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AbslracL Spinless fermions with local disarder and nearest neighbour repulsion are 
investigaled on a Bethe laltice with infinite branching. 'WO phases are studied: a 
homogeneous phase and a checkerboard charge-density wave. Within this framework 
[he model is exaaly solved for all values of disorder, interaction and temperature. 
'The transition between the RHO phases is described in detail. The density of states 
p ( w) ,  aitical interaction U, and order parameter b are calculakd. Ihe syslem displays 
anomalous behaviour: away from half-filling particledensity Ruduations due to weak 
disorder and/or IOW temperatures bvour spontaneous symmetry breaking. W analyse 
and explain this Unconvenlional phenomenon. 

1. Introduction 

One of the most important objectives of condensed matter theory is to reach a proper 
understanding of correlated, i.e. interacting and/or disordered, fermionic systems. 
Taken separately, correlation effects due to interaction and disorder already lead to 
highly complicated problems. Their simultaneous presence naturally gives rise to even 
more subtle effects. The majority of recent investigations of interacting disordered 
electron systems are based on the theory developed for the Anderson localization 
problem, i.e. for disordered systems without interactions [l]. In this theory the initial 
problem is mapped onto a field theory 121, which is investigated by renormalization 
g o u p  techniques. A generalization of this approach to the case of disordered 
electrons [3] in the presence of interactions subsequently led to considerable insight 
into the problem [4]; for a review see [l]. The formation of local magnetic moments, 
which leads to serious complications in the application of the renormalization group, 
was first recognized by Finkel'shtein [5] and Castellani ef al [6] in the framework of a 
continuum model with disorder, and further developed in [7,8]. In the framework of 
a Hubbard model with local disorder it was discussed in 191. The latter model was also 
used by Ma [lo] to study the phase diagram by means of a real-space renormalization 
group. Its strong coupling version, i.e. the t-J model with disorder, was investigated 
by Zimanyi and Abrahams [ll]. 

Tb gain a better understanding of the full interplay between disorder and 
interaction effects an exactly solvable itinerant quantum model is desirable. Since 
such a model is not available in finite dimensions d > 1 one would, at least, like to 
construct a comprehensive mean-field theory which is valid for all input parameters, 
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ie. interaction, disorder, temperature, particle density, etc. Such a mean-field theory 
is, for example, provided by the solution of a lattice model in the limit of high 
dimensions or coordination number 2. This approach, which is well established 
in classical statistical mechanics, has also recently been formulated for quantum 
mechanical lattice models with itinerant degrees of freedom [12]. In the limit Z-tca 
microscopic many-body methods are greatly simplied, without becoming trivial (for 
reviews, see (13,141). In particular, one can show [Iq that 0) the ‘coherent potential 
approximation’ becomes the exact solution for the Anderson disorder model, and (U) 
in the case of interacting systems with a Hubbard-type Hamiltonian (without disorder) 
only the Hubbard interaction remains dynamical, while all other interactions (e.g. 
neareSt neighbour interaction) reduce to their Hartree substitute [16]. Indeed, in the 
limit Z + ca the problem of interacting systems with Hubbard interaction becomes 
a dynamical single-site theory (17,181 which may be exactly formulated in terms of a 
generalized coherent potential [17,19]. As stated above it is our aim to study the interplay of disorder and interaction 
for the full range of parameters by means of the limit 2 -+ca. Since the Hubbard 
model, even without disorder, remains very complicated in this h i t  it is not the right 
candidate. Therelore, we choose to examine a model of spinless fermions with nearest 
neighbour interaction and site-diagonal disorder. In this model we know the solutions 
of the limits of zero disorder and zero interaction, respectively. The model is indeed 
exactly solvable in the limit Z -00 for all disorder and interaction strengths. This 
enables us to calculate all relevant physical quantities, such as the density of stares, 
critical interaction, and so on, erplicitly. The use of 2 -ca as an approximation of 
a finitedimensional system has the advantage of treating disorder and interaction on 
an equal footing. The arbitrariness, which enters when two or more expansions are 
used, e.g. in the disorder and in the interaction or in the disorder and in E = d - 2, is 
ruled out since only one approximation step is involved. It is mntroIled by the small 
parameter 1/Z so that systematic corrections are possible. 

