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Abstract. In times of personalised products, fluctuating demands and ever-increasing com-

plexity in hard- and software, production systems crave for flexibility and robustness. Self-

organisation can help to achieve these goals as self-organising systems autonomously monitor

themselves and their environment and adapt to changes observed. Despite extensive study,

researchers have hardly addressed some aspects of self-organising production systems. There-

fore, we identify three areas to contribute to the vision of self-organising production systems:

We plan to extend product descriptions to be more realistic. We further intend to investigate

extensions to dynamic scheduling in self-organising production systems. Lastly, we present an

approach to avoid deadlocks in self-organising production systems that handle multiple types

of products at once.

Keywords: Self-organisation, Production systems, Manufacturing systems, Autonomous sys-

tems.

3.1 Introduction

This section introduces the paradigms of organic computing and adaptive systems.

It further motivates the application of these paradigms to the manufacturing domain.

Lastly, it covers previous work on a special class of adaptive systems, so-called

product-flow systems to conclude with open research questions that have hardly been

discussed in previous work.

3.1.1 Organic Computing and Adaptive Systems

Organic Computing [40] is an initiative that aims to develop technical systems that

exhibit life-like properties, often found in biological systems. Most prominently these

life-like properties include robustness and flexibility against disturbances [39]. To

achieve these properties, Organic Computing systems observe their environment

and adapt autonomously to changes observed by manipulating their environment

accordingly. This involves a paradigm shift: Instead of human engineers taking

decisions at design time, we are now facing adaptive systems deciding at runtime [23].
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To fulfil these requirements, Organic Computing systems are designed to feature self-*

properties, including self-configuration and self-organisation. Self-configuration is the

ability of a system to change its parameters according to user goals. Self-organisation

describes systems autonomously changing their structure to accomplish higher-level

goals [40].

3.1.2 Motivation

The vision of applying the paradigm of adaptive systems to manufacturing is long-

standing, with publications dating back to the nineties [24]. Since then, the topic

has gained additional traction, as the manufacturing domain experiences a shift

from mass production to producing customised and even individual products. This

shift is accompanied by volatile markets and fluctuating demand. At the same time,

production systems consist of many increasingly complex and interconnected hard-

and software components. To adapt to these new circumstances, manufacturers focus

on gaining flexibility and robustness instead of solely increasing throughput. Adaptive

manufacturing systems offer a way to gain these properties:

1. Robustness: Adaptive production systems can deal with partial breakdowns by

detecting faults and finding new paths of production at runtime.

2. Flexibility: Adaptive production systems offer flexibility in terms of the products

manufactured and their quantity. As long as the needed capabilities for a new

product exist in the system, agents in the system can find new paths applying

the methods mentioned above. Adaptive production systems also enable flexib-

ility in terms of the objectives pursued, such as high throughput or low energy

consumption.

3.1.3 Background

One way of reaching robustness and flexibility for a special class of systems has been

explored in previous work [14, 26, 35], so-called resource-flow systems or product-
flow systems1. Product-flow systems contain agents dispatching, transporting, pro-

cessing or collecting products. Storages are agents dispatching and collecting products.

Agents, transporting products from one processing agent to another, are referred to as

autonomous guided vehicles (AGVs). Processing agents may offer several capabilities
to process a product, such as drilling. A task, the blueprint on how to manufacture

a product, is described as a sequence of capabilities. Matching the capabilities and

transports needed to manufacture a product and the capabilities offered by the agents

is termed reconfiguration. Reconfiguration can be seen as a form of task allocation [6]

or as a scheduling subproblem. The problem of reconfiguration is formulated as a

Constraint Satisfaction Problem (CSP) [3]. This CSP can then be solved at runtime

in different ways, e.g., centrally using a constraint solver [25] or through coalition

1 In contrast to previous work, we prefer the notion of product-flow systems as the word

resource is ambiguous in the manufacturing domain: It can serve as a term for a machine as

well as for a product [6].
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formation [26]. We denote the result of reconfiguration, i.e., the product’s path through

production, as product flow.

