
Algorithmica (2022) 84:1357–1384
https://doi.org/10.1007/s00453-022-00925-z

Randomized Online Computation with High Probability
Guarantees

Dennis Komm1 · Rastislav Královič2 · Richard Královič1 · Tobias Mömke3

Received: 16 July 2021 / Accepted: 31 December 2021 / Published online: 30 January 2022
© The Author(s) 2022

Abstract
We study the relationship between the competitive ratio and the tail distribution of
randomized online problems. To this end, we identify a broad class of online problems
for which the existence of a randomized online algorithm with constant expected
competitive ratio r implies the existence of a randomized online algorithm that has
a competitive ratio of (1 + ε)r with high probability, measured with respect to the
optimal profit or cost, respectively. The class of problems includes some of the well-
studied online problems such as paging, k-server, and metrical task systems on finite
metric spaces.

Keywords Online algorithms · Randomization · Bounds with high probability

An extended abstract of this paper appeared at STACS 2014 [8]. Partially supported by the SNF Grant
200021–146372, the DFG Grants 439522729 (Heisenberg-Grant) and 439637648, and the VEGA Grant
1/0601/20.

B Dennis Komm
dennis.komm@inf.ethz.ch

Rastislav Královič
kralovic@dcs.fmph.uniba.sk

Richard Královič
richard.kralovic@inf.ethz.ch

Tobias Mömke
moemke@informatik.uni-augsburg.de

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland

2 Comenius University, Bratislava, Slovakia

3 University of Augsburg, Augsburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00925-z&domain=pdf
http://orcid.org/0000-0002-9024-1558

1358 Algorithmica (2022) 84:1357–1384

1 Introduction

In online computation, we face the challenge of designing algorithms that work in
environments where parts of the input are unknown while parts of the output already
need to be provided. The standard way of evaluating the quality of online algorithms
is by means of competitive analysis, where one compares the outcome of an online
algorithm to the optimal solution constructed by a hypothetical optimal offline algo-
rithm. Since deterministic strategies are often proven to fail for the most prominent
problems, randomization is used as a powerful tool to construct high-quality algo-
rithms that outperform their deterministic counterparts. These algorithms base their
computations on the outcome of a random source; for a detailed introduction to online
problems we refer the reader to the literature [3,9].

The most common way to measure the performance of randomized algorithms is
to analyze the worst-case expected outcome and to compare it to the optimal offline
solution. With offline algorithms, a statement about the expected outcome is also a
statement about the outcome with high probability due to Markov’s inequality and
the fact that the algorithm may be executed many times to amplify the probability of
success [7]. This amplification, however, is not possible in online settings. As online
algorithms only have one attempt to compute a reasonably good result, a statementwith
respect to the expected value of their competitive ratiomay be rather unsatisfactory. As
a matter of fact, for a fixed input, it might be the case that such an algorithm produces
highquality results in very fewcases (i.e., for a rather small number of randomchoices),
but is unacceptably bad for the majority of random computations. Nevertheless, the
expected competitive ratio might suggest a better performance. Thus, if we want to
have a guarantee that some randomized online algorithm obtains a particular quality
with somegiven probability,wemust have a closer look at its analysis. In such a setting,
we would like to state that the algorithm does not only perform well on average, but
“almost always.”

Besides a theoretical formalization of the above statement, the main contribution of
this paper is to show that, for a broad class of problems, the existence of a randomized
online algorithm that performs well in expectation immediately implies the existence
of a randomized online algorithm that is virtually as good with high probability.

Our investigations, however, need to be detailed in order to face the particularities
of the framework. Specifically, our goal is to establish results with high probability
that are independent of the concrete algorithms. Many of the known randomized
online algorithms are naturally divided into phases where each phase is processed
and analyzed separately. Two examples are the algorithm for metrical task systems of
Borodin et al. [4] and the marking algorithm for paging of Fiat et al. [5]. Since the
phases are independent, we can obtain a high probability result (i.e., with a probability
converging to 1 with an increasing number of phases; see Komm [9] for details on
the marking algorithm). The definition of these phases, however, is specific to each
problem and algorithm. Conversely, some other algorithms such as, e.g., the paging
algorithm from Achlioptas et al. [2] and many workfunction-based algorithms use
constructions that do not impose a division into phases.

First, we show that it is in general not meaningful to measure the probability of
success with respect to the input size, which might be considered the straightforward

123

Algorithmica (2022) 84:1357–1384 1359

approach; we demonstrate this for the paging problem, which implies the same state-
ment for the k-server problem and task systems [3]. Consequently, we have to measure
the success probability with respect to another parameter. We show that the profit or
cost, depending on whether maximization or minimization problems are considered,
of an optimal solution is a reasonable quantity for this purpose.

Our approach allows us to design randomized online algorithms that up to a factor
of (1+ε) have the expected performancewith a probability tending to 1with a growing
size of the optimal profit or cost. We show that this technique is applicable for a wide
range of online problems.

Organization and Techniques

In Sect. 2, we define the class of symmetric online problems for which we will present
the main result. Afterwards, in Sect. 2.1, we discuss why a straightforward approach
towards defining “high probability” w.r.t. the input size must fail; this motivates the
definition of high probability w.r.t. the profit (cost, respectively) of an optimal solu-
tion, given in Sect. 2.2. In Sect. 2.3, we provide a formal definition of the problem
properties that we have identified to be crucial for designing online algorithms with
high probability guarantees. This then enables us to provide a precise statement of
the two main theorems which state that, for every problem that fulfills certain natural
conditions, it is possible to transform an algorithmRandwith constant expected com-
petitive ratio r to an algorithm Rand′ having a competitive ratio of (1+ ε)r with high
probability – with respect to the profit (cost) of an optimal solution. It should be noted
that Rand′ has to compute optimal solutions to known prefixes of the given input,
which may in principle result in a large, possibly even exponential, time complexity.
However, for most online problems, such as paging and k-server, there exist efficient
offline algorithms that compute optimal solutions.

Sections 3 and 4 are devoted to proving the main theorems for maximization and
minimization problems, respectively. We partition the run of the algorithm into phases
such that the loss incurred by the phase changes can be amortized. For minimization
problems, in order to control the variancewithin one phase, however,we need to further
subdivide the phases. By modeling the profit (cost) of single phases as dependent
random variables, we obtain a submartingale (supermartingale), which enables us to
apply the Azuma–Hoeffding inequality and thus to obtain the result.

After these investigations, we provide applications of the theorems in Sect. 5. In
particular, we show that our result is applicable for task systems in Sect. 5.2. Task
systems offer a general view of online problems including classical problems such as
paging [2,5,14], k-server [10,13], and the list update problem [14].

RelatedWork

Classically, results concerning randomized online algorithms analyze their expected
behavior; there are, however, a few exceptions. For example, Leonardi et al. [11]
analyze the tail distribution of algorithms for call control problems, and Maggs et

123

1360 Algorithmica (2022) 84:1357–1384

al. [12] deal with online distributed data management strategies that minimize the
congestion in certain network topologies.

2 Preliminaries

In this section, we fix the notation for online algorithms which we use throughout the
paper. Before we start, we need to briefly discuss the way in which online problems
and instances are formally defined. For our investigations, we have to be very careful
about these definitions. In particular, in the literature one often refers to “an online
problem” when actually a class of online problems is meant, which is parameterized
by some problem-specific parameters. Let us give two examples of problems that we
study later in the paper. When speaking about the paging problem, we really mean
the class of paging problems determined by the cache size k; note that there is some
inconsistency in the literature as this problem is usually referred to as “paging” (and
not “k-paging”) while we speak of the “k-server problem.” For the latter, k denotes the
number of servers that are moved in a metric space. However, k alone is not sufficient
to specify a member from the class “k-server problems.” Additionally, we also need to
specify the metric space (M, d), where M is a set of points and d is a metric distance
function.

