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ABSTRACT
The development and application of Intelligent Transportation Sys-
tems (ITSs) leads to a growing demand of traffic data. Floating Car
Observers (FCOs) contribute by providing information about am-
bient traffic of vehicles while driving. We present an approach to
implement an FCO that uses particulate matter sensors for obtain-
ing road abrasion from cars driving ahead of a test vehicle. Using
Random Forest (RF), we predict presence and absence of ambient
traffic in the vicinity of test vehicle with particulate matter readings
(𝑃𝑀01, 𝑃𝑀2.5, 𝑃𝑀10) as predictor variables. Results show that RF
reaches prediction accuracy ranging from 86 to 99 percent for differ-
ent train/test split options when analysing individual trajectories
as well as 88 to 91 percent accuracy when analysing all trajecto-
ries combined. We face limitations mainly when merging single
trajectories, due to different initial ambient particulate matter val-
ues. We conclude that presence and absence of ambient traffic are
predictable using Random Forest with road abrasion values as pre-
dictor variables. Further, rainfall events (that may cause wash-off
effects on roads) do not significantly change the accuracy of our
classification. Optimisation of the model and the need of testing
more diverse weather and road conditions remain open tasks for
future research.

CCS CONCEPTS
• Hardware → Sensors and actuators; Sensor applications
and deployments; Sensor devices and platforms; • Comput-
ing methodologies → Machine learning.

KEYWORDS
Floating Car Observer (FCO), Sensors, Road Abrasion, Machine
Learning, Random Forest (RF)
ACM Reference Format:
Christian Röger and Irada Ismayilova. 2020. Predicting Ambient Traffic of a
Vehicle from Road Abrasion Measurements using Random Forest. In 13th
International Workshop on Computational Transportation Science (IWCTS’20),
November 3, 2020, Seattle, WA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3423457.3429367
This is the author's version of the work. It is posted here for your personal use. Not for 
redistribution. The definitive Version of Record was published in:
IWCTS’20, November 3, 2020, Seattle, WA, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8166-6/20/11.
https://doi.org/10.1145/3423457.3429367

1 INTRODUCTION
Intelligent Transportation Systems (ITSs) aim towards making road
systems more efficient, environmentally friendly and safer. Due to
a rapid development in the research field of ITSs, there is a growing
need of traffic data [6] [34]. Floating Car Observers (FCOs) con-
tribute by providing information about the surrounding traffic of an
individual vehicle. This could either be the number of vehicles driv-
ing ahead, the number of vehicles surrounding a car or a Boolean
representation (absence/presence of traffic). Many attempts have
been made to accomplish FCOs, e.g. using proximity sensors like
laser scanners [3] [31], scanning for digital signals of nearby devices
[12] [29] or filming ambient traffic with a video camera [30] [32].
However, many approaches come with limitations. Video cameras
are able to capture ambient traffic accurately, but may be restricted
due to privacy guidelines in some regions [25]. Scanning for digital
signals in the surroundings of a car (e.g. Bluetooth or Wifi) faces the
problem of possible re-detections of similar devices [13]. Proximity
sensors like laser scanners generally have high acquisition costs.
Consequently, we see potential in approximating ambient traffic of
a vehicle using road abrasion measurements as a cost effective and
accurate alternative.
We aim to develop an FCO using road abrasion measurements ob-
tained from particulate matter sensors. There is research on mobile
particulate matter measurements with sensors mounted on vehicles
[8] [33]. However, there is no research on particulate matter based
FCOs existing yet. In this paper we aim to prove that ambient traffic
(here: presence and absence of other vehicles in the environment
of cars) can be predicted using Random Forest (hereafter RF) with
road abrasion measurements as predictor variables. Further, we
investigate which influences different weather conditions (e.g. rain-
fall events) and road types (e.g. urban roads, highways) have on the
model results.
In this case study, we introduce a multi sensor array for measuring
road abrasion. In addition, we place a video camera in front of the
windscreen of our test vehicle in order to be able to train our model
and validate the results. Using the sensor array and the camera, we
create several datasets under different road and weather conditions.
Accuracy of predictions, sensitivity, specificity, Receiver Operat-
ing Characteristic (ROC) curves and Area Under the Curve (AUC)
values will be analysed in order to asses the performance of our
approach.

