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A MULTISCALE METHOD FOR HETEROGENEQUS
BULK-SURFACE COUPLING”

ROBERT ALTMANN' AND BARBARA VERFURTH!

Abstract. In this paper, we construct and analyze a multiscale (finite element) method for
parabolic problems with heterogeneous dynamic boundary conditions. As the origin, we consider a
reformulation of the system in order to decouple the discretization of bulk and surface dynamics.
This allows us to combine multiscale methods on the boundary with standard Lagrangian schemes
in the interior. We prove convergence and quantify explicit rates for low-regularity solutions, which
are independent of the oscillatory behavior of the heterogeneities. As a result, coarse discretization
parameters, which do not resolve the fine scales, can be considered. The theoretical findings are
justified by a number of numerical experiments including dynamic boundary conditions with random
diffusion coefficients. ’
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1. Introduction. This paper is concerned with coupled bulk-surface partial dif-
ferential equations (PDEs) with a heterogeneous medium considered on the surface,
modeled through dynamic boundary conditions. Problems with dynamic boundary
conditions arise, e.g., as the limit of a coupled bulk-bulk problem with a thin outer
domain [35]). If this outer domain is additionally heterogeneous, then this transfers
to the limiting boundary conditions. Further applications include fluid-structure and
acoustic-elastic interaction if one component can be modeled in the form of a bound-
ary layer [26]. In this way, generalized boundary conditions can simplify and reduce
models used, for example, in hemodynamics (modeling blood flow in arteries [19]).
Dynamic boundary conditions also enable a proper way to model a heat source or a
heat transfer on the boundary [17, 22). Generally speaking, dynamic boundary con-
ditions are of high significance if one needs to reflect the effective properties of the
surface. '

Although the inclusion of dynamic boundary conditions is well understood from
a theoretical point of view (see, e.g., [18, 10, 46]), the corresponding numerical analy-
sis drags behind. There are only a handful of papers dealing with the numerical
approximation of these (or related) problems. For stationary elliptic problems an
isoparametric finite element method was introduced in [14]. Numerical approxima-
tion schemes for parabolic problems with dynamic boundary conditions are presented
in [48, 30]. In both cases, a standard Galerkin ansatz for the spatial discretization
is considered, i.e., the mesh on the boundary is automatically specified through the
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restriction of the mesh of the bulk to the boundary. Such approaches, however, suffer
if the solution is oscillatory on the boundary or does not contain a sufficiently regular
trace, e.g., due to heterogeneities on the boundary.

In this paper, we propose an alternative approach based on a formulation as a
coupled system; cf. [33, Chap. 5.3]. This means that bulk and surface dynamics
are considered as two systems, which are coupled through the boundary. Similar
approaches were taken in [15] for theoretical purposes in the semigroup setting and
within the framework of dual continuum models [34] used in the field of fractured
porous media. We consider the weak formulation of the problem and the interpreta-
tion as a partial differential-algebraic equation (PDAE). This system class provides
a powerful framework (especially in terms of modeling) for general coupled systems;
see [31, 32, 1]. The PDAE formulation comes with a saddle point structure and thus
needs special treatment in order to prevent numerical instabilities. More precisely, we
need to design inf-sup stable schemes, leading to a novel class of mixed finite element
methods. Here we allow independent discretizations in the bulk and on the surface.
In this sense, these methods reveal a flexibility known from nonconforming schemes
although formulated within a conforming framework.

The possibility of combining coarse grids in the interior with fine grids or adapted
schemes on the boundary is of great value if bulk and surface dynamics have differ-
ent characteristic length scales. Assuming heterogeneous diffusion coefficients on the
boundary without scale separation, we propose applying the localized orthogonal de-
composition (LOD) on the boundary. This method was originally introduced in [39]
for elliptic problems and further developed in recent years covering a large range
of applications. In view of this paper, we particularly mention the application to
standard parabolic problems [38], thermoelasticity [37], and poroelasticity [3]. Fur-
thermore, [24] recently discussed the application to fracture problems, where also a
bulk problem is coupled to an interface problem. Therein, however, the multiscale
features are rélevant in the bulk as well, and the problems in the volume and on the
interface remain completely coupled. The LOD can also be interpreted in the context
of subspace decomposition methods [29, 28]. Furthermore, it is closely connected to
the area of homogenization |20, 44], which allows an alternative interpretation of our
method, in particular for one-dimensional boundaries.

The combination of a multiscale method on the boundary and standard La-
grangian schemes in the bulk allows for a computationally efficient and accurate
representation of the coarse dynamics for heterogeneous bulk-surface problems. We
prove convergence of the corresponding semidiscrete scheme with explicit rates even
for low-regularity solutions as they may appear for general heterogeneous and dis-
continuous surface diffusion coefficients. Furthermore, the multiscale method applied
on the boundary leads to accurate approximations and convergence rates even in the
preasymptotic regime, i.e.,, when the oscillations and jumps of the coefficients are
completely unresolved by the mesh.

The paper is structured as follows. In section 2 we derive the system equations
with heterogeneous dynamic boundary conditions as the limit of a coupled bulk-
bulk problem. Further, we discuss two possible weak formulations. The novel class
of discretization schemes is introduced in section 3. As it is based on a coupled
formulation, we consider a special class of mixed finite elements in combination with
the LOD. A specific multiscale method is then presented and analyzed in section 4.
Numerical evidence of the theoretical results, clearly showmg the computational gains
of the approach, are the subject of section 5.
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FI1G. 1. Illustmtzon of the domains Q, 9,5, the boundary r, and the hmttmg pmcess 6 — (}

2. Derivation of dynamxc boundary conditions. Tn. th:s sectnon, we denve
the system equations for the considered heterogeneous ‘bulk-surface couphng For
this, we first motivate the dynamic boundary conditions as the limit of & ‘bulk-bulk
coupling and discuss corresponding weak formuiatlons afterwards. In order to deal
with the heterogeneity on the boundary later on, we consxder a decoupled approach,
which is beneﬁczal for the numencal con&deratwn :

2.1. Dynamw boundary condltions as a hmxt VVe consxder the Imear heat
equation with constant thermal diffusivity .« > .0 in.a bounded domain  C R,
d > 2, coupled with a second parabolic problem inthe surrounding domain €5 of
thickness § > 0. The joint boundary is denoted by I := 2N Qs. Moreover we assume
the outer material to be heterogeneous in tangential direction and constant in normal
direction, which is encoded in the diffusion coeﬁicmnt ae e L°°(Q5), cf Fxgnre 1.
More precxsely, we assume aE to’ be of the form : ER NS LR

a (fa) = ae(Pa(ﬂ:))

where Pa(a:) e r denotes the normal pro;ecmon of 3: €. 95 onto the boundary T.
Here, ¢ « 1 is a small parameter, which corresponds to the oscﬂ]atory behavior
of the diffusion. In the special case: of a periodic coefficient, £ equals the period
length. Furthermore, we assume a, to be umformly bounded from below by a positive
constant a > 0. This leads to a coupled bulk-bulk prob]em of the form .

(2.1a) LT i = nAu—_fﬂ mﬂ
(1) . 4= V(GSVw) “on Qa o
(21c¢) - s TR u~0 i --onI‘ :

(2.1d) o f na,,u 5 a:d,w =0 '*fﬁonI‘

(2.1e) L aeayw 0 ’:;:;on 895\1"

with initial conditions for u and w. Here, v denotes the normal outer vector on the
boundary. Assuming & to be small, we consider the limit § — 0 in order to reduce the
surrounding domain Q5 to a boundary layer. This means ‘that the original bulk-bulk
coupling is replaced by a bulk-surface coupling, which can be consuiered as a PDE
with nonstandard boundary conditions. -More precisely, this leads to a heat equation
with dynamic (and heterogeneous) boundary condltxons, nameiy, :

By R
(2:2b) o : "l‘vf'(asVru)+k3,,u_;-;g"._- Onr
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Note that by Vr we denote the gradient in tangential direction of the boundary I' =
0Q. In the special case a. = 1 the differential operator simplifies to the Laplace-
Beltrami operator; see [21, Chap. 16.1]. In the general case with e, € L°(I'), a. 2>
a > 0, the corresponding operator A.: H}(T') — HY(I')* still satisfies a Garding
inequality, namely,

(Acp,p) = jP a:Vrp- Vrpdz = a[Vrpllemy = & Pl — @ 22y,

The following result is devoted to the limiting process.

THEOREM 2.1. Assume the boundary I' to be smooth. Then, system (2.2) is the
limit of (2.1} as 6 — 0.