A model of interacting fermions without spin degeneracy may be useful in the 
case of strongly polarized systems (e.g. in a lattice-gas description of 3He in a strong 
magnetic field), as well as ferromagnetic (or ferrimagnetic) electronic systems where, 
for example, the down-spin bands arc filled and only an up-spin band needs to 
be considered. The latter situation is realized in magnetite (Fe,O,), where the 
lowest singlet spin-up band is half filled, leading to metallic conductrvity above a 
temperature T, N 119K at atmospheric pressure. At T, the system undergoes the 
Verwey transition into an insulator [20]. Cullen and Callen [21,22] first suggested 
a model of spinless fermions with nearest neighbour interaction without disorder to 
describe this transition. 

The model itself can be solved exactly in d = 1 [U,24]. In d = 1 and for 
half filling the solution describes a transition from a homogeneous to a charge- 
density-ordered phase at a finite value of the interaction. This is also borne out in a 
variational treatment, using a Gutmiller wavefunction plus Gutnviller approximation 
[E]. The transition was discussed in detail by Shankar 1261, who also calculated 
various response functions and gave a qualitative argument concerning the effect of 
disorder on the transition. According to his argument arbitrarily weak disorder will 
destroy the interaction-induced energy gap. A transition to a chargedensity-ordered 
state at a finite interaction turns out to he a peculiarity of the dimension d = 1 [27l. 

For d > 1 and half filling on a bipartite lattice the transition is shifted to 
arbitrarily small interactions, as may be expected from the perfect-nesting property. 
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This is important for our investigation since the Hartree solution of the model without 
disorder (which becomes exact for 2-03) also has this feature. A straightfomrd 
generalization of Shankar's disorder argument to higher coordination numbers reveals 
that a non-trivial competition between interaction and disorder is present for d 2. 
Hence, the mean-field solution already correctly describes two important aspects of 
the exact solution in finite dimensions d = 2,3, at least qualitatively. 

The paper is organized as follows. The model and details of the perturbational 
treatment are given in section 2 In sections 3 and 4 our results for the density of 
states and the phase transition Line critical interaction against filling are shown. We 
interpret our findings in section 5. In section 6 the critical behaviour across the phase 
transition is examined while the discussion in section 7 concludes the main part of 
our article. 

2. Model 

The basis of our investigations is a tight-binding Hamiltonian for spinless fermions 
with nearest neighbour hopping, local disorder and nearat neighbour repulsion 
(screened Coulomb interaction) 

where E : ( E i )  are the creation (destruction) operators for fermions on site i, 
fi; = $ S i  and U i j , t i j  = 0 if i , j  are not nearest neighbours. For the model to 
remain non-trivial in the limit of high coordination numbers, 2 -t w, the ho ping 
matrix elements and the interaction matrix elements are scaled as t . .  := -t/ P 2 and 
U i j  := U / Z ,  respectively [12,16]. The energy ei is a stochastic variable drawn from 
some local, site-independent distribution function P(6) .  The chemical potential is p. 

In our investigation we choose to work on a Bethe lattice with branching 
I< = 2 - 1. This has the advantage that in the limit IC-CO the density of states is 
exactly given by a half ellipse, whereby explicit analytic calculations are made possible 
[15,28]. In the case of the one-particle quantities to be calculated below, the peculiar 
properties of the Bethe lattice (absence of loops, etc) do not lead to unphysical 
features. The most important aspect of the lattice in the correlation problem under 
investigation, namely the bipartite structure, is equally provided by the Bethe lattice. To tackle the problem set out above we will proceed as follows. First, an equation 
of motion is constructed using Green functions in a locator representation. Then, 
writing the spacediagonal Green function (full locator) in terms of a renormalized 
perturbation expansion, the limit of large branching is taken. Finally, we formally 
resum the diagrammatic series to obtain a closed system of equations. Throughout 
this paper we will work in units of h = 1, IC, = 1 and t / f i  = 1. 