https://doi.org/10.1145/3423457.3429367
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2 MEASURING AND CLASSIFYING ROAD
ABRASION

Can road abrasion be measured using low cost particulate matter
sensors?
Vehicles do not only emit pollutants in the form of tailpipe emis-
sions. There are also particles that emerge from tire and brake wear
and tear. Those particles spread on the road surfaces until they get
whirled up by other cars that pass by. This process is called road
abrasion and resuspension [9]. [5] emphasise the influence of road
abrasion on total particle matter emission of cars. In their experi-
ment, they calculate ratios for particle sources of driving vehicles
in an urban and a highway environment. For urban roads, they
calculate a ratio of 21 percent brake wear, 38 percent resuspended
road dust and 41 percent tailpipe exhaust emissions. For highways,
the result is 3 percent brake wear, 56 percent resuspended particles
and 41 percent tailpipe exhaust emissions [5].
Depending on the source, particles have different diameters. 𝑃𝑀01,
𝑃𝑀2.5 and 𝑃𝑀10 are frequently used subdivisions of particles. The
term 𝑃𝑀01 describes very fine particles with a diameter of one 𝜇𝑚
and smaller. Particles with a diameter of 2.5 𝜇𝑚 and less are called
𝑃𝑀2.5. Bigger particles with a diameter of ten 𝜇𝑚 and smaller are
called 𝑃𝑀10 [2].
Studies show that road abrasion and resuspension is measurable us-
ing particulatematter sensors. Kupiainen and Pirjola (2011) measure
road abrasion with a mobile laboratory vehicle . A car is equipped
with pipes mounted next to the tires of the vehicle. The pipes lead
to particle counters that assess the amount of particulate matter
emitted by road abrasion [16]. Zum Hagen et al. (2019) measure
particles emitted by brake wear with a cone-shaped sampler that
leads air from the break region of a car to its trunk. There, particles
get measured and counted [35].
Influences of rainy weather conditions are a possible limitation
for our research. In fact, rain may wash away the particles from
the road surfaces making them not measurable. In their study, [21]
investigate the influence of rainfall events on particles of different
sizes and materials. The elements of Manganese (Mn), Iron (Fe),
Aluminium (Al), Nickel (Ni), Chromium (Cr), Zinc (Zn), Lead (Pb),
Copper (Cu), Antimony (Sb) and Cadmium (Cd) are investigated.
Findings indicate that rain only influences particles with a diameter
of 75 𝜇𝑚 and bigger. Smaller particles are excluded from wash-off
effects. Consequently, we expect that rainfall events will not have a
significant influence on measurement results of particulate matter
sensors when it rains for every particle material.
Not only particles getting washed away during rain events is a
possible limitation to our research, but also water particles get-
ting interpreted as fine dust by particulate matter sensors. As [27]
proposes, particulate matter readings 𝑃𝑀𝑤𝑒𝑡 can be corrected to
dry particulate matter values 𝑃𝑀𝑑𝑟𝑦 by dividing them by a growth
function 𝑔𝑓 (𝑟ℎ):

𝑃𝑀𝑑𝑟𝑦 =
𝑃𝑀𝑤𝑒𝑡

𝑔𝑓 (𝑟ℎ) (1)

For selecting growth functions 𝑔𝑓 (𝑟ℎ), there are several possi-
bilities. [24] propose using the following function:

𝑔𝑓𝑆𝑜𝑛𝑒 𝑗𝑎 = 1 + 𝛼 ∗ 𝑟ℎ2
1 − 𝑟ℎ

(2)

with 𝑟ℎ as relative humidity and an 𝛼 value of 0.25 as proposed
in the literature [24].
For classifying the measurement results we use the RF method. The
choice of RF algorithm is justified by its robustness against noise,
missing values and correlation between variables [10]. Moreover, it
provides high prediction accuracy through cross validation [4]. As
we expect some noise emerging in our fine dust readings, RF seems
applicable.
Proposed by Breiman in 2001, RF is an ensemble learning method
used for both classification and regression tasks. It is an enhanced
version of the widely used Classification and Regression Tree al-
gorithm (CART) [26]. By answering yes/no questions, trees in the
forest are grown. Unlike to the boosting and bagging classification
trees, each tree in the forest is formed using the best of the random
input variables at each node split as well as based on the bootstrap
sampling (where one third of the original data is left out and used
later for testing) [4] [22]. Forest can grow until the discrete classifi-
cation is achieved. Then, the final classification decision is made
using majority of a classification outcome (vote) of each tree in the
forest. RF allows to obtain an average error of prediction of out of
bag samples (OOB error). OOB error can also be considered as an
independent accuracy assessment parameter since samples used to
calculate the error do not appear in bootstrap samples [4].
As a part of general procedure, data is split into train and test
datasets. The model is trained using the train subset and validated
using the test subset [4]. RF is very user friendly in execution and
there are only two parameters that need to be specified [19] and
can be tuned so that higher prediction accuracy is achieved. These
include the number of classification trees in the forest (𝑛𝑡𝑟𝑒𝑒 ) and
number of variables used to split internal node (𝑚𝑡𝑟𝑦 ) [28]. Variable
importance measure provided by a RF model is another estimate
which helps in eliminating noisy or less important variables. It is
calculated through permutation feature importance function and
shows a decrease of a model score when a single feature value is
randomly shuffled [4].
In classification tasks, performance of the RF model is possible to
verify through a Confusion Matrix (CM) [14]. CM is produced with
both OOB error and independent error assessments and shows pre-
dicted values versus actual values. Another RF model performance
estimate is the Area Under the Receiver Operating Characteris-
tics(AUROC). It explains how good the model is capable to distin-
guish between predicted classes. ROC curve plots true positive rate
against false positive rate. The higher the area under the curve
(AUC), the better the model determines different classes [11].
RF is an accurate classifier and robust against noise. Further, it
is not sensitive to a small sample size while it is capable to han-
dle big amount of data [17]. There are many examples where RF
outperforms other widely used statistical modelling methods. For
instance, [1] compared Logistic Regression, Naive Bayes, Support
Vector Machine, Random Forest and Neural Networks for detecting
anomalies in traffic and concluded that RF had the best prediction
performance. In another case study ([7]), which focused on traffic
accidents, RF again reached higher prediction accuracy than Artifi-
cial Neural Networks and Support Vector Machine.
Therefore, in this paper we present a use case of RF for predicting
presence and absence of ambient traffic nearby the test vehicle with
the help of particulate matter recordings.
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Table 1: Overview of Test Trajectories

Trajectory Length Record Points Weather Conditions Road Type ∅ Temperature ∅ Humidity
a 5.37 km 453 Moderate Rain Urban 15.7 °C 90.0 %
b 7.13 km 545 Cloudy Urban & Federal Highway 18.3 °C 53.3 %
c 5.69 km 271 Cloudy Urban & Federal Highway 18.0 °C 52.6 %
d 5.10 km 453 Sunny Suburban 12.2 °C 71.1 %
e 9.69 km 383 Cloudy Suburban & Federal Highway 15.6 °C 84.9 %
f 9.05 km 484 Light Rain Urban & Federal Highway 15.9 °C 82.2 %
g 4.13 km 310 Cloudy Urban 15.5 °C 84.4 %

3 A FLOATING CAR OBSERVER (FCO) USING
PARTICULATE MATTER SENSORS AND
RANDOM FOREST

We introduce a multi sensor array for gathering road abrasion data.
Further, we describe a Random Forest (RF) based model to classify
recorded data points into two classes; ambient traffic and no ambient
traffic.