Proof. This follows the arguments of [35] in the special case of o, = g = 1
and W = 0. The only difference is that therein the coefficient a. is assumed to be
constant. We briefly outline the main steps and modifications and refer the reader
to {35] for more details. It is still possible to reformulate the bulk-bulk problem (2.1)
as an energy balance. Due to the uniform positive lower bound on a., the a priori
estimates for the solution derived in [35] still hold true. Employing them, we see
that the convergence of the dynamic part in the energy balance formulation follows
in the same way as before because we have made no alterations concerning the time
derivatives. Thus, we need only show the Mosco convergence of the energy functional,
which corresponds to the elliptic parts in (2.1). Since this requires some further
notation, we postpone the detailed proof to Appendix A. O

Remark 2.2. Since the limiting process is only concerned with the equation in
{25, one can replace the heat equation in the interior domain Q by a more involved or
even nonlinear parabolic problem. Furthermore, it is possible to include in (2.1b) a
reacting term owu as well as a (sufficiently smooth) inhomogeneity g € L%(S25), which.
only varies in tangential direction.

Throughout this paper, (2.2) serves as a model problem for a parabolic system
with dynamic boundary conditions including heterogeneities. Additionally, we allow
an inhomogeneity g € L(T') in (2.2b) and assume I to be polygonal/polyhedral and
thus only Lipschitz continuous. The latter may be given as an approximation of a
smooth domain, meaning that the obtained finite element approximation includes an
error coming from the discrepancy of the boundaries. Such situations can be analyzed-
with the help of a lift operator (cf. [11] or [12, sect. 4.2]) but are not the focus of this
research. :

2.2. Weak formulation. In the remainder of this paper, the computational
domain 2 C R? is assumed to be a Lipschitz domain with a polygonal/polyhedral
boundary I', on which the dynamic boundary conditions are defined. Further we as-
sume right-hand sides f: [0, T} — L2(Q2) and g: [0, 7] — L*(T"). The weak formulation
presented in {30] reads

(2.3) - om{n,v) +alu,v) = (f,v)a + (g,v)r,

with (-, ) and (-, )r denoting the L2-inner products on 2 and I, respectively, and
with the bilinear forms

m{u,v) :=fuvd:c+/uvd:c, a(u,v) :=fnVu-V'vd:c+faeVpu-vad:r.
- Q r Q r
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The corresponding trial and test space is given by V := {v € HY{(Q) | v|r € H}()}.
Thus, the two bilinear forms include boundary integrals, and the space V requires a
trace in H1(I'). We will see in section 3.1 that this approach is not suitable for the

considered situation with a heterogeneity on the boundary.

In order to allow different discretizations in the bulk and on the boundary later
on, we derive an alternative weak formulation. Here we follow {2] and consider (2.2)
as a coupled system, which interprets u and u|r as two separate variables. For this,
we introduce p = u|r as a new variable, which turns the dynamic boundary condi-
tion (2.2b) into p — Vr - (a.Vrp) + K 8,u = g on I'. As ansatz spaces we define

V:i=HY(Q), Q:=H\()

for u and p, respectively. Note that we need a trace in H*(I') due to the generalized
Laplace-Beltrami operator but do not include this in the space V.
Considering test functions v € V for (2.2a) and ¢ € Q for (2.2b), we see that

integration by parts yields

(2.4a) fﬂvdx+[nVu-Vvd:c—/mB,,uvda::/fvdm,
Q o r o

(2.4b) '/ﬁqu+/a£Vpp-qud:z:+/n8,,uqu=/qua:.
r T r r

For the differential operators we introduce KC: V — V* as the weak Laplacian (weighted
by k) and A.: @ — @* defined by'(.Asp, q) = fa:Vrp-Vrqdz. Moreover, we imple-
ment the connection of u|r and p in the form of a constraint on the system equations.

With M := H-1/2(T") we define the constraint operator B: (V x @) - M* = HY/?(T)
by

| B(u,p) :=p— ulr.

We emphasize that this operator satisfies an inf-sup condition; see [2, Lem. 5]. Using
the Lagrangian method to enforce the constraint, we introduce an additional unknown,
namely the Lagrange multiplier A: [0, T] = M, which leads to the PDAE formulation

oo []E L J[emae] mvee
(2.5b) | B(u,p) =0 = inM"

Note that this includes operator matrices and that a test function (v,0) € V x Q ap-
plied to (2.5a) equals (2.4a), where the appearance of the normal derivative of ¢ has
been replaced by the Lagrange multiplier. Accordingly, the test function (0,q) € VX &
yields (2.4b) and shows that the PDAE (2.5) is equivalent to the weak formula-
tion (2.4). In particular, one can show under sufficient regularity assumptions that
the solutions coincide with A = k d,u.

For later use, we define the bilinear forms associated to the differential operators K
and A¢, namely,

Ay, v) = (Ku,v),  a{p,q) = {Ap,q)-

Recall that o > 0 denotes the lower bound of the diffusion coefficient a. and that the
bilinear form a only satisfies a Garding inequality in Q. Because of thls, we introduce
the elliptic bilinear form a: @ x @ - R by

E(p, Q) = a(p’ Q) + (ap: Q)P’
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which satisfies a{p,p) > a||pl|%. Introducing the bilinear form b: M* x M —+ R
by b(Q1 ’\) = (q’ A)F? we have

b(g —vlr, A) = {g — Ir, Ar = (B(v,9), A).
As a consequence, we can rewrite system (2.5) in the form

(2.6a)  (&,v)n+ (P, @)r + R(u,v) + a(p,g) + b{g — vIr, A} = (f,v)e + (9, 9)r,
(2.6b) | - b(p—ulr,u) =0,

with test functionsv eV, g€ Q, and p € M.

2.3. Regularity of inhomogeneous solutions. Standard discretizations of
homogeneous Dirichlet boundary problems defined on convex Lipschitz domains usu-
ally assume HZ2-regularity of the solution leading to the well-known optimal conver- -
gence rates. Prescribed Dirichlet data, however, may already change the regularity of
the solution, since a trace in H/2(T") only implies a solution in H().

For dynamic boundary conditions on smooth domains including the Laplace-
Beltrami operator, a standard regularity assumption is u(t) € H2(Q) with u(t)|r €
HZ(T). In this situation, linear finite elements yield the full second-order convergence
in the L?-norm; cf. [30, Thm. 3.6]. Recall that we only consider Lipschitz domains
and that we additionally have a heterogeneous diffusion coefficient a, such that H2-
regularity is not to be expected on the boundary. Further, the coupling of bulk and
surface dynamics does not allow a simple decomposition of the solution as in the pure
Dirichlet case. The quite general assumptions on the computational domain and the
coefficient a. only ensure a solution p with values in Q@ = H1(T'). By standard results
on the trace operator (see, e.g., [45, Chap. 2.6]), we cannot expect more reguiarity
than u(t) € H3/2(Q) in the interior. This also fits into the numerical observations in
section 5.1.

For polygonal convex domains in two space dimensions, i.e.,.d = 2, we can ex-
pect u(t) € H3(Q) if p(t) € H3/3(T;) for each edge I'; C I and p(t) € C(O9), i.e.,
p is continuous at the vertices of the boundary; cf. [23, Thm. 5.1.2.4]. Ford = 3
we know from [41, Cor. 5.5.2, Rem. 5.5.3] that in a convex Lipschitz polyhedron
we have u(t) € H**/2(Q) if p(t) € HY(T), p(t) € H*(T;) for each face I'; C T,
and Au € L?(Q2) for 1 < s < 3/2. We emphasize that the “border cases” s = 1
and s = 3/2 are excluded, so that on the one hand, p needs to be a little more regular
than simply H!(T"), and, on the other hand, one cannot conclude full H?-regularity
of u with this argument.

EXAMPLE 2.3. In the numerical examples of section 5 we will consider d = 2 and
the smooth but highly oscillatory coefficient

1

m —
a;" (@) = 2 + cos(2nze~1)’

For the corresponding stationary problem —~Vr-(a.Vrp) = g this results in a solution,
where higher-order norms of p are expected to scale with a negative power of €, e.g.,
2]l tre(ry scales like g1~* for integers s > 1, as discussed in [43]. Moreover, if u solves
the Poisson equation with boundary data p, then [41, Cor. 5.5.2, Rem. 5.5.3] provides
the stability result

luflzre ey < C (Pl ae-1r2(ry + 1A% 3 ()
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Thus, oscillatory boundary conditions lead to e-dependent bounds of u for s > 3/2.
This motivates the application of multiscale methods, which enable e-independent con-

vergence rates.