To completely define the above problems, we need to give even more information
by speaking about how problem instances are initialized according to the parameters.
For example, we need to specify how the cache is initialized for the paging problem
or where the servers are located at the beginning when dealing with the k-server
problem. We call this initialization the initial situation; for paging, the initial situation
is a k-tuple (s1, . . . , sk) of distinct integers, which formalizes which pages are in
the cache at the beginning. Formally, we thus have to speak of an instance of the
(k, (s1, . . . , sk))-paging problem. In general, such a parameterized online problem is
given by (C, I)-� where C is a sequence of problem-specific parameters, I is a set
of valid initial situations, and � is the name of the union of all of these problems.
Formally, I is a set of valid assignments I to some of the parameters in C, and the
competitiveness guarantees of every algorithm for�must be satisfied for every I ∈ I.
Sometimes I is also considered to be part of the instance. To end this discussion, note
that in the literature, the initial situation is at times called the initial configuration.
In this paper, we choose another name to distinguish it from the configuration of an
algorithm (Turing machine). In the following, we use the notation from the literature
and omit C. Nevertheless, the initial situation I plays an important role for us and it is
given together with the actual input sequence x . Let us emphasize that if we say that
some algorithm has some specific performance for a problem �, this means that this
performance must be guaranteed for all feasible choices of C, I , and x .

We are now ready to define online algorithms on initial situations and input
sequences.Anonline algorithmAlg for� computes the output sequenceAlg(I , x) =
y = (y1, . . . , yn), where I is an initial situation, x = (x1, . . . , xn) is an input sequence,
and yi is computed from I , x1, . . . , xi . If � is a maximization problem, we denote the
profit of the solution Alg(I , x) by profit(I , x, y) = profit(I , x,Alg(I , x)); con-
versely, if � is a minimization problem, we denote the cost of Alg’s solution by

123

Algorithmica (2022) 84:1357–1384 1361

cost(I , x, y) = cost(I , x,Alg(I , x)). For the ease of presentation, we refer to the
tuple that consists of the initial situation and the input sequence, i.e., (I , x), as the
input of the problem; also, we abbreviate profit(I , x,Alg(I , x)) by profit(Alg(I , x))
and cost(I , x,Alg(I , x)) by cost(Alg(I , x)), respectively. As already mentioned,
the notion of an initial situation plays an important role in the relationship between
different variants of the competitive ratio; although it is usually omitted, our definition
imposes no restriction on the studied problems and algorithms.

A randomizedonline algorithmRand computes theoutput sequenceRandφ
(I , x) =

y = (y1, . . . , yn) such that yi is computed from φ, I , x1, . . . , xi , where φ is the con-
tent of a binary random string. By profit(Rand(I , x)) (cost(Rand(I , x))) we denote
the random variable (over the probability space defined by φ) expressing the profit
(cost) of the solutionRandφ

(I , x). When dealing with randomized online algorithms,
we compare the expected outcome to the profit (cost) of an optimal offline solution.
Throughout this paper, we assume an oblivious adversary and say that a randomized
algorithm is r -competitive if there is a constant α such that, for every initial situation
I and input sequence x ,

E
[
profit(Rand(I , x))

] ≥ profit(Opt(I , x))/r − α

if � is a maximization problem, and

E
[
cost(Rand(I , x))

] ≤ r · cost(Opt(I , x)) + α

if � is a minimization problem. For formal reasons, we define the competitive ratio
of any (randomized) online algorithm to be 1 if both x and y are empty.

2.1 Defining High Probability w.r.t. the Input Size

In the sequel,we analyze thenotionof competitive ratiowith highprobability.Anatural
way to define an event to have high probabilitywould be to require that its probability to
appear tends to 1 with increasing input length (i.e., the number of requests). However,
in general this does not seem to be applicable. To illustrate this fact, we again take
the well-known paging problem with cache size k, noting that the following hardness
result immediately carries over to the k-server problem and task systems. Let us only
consider the case of strict competitiveness, i.e., when the additive constant α is 0;
the following remarks can also be found in Komm [9], where they are generalized to
α ≥ 0. In what follows, we restrict ourselves to demand paging algorithms, i.e., online
algorithms for paging that only evict a page from their respective cache if a page fault
occurs. It is well known that, for every paging algorithm, there is a demand paging
algorithm that is at least as good [3]. For every input sequence x ′ of length n and every
competitive ratio r and every d, there is an input sequence x of length dn formed by
repeating every request d times. Consequently, for every online algorithm with some
performance on x , we can design an online algorithm with the same performance on
x ′.

123

1362 Algorithmica (2022) 84:1357–1384

We now show that there is no randomized online algorithm for paging that achieves
a competitive ratio of less than k with a probability approaching 1 with increasing n.
Let r < k and suppose that there is some n0 ∈ N and a randomized online algorithm
Rand that, for every input sequence x with |x | = n ≥ n0, is r -competitive with
probability 1− 1/ f (n), for some function f that tends to infinity with growing n. By
the above reasoning, there also is a randomized online algorithm that is r -competitive
on every input sequence x ′ independent of its length with the same probability. In
particular, if Rand exists, then there exists a randomized online algorithm Rand′ that
is r -competitive on input sequences of length k with probability 1−1/ f (n), for every
n. Let there be k + 1 pages (we simply denote them by 1, . . . , k + 1) in total, and
let the cache be initialized with pages 1, . . . , k. Now consider the following input
sequence of length k. An adversary requests page k + 1 at the beginning and some
unique pages in the next k − 1 time steps such that the same page is never requested
in two consecutive time steps.

Clearly, there is an optimal solutionwith cost 1 that only causes a page fault with the
first request. As forRand′, in every time step in which a page fault occurs, it randomly
chooses a page to evict to make space in the cache. Since the adversary knows the
probability distribution Rand′ uses, without loss of generality, we assume that Rand′
chooses every page with the same probability. Note that there is a sequence p1, . . . , pk
of “bad” choices that causesRand′ to have cost k. In the first time step,Rand′ chooses
the bad page with probability at least 1/k; with probability at least 1/k2, it chooses the
bad pages in the first and the second time step and so on. Clearly, the probability that it
chooses the bad sequence is at least 1/kk . However, this immediately contradicts that
Rand′ has a strict competitive ratio better than the trivial one of k with probability
1 + 1/ f (n) for arbitrarily large n.

2.2 Defining High Probability w.r.t. the Optimal Solution

For the practical use of paging algorithms, the interesting input sequences are those
where also the optimal algorithm causes more than constantly many page faults; other-
wise, marking algorithms such as LRU and conservative algorithms such as FIFO also
only cause a constant number of page faults [3,14], and are therefore 1-competitive on
these input sequences. Hence, it seems reasonable to define the term high probability
with respect to the profit (cost) of an optimal solution. In what follows, we do this
separately for maximization and minimization problems.

Definition 1 (Competitive Ratio w.h.p. for Maximization Problems) A randomized
online algorithm Rand is r -competitive with high probability (w.h.p. for short) if
there is a constant α such that

limOpt(I ,x)→∞Pr
[
profit(Rand(I , x)) ≤ profit(Opt(I , x))/r − α

] = 0 .

As a consequence of our techniques, for our positive results, we are able to use a
strong notion of high probability, requiring that, for every β ≥ 1, the error probability
is subpolynomial, i.e.,

123

Algorithmica (2022) 84:1357–1384 1363

Pr
[
profit(Rand(I , x)) ≤ (profit(Opt(I , x))/r − α

] ≤ (
2 + profit(Opt(I , x))

)−β
.

(1)

Definition 2 (Competitive Ratio w.h.p. for Minimization Problems) A randomized
online algorithm Rand is r -competitive with high probability (w.h.p. for short) if
there is a constant α such that

limOpt(I ,x)→∞Pr
[
cost(Rand(I , x)) ≥ r · cost(Opt(I , x)) + α

] = 0 .

Also for our result on minimization problems, we can show that, for every β ≥ 1,
the error probability is subpolynomial, i.e.,

Pr
[
cost(Rand(I , x)) ≥ r · cost(Opt(I , x)) + α

] ≤ (
2 + cost(Opt(I , x))

)−β
. (2)

Observe that for cost(Opt(I , x)) → ∞, this value tends to 0.
Note that the purpose of the constant 2 in (1) and (2) is to properly handle inputs

with a small (possibly zero) optimum.

2.3 Symmetric Problems and High Probability

We start with formalizing a natural property of the profit (cost) associated with a given
online problem.

Definition 3 (Partition Function) A partition function of an online problem is a non-
negative function P such that, for every initial situation I , input sequence x1, . . . , xn ,
and corresponding output sequence y1, . . . , yn , we have

measure(I , (x1, . . . , xn), (y1, . . . , yn)) =
n∑

i=1

P(I , x1, . . . , xi ; y1, . . . , yi) ,

for measure ∈ {profit, cost}.
In other words, for a problemwith a partition function, the profit (cost) of a solution

is the sumof the profits (costs) of particular answers, and the profit (cost) of each answer
is independent of the future input andoutput. For afixed sequence of inputs andoutputs,
the partition function allows us to speak of the profit (cost) of a subsequence of the
outputs. Note that any online problem for which input sequences may stop after each
request has either a unique partition function or none, because the overall profit (cost)
is fixed after each answer. Also note that a partition function exists unless it is possible
to decrease the profit (cost) by appending more requests to the input sequence, which
is not the case for most of the natural online problems.