3.1 Data Acquisition
We produce a dataset with particulate matter readings obtained
from low cost sensors and information about surrounding traffic of
our test vehicle using a video camera. A PMS3003 particulate matter
sensor is placed in front of the ventilation grille of the test vehicle
with the aim to sense road abrasion and resuspension emitted by
cars driving in front of the car. Further we obtain temperature
and humidity readings from a DHT22 sensor placed next to the
particulate matter sensor for eliminating the influence of ambient
humidity from fine dust values. Figure 1 shows the particulate
matter sensor and the temperature/humidity sensor mounted on
our test vehicle.

Figure 1: ParticulateMatter and Temperature/Humidity sen-
sors mounted on our test car

In addition, we gather spatio-temporal data. A NEO-6M GPS
sensor is used to acquire datetime and location data. The sensors

are connected to an Arduino Nano microcontroller that loggs ev-
ery record to a micro SD card. We collect a total number of 12
parameters as shown in Table 2.

Table 2: Data obtained for the Case Study

Parameter Unit
Datetime Datetime
Location Latitude & Longitude
𝑃𝑀𝑤𝑒𝑡

01 𝜇𝑔/𝑚3

𝑃𝑀𝑤𝑒𝑡
2.5 𝜇𝑔/𝑚3

𝑃𝑀𝑤𝑒𝑡
10 𝜇𝑔/𝑚3

𝑃𝑀
𝑑𝑟𝑦

01 𝜇𝑔/𝑚3

𝑃𝑀
𝑑𝑟𝑦

2.5 𝜇𝑔/𝑚3

𝑃𝑀
𝑑𝑟𝑦

10 𝜇𝑔/𝑚3

Temperature Degrees Celsius
Humidity %

Ambient Traffic Boolean (0/1)

Table 2 shows the parameters obtained from our sensors. Date-
time and Location values are used for joining the particulate matter
values to the ambient traffic values gathered from the recorded
video stream. We use a Boolean representation with the value 0 for
no ambient traffic and the value 1 for one or more cars surrounding
our test vehicle. 𝑃𝑀𝑤𝑒𝑡 values grouped into three particle sizes
(𝑃𝑀𝑤𝑒𝑡

01 , 𝑃𝑀𝑤𝑒𝑡
2.5 , 𝑃𝑀𝑤𝑒𝑡

10 ) are directly obtained from the particu-
late matter sensor. Since humidity influences particulate matter
readings, we apply a humidity compensation to our sensor values.
Using humidity readings and the humidity compensation formulas
proposed by [27] and [24], we are able to compute particulate mat-
ter values under dry condition (𝑃𝑀𝑑𝑟𝑦

01 , 𝑃𝑀𝑑𝑟𝑦

2.5 , 𝑃𝑀𝑑𝑟𝑦

10 ).
Using our sensor setup, we perform seven test drives to generate
data for our case study. The test trajectories and their conditions
(trip length, number of record points, road types, weather condi-
tions, average temperature and average humidity) are presented in
Table 1. All trajectories vary between 4.13 kilometres (trajectory
g) and 9.69 kilometres (trajectory e) trip length with a total record
point count between 271 (trajectory c) and 545 (trajectory b) points.
We cover several road types such as urban roads, suburban roads
and federal highways. By driving under different weather condi-
tions we want to determine if there are limitations to the usage of
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our sensor array for specific weather events like rainfall or dryness.
Our dataset covers rainy as well as sunny conditions.

3.2 Model Design
We conduct a Case Study assessing the use of RF to predict ambient
traffic of a car using road abrasion measurements. Figure 2 provides
a flowchart with input data, processing steps and model outputs.