3. Spatial discretization. The heterogeneous nature of the boundary calls for
a multiscale method on I'. Because of the very general structure of the diffusion coef-
ficient a., which does not assume periodicity or any separation of scales, we consider
the LOD. On the other hand, we have a homogeneous problem in the bulk such that
standard finite elements yield satisfactory results. We first follow the naive approach,
which requires a very high mesh resolution also of the homogeneous domain. In order
to allow different discretizations in the bulk and on the boundary, we design mixed
finite element schemes based on the alternative formulation (2.5). This then enables
efficient numerical schemes, which combine coarse grids on 2 with multiscale methods
onI.

Throughout the paper we write ¢ S b to indicate that there exists a generic

constant C, independent of spatial and temporal discretization parameters, such
that a < Cb. :

3.1. The naive finite element approach. A straightforward finite element
approach considers the weak formulation (2.3) together with a uniform triangulation.
The corresponding Galerkin approximation is given by u,: [0,T] 2 Vo CV={v e
HY(Q) | vlr € HY(T)} and solves the semidiscrete system

(3.1) m(tp, vp) + a(un, vr) = (f vn)a + (9, vr)r

for all vx € V}, and some initial condition for u4(0). Let 7~ be a uniform triangulation
of the computational domain  with mesh size h, and let V¥, :== P;(7) be the space of
Lagrange finite elements, i.e., piecewise affine and globally continuous functions. In
this setting, it is well known that a high resolution, i.e., b < ¢, is necessary to capture
the microscopic effects [42]. This is due to the fact that Vrwvy, is piecewise constant
on the boundary, and thus only the arithmetic mean of a. enters the semidiscrete
equations for coarse h. This, however, does not reflect the correct microscopic behavior
and leads to an extended preasymptotic phase in the approximation. Thus, the highly
oscillating diffusion coefficient on the boundary needs to be compensated by a very
small mesh size k. :

Of course, this illustrates only the worst case, and adaptive finite elements |7,
Chap. 9] or general multiscale methods such as the LOD [39] can be used to overcome
these difficulties. Both approaches, however, have in common that the heterogene-
ity on the boundary affects the mesh in the interior of the domain. The method
introduced in this paper follows a different paradigm, namely the reformulation of
the problem, which decouples the dynamics in the bulk and on the boundary. With
this strategy it is sufficient to apply standard finite element schemes in the bulk and
multiscale methods only on the surface and thus on a lower-dimensional domain.

3.2. Mixed finite elements. As an alternative, we now consider discretizations
of the PDAE system {2.5). This leads to so-called mizred methods [5, Chap. II1.4] with
two different discretization schemes for u and p. We consider conforming finite element
discretizations based on finite-dimensional spaces

of dimension ny, ny, and n,, respectively. The spaces Vi and My will be discrete
spaces consisting of piecewise polynomials based on a triangulation 7n of §2. For
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simplicity we assume that 7g, is a uniform mesh with mesh size Hg. On the other hand,
Qy is defined with respect to a mesh 7r of I', which may be chosen independently
of Tq. '

In any case, the Galerkin discretization of (2.5) reads as follows: Find ug: [0,T] —
R™«, pgr: [0,T] = R", and Ay: [0,T] = R™ such that

Mq Uy K UH Ty  _ ibn
A K N RN e i
fr] o
DH
for almost all times ¢t € [0,7]. Here, Mq € R™"™ and Mr € R"»™ denote the
mass matrices corresponding to an appropriate basis of Vi and Qp, respectively.
The stiffness matrices K € R+ and A, € R" ™ are the discrete versions of the
differential operators X and .A.. Finally, B € R™"»"«1%» is the discrete analogue of
the constraint operator B, and bq, br correspond to the right-hand sides f and g,
respectively.
Although the discretization spaces Vi, @, and My can be chosen independently

at first sight, they need to be suitable in the sense of an inf-sup condition. In the
following, we need to guarantee that the discrete spaces satisfy

(32) inf sup I(B(UH‘; QH)v I‘H)I >8>0,
BHEMy vu€VH,qu€Qn "(UH’ QH)"V.XQ"i‘H“M

with a constant 8, independent of the mesh sizes. Here, the corresponding norm is
defined through

1/2
I am)livxe = (leal? + leal®) .

Note that such a condition automatically implies the full rank property of the (dis-
crete) constraint matrix B. _ _

The remaining task is to find suitable spaces Vy, Qn, and My, which have good
approximation properties and are stable in the sense of (3.2). For this, we collect a
number of standard finite element spaces, which will be used in the following. First,
we introduce the standard piecewise polynomial spaces for triangulations 7o into
triangles (tetrahedra for d = 3), namely,

Pi(Ta) := {v € V | v|r is a polynomial of degree < k for all T € Ta}

for k > 1. Note that these spaces are of conforming type by definition and globally
continuous. Similarly, we may define piecewise polynomial spaces for partitions into
quadrilaterals (cubes for d = 3); see [7, Chap. 3.5]. For the partition of the boundary,
we define accordingly

Pi(Tr) == {v € Q| v|7 is & polynomial of degree < & for all T" € Tr}

for k > 1. These function spaces are again globally continuous. On the boundary we
also consider the discontinuous spaces

PA(Tr) == {v € L*(T) | vlr is a polynomial of degree < £ for all T e Tr}

for £ > 0. Note that this defines a conforming subspace for M. Finally, we introduce
the space of edge-/face-bubbles by

&(Ta) = {v-¢E | v|r is a polynomial of degree < £ for all T € Tq,
¥g is an edge-/face-bubble for E C r}cv.
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Here, an edge-bubble ¥ g (face-bubble for d = 3) equals the scaled product of the two
(three for d = 3) corresponding nodal basis functions [47, Chap. 1].

3.3. Inf-sup stable discretizations. In this subsection, we present two classes
of discretization schemes which are stable in the sense of the inf-sup condition (3.2).
They have in common that their stability is independent of the choice of Q.

PROPOSITION 3.1. The conforming finite element spaces
Vi =Pu(Ta) ®&(Ta) SV, QuCQ, My =P(Talr) SM

satisfy a discrete inf-sup condition (3.2) for all parameters k 2 1, £ > 0 and arbi-
trary Q.
Proof. For an arbitrary pug € My € L?(T") we set gz = 0 and note that

su (B(va,qu), k)| > (valr, pr)r
p = 8 .
vneVinaneQn (v aa)llvxelleallm = vpevy lvallm@lleellg-1a

For this term, the inf-sup stability shown in {36, Thm. 2.3.7] can be applied. More
details can be found in [49, Chap. 4.1]. 1|
Note that the choice of Qf does not influence the stability of the scheme, which
allows us to implement special multiscale finite element spaces at this point. This will
be discussed in section 3.4 below.
Remark 3.2. The result of Proposition 3.1 also holds true on quadrilateral meshes

if the discrete space Py, (7q) is replaced by the corresponding space Qk (Ta) of piecewise
polynomials with partial degree k.

Remark 3.3. In the schemes considered in Proposition 3.1 the Lagrange multipli-
ers are defined on the mesh given by 7q|r, and the stabilization occurs with the help
of bubble functions. We emphasize that a stabilization using p is not as straightfor-
ward, since the norms in the inf-sup condition (3.2) do not match. This is due to the
fact that we do not include ujr € H}(T') in the continuous model (2.5).

The following result shows that stable schemes a.lso exist without the need for
bubble functions.

PROPOSITION 3.4. The conforming finite element spaces
Ve =P1(Ta) SV, Qu<CQ My:=Pi(Talr)CM

satcsfy a discrete inf-sup condition (3.2) for arbitrary Qg.