2.1. Perturbarion technique for I< + CO 

The one- and two-particle imaginary-time Green functions are defined by 

? 

G ( i , T i ; j , T j )  = - ( T e ; ( T i )  C ? ( T j ) )  (2n) 

G(i,Ti;71, T n ; j ,  Tj;m,T,,,) = - ( TE i ( T ; ) t n ( T , , )  t ! ( T j )  ?$(Tm)). (B) 
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Here ( )  indicates the quantum mechanical ensemble average at finite temperature. 
The ensemble average with respect to the disorder of some physical quantity X is 
given by 

- X:= n J d e i  P ( e i ) X ( c ,  ..., c i  ,... ). 
i 

(3) 

Using standard techniques (29-311 an equation of motion for the Green function 
With Gij(z,) and G i 9 j 9 ( z l r z , , z , )  as the Fourier transforms with is obtained. 

respect to time of (2a) and (2b), respectively, we find 

Gij(z,)  = gY(zi16ij t CgY(Zr ) t i 9G9 j (Z , )  
9 

where zf = p + iw, and w, = rr(21+ l)/p. For the bare locator, gY(zl). we have 

The two-particle Green function appearing in (4) depends only on three frequencies 
because explicitly time-dependent fields are absent io (1). The inverse temperature 
is denoted by p and the variables T ,  s run over all integers. Figure 1 is the pictorial 
representation of (4). It illustrates how the perturbative terms (hopping, interaction) 
appear, and how the different frequencies { z , ,  zr .zf)  and sites ( i , q , j )  are related. 

% y c - ; ; ,  
I 

:,+:,-:a I ( '  

I +=i+ I v i j i i 
v+

Figure 1. Diagrammatic represenlation of the equation of motion. 0ne.panide Green 
function: [a1 line with full a m w ;  hopping amplilude: thin line with full a m ;  bare 
locator: bmken venial line wilh cross; two-panicle Green fundion: hvo [at linm with 
shaded square; nearest neighbour interaction: wavy curve. 

In the same way one can construct an equation of motion for Gi9j9(z , ,  z?, 7 , ) .  
This equation does not contain irreducible three-particle verticcs. Thus, by expansion 
of the latter equation and (4). the explicit perturbation expansion in terms of 
g:(z,),  ti, and U i j  is obtained. Subsequently we consider the space-diagonal 
element of the Green function, i.e. the 'full locator' g ; ( z r )  := G i i ( z f ) .  For g i ( z l )  
we witc down an expansion in such a way that, of all perturbation terms mentioned 
above, those with a contribution from a given site, say i, are isolated. Formally this 
can be written as 

9 i ( Z l )  = + sY(zJ w z r ) s i ( . , ) .  (6) 
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lill 0,) ((.I (d)  

Fiure Z Expansion of the tull locator (indicaied by the full vertical line with a cross) 
in terms of the selfenergy; (a) bare locator; mnrribution to the perturbation via @) 
hopping, (c) interaction and (d) combination of hopping and interaclion. 

The essential point of (6) is that Xi( z I )  does not depend on z i .  An expansion of (6) 
is given in figure 2. In figure Z(b) two hopping amplitudes connect gy with the rest of 
the locators; in figure 2(c) this role is played by the interaction. Finally, figure 2(d) 
gives an example of a combined effect. 

At this point we introduce the limit of infinite branching, K -00. In analogy to 
the simplifications for infinite dimensions discussed for nearest neighbour interactions 
by Muller-Hartmann [16] and for disordered systems by Vlaming and Vollhardt [lq, 
we have a dramatic reduction of terms in the expansion (6), represented in figure 2 
In fact, from the terms given iii figure 2, anly figures 2(a-c) remain. In particular, 
diagrams containing irreducible contributions in the'disorder and the interaction, such 
as figure 2(d), vanish in the limit K-co .  This conclusion is apparent from figure 2 
Each hopping integral contributes a factor IC-'/z, each interaction contributes a 
factor IC-' and each sum over free sites contributes a factor IC. For the diagrams 
in figures 2(b, c) this results in h - ' ~ 2 1 C - ' ~ Z K  - 1 and K - l I t  - 1, respectively. 
However, figure 2(d) gives K - ' ~ z h ' - l ~ * I < - l K  - K-I, thus it vanishes in the limit 
IC-CO. From this example we learn that the self-energy C , ( z l )  decouples into WO 
mdependent conm'buiionr. For the full locator we write 