In what follows, we further restrict the behavior, and it will be convenient to think
in terms of the “profit or cost of a particular answer.”Wemay think of online problems
that have a partition function as a separate class of problems. However, all further
properties depend on specific partition functions and thus requiring a “partitionability”
property would be redundant.

123

1364 Algorithmica (2022) 84:1357–1384

Note that for any problem with a partition function there is a natural notion of a
state; for instance, it is the content of the cache for the paging problem, the position
of the servers for the k-server problem, etc. Now we provide a general definition
of this notion. By a · b, we denote the concatenation of two sequences a and b; λ

denotes the empty sequence. An input (I , x = (x1, . . . , xn)) is feasiblewith a solution
y = (y1, . . . , yn) if starting from I , x is a request sequence that is in accord with the
problem definition and for each i , yi is a feasible answer to the request xi with respect
to I , (x1, . . . , xi−1), and (y1, . . . , yi−1).

Definition 4 (State)Consider a partition functionP , two initial situations I and I ′, two
input sequences x = (x1, . . . , xn) and x ′ = (x ′

1, . . . , x
′
m), and two output sequences

y = (y1, . . . , yn) and y′ = (y′
1, . . . , y

′
m). The triples (I , x, y) and (I ′, x ′, y′) are

equivalent if, for every input sequence x ′′ = (x ′′
1 , . . . , x ′′

p) and an output sequence
y′′ = (y′′

1 , . . . , y′′
p), the input (I , x · x ′′) is feasible with a solution y · y′′ if and only

if the input (I ′, x ′ · x ′′) is feasible with a solution y′ · y′′, and the profit (cost) of y′′
according toP is the same for both solutions. A state s of the problem is an equivalence
class over the triples (I , x, y).

For the paging problem, a state indeed formalizes the notion of a “fixed cache
content.” To see this, consider two different cache contents. There is an input sequence
that starts with requesting a page that is only contained in one of the two caches, and
therefore there is a solution not evicting any page – which is only feasible for one of
the two contents. Consequently, two different cache contents cannot be in the same
state.

Consider some online problem �, and let (I , x, y) be some triple in a state s. By
Opts(x ′) we denote an output sequence y′ such that y · y′ is a feasible solution for the
input (I , x · x ′) and, for every feasible solution y · y′′,

profit(I , x · x ′, y · y′) ≥ profit(I , x · x ′, y · y′′)

if � is a maximization problem, and

cost(I , x · x ′, y · y′) ≤ cost(I , x · x ′, y · y′′)

if � is a minimization problem.
Note that due to the definition of states, the definition ofOpts(x ′) is independent of

the chosen triple (I , x, y). We sometimes simplify notation and write profit(Opts(x ′))
instead of profit(I , x · x ′, y · Opts(x ′)) − profit(I , x, y) or cost(Opts(x ′)) instead of
cost(I , x · x ′, y · Opts(x ′)) − cost(I , x, y), respectively, as it is sufficient to know s
and x ′ in order to determine the value of the function.

Definition 5 (Initial State) A state s is called an initial state if and only if it contains
some triple (I , λ, λ).

We chose this definition of states as it covers best the properties of online com-
putation as we need them in our two main theorems. Once again using paging as an
example, we require that every cache content is feasible at the beginning; for k-server

123

Algorithmica (2022) 84:1357–1384 1365

we allow the servers to be placed anywhere in the metric space before the first request.
An alternative definition could use task systems with infinitely many states, but the
description would become less intuitive; we will return to task systems in Sect. 5.2.

Intuitively, a state fromDefinition 4 encapsulates all information about the ongoing
computation of the algorithm that is relevant for evaluating the efficiency of the future
processing. Usually, the state is naturally described in the problem-specific domain
(e.g., the aforementioned current cache content or server positions). Similar to our
discussion on initial situations, we want to emphasize that a state is independent of
the concrete algorithm. The internal state of an algorithm is a different notion since
it may, e.g., behave differently if the starting request had some particular value. The
following properties are crucial for our approach towards probability amplification.

Definition 6 (Opt-Boundedness) An online problem is called Opt -bounded if there
is a constant B and a partition function such that

∀s, s′, x : |measure(Opts(x)) − measure(Opts′(x))| ≤ B ,

for measure ∈ {profit, cost}.
In simple terms, B bounds the different profits (costs) between twooptimal solutions

for different states on a fixed input. Again using paging as an example, we can safely
set B = k since starting with two different caches can make at most a difference of k
page faults.

Definition 7 (Symmetric Problem) An online problem is called symmetric if it has a
partition function for which every state is initial.

Note that for symmetric problems, it follows that every sequence of requests is
a feasible input sequence; this includes single requests. In particular, the input may
end after each time step. Once more consider paging, for which every sequence of
pages is a feasible input sequence, or k-server, where every sequence of points in the
given metric space is feasible. Formally, every problem with a partition function may
be transformed into a symmetric one simply by redefining the set of initial states.
However, this transformation may significantly change the properties of the problem.

In the following two sections, we will prove the two main theorems of this paper,
namely that, under certain conditions, the expected competitive ratio of symmetric
problems can be achieved w.h.p. according to Definitions 1 and 2 (actually, even (1)
and (2)), respectively. Section 3 studies the simpler case of maximization problems,
whereas for minimization problems, investigated in Sect. 4, we need to make an
additional assumption.

3 TheMain Theorem for Maximization Problems

In this section, we study online maximization problems according to Definitions 6 and
7, and prove the first half of our main result. The counterpart will be proven in the
subsequent section.

123

1366 Algorithmica (2022) 84:1357–1384

Theorem 1 Consider an online maximization problem � that is Opt-bounded and
symmetric according to a common partition function. Suppose there is a randomized
online algorithm Rand for � with constant expected competitive ratio r . Then, for
each constant ε > 0, there is a randomized online algorithm Rand′ with competitive
ratio (1 + ε)r w.h.p.

At first, we provide a high-level informal description of the ideas behind our proof.
The algorithm Rand′ simulates Rand and, on some specific places, performs a reset
operation: if a part x ′ of the input sequence has been processed so far, and a corre-
sponding output sequence y′ has been produced, (I , x ′, y′) belongs to the same state
as (I ′, λ, λ), for some initial situation I ′ due to the symmetry of �; hence, Rand can
be restarted by Rand′ from I ′.

The general idea to boost the probability of acquiring a high profit is to perform
a reset sufficiently often. Therefore, the input is partitioned into phases in such a
way that Rand′ can deterministically decide the boundaries of the phases. Rand′
performs a reset at the end of each phase. Then again, a reset may cause a bounded
loss of expected profit; we consequently have to ensure that the phases are long enough,
i.e., their optimum profit is large enough, so as to amortize this overhead.

Since we design the phase boundaries in such a way that Rand′ is aware when
it processes the last request of a phase, we can make Rand′ process the last request
greedily, i.e., maximize the profit without paying attention to the resulting state. As
we can reset the simulated algorithm Rand in any state, this will not interfere with
the subsequent run of Rand. We will need this property later to have a deterministic
upper bound on the difference between the optimal profit and the profit of Rand′ on
a single phase.

Rand′ will make sure that the number of phases grows sufficiently quickly with
growing profit of the optimal solution.We do not, however, assume any upper bound on
the profit of a single request, which means that such a condition cannot be guaranteed.
To work around this problem, we first define heavy requests as requests that can be, in
some state, answered such that the gained profit is larger than a certain threshold T .
The Opt-boundedness then guarantees that a heavy request can always be answered
with profit at least T − B (where B denotes the constant from Definition 6). Thus, if T
is sufficiently large, the greedy answer is almost optimal—the ratio between the greedy
answer and the answer of the optimal solution is arbitrarily close to 1. If we make sure
that the last request of a phase is always a heavy request, then Rand′ answers all such
requests greedily.