Proof, For an arbitrary uz € My with ”MH”H—!lz(r) =1, let i € HY/2(T) be its
Riesz representative with ||illgi/2qry = 1. Let fig € P1(Talr) be the L?-projection
of ji. We set gz = 0 and vy = —EYfir with the extension operator Ef; from [27,
Lem. 3.1]. Note that this is not the trivial extension by zero on the interior nodes.
We then obtain

sup {B(va,gu), pr)  (=valr, pa)r
vi€Vian€Qy (v a)llvxe lvellv

_ (ﬁH:ﬂH)[‘ — (ﬁ,ﬂ[{)r _ ”ﬁ”?{l/2(r‘)
lvally loaily lvally
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where we used the property of the L2-projection. According to {27, Lem. 3.1], we
have |lvgllgiq) S |1Ea] g1/ary. Recall that the L2-projection is stable in H(T'} and
thus also in H'Y/2(F') (see, e.g., [6]) so that |[iu] gi/2ry S Bl zr72¢ry. All in all, we
deduce '

B(vy,qu), -
sup ( ( H QH) ﬂH) 2 "u‘”HI/"'(l‘) =1. o

vHEVH aHEQH ”(UHI QH)IIVX_Q

Remark 3.5. The above result can be generalized to Vg = Pr(Tn) and My =
Pe(Talr) for 0 < £ < k provided that (i) an extension operator Ey : Px(Ta) —
Pr(Talr) in the spirit of [27, Lem. 3.1] exists, and (ii) the L?-projection onto Px(7a|r)
is stable in H/2([),

Remark 3.6. Also, the result of Proposition 3.4 can be extended to quadrilateral
meshes, i.e., we may replace P1{Ta) and P;(7alr) by the corresponding spaces of
piecewise polynomials of partial degree 1. For d = 2 this only requires the bisection
of all quadrilaterals into triangles. Then, we can follow the proof of Proposition 3.4
using a V-continuous mapping from the corresponding P; space to Q1{7Tn), i.e., to
the space of the original partition. This conversion is more involved for d = 3, where
both the bulk and surface partitions need a transformation with particular continuity
assumptions. '

Similar to Proposition 3.1, the inf-sup stability in Proposition 3.4 is independent
of the choice of @y, which allows us to insert an LOD space at this point. Moreover,
we emphasize that, in the case of a one-dimensional boundary, the “over-regular”
discretization of M by the H!-conforming space P;(7r) does not lead to more degrees
of freedom than the choice Pg(7r).

3.4. LOD function spaces. Let Tr and 7r,z be two uniform meshes on I'
with mesh sizes hr and Hr, respectively. We assume Ar to be fine in the sense that it
resolves the oscillations and discontinuities of a., whereas Tr x is assumed to be coarse
in the sense that it is the restriction of 7g to the boundary and in general does not
resolve a.. Moreover, we assume that 7t is a refinement of 71 z. To obtain faithful
approximations with the standard finite element method, we need to utilize spaces -
Pi(Tr,1), which lead to a large number of degrees of freedom. Instead, we introduce
the LOD, which modifies the space P1(7r,z) such that it yields satisfactory approx-
imations. For the construction, we consider the stable and surjective Clément-type
(quasi-)interpolation operator I : Pi{7r.r) = P1(7r,x) introduced in [9], namely,

Igv:i= Z (Us¢z)l‘

—= ..
zENr,H (13¢z)1‘

Here, Nr,u denotes the set of vertices of Tr,zr, and ¢, € P1(Tr,x) is the standard
nodal basis function (“hat function”) associated with the vertex z. We denote by Wy
the kernel of this interpolation operator. Moreover, we note the following properties
of Iy that we will use in the error analysis: For any T’ € Tr,ir and ¢ € P1(Tr,») the
operator Iy satisfies the estimate

(3.3) HiYlg = Ingll 2y + IVIngl 2y S IVallL2 @y

where U(T') denotes all neighboring elements of T, i.e., U(T) = {T" € Tr,x |T'NT #
0}. Denoting by Il the global L%(I')-projection onto P1(7r,x), we see it holds that
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Iy =1y oHH and W, = ker(Ig) = ker(Ilg|p, (7)) C 'P1(7'1'* r); see [40]. Hence,
P1(Trp) = Wi & P1(7r, i) with

(34)  (Pu(Tom), Wa)r = O;

see [40]. '

In the next step, we orthogonalize this splitting with respect to the operator A..
For this, recall the definition of the elliptic bilinear form @ introduced in section 2.2.
We define the corrector Green’s operator G: Py (Tr,n) = W, via

(3.5) a(Gaw,w) =gy, w) forall we W,

Note that (3.5) is well-posed by the Lax-Milgram theorem. The corrector Green'’s
operator can be decomposed into G = ZTeTp " Gr, where Gr solves

(3.6) Gram,w) =dr(gm,w) forall we Wy,

with ar being the restriction of 4 to an element T C T, i.e., ar(qn, w) = f;a:Vrgn -
Vrw+aggwdz. Since the computation of G requires the solutlon of global fine-scale
problems in general, we need to introduce localized approximations Gr,m of Gr and
Gm of G, respectively. Let the mth layer patch U,,(T") be defined inductively as

Un(T) =U(Un-1(T)), Up(T) =

The localized or truncated element corrector Gy, : Pi(Tr,z) = Wi N Ho (Un(T)) is
now defined via

(3.7) ay, (1) (OT,mem, w) =dr(gm,w)  forall we Wi N HY{Un(T)),

and we set G, == ZTeTn,r Gr,m.

Remark 3.7. We define the correctors Gr and Gr,, with respect to the modified
bilinear form 4@, since this simplifies the analysis in section 4. However, a definition
via a is equally possible and leads to the same convergence results.

The error between G and G,,, decays exponentially with m in the H*([')-norm as
specified in the next lemma. For a proof we refer the reader to, e.g., [39].

' LEMMA 3.8. There exists a constant 0 < v < 1, which is independent of hr, Hr, ‘
and m, such that for any qg € Qg it holds that

(3.8) (G - Gm)arllo S mD294™ gyl 0.

Remark 3.9. In this article we use the Clément-type operator for the LOD con-
struction because of its favorable connection to the L2-projection. This will be ex-
ploited in the analysis of section 4. There are, however, many other choices of (quasi-)
interpolation operators possible, and we refer the reader to [16] for a review. In par-
ticular, for d = 2, and thus a one-dimensional boundary T", the nodal interpolation
operator is a valid choice. It immediately leads to completely localized corrector
problems, i.e., Gr in (3.6) is automatically zero outside the element T so that the
localization step (3.7) is not necessary with this choice of interpolation operator.

Remark 3.10. If we compute G using a and the nodal interpolation operator for a
one-dimensional boundary, we can explicitly characterize Ggg for gy € Q. This can
be used to show that a((id —G)px, qn) = [q(@e)harm VPH - Vgu dz, where (@¢)narm is
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an elementwise constant coefficient consisting of the harmonic average of a, on the
element; see [25]. Hence, the LOD stiffness matrix can be computed as a standard
finite element stiffness matrix with a modified coefficient. This alternative character-
ization will be applied in the numerical experiments in section 5.1. Moreover, in the
case of a periodic ag, (a¢)narm is exactly the effective coefficient from homogenization
theory [20, 44]. '

4. Multiscale error analysis. For the analysis of the discretization error, we
consider the PDAE in terms of the bilinear forms £, a, and b as introduced in (2.6). In
the following error analysis we focus on the multiscale phenomena on the boundary
and fix the discrete spaces Vy and Mjy. Further, we only discuss the error which
occurs due to the spatial discretization, i.e., we compare the exact solution with the
semidiscrete solution. We consider the inf-sup stable pairing introduced in Proposi-
tion 3.4, i.e., ' '

Vi =Py(Ta) SV,  Mp:=Py(Talr) S M,

with corresponding mesh size H. In the following, we discuss vatious choices for @x
and start with the trivial case, in which 7 coincides with 7qir and Qg = My.

Recall that we write (-, )g and (+,- )r for the respective L?-inner products on
and I'. Accordingly, we denote the corresponding L2-norms by || - |l and || - {lr.

4.1. Special case Qg = My = Vy|p. Assume Qy = P1(7r) with 7r = Ta|r,
i.e., the discrete space for p equals My, which itself equals Vy restricted to the
boundary. We show that in this special case we regain the discretization proposed
in [30] and thus may pick up the corresponding convergence results. The semidiscrete
system reads

(4'18') (i"H:UH)Q + (ﬁH: QH)F + ﬁ(uH"UH) + a(le QH) + b(QH - 'UHIP1 AH)
= (f’vH)ﬂ + (g’QH)I‘a
(4.1b)  b(pag —unlr,pa) =0

for all test functions vy € Vi, g € Qp, and uy € My. A key property in this special
case is that py = ug|r along the boundary, i.e., the original coupling condition is
satisfied pointwise also for the semidiscrete solution. Recall that this is automatically
satisfied in the formulation of [30], since there is only a single discrete variable.

LEMMA 4.1. Given meshes Tr = Talr and discrete spaces Vi = Pi(Ta), Qu =
My = P1(Talr), we see that the semidiscrete solution satisfies pg = uglr for all
times.

Proof. Due to the definition of the discrete spaces, we have py — ug|r € Mpy.
Thus, it depicts a valid test function in (4.1b), leading t6

o — wrlr)|E = b(pyr — urlr, prr — unlr) =0. 0

Remark 4.2. The previous result remains true if 7n|r is a refinement of 7r, since
this still implies pyy = uy|r for the semidiscrete solution.