3.1.4 Research Questions

Despite these promising characteristics and ongoing research, some issues have hardly

been discussed in previous work. Therefore, we plan to contribute to the vision of

adaptive and self-organising production systems, especially product-flow systems.

Our research is guided by three partially interconnected questions.

How to ensure wide applicability? Previous work [26, 35] shows that adaptive pro-

duction systems can be implemented. However, there are still limitations, e.g.,

avoiding deadlocks while supporting multiple types of products at a time [37]

or allowing task descriptions beyond ordered sequences of capabilities [28]. We

plan to extend previous work to overcome these limitations and therefore ensure

applicability.

How to ensure performance and scalability? Overcoming limitations such as dead-

locks and simplified task descriptions might increase complexity. Thus, we have to

re-evaluate the methods used, also considering the scalability necessary for prac-

tical application. Concrete research questions subsumed by this main question are

whether the constraint-based approach is still suitable and whether decentralisa-

tion in the sense of distributed constraint optimisation can increase performance

and scalability.

How to achieve openness for human intervention? Lastly, being open for human in-

tervention is one integral feature of organic computing systems [33, 36, 40].

However, this aspect has hardly been studied in the context of adaptive produc-

tion systems. Therefore, we want to investigate the role of humans in adaptive

production systems: How can humans intervene and pose new constraints to

adaptive production systems? Is operation according to user-given constraints

opposed to performance? Or can human expertise help to relax problems?

From these research questions we derive three research challenges in Section 3.2:

Section 3.2.1 discusses the shortcomings of modelling tasks as a sequence of cap-

abilities and presents our planned contributions to address the problem. We cover

approaches towards the problem of dynamic scheduling in Section 3.2.2. In Sec-

tion 3.2.3, we examine the problem of deadlocks in self-organising production sys-

tems and briefly summarise an approach to avoid deadlocks in adaptive production

systems manufacturing multiple types of products at once. Section 3.3 concludes this

paper.

3.2 Research Challenges

This section presents the identified challenges in greater detail. The description of the

individual problems adheres to the following structure: Related work, our (planned)

contribution and plans to evaluate our contribution.
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3.2.1 Realistic Descriptions of Task and Capabilities

3.2.1.1 Related Work

Several publications describe a task as an ordered sequence of capabilities that are

executed one after another, altering one particular product [26, 41, 45]. This mod-

elling of a task contradicts practice in many areas of application [28]. E.g., in the

furniture industry wooden panels are sawn into several workpieces that are machined

individually and later assembled to make up the final product [28, 38].

Keddis et al. [17] refer to splitting an intermediate product or raw material into

several as a fork task. A fork task also splits the production process into two parallel

processes. In contrast, a synchronisation step synchronises two or more parallel

processes. Furthermore, there are cases where capabilities can be replaced by other

capabilities (selective tasks) or executed in arbitrary order [17]. Qiao et al. describe

similar structures in [32]. Figure 3.1 visualises the different task structures mentioned.

Supply Case

Test Height

Drill

Store

(a)

Supply Base

Fabric

Supply

Decoration Fabric

Sew

Store

Store

(b)

Supply Workpiece

Dissasemble

TestTest

StoreStore

(c)

Supply Fabric

Sew Glue

Cut

Store

(d)

Fig. 3.1. Visualisation of different task structures according to [17]: (a) Sequential task, (b)

synchronisation task, (c) fork task, (d) selective task.

The modelling of capabilities has to be more realistic as well. E.g., stating that

an agent can perform the capability ‘drill’ does not satisfy the need for practical

application. A realistic capability description encompasses parameters describing the

material, geometry, and process [17]. A description of the materials used is needed to

determine whether an agent can perform the required capability: An agent might be

able to drill a piece of wood, while the same agent might not be able to drill a piece

of metal. Alike, a description of the product’s geometry is needed to check whether

an agent can handle and execute a capability on a product. Due to specific grippers or

fixtures, geometry may prevent the execution of a capability. Lastly, process-related

information is needed. In our drilling example, we might need to know the exact

position, depth, and diameter of the hole. Process-related information should also

contain auxiliary materials, such as screws if needed. Depending on the process,

related information can take different forms. Therefore, flexible data structures are

required.
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The increase of capabilities combined with the variety of data needed to describe

a task might also turn the modelling of tasks into a tedious and error-prone duty.