Afterwards, we consider two cases. On the one hand, if a very large fraction of
the profit of the optimal solution stems from heavy requests, it does not matter what
the algorithm does on the non-heavy requests, because answering all heavy requests
greedily is sufficient to ensure competitive ratio r . On the other hand, if at least some
small but fixed fraction of the optimal solution stems from non-heavy requests, we
can guarantee that the number of phases grows linearly in the profit of the optimal
solution.

We proceed to formalize these ideas. From now on let us consider ε, r , α, and
B to be fixed constants. Recall that Rand is r -competitive in expectation with an
additive constant α. Our goal is to design the randomized online algorithm Rand′

123

Algorithmica (2022) 84:1357–1384 1367

that is (1 + ε)r -competitive with high probability and additive constant α′. Rand′ is
parameterized by parameters T and C , which depend on ε, r , α, and B. As described
above, the parameter T controls the threshold for heavy requests and C controls the
length of the phases, such that the optimal profit of one phase is roughly C . For the
remainder of our proof, we can fix C to any value that satisfies

C > B ·
(
1 + (r + 1) · 1 + ε

ε

)
+ α · r · 1 + ε

ε
, (3)

and for T we require both

T > C + B (4)

and

T > B ·
(
2 + r

r − 1

)
. (5)

The additive constant α′ of Rand′ depends on ε, r , α, B, C , and T only; it will be
fixed later in the proof.

Definition 8 Let xi be a request. We say that xi is a heavy request if there is some
initial situation I ′ and some answer yi such that profit(I ′, (xi), (yi)) ≥ T ; otherwise,
we say that xi is a light request.

Consider an initial situation I and an input sequence x = (x1, . . . , xn). Let Oi be
the optimal profit of the input sequence truncated to requests before xi , i.e., the optimal
profit of (I , (x1, . . . , xi−1)); the optimal profit of the empty sequence is defined to be
zero, i.e., O1 := 0. Since the profit function is non-negative, we have Oi ≤ Oi+1.

We define the boundaries of the phases such that phase i starts at request xni , where
n1 := 1, and ni+1 ≤ n + 1 is the smallest number such that Oni+1 ≥ Oni + C . If no
such value exists for some i , then i − 1 is the last phase, and the suffix of the input
xni , . . . , xn is not part of any phase. Note that the phase boundaries can be computed
by the online algorithm itself in a deterministic way, i.e., Rand′ can determine when
it is processing the last request of the phase. Now Rand′ simulates Rand on every
request that is not the last one in the current phase. For the last request of the phase,
Rand′ answers greedily: if the current state is equivalent to some (I ′, λ, λ) and the
processed request is x j , it outputs y j such that profit(I ′, (x j), (y j)) is as large as
possible. Afterwards Rand′ restartsRand. Note that Rand′ is not able to detect when
it is processing requests past the last phase; however, we do not care about the behavior
of Rand′ on this part as long as it produces some valid output.

Observe that (4) guarantees that every heavy request is the last request of some
phase: as any heavy request xi can be answered with a profit of at least T − B in every
state, Oi ≥ Oi−1 + T − B > Oi−1 + C .

Now consider any fixed optimal solution Opt(I , x), and let profith(Opt(I , x)) be
the profit of Opt(I , x) created by heavy requests only. Let ρ := 1/r + B/(T − 2B).
It follows from (5) that ρ < 1. We distinguish two cases.

123

1368 Algorithmica (2022) 84:1357–1384

Case 1.Assume that profith(Opt(I , x)) ≥ ρ ·profit(Opt(I , x)), i.e., a large fraction of
the optimal profit stems from heavy requests. Due to the Opt-boundedness property,
we may assume that each heavy request is answered in Opt(I , x) with a profit of at
least T − 2B: as already noted, in any state it is possible to answer a heavy request
with a profit of at least T − B, and the optimal solution cannot lose more than B
compared to that (or there would be a better solution, which is a direct contradiction).
Thus, there are at most h := profit(Opt(I , x))/(T −2B) heavy requests. SinceRand′
answers all heavy requests greedily, it may lose at most B profit on each heavy request
compared to the optimal solution. Therefore, the profit of Rand′ on (I , x) is at least

profith(Opt(I , x)) − hB ≥ profit(Opt(I , x))

(
ρ − B

T − 2B

)
= profit(Opt(I , x))/r ,

which means thatRand′ is r -competitive with additive constant 0, i.e., for any α′ ≥ 0,
with probability 1.
Case 2.Assume that profith(Opt(I , x)) < ρ ·profit(Opt(I , x)), i.e., the profit of more
than (1−ρ) ·profit(Opt(I , x)) stems from light requests. Then letU (i, j) be the profit
of Opt(I , x) gained on the requests xi , . . . , x j . This partial profit is closely related to
the prefix-optimum function Oi .

Observation 1 We have U (i, j) ≤ Oj+1 − Oi + B and U (i, j) ≥ Oj+1 − Oi − B.

Proof On any given prefix, Opt cannot be better than the optimal solution on that
prefix, i.e., U (1, j) ≤ Oj+1. Moreover, Opt cannot be much worse than the prefix-
optimal solution due toOpt-boundedness, i.e.,U (1, j) ≥ Oj+1−B. Due toU (i, j) =
U (1, j) −U (1, i − 1), the claim follows. 	

In what follows, let k denote the number of phases. We proceed to bound the profit
of requests past the last phase. Due to On+1 − Ok+1 < C , we have that

U (nk+1, n) < C + B . (6)

Next we provide bounds on k. In a single phase, there cannot be too much profit
gained by light requests by Opt. Indeed, by definition, Oni+1−1 − Oni < C ; thus, due
to Observation 1, U (ni , ni+1 − 2) < C + B. The profit gained by Opt by the light
requests in phase i is either U (ni , ni+1 − 2) if the last request of phase i is heavy, or
U (ni , ni+1 −1) if the last request is light. In the latter case, however, the profit gained
by the last request is at most T . Consequently, the profit gained by light requests by
Opt in any phase is less than C + B + T . The same argument holds for requests past
the last phase due to (6). Since we have a lower bound on the total profit gained by
light requests in Opt(I , x), we have that

k > profit(Opt(I , x))
1 − ρ

C + B + T
− 1 . (7)

As a result, for fixed parameters r ,C , B, and T , the number of phases grows linearly
with growing profit of the optimal solution of (I , x).

123

Algorithmica (2022) 84:1357–1384 1369

To provide an upper bound on the number of phases, note that there is a lower
bound on the profit gained by Opt within a single phase. As Oni+1 − Oni ≥ C , we
have that U (ni , ni+1 − 1) ≥ C − B. Thus, there are

k ≤ U (1, nk+1 − 1)/(C − B) (8)

phases.
Now we are going to discuss the profit of Rand′ on the input (I , x). Let Si be

a random variable denoting the state of the problem (according to Definition 4) just
before processing request xi , and letW (i, j)with i ≤ j be a random variable denoting
the profit of Rand′ incurred on the request sequence xi , . . . , x j ; let W (i, i − 1) := 0.

Since Rand′ answers the last request of each phase i greedily, it gains a profit of
at least U (ni+1 − 1, ni+1 − 1) − B.

Observation 2 For each i ∈ {1, . . . , k}, we have W (ni+1 − 1, ni+1 − 1) ≥ U (ni+1 −
1, ni+1 − 1) − B.

The following claim follows directly from the definitions.

Claim 1 If Rand′ performs a reset just before processing xi , then Si captures all the
information from the past that W (i, j) depends on. In particular, for any state s and
any l1 ≤ l2 < i , the random variables W (i, j) | Si = s and W (l1, l2) | Si = s are
independent.

In the following, we simplify our notation by usingUi := U (ni , ni+1−1) to denote
the (deterministic) profit ofOpt(I , x) in phase i andWi := W (ni , ni+1−1) to denote
the profit of Rand′

(I , x) in phase i ; note that Wi is a random variable.
We consider random variables Z0, . . . , Zk such that Zi expresses the total expected

profit of Rand′ if the outcomes of phases up to i are already fixed. Our goal is to show
that they form a submartingale and apply the Azuma–Hoeffding inequality to bound
the probability that Rand′ is much worse than the expectation. However, the Azuma–
Hoeffding theorem requires a bound on Zi+1 − Zi with probability 1, which is not
straightforward to get if there are requests of arbitrarily large profit. Therefore, we
need to consider the heavy requests separately. In particular, we define the expected
profit of a phase i ∈ {1, . . . , k} as an r -approximation of all requests except the last
one while allowing only a constant loss on the last request. We set

μi := U (ni , ni+1 − 2)/r +U (ni+1 − 1, ni+1 − 1) − α − B(1 + 1/r) ,

and define the random variables as

Zi :=
i∑

j=1

Wj +
k∑

j=i+1

μ j .