Lemma 4.1 indicates that we may eliminate the variable py from the system,
since it contains only redundant information. Further, we can eliminate the Lagrange
multiplier by considering test functions of the form vy € Vi, gg = vu|r € Qx, since
this turns (4.1a) into

(g, ve)a + (tx|r, vaie)r + K(uw, vy) + a(ug|e, valr) = (f,va)e + (g, valr)r.
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Note that this is nothing else than the Galerkin discretization given in (3.1). Thus, all
error estimates derived in [30] hold for the considered case. For I-I 2.regular solutions
this leads to the following result.

THEOREM 4.3 (cf. [30, Thm. 3.2]). Consider a polyhedral domain Q with so-
lution v € HY0,T; H%(R)) satisfying p = ulr € H'(0,T; H*(Talr)), i.e., ulr is
piecewise H? on the boundary. Then, there exists a constant C(u) > 0 such that

() = un(®)lla + Ip(t) — pu(t)iir < C(u) H.

Note, however, that the constant C(u) depends on the bilinear forms a and . In
general, this includes a dependence on ¢ with a negative power.

Finally, we would like to mention the convergence result on smooth domains,
- namely, :

() — un(t)la + lIp(t) — pu ()l < C(v) H?

for u € H'(0,T; H()) with u|r € HY(0,T; H2(T)); see [30, Thm. 3.6]. Again, this
result is-based on a Ritz projection, which involves a dependence on the inverse of ¢.
This then leads to a preasymptotic effect for coarse mesh sizes; cf. the numerical
experiments in section 5. ,

Recall that we do not consider smooth domains in this paper but rather Lipschitz
domains. Further, we do not assume the solution to be H2-regular, and we aim to
find approximation results, which do not involve g-dependencies.

4.2, LOD on the boundary. We now turn to the case of interest, in which the
discretization on the boundary is obtained by the LOD as described in section 3.4.
We introduce the space Q@ = P1(7r,x) and the LOD space

Qr = (id —~Gm) Q.

Note that Q implicitly depends on the so-called oversampling parameter m. Further-
more, we have the relation Qi = InQy = HyQy. More precisely, for any §y € Qn,
there exists a unique gy € Qp such that gy = (id ~G,)gs. Closely inspecting the
definitions of G, Iy, and Iy indeed reveals that ¢z = Iy §y. As already mentioned
in section 3.4, the coarse mesh on the boundary is given as the restriction of the bulk
mesh, i.e., 7r.7 = Talr-

In the Petrov-Galerkin LOD (PG-LOD) approach, we use the ansatz spaces V,
Q H, and My as above, but the test spaces Vi, Qg, and My, i.e., the test functions,
are not modified in comparison to a classical approach. This leads to the following
variational formulation: Find ug: [0,7] = Vi, m:[0,7] = Qu, and Ag: [0 T] -
My such that

(4.2a) (tryve)a + (Pr, qu)r + K(um, vy) + a(Pu, qu) + blgy — valr, Axr)
= (fva)ﬂ + (ngH)P:
(4.2b) b(Uupr — uple,pg) =0

for all test functions vy € Vi, g € Qu, and py € My. Note that the PG-LOD
approach (4.2) is well-posed because of dimQy = dimQy. As in Lemma 4.1, we
deduce ITypy = upy|r for all times, which allows us to eliminate fy; from the system
and, moreover, to remove the coupling term by considering only test functions gp =



HETEROGENEOUS BULK-SURFACE COUPLING 387

vg|r. This then leads to the problem of finding uzr: {0,T] ~ Vi and pyr: [0,T] — Qx
such that

(e, var)a + ((id —Gm)pH,ler)r + R(um, vir) + a((id =Gm)pm, ve|r)
= (f,var)a + (9, valr)r

Note that this is an LOD-variation of the Galerkin discretization (3.1). In the follow-
ing, however, we proceed with the analysis of the full Petrov-Galerkin system (4.2).

4.3. Coupled Ritz projection. Recall that a: Q x @ — R is defined by

E(pa q) = a(pi Q) + (ap, q)F!

where a > 0 is the lower bound on the diffusion coefficient a. such that a is elliptic
on Q with constant . With this, we define a Ritz projection of Petrov-Galerkin
type for given u € V and p € Q. More precisely, we seek u% = RY(u,p) € VH,
PR = R% (u,p) € Qn, and AR := R} (u,p) € My such that

(4'33‘) R(”H!UH) +a(pH’ QH) + b(QH - UH'I["A ) R(UJ‘UH) +E(p! QH)’

(4.3b) . b(HHPH —uFlr, pp) =

for all test functions vy € Vi, qg € Qu, and py € Mpy. Before discussing the
approximation property of this projection, we need to guarantee the unique solvability
of (4.3).

LEMMA 4.4. Givenu € V, p € Q, and m sufficiently lame in the sense that Y™ 5 <
a/Cj;, system (4.3) is well-posed, i.e., there exist umque uf e VH, PR € QH, and
)\E € My.

Proof. As a first step we rewrite (4.3) as a standard saddle point problem with
identical trial and test spaces. For this, we introduce the bilinear forms

AH((‘U,’F), (‘U, Q')) = -ﬁ(uv ’U) +E(p’ HHQ)» BH((u’p)! ou') = b(HHp - ulr' ”’)’

The Ritz projection can now be equivalently characterized by

AH((U'H’pH) (var,@u)) + Bu((ve, Gu ), AE) = AH((U p), (v, Gr)),
I_?H((UH,PH) VHE) =

for all vy € Vi, qu € é}{, and py € Mpy. Note that this employs the one-to-one
relationship of the spaces Qy and Qp. '

The inf-sup-condition of By follows directly from Proposition 3.4. It remains to
show the coercivity of Az on ker By. For this, we consider (v, i) € Vg X Qu with
Myda = vi|r. Employing §y = (id —Gm)IxGr, we deduce

Au((ve,du), (ve,dn))
= R(vy,vy) + a(Ge, Uudy)
= A(vy, vx) +a((id —Gm) g, Nudn)
= vy, ver) + 6((id —G) M xdrr, Mpde) + 8((G — Om)idn, Mudn)-
The definitions of G and W}, imply

a((id =)y dr, Madr) = 8((id —G) I da, (id ~G ) udn)-
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Hence, due to the ellipticity of 4 and (3.8), we obtain that
AH((”H:QH) (Uﬂaq}[)) -
= R(ve,va) + 8((id —=G)1xdxn, (id —G)udw) + (G - gm)HHQH, g drr)
> £ ||[Von g + e |l(id —-G)udulp — Cs m @D 2y N gnl.
Note that we have the following norm equivalences:
INxdulle = IMa(id -G rdnlle < ((d -G)1xdrlle
and
lanlie = lI(ild —Gm)udnlle < Madulle-
With these estimates, Iy = vy|r, and 7™ S a/C;, we deduce that

#((ve, Gu), (v, Gur)) 2 & | Vor (g +all(id-G)0udu (% — CamEP~ V2™ gxdy|5
2 (vr, Drdm) o
Z lwm, qgu)lipxo- o

We now need to analyze the approximation properties of the Ritz projection.

PROPOSITION 4.5. Givenu € V and p € Q with u|r = p, we see that the coupled
Ritz projection defined in (4.3) satisfies for sufficiently large m (i.e., Y™ S af/Cj3) the
estimate

le—vEly+lp—7Flo S _int lu—valy+ inf |lp—dulle.

GHEQH

Proof. The idea of the proof is to use the reformulation of (4.3) as in the proof of
Lemma 4.4 and to apply the techniques presented in [8, Chap. I1.2]. By the definition
of the Ritz projection, we have for (vg,{dy) € ker By that

An((u — ul,p— PF), (var,dn)) = Br((vm, @r), M) = 0.

With the coercivity of Ay, which was shown in the proof of Lemma 4.4, we obtain
for arbitrary wy € Vy, i € Qu with wy|r = [Iyfy the estimate

An((wy — uk, 7 — %), (vn,Gr))

(wr — v, 7o — BF)llvee S sup =
, x {vi,Gu)€ker By ”(UH: QH)"VXQ
— sup AH((wH “"ua'FH "'p)v (vﬂa‘jH))
(vir,du)Eker By | (ver, @)llvxe

< (v —wu,p —7u)llvxe-
Thus, by the triangle inequality, it holds that

I~ uFp—F)lvxe S inf  l(u—wn,p—Fm)llvxe-
{(wg Fu)€ker By

Following [8, Prop. I1.2.5], we conclude with the inf-sup property of By that

~

i (v — wa,p — Fu)llvie S inf (2 — wrr, p — 71)llvx o,
(wh,7H)Eker By wy €V fn€Qn .

which provides the stated decoupled estimate.
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For the two previous results we had to assume that the localization parameter m
is sufficiently large compared to the contrast of the diffusion coefficient a.. To ensure
the full convergence order later on, we will also need to assume that m is sufficiently
large compared to the (coarse) mesh size Hr. We summarize this in the following
assumption.