(7) 0 U si = sY + si ci si + si si 9; 
where the z1 dependence is suppressed for clarity. The self-energy u i ( z , )  results 
from the perturbation in the hopping, the self-energy si from the perturbation in the 
interaction. Physically, a particle at site i is subject to WO additive effective potentials, 
one due to the disorder, the other due to the interaction, both originating from the 
surrounding system. This is a typical mean-field property. 

Making use of the renormalized perturbation expansion [29] for a Bethe lattice 
the self-energies are simply given by 

The superscripts representing a site with a minus sign imply that the locator does 
not depend on the energy of that particular site. Since in the limit IC - CO only 
Hartree diagrams for the nearest neighbour interaction remain, the related self- 
energy, si, is fresuenq independent. This is an e m f ,  albeit special, and highly 
simplifying feature of our model for K + m. The equations (8) introduce a new 
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locator, gjT('j, which has an expansion like (7). In such an expansion site i must 
be excluded everywhere, thus leading to new self-energies and s;('j, etc. In 
the next subsection we will explain how this hierarchy of equations can be closed by 
averaging over the disorder. 

22. Introduction of two different phases 

On every bipartite lattice, i.e. a lattice of A-B structure, there are at least two 
possible phases depending on the interaction strength. For U = 0 the system is in the 
homogeneous phase, which implies that the averaged full locator is site independent. 
On the other hand, for U > 1 the checkerboard phase or charge density wave (CDW) 
is more favourable from the energetic p i n t  of view. For intermediate interaction 
strengths, U F;: 1, the situation is not a priori clear. 

A part of a Bethe lattice for 1; = 2 is shown in figure 3. It b important to 
recognize that in the limit l i - m  one has = g;'"', where (..) may stand for any 
finite number of sites [15]. This is clear in the special m e  = g;(') because site j 
is only one of the I: + 1-00 neighbours of site i. 

-~ 
- 

Figure 3. Pan or a Bethe lattice with I\' = 2. Sites i ,  j, k and 1 form a path along 
which lhe local electron filling allcmales. Sites i and k; low filling, and sites j and I: 
high tilling. 

Suppose the system is in a homogeneous phase at U = 0; then we have = __ 
for all $,j. One may equally write = gYtiJ as was illustrated above (see figure 3). 
The latter equation can be used directly in (Sa). Averaging (7) leads to the quantities 

and q. Since the filling is kept constant the site-independent self-energy s; merely 
shifts the chemical potential, thereby ruling out any effect of the interaction. Now 
suppose the system is in the checkerboard phase, C l  > 1; then all poin6 on each of 
the sublattices A,B are equal, i.e. = =and gjEB = g I E B  (see also figure 3). 

As mentioned above, for general U we do not rigorously know the structure of 
the most favourable phase. Since this information has to be put in by hand, we restrict 
ourselves to the simplest symmetry extension and assume a checkerboard phase. Thus 
we make the following ansatz: 

- -  
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where the roman indices U (upper) and L (lower) energetically distinguish between 
the two sublattices. The sublattice L is that sublattice on which an electron when 
added to the system, has the lower interaction energy. Note that this is the sublattice 
with the higher electron filling. For sublattice U the opposite applies. In figure 3 this 
feature is clarified using small and big dots representing the filling at each site. 