First, we show that μi is a lower bound on the expected profit of Rand
′ in phase i .

Lemma 1 For any i and s, we have E[Wi | Sni = s] ≥ μi .

123

1370 Algorithmica (2022) 84:1357–1384

Proof We consider the last request of the phase separately. Recall that ui :=
U (ni , ni+1 − 2) denotes the profit gained by Opt(I , x) in phase i on all requests
except the last one. By Opt-boundedness, regardless of the starting state s, it is possi-
ble to gain a profit of ui − B on these requests. Hence, the simulated algorithm Rand
gains an expected profit of at least (ui − B)/r − α. Since Rand′ performed a reset at
the start of phase i , i.e., just before processing request ni and then simulated Rand,
this is also the expected profit of Rand′. By Observation 2, the last request of phase i
is answered with a profit of at least U (ni+1 − 1, ni+1 − 1) − B. Summing these two
expected profits yields the claim. 	

Second, we prove that Z0, . . . , Zk form a bounded submartingale, and then use
the Azuma–Hoeffding inequality to conclude that Zk is unlikely to be much smaller
than Z0. Since Zk = W (1, n) is equal to the profit of Rand′ on the complete input
sequence, this allows us to bound the probability that Rand′ is significantly worse
than

∑k
i=1 μi .

Lemma 2 The sequence Z0, . . . , Zk is a submartingale.

Proof We have to show that, for each i with 0 ≤ i ≤ k, we have E[Zi+1 |
Z0, . . . , Zi] ≥ Zi . From the definition of the Zi ’s it follows that Zi+1 − Zi =
Wi+1 − μi+1. Consider any elementary event ξ from the probability space, and let
Zi (ξ) = zi , for i = 0, . . . , k, be the values of the corresponding random variables.
We have

E[Zi+1 | Z0, . . . , Zi](ξ)

= E[Zi+1 | Z0 = z0, . . . , Zi = zi]
= E[Zi + Wi+1 − μi+1 | Z0 = z0, . . . , Zi = zi]
= zi − μi+1 + E[Wi+1 | Z0 = z0, . . . , Zi = zi]
= zi − μi+1 +

∑

s

E[Wi+1 | Z0 = z0, . . . , Zi = zi , Sni+1 = s]

· Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi]
= zi − μi+1 +

∑

s

E[Wi+1 | Sni+1 = s] · Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi]

≥ zi − μi+1 + μi+1

∑

s

Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi] = zi = Zi (ξ) ,

where the last inequality is a consequence of Lemma 1. 	

Now we use the following special case of the Azuma–Hoeffding inequality [1,6].

Lemma 3 (Azuma, Hoeffding) Let Z0, Z1, . . . , Zk be a submartingale, such that
|Zi+1 − Zi | < γ . Then for any positive real t ,

Pr[Z0 − Zk ≥ t] ≤ exp

(
− t2

2kγ 2

)
.

123

Algorithmica (2022) 84:1357–1384 1371

As mentioned above, in order to apply Lemma 3, we need to provide a bound on
|Zi+1 − Zi | with probability 1.

Claim 2 For any i with 1 ≤ i ≤ k, it holds that |Zi − Zi−1| < γ , where γ :=
C + B(4 + 1/r).

Proof By definition, Zi − Zi−1 = Wi − μi = Wi −U (ni , ni+1 − 2)/r −U (ni+1 −
1, ni+1 − 1) + α + B(1+ 1/r). We provide the lower bound −C − 2B and the upper
bound B(3 + 1/r) on Zi − Zi−1 separately. Using that r > 1, α ≥ 0, B > 0, the
fact that the profit function is non-negative, Observation 1, the definition of Oi , and
Observation 2, we obtain

Zi − Zi−1 > Wi −U (ni , ni+1 − 2) −U (ni+1 − 1, ni+1 − 1)

= W (ni , ni+1 − 2) + W (ni+1 − 1, ni+1 − 1) −U (ni , ni+1 − 2) −U (ni+1 − 1, ni+1 − 1)

> −U (ni , ni+1 − 2) + W (ni+1 − 1, ni+1 − 1) −U (ni+1 − 1, ni+1 − 1)

> −(Oni+1−1 − Oni + B) + W (ni+1 − 1, ni+1 − 1) −U (ni+1 − 1, ni+1 − 1)

> −C − B + W (ni+1 − 1, ni+1 − 1) −U (ni+1 − 1, ni+1 − 1)

> −C − 2B ≥ −γ .

For the upper bound, we use the non-negativity of the profit function to get

Zi − Zi−1 ≤ W (ni , ni+1 − 2) + W (ni+1 − 1, ni+1 − 1) −U (ni+1 − 1, ni+1 − 1)

+α + B(1 + 1/r) .

Due to Opt-boundedness, Opt can answer request ni+1 − 1 with a profit of at least
W (ni+1 − 1, ni+1 − 1)(ξ) − B for any elementary event ξ . As Opt is optimal on the
complete input (I , x), it must answer this request with a profit of at least W (ni+1 −
1, ni+1 − 1)(ξ) − 2B due to Opt-boundedness. Hence, W (ni+1 − 1, ni+1 − 1) −
U (ni+1 − 1, ni+1 − 1) ≤ 2B. Therefore,

Zi − Zi−1 ≤ W (ni , ni+1 − 2) + α + B(3 + 1/r) .

Furthermore, W (ni , ni+1 − 2) ≤ Oni+1−1 − Oni + B < C + B; otherwise, a solu-
tion with a profit of more than Oni+1−1 can be constructed on the input sequence
x1, . . . , xni+1−2 due to Opt-boundedness, which is a contradiction to the definition of
Oni+1−1. As a result, we obtain

Zi − Zi−1 < C + α + B(4 + 1/r) = γ ,

which proves the claim. 	

We are now ready to apply Lemma 3 in order to finally bound the probability that

Rand′ does not produce a (1 + ε)r -competitive result.

123

1372 Algorithmica (2022) 84:1357–1384

Lemma 4 If k ≥ 1, then there are ν1 > 0, ν2, and α′ ≥ 0 that depend on r, ε, B, C,
and T only, such that

Pr

[
profit(Rand′

(I , x)) ≤ profit(Opt(I , x))

r(1 + ε)
− α′

]
≤ exp

(−ν1 · profit(Opt(I , x)) + ν2
)

.

Proof Note that profit(Rand′
(I , x)) ≥ ∑k

j=1 Wj = Zk . Therefore,

Pr

[
profit(Rand′

(I , x)) ≤ profit(Opt(I , x))

r(1 + ε)
− α′

]

≤ Pr

[
Zk ≤ profit(Opt(I , x))

r(1 + ε)
− α′

]

= Pr

[
Z0 − Zk ≥ Z0 − profit(Opt(I , x))

r(1 + ε)
+ α′

]
.

Now let

α′ := C + B

r(1 + ε)

and

t := Z0 − profit(Opt(I , x))

r(1 + ε)
+ α′ =

k∑

i=1

μi − profit(Opt(I , x))

r(1 + ε)
+ C + B

r(1 + ε)
.

Our goal is to apply Lemma 3; thus, we need to ensure that t > 0. Since r > 1,
we have μi ≥ Ui/r − α − B(1 + 1/r). Using (6), we have that profit(Opt(I , x)) <

U (1, nk+1 − 1) + C + B. We get

t =
k∑

i=1

μi − profit(Opt(I , x))

r(1 + ε)
+ C + B

r(1 + ε)

≥ U (1, nk+1 − 1)

r
− k

(
α + B · r + 1

r

)
− U (1, nk+1 − 1) + C + B

r(1 + ε)
+ C + B

r(1 + ε)

= U (1, nk+1 − 1)

r
− k

(
α + B · r + 1

r

)
− U (1, nk+1 − 1)

r(1 + ε)

= U (1, nk+1 − 1) · ε

r(1 + ε)
− k

(
α + B · r + 1

r

)
.