ASSUMPTION 4.6 (localization parameter). We assume that m is sufficiently
large in the sense that v™ < af/Cyi and m Z |log H|.

In the following, we show a priori estimates for the coupled Ritz projections based
on the quasi-optimality of Proposition 4.5. For a precise formulation, we need some
further notation. Recall that the LOD on the boundary in section 3.4 utilized a fine-
scale mesh Tr, with associated finite element space P1(7r,r) for the definition of the
correctors. Further assume that 7t is the restriction of a volume mesh 7n p, and
denote by (un,ps) the finite element solution corresponding to (2.6) on Pi(7an) X
P1(Trr). This solution is never computed in practice and only serves as a reference
solution. We assume £ to be sufficiently small so that pp is a good approximation
of p, i.e., the error ||p — ps||o is sufficiently small. Note that the error of the fine-
scale dLscretlzatlon can be estimated with the help of Theorem 4.3. Furthermore, we
introduce the discrete operator At P1(Trn) = Pi(Trp) via

(4.4) (‘Zs.hph’Q’h)l" =a(pr,qn)  forall pa,qn € P1(Tr,n)

Thus, the operator .Zl;,h is the L"’-repres_entative of 4, restricted to the fine-scale finite
element space.

COROLLARY 4.7. Consideru € H*(Q)CV,1<s<2, andpe Quithulr =p
Further, let m satisfy Assumption 4.6. Then, we have that

lu—uFlly+llp—Fle S H|ulne() +H e npnllr +lp - prllo-

Proof. Due to Proposition 4.5, we need only estimate the best approximation
errors infy,evy [[u ~ velly and inf 5 |Ip — gullo. The error for u follows by
standard interpolation estimates. For the error in p, we use the triangle inequality
and obtain

_inf |lp~-gullo <lip—pallo+ inf "Ph —dulle-

GuEQR dHEQH
Choosing Gy = (id =G )T ;rps, We see that the last term is estimated in a standard
LOD manner; see, e.g., [38, 13]. . a

Neglecting the fine-scale discretization error (i.e., choosing h <« ¢€), we see that
Corollary 4.7 can be summarized as

(4.5) lu—uflv +llp—-#flle S H™'+H.

4.4, L*-estimates. To show corresponding L?-estimates for the Ritz projec-
tions, we consider the following auxiliary problem: Seek w € V, r € Q, and A* € M
such that

(4'68') ‘ﬁ(w’ 'U) +E(T, Q) + b(q - UII‘: /\z) = (u - u%g U)Q + (P - HHﬁE’Q)Fa
(4.6b) b(r —w|r,u)=0 ‘

forallv € V, g € Q, and sz € M. Note that this is similar to the stationary part
of (2.6), with a replaced by @ and adjusted source terms on the right-hand side. Hence,
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we can expect the same spatial regularity for (w,r) to hold, since u — uF € L?(2)
and p — Hyp% € L*(T). Furthermore, we introduce :

Ir - rxlle
wcba(r = inf -
(nQu) = W o u Rl n e —FRIr

and
weba(p, @) := inf |lp—qy|o.
aHEQH

These worst case best-approzimation (wcba) errors of Qg for r and p with respect
to the energy norm are bounded independently of ¢ without any further regularity
assumptions and are of order H°~! for sufficiently regular r and p in H°(T) for
1 £ ¢ £ 2. We emphasize, however, that exploiting higher regularity to estimate
wcba errors may introduce an e-dependency. For readability, we will omit the fine-
scale discretization error in the following proposition.-

PROPOSITION 4.8. Letu € H*(Q) C V,1 < s <2, and p € Q be given with
ulr = p. Further assume that the unique solution (w,r) € V x Q to (4.6) satisfies
w € H*(QY). Then along with Assumption 4.6 we have that
(4.7)

Nv—uflla +llp = OadFle S (H*" + weba(r, Qr) + H) ll(u — uF,p— 5F)lvxe

+ H weba(p, Q) + H2 (pllo + | Aenpnlir)-

Before proving Proposition 4.8, we discuss the obtainable rates for the Ritz pro-
jection in L2. - ‘

Remark 4.9. As mentioned before, the wcba errors are of order H°~! if r and p
are in H?(T'), respectively. Combining Proposition 4.8 and Corollary 4.7, we can thus
summarize that

(4.8) lu—uBlla + lp — Hepflr < H2G-D 4 geto-2 L g° + H° + H?,

For optimal regularity o = s = 2, we obtain, in agreement with [30], the expected
quadratic rate for the Ritz error, Note that in order to have this optimal regularity,
{2 needs to be convex. In the worst case o = 1 (see section 2.3), estimate (4.8) results
in H"! as the dominant term, which is comparable to the energy norm estimate in
Corollary 4.7. Note that this rate seems rather pessimistic but is explained by the low
regularity of p for general coefficients a.. Finally, we observe that if s = o +1/2, we
obtain the rate H2(*~5/4) from (4.8), which is better than H*~1 if and only if s > 3/2.

Proof of Proposition 4.8. Inserting v = u — u}f and ¢ = p — xR into (4.6) and
observing that q = v|r, we obtain

lu— wF13 + llp ~ DapglIE
= R(u — uff,w) +d(p — Ugpg,r)
= A(u— uﬁ’ w) +E(p - ﬁ}z{ar) + H(ﬁg - Hﬂ'ﬁgv r)
= A(u— uf, v —wy) +&(p — 5F,r — ruy) + ABF — Tupf,r)

for any wy € Vy and ry € Qg with wy|r = ry. In the last step, we have used the
definition of G and the Galerkin-type orthogonality

f(u—uff,wr) +a(p— PR, 7H) =0,
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which follows from the definition of the coupled Ritz projection in (4. 3) Using once
more the inf-sup stability of b and [8, Prop. 11.2.5], we obtain

'ﬁ(u - uH:w - wH) + a(p'—pHar - TH)
<lu—ul,p—pg ( inf |lw—-w inf |jlr—r )
S =i, p—Prlllvxe { dof, | allv+ inf lir—ralo
Further, the application of standard interpolation estimates yields

inf |lw—w + inf |jr—r
oonf I v . of I Hlle

S H Ywlgsey + _inf |Ir —rulle
rHEQH.
S (H*"! + weba(r, Q) (|lu — uFlla + llp — BEIr)-
Recalling 5% = (id -G ) IIgpF, we obtain
(% — upf,r)
= _a(gmHHpHvr)
= 4(GmIlulp—p5),7) +8((G - gm)HHp, r) — &(GIlgp,T)
= A(GmIlu(p — p5)y v — (id —=G)Igr) + G({G ~ Gm)Iyp, T — (id —G)Mgr)
—a(Glgp,r — (id —G)yr) '
< (e - % lle + mE~D29™Ipl g + |Gl @) Ir — (id ~G)arllo,

where we used the stability of Gy, and Iy in the last step. With standard LOD
estimates [38, 13} we obtain

Ir = (id ~G)grlle S lIr = ralie + H | Aearalle-
Slir—rallo + H (Jlu — uflla + llp - PFIr)-
It remains to bound GIlgp from above. We have that
~Gllgp = (id I x)p+ (id —x)((id —G)Iap ~ p),
where the first term can be bounded by wcba(p, Q). For the second term it follows
again by standard LOD estimates that
1(id ~TIr)((id ~6)TTrp — Pl S lip — palle + H 1 Ae,hpallr-

Combining all foregoing estimates finishes the proof. . 0

Note that a result similar to Proposxtlon 4.8 can also be established for ||p— pH[Ir
by writing p—p% = p— HHpH +I1 PR ~ P and using the properties of II. A more
careful analysis of |p — p%|jr is omitted to keep the article at a reasonable length.

Remark 4.10. If we write the Ritz problem (4.3) in a Galerkin form, i.e.,
A(uf, ve) + &(BF, @u) + b(Mudy — valr, AR) = K(u, var) +8(p, Ga),
b(Iapf — ufilr, pa) =0,

with test functions vy € Vg, 4y € @H, pizr € My, then the right-hand side p—IImﬁ§
in the auxiliary problem (4.6) is modified to p — $%. We then deduce

e — uFlE + llp — PEIF

S M —uf,p—PRlvxe 1 e, M = wmyr — u)llvxe + 1buBE — 55 A)-
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At this point, the key is the regularity and characterization of A*. A priori, we only
have A* € H~Y/2(T"), but for sufficiently regular w one can deduce that A\* € L2(T).
This would allow us to estimate ITypR — p% in L?(T'), which would lead to an order
H for this term and, on the whole, to

llu — uFlle + lp — PRlr S B>~V 4+ A

This seems to be better than the rate H*~! obtained in the worst case of Propo-
sition 4.8. 'We emphasize, however, that this reasoning might only be valid if we
have s = 2, when we might expect ¢ > 1 as well. Recall that in order to have s = 2,
the domain © needs to be convex.