For gu = gL we recover the homogeneous phase and the phase with gu # gL we 
will simply call CDW. Equations (9) close the hierarchy indicated above, albeit on a 
higher level. Algebraic manipulations, making use of (7)-(9), lead to 

We now switch to real frequencies w by analytic continuation. The filling of the upper 
and the lower sublattice, respectively, is given by 

where f F ( w )  = [exp(b’(w - f i ) )  f 11-’ is the Fermi distribution. The total filling n 
and the order parameter b are defined by 

n := ;(nL f nu) 

b:= $ ( n L - n u ) .  

In the homogeneous phase we have 6 = 0, while in the CDW phase 6 may vary 
between 0 and 1. 

We now choose the disorder distribution to be semi-elliptic: 

where 4 f i  is the width of the distribution. The main motivation for this choice 
is that it contains only a single parameter and that the integrals remain uactable. 
Inserting (13) and (12) in (10) we obtain 
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P 

W 
Figure 4. DOS in the Cow phase for A = 0.5. Far y = 0 the DOS mnsists of WO band$ 
and diverges at w = -0.5 (asymptote indicated by thin broken tine). For 7 = 0.1 the 
band gap has become Smaller and the divergence is mead out. For 7 = 0.4 the two 
bands have merged. 

where 4 := Ub and the chemical potential has been renormalized as j f  i /I + U n .  
The latter merely indicates that p is shifted by the interaction to keep n constant. 
Using (12) and (ll), and the definition of A, one finds 

For given y and p one has to find values for j f  and 4 such that n(P,y)  and U ( p , y )  
equal n and U for the system under investigation. In this sense (14) and (15) form 
a self-consistent system. These equations are the central ones in our paper. 

3. Density of states 

There are four different situations, depending on the values of y and A. 
(i) For y = 0, A = 0, Le. free electrons on a Bethe lattice with infinite branching, 

the DOS is known to be semi-elliptic [29]. This also follows from (14) which is a 
quadratic equation in g(w),  defined as 

d w )  := 4(9L(W) + 9 d W ) )  (16) 
because gv(w) = gL(w). 

(ii) In the homogeneous state with finite disorder (y # 0,A = 0) equation (14) 
remains quadratic in g(w), but the DOS broadens by a factor m. 

(iii) In the CDW state without disorder (y = 0 and A # 0) we have gu(w) # 
gL(w), but the equation Cor g(w)  remains quadratic. The retarded Green function 
for the lower sublattice is 

w - A  
2 

gL(w)=- - 
and for the upper sublattice one has gu(w) = gL(w)IA,-A. The DOS for the lower 
sublattice is plotted in figure 4. It displays the existence of two bands With a bandgap 
of 2A. The bands extend from -A to -- and f rom~ with a 
divergence at w = -A. 

U, 
~~ ~ ~~ 
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(iv) The most complicated situation arises for the CDW state in the presence of 
disorder (y f 0, A f 0). Equation (14) can be rewritten as 

['b2(yt 1 ) ] g 4 ( w ) + [ - b r ( 2 ?  t 1)1g3(w)+ ['b't ( ~ z - A z ) ~ + ( ~ z - A z ) ] g z ( ~ )  

(1%) t [ w ( A 2  - w2 - 4 y ) ] g ( w )  4- uz = 0 

Equation (18) provides the overall DOS, while the DOS of the sublattices is found 
from (186). Although (18a) allows for several complex solutions the requirement 
Im { g L ( w ) }  < 0 and Im { g u ( w ) }  < 0 determines a unique solution for any allowed 
w,y and A. In figure 4 the DOS for the lower sublattice is plotted for A = 0.5 
with 7 = 0.1 and y = 0.4, respectively. The divergence at w = -A disappears for 
finite y. For larger values of y the two subbands merge. The symmetry of g ( w ) ;  Le. 
g ( - w )  = g(w), implies that the bands merge at w = 0. lb find the critical value A, 
for which A the bands merge the solutions of ( M a )  have to be examined for w = 0. 
One finds 

2 Y  A, = - m'
The existence of such a critical A can be understood as follows. A strong 

interaction leads to a phase transition from the homogeneous phase to the CDW; 
the larger U is, the bigger the energy diffcrcnce between the bands will be. On the 
other hand, disorder generally leads to broadening of a band, so that, if the disorder 
is large enough, the zero-energy states are accessible for the electrons. These effects 
compete so that a critical A, which depends monotonically on the disorder, must 
exist. 