123

Algorithmica (2022) 84:1357–1384 1373

By (8), k(C − B) ≤ U (1, nk+1 − 1), and with this, we obtain

t ≥ k(C − B) · ε

r(1 + ε)
− k

(
α + B · r + 1

r

)

= k

(
(C − B)ε

r(1 + ε)
−

(
α + B · r + 1

r

))

= k
(C − B)ε − α · r(1 + ε) − B(r + 1)(1 + ε)

r(1 + ε)

= k
C · ε − B(ε + (r + 1)(1 + ε)) − α · r(1 + ε)

r(1 + ε)

= k · ν′ ,

where

ν′ := C · ε − B(ε + (r + 1)(1 + ε)) − α · r(1 + ε)

r(1 + ε)
.

Hence, to ensure that t > 0, it is sufficient to make sure that ν′ > 0, i.e.,

0 < C · ε − B(ε + (r + 1)(1 + ε)) − α · r(1 + ε)

⇐⇒ C · ε > B(ε + (r + 1)(1 + ε)) + α · r(1 + ε)

⇐⇒ C > B

(
1 + (r + 1)

1 + ε

ε

)
+ α · r 1 + ε

ε
,

which is guaranteed by (3).
Applying Lemma 3, we get

Pr

[
profit(Rand′

(I , x)) ≤ profit(Opt(I , x))

r(1 + ε)
− α′

]
≤ exp

(
− t2

2kγ 2

)
≤ exp

(
− kν′

2γ 2

)
.

By (7), we have that

Pr

[
profit(Rand′

(I , x)) ≤ profit(Opt(I , x))

r(1 + ε)
− α′

]

≤ exp

(
−

(
profit(Opt(I , x))

1 − ρ

C + B + T
− 1

)
· ν′

2γ 2

)
.

Finally, by setting

ν1 := 1 − ρ

C + B + T
· ν′

2γ 2

123

1374 Algorithmica (2022) 84:1357–1384

and

ν2 := ν′

2γ 2

the claim of the lemma follows. 	

The main result then directly follows from Lemma 4.

Proof (of Theorem 1) If profit(Opt(I , x)) is sufficiently large, we have k > 1 and can
apply Lemma 4, yielding that, for any β, ν1 > 0, and ν2,

exp
(−ν1 · profit(Opt(I , x)) + ν2

) ≤ (
2 + cost(Opt(I , x))

)−β
.

The behavior of Rand′ on inputs where the optimal solution is smaller can be
hidden in the additive constant α′. 	

4 TheMain Theorem for Minimization Problems

In this section, we proof the second part of our main result. However, as opposed to
maximization problems, in the case of minimization, we need to impose another yet
very natural restriction on the problems studied.

Definition 9 (Request-Boundedness) An online problem � is called request-bounded
if, for some constant F , it has a partition function P such that

∀I , x, y, i : P(I , x1, . . . , xi ; y1, . . . , yi) ≤ F .

We say that � is request-bounded according to P .

We conjecture that it is possible to drop this requirement using arguments somewhat
similar to those used in Sect. 3. However, it seems to be far from trivial to formulate a
straightforward adaption for the case that there is a large total cost in heavy requests.
In any case, again taking paging and k-server on finite metric spaces as examples,
request-boundedness is indeed satisfied.

Besides that, we can somewhat adapt the ideas used for maximization problems
to achieve an analogous result for minimization problems. However, even with the
request-boundedness property, there remains one issue that prevents us from applying
them in a straightforward fashion. The reason is that, in minimization problems, there
is no deterministic bound on the difference between the algorithm’s solution and the
optimum for a single phase. While in the maximization setup, the worst case is that
the algorithm gains nothing, while the optimum cost is fixed, in the minimization
setup, the algorithm can, with small probability, incur some arbitrarily large cost. To
avoid this problem, we introduce the concept of subphases. Whenever the simulated
randomized algorithm incurs too large of a cost within a single phase, we introduce
an extra reset. We are then able to bound the probability that another reset happens

123

Algorithmica (2022) 84:1357–1384 1375

using Markov’s inequality, and then ensure that the probability of a large number of
subphases decreases exponentially in the number of subphases. This allows us to split
the probability of a bad result in the final analysis into two cases: either there are
sufficiently many subphases, or we can apply the Azuma–Hoeffding inequality for a
fixed bound on a phase cost increase.

Theorem 2 Consider an onlineminimization problem� that is request-bounded,Opt-
bounded, and symmetric according to a common partition function. Suppose there is
a randomized online algorithm Rand for � with constant expected competitive ratio
r . Then, for each constant ε > 0, there is a randomized online algorithm Rand′ with
competitive ratio (1 + ε)r w.h.p..

As in Sect. 3, Rand′ simulates Rand and performs reset operations at specific
places. Again, the general idea is to boost the probability of (this time) acquiring a low
cost by performing a reset each time the algorithm incurs too much cost. To this end,
the request sequence is again partitioned into phases of a fixed optimal cost; this time,
however, each phase may be further cut into subphases based on the cost incurred
by Rand′ so far. A reset may cause an additional expected cost of r · B + α for the
subsequent phase compared to an optimal solution starting from another state, where
B is the constant of the Opt-boundedness property (Definition 6). We therefore have
to ensure that the phases are long enough so as to amortize this overhead.

From now on let us consider ε, r , B, F , and α to be fixed constants. Recall that F
originates from the request-boundedness property of the online minimization problem
at hand (Definition 9) and Rand is r -competitive in expectation with an additive
constant α. The algorithm Rand′ is parameterized by two parameters C and D which
depend on ε, r , B, F , and α. These parameters control the lengths of the phases and
subphases, respectively, such that C + F delimits the optimal cost of one phase and
D+ F delimits the cost of the solution computed by Rand′ on one subphase. In order
for our proof to work, we can pick any C with

C >
F + B + α

ε
(9)

and any D with both

D > r(C + F + B + α) (10)

and

D >
(1 + ε)r2C(C + B + F + α)

r((1 + ε)C − (C + B + F + α))
. (11)

Consider an initial situation I , an input sequence x = (x1, . . . , xn), and let the opti-
mal cost of the input (I , x) be between (k−1)C and kC for some integer k. Then x can
be partitioned into k phases x̃1 = (x1, . . . , xn2−1), x̃2 = (xn2 , . . . , xn3−1), . . . , x̃k =
(xnk , . . . , xn) in such a way that ni is the minimal index for which the optimal cost
of the input (I , (x1, . . . , xni)) is at least (i − 1)C . It follows that the optimal cost

123

1376 Algorithmica (2022) 84:1357–1384

for one phase is at least C − F and less than C + F , with the exception of the last
phase, which may be cheaper. Note that this partition can be generated by the online
algorithm itself, i.e., Rand′ can determine when a next phase starts. This time, there
are two reasons for Rand′ to perform a reset: at the beginning of each phase and after
incurring a cost exceeding D since the last reset. Hence, Rand′ starts each phase with
a reset, and the processing of each phase is partitioned into a number of subphases
each of cost at least D (with the exception of the possibly cheaper last subphase) and
at most D + F .

Now we are going to discuss the cost of Rand′ on a particular input. Let us fix
the input (I , x) which subsequently also fixes the indices 1 = n1, . . . , nk . Let Si be
a random variable denoting the state of the problem (according to Definition 4) just
before processing request xi , and letW (i, j)with i ≤ j be a random variable denoting
the cost of Rand′ incurred on the request sequence xi , . . . , x j . Claim 1 holds in this
setting as well.

The overall structure of the proof is as follows. We show in Lemma 6 that the
expected cost obtained by Rand′ during a phase (conditioned on the state in which
the phase was entered) is at most μ := r(C + F + B + α)/(1 − p), where p :=
r(C + F + B + α)/D < 1. We can then consider random variables Z0, . . . , Zk

such that Z0 := kμ and Zi := (k − i)μ + ∑i
j=1 W j for i > 0, where Wi is the

cost of the i th phase, clipped from above by some logarithmic bound, i.e., Wi :=
min{W (ni , ni+1 − 1), c log k}, for some suitable constant c. We show in Lemma 7
that Z0, . . . , Zk form a bounded supermartingale, and then use the Azuma–Hoeffding
inequality to conclude that Zk is unlikely to be much larger than Z0. By a suitable
choice of the free parameters, this implies that Zk is unlikely to be much larger than
the expected cost of Rand. Finally, we show that w.h.p. Zk is the cost of Rand

′.
In order to argue about the expected cost of a given phase in Lemma 6, let us first

show that a phase is unlikely to have many subphases. For the rest of the proof, let X j

be the random variable denoting the number of subphases of phase j .

Lemma 5 For any i , s, and any δ ∈ N, we have Pr[Xi ≥ δ | Sni = s] ≤ pδ−1.