Here another challenge arises: Generating valid task descriptions from user input [31]

such as 3D models. E.g., Lau et al. demonstrate how 3D models of furniture can

automatically be split into parts and connectors, using formal grammars [19].

3.2.1.2 Contribution

Based on the related work presented, we identify the following areas of contribution:

1. Survey of descriptions: While the authors in [17] present a solution for the

realistic description of task and capabilities, they also state that there might

be other methods, e.g., the Business Process Model and Notation (BPMN). A

survey will help to compare different approaches and identify the advantages and

disadvantages of the approaches.

2. Implementation: After comparing different approaches, we will implement one

or several promising approaches for realistic task and capability description. The

implementation should include a user interface to create task descriptions, as well

as suitable data structures. Using a graph-based structure seems promising.

3. Finding suitable approaches to task allocation and product routing: Differentiating

between capabilities with different parameters will lead to an increase in overall

capabilities. Together with a realistic description of tasks, the problem of task

allocation might turn out more complex. We will have to re-evaluate the constraint-

based approach and compare it to other approaches to clarify, which approaches

are best suited to these requirements.

4. Generating task descriptions from user input: The approach of Lau et al. [19]

seems like a first step in this direction. We plan to reimplement and extend the

approach to generate a task description from the parts and connectors.

3.2.1.3 Evaluation

We plan to evaluate the contributions on a showcase basis, i.e., we will provide some

showcase products, possibly from the furniture domain, and check if the implemented

task and capability description can capture these products. Further, we can compare

different methods of task allocation with the provided descriptions, e.g., in terms of

runtime. Finally, using a 3D model of the showcase product, we can verify that a valid

task description can be generated automatically.

3.2.2 Dynamic Scheduling

3.2.2.1 Related Work - Traditional Scheduling Approaches

Controlling production facilities is a well-studied subject. Researchers have been

studying job shop scheduling problems (JSSP) as an NP-hard combinatorial optimisa-

tion problem since the 1950s. In a job shop, there is a finite set of products or jobs to
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be processed on a finite set of machines. Every product might have a different task,

comprised of a set of capabilities. These capabilities must be performed in the given

order. Every machine is specialised for its operation, i.e., it offers only one capability.

Also, machines can only process one product at a time without the possibility of

preemption [5].

With the advent of flexible and reconfigurable manufacturing systems, where

machines can perform different capabilities [18], the focus of research has extended to

the flexible job shop scheduling problem (FJSSP). Here a machine may offer several

capabilities, but switching between capabilities requires a setup time. Thus, an FJSSP

can be divided into two subproblems [5, 41]:

1. Assignment of operations to suitable machines.

2. Sequencing of operations on all selected machines to obtain a schedule.

We additionally focus on the subproblem of routing and transporting the products

to the machines selected in the assignment. Research on the classical FJSSP often

neglects this aspect [5]. The notion of job shop scheduling problems with transporta-

tion resources [29] extends the JSSP by a set of identical vehicles that can transport

any product. Whenever a product changes from one machine to another, a vehicle

must be scheduled to do the transport. Transportation times depend on the machines

involved [29].

The goal of all problem variants is to produce a feasible schedule that includes

all products or jobs. Furthermore, this schedule should minimise (or maximise) one

or several predefined objectives, such as the overall makespan, tardiness, lateness or

machine workload, considering transportation and setup times [5]. Recently, object-

ives considering the environmental impact, e.g., energy consumption, are becoming

increasingly relevant in scheduling [22].