Figure 2: Flowchart with input data, processing steps and
output parameters of the model

Figure 2 shows input data, processing steps and output param-
eters of our model. We conduct the study both with the single
trajectories of our dataset and with the entire dataset. We use only
𝑃𝑀

𝑑𝑟𝑦

01 , 𝑃𝑀𝑑𝑟𝑦

2.5 and 𝑃𝑀𝑑𝑟𝑦

10 as predictors to train our model. In or-
der to join the single trajectories, we perform a field calibration
of our measurements to bring the measurement values of 𝑃𝑀𝑑𝑟𝑦

01 ,
𝑃𝑀

𝑑𝑟𝑦

2.5 and 𝑃𝑀
𝑑𝑟𝑦

10 to similar levels. This is a necessary step, as
each trajectory comes with individual initial ambient particulate
matter levels within the air, triggered by the amount of pollen,
water particles and wind that lets air circulate. This step is not per-
formed for single trajectories since we only look at relative changes
of particulate matter values. Next, we split both the entire dataset
and the single trajectories into train and test subsets. There is no
particular recommendation in the literature which split option to
choose. Therefore, we use 50/50, 60/40 and 70/30 splits. We train
the model using the train subsets and test the model performance
with the test subsets. We use the default parameter values of the
R randomForest function for the model, with 𝑛𝑡𝑟𝑒𝑒 (500) and𝑚𝑡𝑟𝑦

(√𝑝 , where p is the number of predictor variables) [18] and then
tune those parameters if required to achieve better classification
results.
Outputs of the model include the accuracy of predictions, the sen-
sitivity, the specificity, a ROC curve and the AUC value. Output
parameters are then used to assess the performance of the predic-
tions and validate model results.

3.3 Results of the Classification
First, we analyse the single trajectories individually in order to
examine the influence of different weather and road conditions on
the model performance. Output parameters of the model are shown
in Table 3.

Table 3: Accuracy values for different train/test splits of the
test trajectories 𝐼𝐷𝑇𝑟𝑎𝑗

𝐼𝐷𝑇𝑟𝑎𝑗 Split Accuracy Sensitivity Specificity AUC
a 50/50 0.9251 0.8846 0.9593 0.97
a 60/40 0.9396 0.9398 0.9394 0.9634
a 70/30 0.9485 0.9508 0.9467 0.9237
b 50/50 0.9194 0.9247 0.9167 0.9686
b 60/40 0.9404 0.9420 0.9396 0.9772
b 70/30 0.9329 0.9123 0.9439 0.9583
c 50/50 0.9338 0.6897 1.0000 0.9826
c 60/40 0.9725 0.8571 1.0000 0.9775
c 70/30 0.9878 0.9231 1.0000 0.9695
d 50/50 0.8987 0.9024 0.8942 0.9651
d 60/40 0.9121 0.8932 0.9367 0.9723
d 70/30 0.9338 0.9600 0.9016 0.9871
e 50/50 0.9635 0.9697 0.9570 0.9906
e 60/40 0.961 0.9747 0.9467 0.9799
e 70/30 0.9565 0.9655 0.9474 0.9854
f 50/50 0.9558 0.9667 0.9457 0.983
f 60/40 0.97 0.9794 0.9612 0.9883
f 70/30 0.9733 1.0000 0.9518 0.9883
g 50/50 0.8581 0.9296 0.7976 0.9323
g 60/40 0.8871 0.9180 0.8571 0.9341
g 70/30 0.871 0.8776 0.8636 0.974