With the Ritz projection in hand, we are now able to estimate the error caused
by the presented multiscale finite element scheme.

4.5. Error estimate. Let (u,p, A) denote the exact solution of (2.6), and let
(v, Pr, Axr) denote the PG-LOD solution defined through'(4.2). As is usual for the
numerical analysis of parabolic systems, we decompose the errors in u and p with
the help of the previously defined Ritz projection, which is applied pointwise in time.
Thus, we consider

u—ug = (u—ul) + @l —uy) = p, +0,,
P—Pu = (p— P5) + (P — Pr) =: pp + bp.
The main result of this paper is the following convergence result.

THEOREM 4.11. Consider a Lipschitz domain Q and the exact solution of (2.6)
satisfying u € H(0,T; H*(Q)) and p € H*(0,T; H\(I")), 1 £ s < 2. Further assume
that m satisfies Assumption 4.6. Let the initial values be chosen such that {lug(0) — -
u(0)lq = O(H) and ||fr(0) — 5F(0)|Ir = O(H). Then, we have the a priori error
estimate _ .

lu(t) — ua(®)lla + [lp() — Dupa®)lr S Clu,p) H*.

Note that we have only assumed the lowest possible regularity on p. We emphasize
that in view of Remark 4.9, higher convergence rates, such as H*~1) 4 gs+9=2 can
be obtained for p € H{0,T; H°(')) with 1 <o < 2.

Proof. The Ritz errors p, and p, were already estimated in Corollary 4.7 and
Proposition 4.8. Applying these estimates also for the first time derivatives, we get

o~ Taifle + lople S o=l + H | Aepnllr,
I8plle + eulla S H*ilns(ay + H | Aennllr.
Thus, it remains to estimate 6, and 6,. Using (2.6), (4.2), and the definition of
the coupled Ritz projection (4.3), we note that for all test functions vy € Vg and
gy € Qu, the pair (6,,8,) satisfies
(6urv) + (Bp, ar)r + £(Bu, var) + a(0p, qrr)
= (4F,vm)a + (FF, qu)r + K, va) + o(BF, ar) + b(aa — varlr, Aar)
—(fyva)a — (g, qu)r
= (4 — pu, Vi)a + (B — Pprqu)r + Ay, vir) — b(valr — gu, AR) + a(p,q1)
+ (app, au)r + blgw — velr, Aw) — (fivada — (9, qu)r
= —{(pu,vr)a — (bp, qu)r — b(var|r — qi, AFF) + (@Pp, au)r + blgr — valr, A — A).
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Since 6, € Qp is not allowed as a test function, the natural choice along with vy = 6,
is g7 = M8y € Q. Recall the L3(T')-orthogonality of Qi and W), from (3.4) such
that one deduces

1d . .
53"11119;:"?‘ = (L 8p, I bp)r = (65, Hbp)r-
With this, we get
1d 1d
535 10ulR + 5 Il + K V8IE + o [ Vebl1E

- S (éua gu)ﬂ + (ép, HHBp)I‘ + ﬁ(am ou) + a(epr ep)
= (O, 0u)a + (B, L Bp)r + RO, 0u) + 0(6p, 116} + a(6y, 6p — T116p).

By (4.3b) and (4.2b) we conclude that the trace of 6, equals HHG,,'. Thus, the
terms b(gy — vilr, Ay — A) and b(vg|r — g, A%) vanish, and we conclude that

1d 1d
_2'd_t"0"”‘2’ + 5&"“!{%”% + & || VI3 + a[IVrbpli2

< —(pusOu)a — (p, L1 bp)r + (0pp, ubp)r + a(6p, 0p — T 6p)-

For the last term on the right-hand side, we deduce, due to the definition of G, the
exponential decay (3.8), and the stability and approximation properties of Ilj, that

a(fp, (id ~Ix)8p) = a(fp, (id —I1x)6p) — (0bp, (id —ILx)6p)r
= A((id —CGm )by, (id —1z)6p) — (abp, (id =T g)0p)r
= (G — Gm )10y, (id —Tx)0p) — (abp, (id ~ILx)6p)r
< (mU=D/29™ 4 oH) || Vr6plE-
Hence, the term a(fp, (id —I1z)68,) can be absorbed on the left-hand side for suffi-

ciently large m and H < 1. Thus, we obtain with [|(v,q)|]> = [|v|iZ + llg|i? the
estimate :
d
[ FESTEYTON . #2811
1d
= 2 10w Tub,)|?

S _(f’u»eu)ﬂ - (f’prnﬂop)[‘ + (Ot Pps HHBp)I‘
< lIpullalibulla + i6plicTabplic + c llppllc byl
< (Ilpulle + lpplie + allpplir) 18y, Tabp)l-

Thus, dividing by ||(0u, 1x#8p)]|, integrating over time, and taking squares results in
16 ()& + ITe8p (LI
< 16u(0)§ + 1Tz, (0)IF + fo t 16u(PE + 185(DIE + @llop(7)IIF dr
-5 116.(0)lIf2 + I 65(0) 17 |
+ fo -1 (1l sy + () Rre ) + H2() A pp (PR + [ A pn(TIE) dr-
Due to the assumption on the initial values, we have ||6.(0)||3 = O(H?) = ||[TIx65(0) II2.

Further, since u —uy = py + 0, and p—Ilypy = p— Oy p% + g6y, the combination
of the estimates for the Ritz projection and for (8,,IIz0,) finishes the proof. o
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The numerical verification that the obtained convergence rates are indeed inde-
pendent of ¢ is the subject of the following section.

5. Numerical examples. This final section is devoted to the numerical ver-
ification of the obtained convergence results. In particular, we will investigate the
following questions:

e conyergence behavior for smooth and discontinuous coefficients a.,
e convergence in the presence of mixed boundary conditions,
¢ influence of the localization parameter m,
applicability of the nodal interpolation operator, and
benefits of mesh refinements on the boundary only.
All examples consider €2 = (0,1)?, a time horizon T" = 0.1, and the system equations

¢ o

(5.1a) a-fAu=F ingQ,
(5.1b) % —Vr-(eVru)+d,u=g9  on Iy,
(5.1¢) u=0 on 892\ Tgyn-

The values of a., the right-hand sides, the initial data, and the boundary parts are
specified in the following examples. Since we focus on the spatial discretization error,
we consider an implicit Euler discretization in time. Moreover, all approximations are
computed on the same uniform temporal mesh as the respective reference solution,
namely with time step size 7 = 0.01. Besides the LOD spaces for the approximation
of p, we consider uniform partitions of 2 into quadrilaterals. This means that we
approximate u by finite element functions of partial degree 1; cf. Remark 3.6.
The code is available online at hitps://zenodo.org/record /4317015.

5.1. Smooth and discontinuous coefficients. As in the theoretical part of
the paper, here we consider dynamic boundary conditions on the entire boundary. In
terms of (5.1) this means I'yyn, = I’ = 8§. As right-hand sides we consider f(t) = 1,
g(t) =t, and the initial condition is defined by uo(z, y) = sin{rz)-cos(§ry+1). In the
PDAE formulation, where we can choose pp independently, we set pp{(z,y) = uo(z,y)

in a consistent manner.
For the diffusion coefficient a, we compare the results for smooth but highly

oscillatory and general discontinuous coefficients. For this, we define

1

sm —
o (@) 2 + cos(2rze—1)

and a° by the piecewise constant (and thus discontinuous) function which takes
random values in the range [Tlﬁ, 1] on a partition of mesh size e. We emphasize
that ad° ¢ WLoo(T), leading to a solution with p € H(T') only.

In this first example we apply the nodal interpolation operator such that the
correctors are automatically localized, and there is no localization parameter m to
be concerned about; cf. Remark 3.9. Apart from that, we consider the situation
as described in section 3.4, where the meshes Tq|r and 7r coincide and Hq = Hr
holds. The resulting numerical approximation for £ = 2% is shown in Figure 2. The
corresponding convergence plots for ¢ — uy and p — Il 5y measured in the L2-norm
for a5™ and ad¢ are presented in Figure 3. Note that we are in the range H Z €. Asa
result, we observe poor results for the standard finite element approach as we are in
the preasymptotic regime. On the other hand, the combination of Lagrange elements
for u and a multiscale approach for p yields remarkable results: In the case of a smooth
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Fic. 2. Hlustration of the solution u Jort =0 (left) and t = 0.1 (right) in the case of a random
coefficient adc with ¢ = 29,

w-tf T T AR -
102 |
- :
?: o : :
& 107 - - |=©- u (uniform) E
= 104 " - _.{—©= p (uniform) .
=== u(LOD) |
10-5 |- —p (LOD) | .