Chaudhry and Khan reviewed the techniques used to solve FJSSP problems in [5]

to conclude that most of the studied journal contributions devised hybrid techniques

(35%) or some form of evolutionary algorithm (24%), e.g., genetic algorithms, differ-

ential evolution or learning classifier systems. The authors define hybrid techniques

as techniques that combine one or several (meta-) heuristics to benefit from their

strengths [5]. About 10% of the authors used deterministic heuristics, while tabu

search was used in 6% of the cited papers. Other techniques include integer/linear pro-

gramming and mathematical programming, as well as nature-inspired algorithms such

as particle swarm optimisation, simulated annealing, ant colony optimisation, or artifi-

cial bee colony [5]. Scott et al. investigated whether human expertise can help to solve

hard optimisation problems such as routing or scheduling [34]. In human-computer

optimisation, humans and computers collaborate, e.g., a user specifies a search space

that the computer then explores. Scott et al. conclude that human expertise can indeed

help to manage the usage of computational resources in optimisation [34].

Due to the complexity, researchers often tackle JSSP variants by splitting the prob-

lem into the aforementioned subproblems and solving them one after another [45].

Researchers also assume a deterministic environment [4] and omit complex con-

straints, e.g., regarding uncertain processing, transportation or setup times, main-

tenance, or machine breakdown to facilitate the problems [5]. Another method to
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relax the problem is to decrease the time horizon of the schedule [45]. However, bey-

ond these simplifications, manufacturing systems are characterised by unpredictable

events and disturbances [21, 30, 45]. Therefore, authors doubt whether centralised ap-

proaches can cope with the dynamic and sometimes even chaotic nature of production

systems [6, 45] and provide the required flexibility [21].

3.2.2.2 Related Work - Dynamic Scheduling through Self-Organisation

Instead of computing a schedule upfront using global knowledge, research in adaptive

production systems has focused on solving the problems of assignment, sequencing,

and routing through the interaction of the involved agents. This leads to a different

focus: From finding an optimal to finding a dynamic schedule [30, 42]. In return,

researchers hope to achieve greater robustness, flexibility and scalability.

Different authors [13, 20, 42, 45] have devised potential field approaches to solve

the assignment and routing subproblems and guide products through production: One

the one hand, machines send out potential fields to attract empty vehicles or vehicles

carrying products. On the other hand, vehicles sense the attraction fields sent out by

machines, decide for one and move towards it. Figure 3.2 shows the local interaction

between vehicles or AGVs and machines in [13].

Fig. 3.2. Local interaction between a processing agent and AGVs, adapted from [13]: The input

buffer on the left sends out a potential field to attract AGVs carrying products, while the output

buffer on the right emits a potential field to attract empty AGVs that remove products from the

output buffer.

While the approaches are conceptually similar, they differ in many details: Attrac-

tion fields can encode a simple enumeration of product types [13] or include more

complex concepts and constraints such as product size, quality of service, availability

and workload of machines [42,45]. Routing can take place on a fixed graph that repre-

sents routes of a shuttle system [20, 45] or a general two-dimensional space [13, 42].

Lastly, the control of attraction fields can be hardcoded [42] or learned, e.g., by

reinforcement learning [13].

The potential field approach exhibits strong self-organisation, as it requires no

central control [10]. However, quantitative analysis is challenging due to its dynamic
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nature [42]. Therefore, researchers resort to an experiment-based analysis: They

measure objectives during simulation [13] or produce a schedule by running a sim-

ulation [45]. This schedule or data is afterwards analysed in terms of optimality.

The experiment-based analysis does not allow for behavioural guarantees, which are

indispensable for production systems.