Proof The proof is done by induction on δ. For δ = 1 the statement holds by definition.
Let nc denote the index of the first request after c − 1 subphases, with n1 = ni , and
nc = ∞ if there are fewer than c subphases. In order to have at least δ ≥ 2 subphases,
the algorithm must enter some suffix of phase i at position nδ−1 and incur a cost of
more than D (see Fig. 1). Hence,

Pr[Xi ≥ δ | Sni = s] = Pr[nδ−1 < ni+1 − 1 | Sni = s]
· Pr[W (nδ−1, ni+1 − 1) > D | nδ−1 < ni+1 − 1 ∧ Sni = s] . (12)

The fact that nδ−1 < ni+1 − 1 means that there are at least δ − 1 subphases, i.e.,

Pr[nδ−1 < ni+1 − 1 | Sni = s] ≤ Pr[Xi ≥ δ − 1 | Sni = s] ≤ pδ−2 (13)

123

Algorithmica (2022) 84:1357–1384 1377

Fig. 1 The situation with δ subphases

by the induction hypothesis. We decompose the event and obtain

Pr[W (nδ−1, ni+1 − 1) > D | nδ−1 < ni+1 − 1 ∧ Sni = s]
=

∑

i ′,s′
ni≤i ′<ni+1−1

Pr[W (nδ−1, ni+1 − 1) > D | nδ−1 = i ′ ∧ Si ′ = s′]

· Pr[nδ−1 = i ′ ∧ Si ′ = s′ | nδ−1 < ni+1 − 1 ∧ Sni = s] . (14)

Now let us argue about the probability

Pr[W (nδ−1, ni+1 − 1) > D | nδ−1 = i ′ ∧ Si ′ = s′ ∧ Sni = s] .

Rand′ performed a reset just before reading xi ′ , so it starts simulatingRand from state
s′. However, in the optimal solution, there is some state s′′ associated with position
i ′ such that the cost of the remainder of the i th phase is at most C + F . Due to the
assumption of the theorem, the optimal cost on the input xi ′ , . . . , xni+1−1 starting from
state s′ is at most C + F + B, and the expected cost incurred by Rand is at most
r(C + F + B) + α. Using Markov’s inequality, we get

Pr[W (nδ−1, ni+1 − 1) > D | nδ−1 = i ′ ∧ Si ′ = s′] ≤ r(C + F + B) + α

D
≤ p .

(15)

Plugging Lemma 15 into Lemma 14, and then together with Lemma 13 into
Lemma 12 yields the result. 	

Now we can argue about the expected cost of a phase.

Lemma 6 For any i and s, it holds that E[W (ni , ni+1 − 1) | Si = s] ≤ μ.

Proof Let nc be defined as in the proof of Lemma 5. Using the same arguments, we
have that the expected cost of a single subphase is

E[W (nc,min{nc+1, ni+1 − 1}) | nc = i ′ ∧ Si ′ = s′] ≤ r(C + F + B) + α .

123

1378 Algorithmica (2022) 84:1357–1384

Conditioning and decomposing by nc and s′, we get that

E[W (nc,min{nc+1, ni+1 − 1}) | Xi ≥ c] ≤ r(C + F + B) + α .

Finally, let Qi,c = W (nc,min{nc+1, ni+1 − 1}) if Xi ≥ c, or 0 if Xi < c. This
yields

E[W (ni , ni+1 − 1) | Si = s] =
∞∑

c=1

E[Qi,c | Si = s]

=
∞∑

c=1

E[Qi,c | Si = s ∧ Xi ≥ c] · Pr[Xi ≥ c]

≤
∞∑

c=1

(r(C + F + B) + α)pc−1 = (r(C + F + B) + α)/(1 − p) ≤ μ ,

which proves the lemma. 	

Once the expected cost of a phase is established, we can show that Z0, . . . , Zk form
a bounded supermartingale using arguments similar to the proof of Lemma 2.

Lemma 7 For any constant c > 0, the sequence Z0, . . . , Zk is a supermartingale.

Proof Consider a fixed c. This time, we have to show that for each i , E[Zi+1 |
Z0, . . . , Zi] ≤ Zi . From the definition of the Zi ’s it follows that Zi+1 − Zi =
Wi+1 − μ. Again, consider any elementary event ξ from the probability space, and
let Zi (ξ) = zi , for i = 0, . . . , k, be the values of the corresponding random variables.
We have

E[Zi+1 | Z0, . . . , Zi](ξ) = E[Zi+1 | Z0 = z0, . . . , Zi = zi]
= E[Zi + Wi+1 − μ | Z0 = z0, . . . , Zi = zi]
= zi − μ + E[Wi+1 | Z0 = z0, . . . , Zi = zi]
= zi − μ +

∑

s
E[Wi+1 | Z0 = z0, . . . , Zi = zi , Sni+1 = s]

· Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi]
≤ zi − μ +

∑

s
E[W (ni+1, ni+2 − 1) | Sni+1 = s] · Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi]

≤ zi − μ + μ
∑

s
Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi] = zi = Zi (ξ) ,

where the last inequality is a consequence of Lemma 6. 	

Now we use the following special case of the Azuma–Hoeffding inequality [1,6].

123

Algorithmica (2022) 84:1357–1384 1379

Lemma 8 (Azuma, Hoeffding) Let Z0, Z1, . . . be a supermartingale, such that
|Zi+1 − Zi | < γ . Then for any positive real t ,

Pr[Zk − Z0 ≥ t] ≤ exp

(
− t2

2kγ 2

)
.

In order to apply Lemma 8, we need the following bound.

Claim 3 Let k be such that c log k > μ. For any i , it holds that |Zi+1 − Zi | < c log k.

We are now ready to prove the subsequent lemma.

Lemma 9 Let k be such that c log k > μ. If C and D satisfy (9), (10), and (11), then

Pr[Zk ≥ (1 + ε)rkC] ≤ exp

(

−k((1 + ε)rC − μ)2

2c2 log2 k

)

.

Proof Applying Lemma 8 for any positive t , we get

Pr[Zk − Z0 ≥ t] ≤ exp

(
− t2

2kc2 log2 k

)
.

Noting that Z0 = kμ and choosing

t := k((1 + ε)rC − μ) ,

the statement follows. The only remaining task is to verify that t > 0, i.e.,

(1 + ε)rC > r(C + F + B + α)
1

1 − r(C+F+B+α)
D

.

Due to (9), (1 + ε)C > C + F + B + α. Furthermore, due to (11), we have

r D(1 + ε)C − r D(C + B + F + α) > (1 + ε)r2C(C + B + F + α)

and therefore

(1 + ε)rC(D − r(C + B + F + α)) > r D(C + B + F + α) ,

and the claim follows. 	

To get to the statement of themain theorem,we show the following technical bound.

Lemma 10 For any c and β > 1, there is a k0 such that for any k > k0, we have

exp

(

−k((1 + ε)rC − μ)2

2c2 log2 k

)

≤ 1

2(2 + kC)β
.

123

1380 Algorithmica (2022) 84:1357–1384

Proof Note that the left-hand side is of the form exp
(
−η k

log2 k

)
for some positive

constant η. Clearly, for any β > 1 and sufficiently large k, it holds that exp
(
η k
log2 k

)
≥

2(2 + kC)β . 	

Combining Lemmas 9 and 10, we get the following result.

Corollary 1 If C and D satisfy (9), (10) and (11), then for any β > 1 there is a k0 such
that for any k > k0, we have

Pr[Zk ≥ (1 + ε)rkC] ≤ 1

2(2 + kC)β
.

To finish the proof, we show that w.h.p. Zk is actually the cost of Rand′.

Lemma 11 For any β > 1, there is a c and a k1 such that, for any k > k1 and any
input sequence x resulting in k phases,

Pr[Zk �= cost(Rand′
(I , x))] ≤ 1

2(2 + kC)β
.

Proof Since Zk = ∑k
j=1 min{W (n j , n j+1 − 1), c log k} the event that Zk �=

cost(Rand′
(I , x)) happens exactly when there is some j such thatW (n j , n j+1−1) >

c log k.
Consider any fixed j . Since the cost of a subphase is at most D + F , it holds that

W (n j , n j+1 − 1) ≤ X j (F + D). From Lemma 5, it follows that for any c that

Pr[W (n j , n j+1 − 1) > c log k] ≤ Pr

[
X j ≥

⌈
c log k

F + D

⌉]
≤ p

c log k
F+D −1 .