4. The phase transition line 

In this paragraph we detern e ' critical interaction value U, for which the 
phase transition appears. U, depends on the disorder, the temperature and, through 
the chemical potential p, on the filling. By taking A - 0 in (14) and (U)  one finds 

- 

In the subsequent subsections we shall discuss (20) for different values of P and y. 
Furthermore, the case of half filling and the empty band limit will be investigated. 



nu                

4.1. Zero tempernlure and finite disorder 
In the limit of zero temperature, /3 -* 03, explicit integration of (20) is possible and 
we obtain 

U J O ~ , ~ )  = w w  + 7) - I . L ~ I ~ ’ ~ H ~ ( I . L , Y ) ~ - ’  (216) 

where we made use of an auxiliary function: 

- l / h z + ( l / h 3 ) l n [ ( 2 + h ) / ( 2 - h ) ]  y <  1 
H1(I.L,7):= ft y = l  (%) 

l /h2 - (Z/h3)tan-’(;h) Y > l  

(2%) 2 ‘ 17 .  h := I l l  - yI(q1+ 7) - P 11 
The Fermi level must fulfill the constraint In figure 5 Uc is 
plotted against n for different values of the disorder. For vanishing disorder the 
logarithmic term ln(2 - m) remains so that the behaviour at I.L -+ 0, i.e. 
at half filling, is singular. This is the so-called perfect-nesting singularity, which 
results from the lattice being bipartite. Away from half filling it disappears like 
U, - -./[In(.(. - $)/4) + 11. In the same way this divergence disappears if the 
disorder is small @ut finite), namely like U, - - ~ / [ l n ( y / 2 )  + 11. 

In figure 5 several interesting effects of the disorder can be obseived. Comparing 
the curve for y = 0 with y == 0.: we see that they intersect for n ~3 0.43. 
Qualitatively, this holds for any two curves with different disorder strength. ?b 
describe this phenomenon we introduce the tilling nA(y)  at which two U, against n 
curves, which differ only by dy in the disorder, intersect. From figure 5 we learn that 
by varying y -+ y + dy at filling ?a < nA(y)  the critical interaction U, decreases, 
whereas at filling n > nA(y) an increase of U, oceups. ’Ihe behaviour in the region 
n < nA(y) may be called ‘anomalous’ (compared with the conventional situation) 
because h e  disorderfavours h e  CDW’phase in this region. Thus nA(-{) is the filling 
that separates anomalous from conventional disorder dependence. For increasing 
disorder nA(r) decreases so that the anomalous region becomes smaller. A detailed 
investigation of the latter observation is given in appendix A. 

An explicit example may shed some light on this unusual behaviour. Let us 
consider a system that has a filling n* and an interaction U* as indicated in figure 5. 
In a sample with low disorder this system is in the homogeneous phase. If the 
disorder is somewhat stronger, y % 0.1, the system displays a CDW structure and 
for a strongly disordered system, y 3 0.5, the system is in the homogeneous phase 
again. Reappearance of the homogeneous phase is not surprising because for strongly 
disordered systems the disorder dominates. Thus, for any (finite) filling n > nA, a
certain value of the disorder exists from which on the Uc against n curves ars  
‘ordered’, i.e. UC(m,yl) > U,(m,yz) if y, > yz. 

i 
< 2 m .  

4.2. Finite temperature and zero disorder 

In figure 6 U, is plotted against ?i for various  lues of the temperature at zero 
disorder (y = 0). In the limit 3 = 03 we recover the curve in figure 5 for 
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or., , I , . . . , ( ,  , , . , q  
0.d 0.40'0.3 0.2 0.1 0.0 

n n 
P i p r e  5. Qitical interaction against iilling for &wre 6' Qitical interaction against iilling for 
various disorder strengths (zero temperature), A various temperatures (zero disorder). A y t e m  
syslem wilh filling n* and interaction U' shows with filling n* and interaction U* shows anomalous 
anomalous behaviour with respect to the disorder. behaviour with respect to the temperature. 

y = 0. For small (but fmite) temperatures the perfect-nesting singularity disappears: 
U, - x / [ l n ( S p / n )  + C - l]), where C E 0.5772 is Euler's constant [32]. 