The Restore Invariant Approach (RIA) [26] tries to fill this gap by specifying

and enforcing a corridor of correct behaviour. Correct behaviour includes a feasible

assignment of machines and correct routing of products. Sequencing of products is

not part of the behavioural corridor. Instead, it arises as an emergent property. The

agents monitor the corridor to ensure that the agent that detects a violation starts a

reconfiguration. The purpose of reconfiguration is bringing the system back into the

corridor. Reconfiguration can be centralised [25] or partly decentralised using coalition

formation [35]. In the centralised variant, a central controller collects information

about all agents and can then solve the problems of assignment and routing by applying

constraint solving or a genetic algorithm. In the decentral reconfiguration, the agent

noticing the violation (leader) forms a coalition with its neighbouring agents. The

leader then tries to solve the problems of assignment and routing using the information

from its neighbours. If the leader can’t solve the problem, he enlarges the coalition and

re-tries to solve the problem until he finds a solution [26]. A verified result checker

then reviews the found solution before the leader distributes it among the agents in the

coalition. The verified result checker together with the verification of the functional

system allows guaranteeing that the system behaves as intended [26, 27].

3.2.2.3 Contribution

Building upon previous and related work, there are several areas of contribution:

1. The first area of contribution is related to the realistic description of tasks and

capabilities presented in Section 3.2.1. We plan to investigate how these realistic

descriptions affect finding a solution towards the assignment and product routing

in the context of the RIA. We assume that the realistic descriptions will increase

the complexity of the problems. Thus, we plan to re-evaluate the use of constraint

solving and genetic algorithms in comparison to other optimisation or learning

methods.

2. The second area of contribution is concerned with comparing the mechanisms

presented before: Can the different mechanisms profit from another? E.g., can we

get rid of partly centralised control of the coalition leader in the RIA to achieve

strong self-organisation as seen in the potential field approach? As a concrete

contribution, we plan to implement and evaluate a reconfiguration mechanism

based on distributed constraint optimisation.

3. Third, we plan to examine the use of machine learning techniques for dynamic

scheduling. One exemplary use case is predictive maintenance. Researchers

already use machine learning algorithms to predict machine or component fail-

ure successfully [8]. However, often effective countermeasures besides human

intervention are missing. The combination of dynamic scheduling and machine
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learning seems promising, as products could be re-assigned and rerouted autonom-

ously in case of imminent failure.

4. Lastly, we plan to investigate the role of humans in dynamic scheduling: Can hu-

man expertise help to solve the problem, like in Scott et al.? Can human-computer

cooperation help to build understanding and trust in the solution found? We

further want to answer the following questions: How can humans intervene and

post new constraints? Do those constraints oppose performance and scalability?

3.2.2.4 Evaluation

We plan to evaluate our contribution in comparative studies, where we compare two

variants, e.g., with and without realistic task descriptions, in a given scenario. These

comparative studies allow us to measure and compare the relevant attributes, e.g.,

runtime and solution quality. The evaluation should also cover different problem sizes,

e.g., number of agents or number of products, to draw conclusions about scalability.

Scenarios might also include disturbances, i.e., component or agent failure, to quantify

changes in robustness.

3.2.3 Dealing with Deadlocks

Deadlocks are situations where two or more agents are waiting for another to finish in

a way that no one ever finishes [9]. The risk of deadlocks in production systems is well-

known, and as deadlocks may halt production, they are also heavily studied [1,16,37].

Consider the motivating example in Figure 3.3 that demonstrates how a simple cyclic

arrangement can lead to a deadlock. Cyclic arrangements concerning multiple tasks

are also possible and might be even harder to detect locally.

a1

a2

a3 a4
t1

Fig. 3.3. Cyclic arrangement of two agents a1 and a2. The arrows denote the product flow

of task t1: a1 receives products from a3, processes them and hands them over to a2. After

processing at a2, a1 receives the products again and applies another capability before handing

them over to a4. If a1 accepts a product from a3 while a2 also holds a product a deadlock

emerges.
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3.2.3.1 Related Work

As Figure 3.3 suggests, deadlocks in manufacturing systems are caused by cycles.

Specifically, Wysk et al. proof that the following two conditions must be met for a

deadlock to occur [7, 44]:

1. There has to be at least one cycle in the product flow.

2. Each agent in the cycle has to be occupied by a product.

To deal with deadlocks, researchers devised a variety of methods, including

Petri nets [1, 43] that restrict the agent’s actions to prevent deadlocks. Event-based

approaches [11, 12] use global knowledge to detect cycles and decide on save transac-

tions. However, as both methods require global knowledge or control, they are not

suitable for distributed systems.

