a real application in clinical or
home based situations.

VI. CONCLUSION

This article provided a comprehensive review of the research
using audio data to localise snore sites. While the mechanism
of snoring is clear, there are various definitions of the categories
of the snore site. We also compared both traditional machine
learning and state-of-the-art deep learning technologies and gave
a detailed analysis how they can be used, and to what extent, for
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overcoming the challenges posed by SnS localisation. Compared
to other applications in Al for healthcare, acoustical analysis of
SnS is a younger field, which means that we still have insufficient
fundamental knowledge about the acoustical properties of SnS.
Moreover, the availability of publicly accessible databases is
also extremely limited, which constrains the relevant studies.
Deep learning methods are promising, but there is a far way to
go to build a robust and explainable system for SnS analysis.
In the discussion, we shared final insights and perspectives. We
think that the combination of the conventional solid knowledge
in signal processing and machine learning together with the
increasingy advanced deep learning methods can leverage the
power of Al to finally provide a robust and accurate system for
the non-invasive localisation of the snoring site via an audio
based approach.
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