Furthermore, an anomalous behaviour similar to the situation where only disorder 
wds present can be observed. The curves with P < 1 displayed in figure 6 for different 
temperature intersects. Thus we introduce the filling nA(P) at which two U, against 
n curves intersect which differ only by d T  in the temperature. Thus, by varying 
T + T + dT at filling n < nA( p )  the critical interaction U, decreases, whereas at 
filling n > nA(& an increase of U, takes place (see figure 6). The region n < n A ( P )  
is anomalous because he reniperalure fluctuations favour Ihe CDW phase. h e  filling 
nA(p)  separates between the regions of conventional and anomalous behaviour with 
respect to the temperature. Fbr increasing temperature n A ( p )  decreases so that the 
anomalous region becomes smaller. This will be investigated in appendix A. 

'lb clarify this point we take a specific example with n*,U* as indicated in 
figure 6. For zero temperature this system is in the homogeneous phase. When the 
temperature is increased a phase transition takes place and for p GZ 4 the system is 
in the CDW phase. If the temperature is increased further, p 2 2, the system turns 
to the homogeneous phase again. The latter is to be expected since, for high enough 
temperatures, these fluctuations dominate the system. 

4.3. Finite temperature and finite disorder 
Finally, we have to discuss the situation with finite disorder and Iinite temperature, 
ie.  p # a, 7 f: 0. For this situation we have to extend the definitions of nA(y) and 
nA(p)  to nZ(7) and n i ( p ) ,  respectively. The superscript indicates the parameter 
that is kept constant. In figure 7 U, curves are given for different values of p and 7 
(using equation (20)). For legibility U,n, rather than U, itself, is plotted against n. 
In this way the divergence of Uc for n + 0 is compensated. This has the advantage 
that one can easily detect any intersection since Ucn is bounded. The number of 
intersections, and thus the sequence of the curves for fixed filling, is not affected by 
this type of plot so that conclusions regarding the existence of anomalous behaviour 
can still be drawn. 

Comparison between the figures 5, 6 and 7 shows the following. 
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'b.2 0 4  0.3 0.2 0.1 0.0 00.5 0.4 0.3 0.2 0.1 0.0 ;m .<. ' .. 
2 -  7 = 0.0 

B.5 0.4 os 0.2 0.1 0.0 

-- y = 0.5 1 --- 7 = 1 . 0----- 7 = 5 . 0  

  - n n 
Figure 7, Plols'displaying the global behaviour of he critical interaction. (a) Fixed 
disorder at various temperalum, inteneclions disappear for increasing disorder. @) 
Fixed temperature at various disorder strengths. ?he intersections do not disappear for 
increasing temperature and shift to the right (empty tgnd). 

(i) There exist two particular temperatures T,, and T, (see figures 6 and 7(a)), 
which are defined by the following properties. The phase transition of a given system 
at a temperature T > Ts is conventional. For T < Tsz an anomalous transition is 
the generic case for low fillings. If the system is such that a phase transition occurs 
at T > Tsl then the system displays oniy conventional transitions. In figure 8 T., 
and Ts2 are plotted against the disorder. Note, that general conclusions regarding 
the temperature T < Ts or T < Tsl cannot be drawn. 

2.11 \I 
1.i 

,T 1.o 

--- -. -- ---_ 0.3 

I l .0  . . .. 
0.0 11.2 11.4 1l.G yr 11,s 

Y 
FIgure 8. The temperatures Ts and TD against the disorder, yT is situated where the 
curyes cut the absciua. 
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(ii) There exists a special value of the disorder, yT, characterized by the 

disappearance of the anomalous temperature behaviour (see figure 7(b)). For disorder 
7 2 yT the system shows conventional behaviour at all fillings. In figure 8 yT is the 
value for which Ts, and Ts vanish. 