Table 3 shows accuracy, sensitivity, specificity and AUC values
for different splits of the trajectories 𝑎 to 𝑔. Prediction accuracy
values range from 86 percent (trajectory 𝑔, 50/50 split) to 99 percent
(Trajectory 𝑐 , 70/30 split) showing that the overall prediction per-
formance is good. Sensitivity ranges from 69 percent (Trajectory
𝑐 , 50/50 split) to 100 percent (trajectory 𝑓 , 70/30 split). Trajectory
𝑐 with 50/50 split shows a bad true positive rate, meaning that
points with actual ambient traffic could not be predicted well out
of particulate matter values. The rest of sensitivity values show
good performance in detecting true positives. Specificity ranges
from 86 percent to 100 percent meaning that true negatives (in
this case no ambient traffic) are detected sufficiently. ROC curves
imply high AUC values which range from 93 percent (Trajectory 𝑔,
50/50 split) to 99 percent (Trajectory 𝑒 , 50/50 split). Overall, 70/30
splits perform best with the used datasets. Nevertheless, 60/40 splits
perform only few percent worse. 50/50 splits also perform well with
the exception of sensitivity in Trajectory 𝑐 .
We cannot observe any differences of performance values when
taking into account weather and road conditions of our trajectories.
We assume that the humidity correction we conducted when pro-
ducing the datasets eliminates the influence of rain. There is also
no influence of different road types (suburban roads, urban streets,
highways) visible in the results.
Further, we train and test the model with the entire dataset. Due to
different ambient particulate matter values while recording single
trajectories, the overall levels of the values differ. This can be caused
by pollen, water particles or different wind conditions. Thus, we
calibrate particulate matter values from each trajectory to bring
the single trajectory readings to the same level. A correction factor
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is calculated by taking into account mean values of the particu-
late matter readings of each trajectory. After calibration, we merge
the trajectories to a single dataset. Using different train/test splits
(50/50, 60/40, 70/30) and standard settings of 𝑛𝑡𝑟𝑒𝑒 and𝑚𝑡𝑟𝑦, we
run the RF model again. Model outputs are shown in Table 4.

Table 4: Accuracy values for different train/test splits of the
entire dataset

Split Option Accuracy Sensitivity Specificity AUC
50/50 0.8823 0.8494 0.9054 0.9588
60/40 0.8777 0.8815 0.8745 0.9507
70/30 0.913 0.8690 0.9465 0.961

Table 4 shows accuracy of classification, sensitivity, specificity
and AUC values for all three train/test options. Accuracy ranges
from 88 percent (50/50 split) to 91 percent (70/30 split). Sensitivity
values are quite similar for each split options going from 85 percent
(50/50 split) to 88 percent (60/40) split. Specificity ranges from 88
percent (60/40 split) to 95 percent (70/30 split). ROC curves are
shown in Figure 3.

Figure 3: ReceiverOperatingCharacteristic (ROC) curves for
sensitivity and specificity of the RF model (entire dataset)

Figure 3 shows ROC curves for each split options of the entire
dataset. Curves run very near the upper left corner, which indicates
a valid model. Especially the 70/30 option shows good performance
with an AUC value of 96 percent. As for the single trajectories, the
70/30 split option provides us with the best results. Other tested
split options do not significantly perform worse.

4 DISCUSSION AND LIMITATIONS
Our study shows promising results. Prediction accuracy, sensitivity,
specificity and AUC outputs are on a high level, meaning the model
performs good and is valid. Nevertheless, there are some limitations
in our research.
For generating data, we introduce a multi sensor array. It includes
mainly low cost sensors. While temperature and humidity readings
are known to be quite accurate for DHT22 sensors (humidity +-2%

RH, temperature +-0.5 degrees Celsius according to the datasheet
[20]), PMS3003 particulate matter sensors tend to give more im-
precise output values. According to the PMS3003 datasheet [23],
𝑃𝑀2.5 readings have a maximum consistency error of +-10 𝜇𝑔/𝑚3.
Response times range from <1 second (single response time) to
<=10 seconds (total response time). Since we do not aim to measure
absolute particulate matter values, their inaccuracies are acceptable
for our research. Still, we see a limitation in the specifications of
PMS3003 sensors concerning the response times.
The placement of the sensors in front of the ventilation grille seems
reasonable to us. Still it is known that changes in air flow through
the sensor also create inaccuracies. While the vehicle is driving,
there is an unstable flow of air that comes through the sensor dur-
ing measurement. In order to stabilise the air flow, other studies
propose the use of a critical nozzle [15].
For dealing with influences of humidity in our particulate matter
values, we apply a humidity correction. Since trajectories with
higher average humidity do not perform significantly worse than
trajectories with low average humidity, we conclude that the correc-
tion performs well. Figure 4 shows humidity correction exemplary
on 𝑃𝑀𝑤𝑒𝑡

2.5 and 𝑃𝑀𝑑𝑟𝑦

2.5 values of trajectory f.