Distributed cycle detection algorithms, such as the one presented in [2], detect

cycles by passing messages between the agents. Messages are forwarded until they

return to their sender or they reach the end of the system and cannot be forwarded any

further. This algorithm allows determining whether an agent is in a cycle. Though, it

does not provide additional information, such as the cycle’s size, which is essential

for avoiding deadlocks in a distributed manner.

Lastly, we directly build upon the work of Steghöfer et al. [37]. In their work,

the authors present a decentralised deadlock avoidance approach based on message

passing. However, dealing with multiple types of products is left as future work.

3.2.3.2 Contribution

Thus, in [15], we present a decentral approach to avoid deadlocks in production

systems that handle multiple tasks at once. We refrain from generally averting cycles,

as this results in a loss of flexibility. Instead, we rely on the aforementioned theoretical

insight of Wysk et al. To prevent that each agent is occupied by a product, we employ

a two-step procedure [15]:

1. Cycle detection: Whenever the configuration of the system changes, e.g., due to a

new type of product or the (partial) failure of an agent, agents send out messages

to detect cyclic arrangements. Cycles are then stored alongside the number of

products that are allowed to enter.

2. Enforcing the limits for products in cycles: When production resumes, agents

keep track of the number of products that are currently in each cycle. The agents

that are entrances and exits of the cycles enforce the limits calculated in cycle

detection by coordinating through message-passing.

3.2.3.3 Evaluation

To evaluate our approach experimentally, we run several simulations with different

configurations and measure the number of deadlocks encountered, the runtime needed,

and the number of messages sent. Additionally, we calculate the system’s throughput
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by dividing the number of manufactured products by the runtime. Our results suggest

that our approach effectively avoids deadlocks in the configurations considered.

Furthermore, our approach outperforms a simple conservative locking algorithm

in terms of message overhead and runtime. Therefore, systems using our approach

can realise higher throughput compared to systems using the conservative locking

algorithm [15].

3.2.3.4 Future Work

Despite the encouraging results, some challenges remain: First, our experimental

evaluation does not formally prove the deadlock avoiding property of our algorithm.

Therefore, we strive for formal proof confirming our experimental results. Addition-

ally, the experimental configurations only cover a small set of agents. To ensure the

scalability of our approach, we plan to conduct experiments with a larger number of

agents and also investigate the message overhead in a formal way. Lastly, we plan to

examine whether adding soft constraints that favour solutions without cycles to our

constraint model can relax the problem.

3.3 Conclusion

In this paper, we summarise research questions in adaptive production systems.

Namely, we suggest using more realistic task descriptions, including structures such

as selective tasks, forks, and synchronisations. Further, we plan to extend capability

descriptions to contain material-, geometry-, and process-related information. The

effects of elaborating task and capability descriptions on the problem of task allocation

have to be studied. We further plan to direct research to automatically generating task

descriptions from user input, as manually creating task descriptions becomes more

complex and error-prone.

In times of fluctuating markets, dynamic control is another key-issue for adaptive

production systems. We present different approaches towards the problem of dynamic

scheduling and propose to take advantage of the combination of the different con-

cepts. We intend to allow realistic task structures and human intervention in dynamic

scheduling. We further plan to integrate machine learning techniques into adaptive

production systems to benefit from the rapid progress in this area. Combining ma-

chine learning and self-organisation allows to detect failures beforehand and offer

countermeasures such as rerouting products. Therefore, the combination may further

increase the robustness of adaptive production systems.

Another problem in flexibly linked, decentral production systems with multiple

tasks is dealing with deadlocks. To handle both, the decentral nature of adaptive

systems as well as many products at a time, we present a message-based deadlock

avoidance approach in [15]. Our experimental evaluation shows that the approach

avoids deadlocks in several realistic system configurations with reasonable message

overhead. However, evaluating the scalability of our approach in larger configurations,

as well as formally proofing the deadlock-avoiding property remains as future work.
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