Consider the function

g(k) :=
log

(
2k
p (2 + kC)β

)

log k
,

which is decreasing; furthermore, limk→∞ g(k) = 1+ β. Hence, it is possible to find
a constant c and a k1, such that for any k > k1 it holds that

c ≥ F + D

log
(
1
p

) · g(k) .

From that it follows that

log
(
1
p

)
c log k

F + D
≥ log

(
1

p

)
+ log

(
2k(2 + kC)β

)

123

Algorithmica (2022) 84:1357–1384 1381

and

log

(
1

p

)(
c log k

F + D
− 1

)
≥ log

(
2k(2 + kC)β

)
,

i.e.,

(
1

p

) c log k
F+D −1

≥ 2k(2 + kC)β .

Therefore, for this choice of c and k1, it holds that

Pr[W (n j , n j+1 − 1) > c log k] ≤ p
c log k
F+D −1 ≤ 1

2k(2 + kC)β
.

Using the union bound, we conclude that the probability that the cost of any phase
exceeds c log k is at most 1/(2(2 + kC)β). 	

Using the union bound once more, combining Lemmas 11 and 1, and noting that
the cost of the optimum is at most kC , we get the following statement.

Corollary 2 If C and D satisfy (9), (10), and (11), then, for any β > 1, there is a k2
such that, for any k > k2 and any input sequence x resulting in k phases,

Pr[cost(Rand′
(I , x)) ≥ (1 + ε) · r · cost(Opt(I , x))] ≤ 1

(2 + kC)β
.

Proof (of Theorem 2) To show that, for any β > 1, there is some α′ such that

Pr
[
cost(Rand′

(I , x)) > (1 + ε) · r · cost(Opt(I , x)) + α′] ≤ 1

(2 + kC)β

holds for all k, we have to choose α′ sufficiently large to cover the cases of k < k2.
For these cases, cost(Opt(I , x)) < k2C , and hence the expected cost of Rand is at
most rk2C + α, and due to Lemma 6 the expected cost of Rand′ is constant. The
right-hand side (2 + kC)−β is decreasing in k, so it is at least (2 + k2C)−β , which is
again constant. From Markov’s inequality it follows that there is a constant α′ such
that

Pr
[
cost(Rand′

(I , x)) > α′] <
1

(2 + k2C)β
,

finishing the proof. 	

123

1382 Algorithmica (2022) 84:1357–1384

5 Applications

We now discuss the impact of our results on paging, the k-server problem, and task
systems. Despite being related, these problems have different flavors when analyzing
them in the context of high probability results.

5.1 Paging and the k-Server Problem

Paging allows for a direct application of Theorem 2. Thus, for any paging algorithm
with expected competitive ratio r there is an algorithm with competitive ratio r(1+ ε)

w.h.p..
The k-server problem, introduced by Manasse et al. [13], is concerned with the

movement of k servers in a metric space. Each request is a location and the algorithm
has tomove one of the servers to that location. If the metric space is finite, this problem
is well known to be a special metrical task system.

Theorem 3 directly implies that all algorithms with a constant expected competitive
ratio for the k-server problem in afinitemetric space canbe transformed into algorithms
that have almost the same competitive ratio w.h.p..

If the metric space is infinite, an analogous result is still valid except that we have to
bound the maximum transition cost by a constant. This is the case, because the proof
of Theorem 3 uses the finiteness of the state space only to ensure bounded transition
costs.

5.2 Task Systems

The properties of online problems needed for Theorem 2 are related to the definition
of task systems. There are, however, some important differences.

To analyze the relation, recall the definitionof task systems as introducedbyBorodin
et al. [4]. We are given a finite state space S, an initial state s0 ∈ S, and a function
d : S × S → R+ that specifies the (finite) cost to move from one state to another;
if d is a metric function, we speak of a metrical task system. The requests given as
input to a task system are a sequence of |S|-vectors that specify, for each state, the
cost to process the current task if the system resides in that state. An online algorithm
for task systems aims at finding a schedule such that the overall cost for transitions
and processing is minimized. From now on we will call states in S system states to
distinguish them from the states of Definition 4. As a matter of fact, the concept of
states introduced in Definition 4 is more general than system states. As states depend
on the sequence of requests and answers, there may be infinitely many states for some
online problems. Also, specific state transitions may be impossible. For task systems,
however, the states of Definition 4 are the same as system states.

Theorem 3 Let Rand be a randomized online algorithm with expected competitive
ratio r for task systems. Then, for any ε > 0, there is a randomized online algorithm
Rand′ for task systems with competitive ratio (1 + ε)r w.h.p..

123

Algorithmica (2022) 84:1357–1384 1383

Proof Consider any task system problem with a fixed set of system states and distance
metric. SinceRand is a general algorithm for task systems, it can solve the considered
task system problem regardless of the choice of the initial state. For the remainder of
the proof, we consider a generalized variant of the fixed task system problem where
the initial state is part of the input instance and Rand to be an algorithm solving this
generalized problem.

The task systemproblem clearly has a partition function according toDefinition 3 as
each request is associated with a non-negative cost. The adversary may also stop after
an arbitrary request, which is already sufficient to induce a unique partition function.

The system states are exactly the states according to our definition, because the
optimal future cost only depends on the current system state and a future request has
the freedom to assign individual costs to each of the system states. In other words, an
equivalence class s from Definition 4 (i.e., one state) consists of exactly one unique
system state. To apply Theorem 2, we choose the constant B of the theorem to be
maxs,t∈S{d(s, t)}. This way, the problem is Opt-bounded as one transition of cost at
most B is sufficient to move to any system state used by an optimal algorithm.

The remaining condition of Theorem 2, namely that every state is initial, is satisfied,
since we generalized Rand to be an algorithm to handle arbitrary initial states. Thus
we can apply Theorem 2 to Rand and the claim follows. 	

Acknowledgements The authors want to express their deepest thanks to Georg Schnitger, who gave some
very important impulses that contributed to the results of this paper.

Funding Open access funding provided by Swiss Federal Institute of Technology Zurich.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Azuma, K.: Weighted sums of certain dependent random variables. Tôhoku Math. J. 19(3), 357–367
(1967)

2. Achlioptas, D., Chrobak,M.,Noga, J.: Competitive analysis of randomized paging algorithms. Theoret.
Comput. Sci. 234(1–2), 203–218 (2000)

3. Borodin,A., El-Yaniv, R.:OnlineComputation andCompetitiveAnalysis. CambridgeUniversity Press,
Cambridge (1998)

4. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM
39(4), 745–763 (1992)

5. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging
algorithms. J. Algorithms 12(4), 685–699 (1991)

6. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc.
58(301), 13–30 (1963)

7. Hromkovič, J.: Design and Analysis of Randomized Algorithms. Springer, Berlin (2005)

123

http://creativecommons.org/licenses/by/4.0/

1384 Algorithmica (2022) 84:1357–1384

8. Komm,D., Královič, R., Královič, R.,Mömke, T.: Randomized online algorithmswith high probability
guarantees. In: Proceedings of STACS 2014, LIPIcs, vol. 25, pp. 470–481 (2014)

9. Komm, D.: An Introduction to Online Computation: Determinism, Randomization, Advice. Springer,
Berlin (2016)

10. Koutsoupias, E.: The k-server problem. Comput. Sci. Rev. 3(2), 105–118 (2009)
11. Leonardi, S., Marchetti-Spaccamela, A., Presciutti, A., Rosén, A.: On-line randomized call control

revisited. SIAM J. Comput. 31(1), 86–112 (2001)
12. Maggs, B.M.,Meyer auf der Heide, F., Voecking, B.,Westermann,M.: Exploiting locality for networks

of limited bandwidth. In: Proceedings of FOCS 1997, pp. 284–293 (1997)
13. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for on-line problems. J. Algo-

rithms 11(2), 208–230 (1990)
14. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2),

202–208 (1985)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Randomized Online Computation with High Probability Guarantees
	Abstract
	1 Introduction
	Organization and Techniques
	Related Work

	2 Preliminaries
	2.1 Defining High Probability w.r.t. the Input Size
	2.2 Defining High Probability w.r.t. the Optimal Solution
	2.3 Symmetric Problems and High Probability

	3 The Main Theorem for Maximization Problems
	4 The Main Theorem for Minimization Problems
	5 Applications
	5.1 Paging and the k-Server Problem
	5.2 Task Systems

	Acknowledgements
	References