- 1072 i
w1t
N i f
o) _;
' E
a3 ;
-4 e . -
1077k . : e e o ~order 1/2 | 1
[ T o o h -7 |-=-order 2 1
s e £

-1
H 0

FiG. 3. Convergence history in the L%.norm’ for smooth (top) and discontinuous {bottomn)
diffusion coefficients. Results shoun fore =279 T

coefficient we even reach the full second-order rate. For the discontinuous coefficient,
u converges with second order, whereas p shows an order of 0.647 (averaged over the
last three mesh sizes). Note that this is slightly better than the shown bounds of
Theorem 4.11, which equal 0.5 for ¢ =1 and s = 3/2. : '

Finally, we comment on the results measured in the H 1_norm. For the discon-
tinuous coefficient ad®, we observe no convergence in p but convergence of order 1/2
(standard FEM) and almost 1 (LOD) in u. This improves for the smooth coefficient,
where also p converges with order. 1 if multiscale finite elements are applied.
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F1G. 4. Convergence history in the H'-norm for a random coefficient with e = 279 and different
values of m. The solid line without marks shows an approzimation with mcreaszng m (up tom=25).
The remaining entries consider a fized m=1 (Q), m =2 (A), orm =3 (0.~

5.2. Mixed boundary conditions. In the second expex_‘imeﬂt we mix two types
of boundary conditions and consider dynamic boundary conditions only on Igyn =
(0,1) x {0}. On the remaining parts we assume homogeneous Dirichlet boundary
conditions. The input data is given by f(f) = 1, g(t) = 0 with initial condl-
tion up(z,y) = sin(nz) - cos(g'rry) Further, we consider a random coefficient ad¢
with ¢ = 2% as described in the previous experiment. We now consider the LOD
as described in section 3.4, ie., thh a quasx-mterpolatxon operator and correctors
computed over patches N™(T'). L '

The convergence results in the Lz—norm are very smnlar to those in the previous
example such that we omit the details here. We mention, however, that convergence
only takes place for sufficiently large m, compared to the mesh size H. Since we are
interested in coarse mesh sizes, we note that a localization parameter m = 2 usually
yields satisfactorily results. To show the influence of the localization pa.rameter m in
more detail, we consider the error p— 5 in the H'-norm without the projection Ilg.
Recall from the previous example that p — Iy does not converge for the discontin-
uous diffusion coefficient. In Figure 4 one can observe that the “full approximation”
Py 8lso converges in the H'-norm. Further, one can see the limitation of the approx-
imation for fixed m; i.e., if the mesh size is no longer in the regime m 2 |log H|, the
error stagnates or may even slightly grow with a further decrease of H.

5.3. Refinement of boundary. In this final experiment we demonstrate the
possibility of the PDAE approach combining different: meshes on £ and I'. We
consider once more the mixed boundary case with Tgyn = (0,1) x {0}. As the
diffusion coefficient we choose a¥™ with a moderate ¢ = 1/4. The initial data
reads up(z, y) = sin(37z)-cos(S 7ry+1) For this particular example we do not consider
LOD spaces but rather standard P; (7r) elements on the boundary. For the bulk we fix
a uniform mesh 75, with mesh size Hg. In contrast, we apply uniform refinements on
the boundary, i.e., we consider a mesh Tr with mesh sizes Hr = Haq, -%Hg, %Hg, .-

The numerical results in Figure 5 indicate that this refinement has no positive
effect on the approximation of 4. The boundary values p, however, can be improved
significantly. This becomes evident not only for the L?>-norm but also for the H*- 1
norm. Recall that even the LOD approach considered in the previous two examples
could only.provide small H*-errors if corrector functions were added. The refinement
of the boundary presented here (thhout changing the interior mesh 7Tq) thus provides
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FIG. 5. Convergence history in the L2-norm (left) and H*-norm (right} for u and p, respec-
tively. The different plots start with mesh sizes Hg = 273 () and Hg = 275 (®), respectively.
The reference solution is computed on a-uniform mesh with Hg = Hr =2710.°

a tool for improving boundary, approximations at low cost.

6. Conclusion. In this paper, we have discussed the possibility of combining
different approximation schemes in the bulk and on the boundary for parabolic prob-
lems with dynamic boundary conditions. In this way, we could consider multiscale
techniques, such as the LOD in combination with standard finite element spaces in
the interior. We have shown analytically and observed numerically that this strat-
egy allows remarkable speed-ups if low-regularity solutions are expected. This is the
case for heterogeneous media as considered in this paper but it may also be caused
by nonlinearities. For this, the schemes presented here need to be combined with
appropriate time discretization schemes; cf, [4]. The proposed decoupling approach
may also be beneficial for the construction of splitting methods if bulk and surface
dynamics have different time scales. . ‘ : -

Appendix A. Mosco convergence of the energy functional for (2.1). In
this appendix, we close the remaining gap in the proof of Theorem 2.1, namely the
Mosco convergence of the energy functional associated with the elliptic part of (2.1).

We define the energy functional £5: H}(2) x H}(}s) — R via

Sg(u,w)=L%|VuI2dx+L E%as(m)Ilezd:ﬁ.
&

We now transform the variable domain €5 into a fixed domain. Due to the assumed
smoothness of T, and for sufficiently small §, every point x € §25 can be uniquely
written in the form & = X5(y,0) := y + 66v(y) for y € T and 6 € (0,1), where v
denotes the outer unit normal of §2. - '

With this change of coordinates we define T := I' x (0,1), and for a function
w: s — R we set W = wo Xs: £ — R Because of the smoothness of I' we
have W € H(X) whenever w € H!(S%s) and the gradients can be computed by
the chain rule. By slight abuse of notation, we denote a, o X5 again by ac and
note that it depends only on y and not on 6. Moreover, we introduce the space
W = {(u,W) € HYQ) x H}(Z) |ulr = W]{g9=0}}. Inserting these transformations
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into &, we arrive at the energy functional E5: W ~ R defined by

Es(u, W) = /9 %[Vu{zda:
(A1) + [ 250e) (VW Bo(u,0)VrW + 100w 3501, d(1,0)

Here, Bs describes the transformation of the (tangential part of the) gradient and
Js the volume change. Lemma 2.2 in [35] states that both Bs — Id and J5/6 ~ 1

uniformly in é.
The main goal of this appendix is to show the following proposition concerning

the Mosco convergence of E, which is the analogue to [35, Thm. 3.2].

PROPOSITION A.l1. The energy functional Es converges in the sense of Mosco to
the limit functional Eo: W — R given by

JodlVul2de + [ e W)IVeW 2 d(w,0) i (u, W) € Wh,
+00 else, ’

Eb(u, W) = {

" where Wy = {(1, W) € W|9W = 0}.

Mosco convergence is Gamma convergence in the strong and weak topology si-
multaneously; see [35, sect. 3]. Hence, we have to show (i) a lim inf-estimate for
a weakly converging sequence, and (ii) a lim sup-estimate for a strongly converging
recovery sequence. '

Proof. (i) Let (us, W5) — (u, W) in W. Assuming that liminfs_ Es(us, Ws) <
00, we necessarily have (u, W) € W, due to the weak lower semicontinuity of the
norm on W. It holds that

1 ) 1 1
Ea(uJ,Wa)2]{;EIVUJI2d$+L§as(y)VrW6-Ba(y,9)VrWJ EJs(yyﬁ)d(yyﬂ)-

The lim inf-estimate now follows from the uniform convergence of Bs and J5/4.

(if) For (u, W) we choose the constant recovery sequence (us, W) = {u,W). In
the case when (u, W) ¢ W, the result is trivial, since Eo(u, W) = oo, and we can
argue as in (i). In the case (u, W) € Wy, the derivative 8 in Ej; venishes, and we
obtain

1 1 1
E5(’u, W) = _/g; '§|VUI2 dz + L 505 (y)VrW - Ba(y, g)VI‘W 3"]5 (y’ 0) d(y: 0)
— Eo(u, W), |

arguing as above, O

Note that (u, W) € W), if and only if (u, W) € HY(2) x HY(T) with ulr = W.
Hence, the limit energy Ey can be reduced by integrating over 8, which gives precisely
the energy functional associated with the elliptic part of (2.2).
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