Figure 4: Relative humidity, particulate matter 𝑃𝑀𝑤𝑒𝑡
2.5 and

humidity corrected particulate matter 𝑃𝑀𝑑𝑟𝑦

2.5 for trajectory
𝑓

Figure 4 depicts relative humidity (blue dotted line), 𝑃𝑀𝑤𝑒𝑡
2.5

before humidity correction (red line) and 𝑃𝑀
𝑑𝑟𝑦

2.5 after humidity
correction (green line) for trajectory 𝑓 . As ambient humidity rises,
the correction formula automatically adjusts the particulate matter
values in order to prevent them from influence of water particles.
Still high humidity is a factor that affects our research. Some par-
ticles get washed away from road surfaces when rainfall events
occur. As [21] state, not every type of particle is influenced by rain
wash-off events. Though, there are some particle types (e.g. rub-
ber, emerging from tire wear) not tested within the study of [21].
Consequently, a higher number of test drives under high and low
humidity conditions might be beneficial to carry out.
We run our model based on seven test trajectories conducted under
different road and weather conditions. Although we cover different
conditions, there are more heterogeneous characteristics in a real-
world environment. For instance, neither very cold nor very hot
weather conditions are covered in our data. In addition, our dataset
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does not contain road abrasion readings from unpaved streets. Gen-
erally, we aim to conduct more test drives using the introduced
sensors in order to evaluate the model performance.
Hyperparameter tuning of RF model parameters did not signifi-
cantly increase the prediction accuracy in comparison to the default
values set in the RF package. Therefore, we consent with default
values and the achieved prediction accuracy. Apart from that, we
see potential of optimisation in the calibration of single trajectory
particulate matter readings when merging them. Due to varying
ambient particulate matter levels in the air during measurements,
there are different ranges for 𝑃𝑀𝑑𝑟𝑦 in our trajectories. Ranges
vary significantly throughout the dataset. Especially 𝑃𝑀𝑑𝑟𝑦

10 values
show big differences from trajectory to trajectory. We reach good
classification accuracy by levelling the output values as proposed in
this study. Still there is a need of taking into account more complex
calibration methods. Taking particulate matter measurements from
static counters and calculating the relative changes for each single
trajectory could provide us with good results.
RF has proven itself as an accurate classification method in many
studies. Here, we can also conclude that RF performs well in this
case study. Still testing other methods, e.g. linear regression, Gradi-
ent Boost or Support Vector Machines, might be beneficial.

5 CONCLUSIONS AND FUTUREWORK
In this study we use Random Forest to predict ambient traffic of a
vehicle using road abrasion obtained from a low cost particulate
matter sensor as predictor. We conclude that this works well with
high accuracy for our datasets. The study shows that the model is
capable to be tested as a Floating Car Observer. We notice that 60/40
and 70/30 train/test splits work best for our model with prediction
accuracy values of up to 99 percent for single trajectories and up to
91 percent for the entire datasets. Sensitivity, Specificity, AUC and
ROC outputs prove the validity of the classifications. Limitations
exist mainly for the utilised sensors and the different initial ambient
particulate matter levels in the air when measuring. Using low cost
sensors proves applicable for our research. Since we do not monitor
absolute particulate matter values and rather detect changes in the
data caused by ambient traffic, we conclude that low cost particulate
sensors can be used for detecting changes in road abrasion. Still we
see a limitation in the response time specification of the sensors.
In our study, rain is no significant limitation for measuring road
abrasion. The model performs as good as under dry conditions
due to the diameter of particles sensed. For our data, humidity
correction is enough to decrease the influence of water particles in
ambient air.
Generating more datasets to test the approach under more weather
and road conditions will be subject of future research. Furthermore,
we will evaluate if our fine dust measurements can also be used
for mobile air quality assessment. In addition, we will test more
machine learning classification techniques in order to evaluate the
performance of our RF-based approach. Finally, we aim to integrate
our approach into a Floating Car Observer framework.
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