(iii) There exists no special value of the temperature at which the anomalous 
disorder effect disappears fully (see figure 7(b)). For increasing temperature the 
anomalous region decreases but does not vanish. 

In appendix A a detailed discussion is presented. 

5. Physical picture 

The anomalous behaviour found in the previous section has a very natural explanation 
in terms of particle-density fluctuations. In the simplest situation, p = CO, y = 0, the 
only free parameters are n and U. The competition between the potential and the 
kinetic term in the Hamiltonian (1) allows for a phase transition. It is clear that for 
low U (or for low filling, low Un) the kinetic energy dominates the system so that it 
is in the homogeneous phase. Fbr very high U the potential term dominates, giving 
rise to a m w  in the entire system. Thus there exists (at least) one critical U,. 

At zero temperature, disorder has the following influence. At half filling the 
perfect-nesting singularity disappears because the repulsion must cope with the 
stochastic fluctuation of the site energies. Therefore, U, cannot be zero at half filling. 
Equivalently, disorder ma tes  regions where higher or lower site energies prevail, so 
that the density of electrons differs from half filling in these regions. Hence, a higher 
interaction U, > 0 is needed to induce the phase transition. 

Away from half filling we have the anomalous region n < nA(y). Here the critical 
interaction U, decreases for increasing disorder. The key point is that the regions 
of higher particle density are now closer to half filling. This greatly enhances their 
tendency towards a phase transition greatly. In the regions of lower particle density 
the tendency towards a phase mansition is weakened but they are surrounded by 
regions where a CDW is present or easily formed. These regions produce a symmetry- 
breaking field acting on the surfaces of the regions of lower particle density. The 
resulting ‘proximity’ effect eventually stimulates the phase transition in the whole 
system. 

At zero disorder, finite temperatures act, in principle, similarly since they also 
induce particle density fluctuations which are not present at T = 0 in the ground 
state (eigenstate of the particle number operator). So it is not surprising that the 
same behaviour as for disorder is found. Yet there is an important difference: the 
disorder-induced fluctuations are static whereas the temperature-induced Ructuations 
are dynamic. This difference is expressed in the existence of the sorting temperatures 
Ts, and T,. They provide evidence that the anomalous temperature behaviour is 
suppressed at high temperatures. A corresponding suppression of the anomalous 
disorder behaviour is not observed. 

According to the above discussion the combined regime does not produce 
qualitatively new effects. As long as the fluctuations are weak they push the system 
into the Same direction, hampering the phase transition around half filling and 
favouring it for lower fillings. The difference between temperature and disorder 
is revealed in the strong fluctuation regime; the anomalous temperature behaviour is suppressed by strong (dynamic) particle density fluctuations due to temperature. 
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This effect is enhanced by the presence of (static) disorder fluctuations as can be 
seen from the monotonic decrease of Ts, and Tsz with increasing disorder y (see 
figure 8). In mntrast to this, the regime where anomalous disorder behaviour occurs 
is pushed to lower fillings by high temperature or strong disorder bur nevcr ceases to 
exist. 

6. Critical behaviour of the order parameter 

lb compute the critical behaviour of the order parameter 6 as a function of the 
interaction U, the disorder parameter y and the temperature T,  we use the self- 
consistency equation (15) and expand it to second order in A. This shows that 
in general the critical exponent is i, as can be expected from a mean-field theory. 
Neither disorder nor temperature alter this fact. 

The expansion of (15) yields 

E(n,0)A2 + U(A4) 1 -  I 1 a2 - = C(n ,A)  = - + -- U U, 2 a A 2  

The important point is the derivation at consfanf n, which is indicated by the argument 
of the function F ( n , A )  which is the inverse of the right-hand side of (15b). Let 
C ( p , A )  be the corresponding function of p and n ( g , A ) ,  i.e. the function for the 
particle number at given chemical potential. Both C ( p , A )  and E ( n , A )  depend 
only on the modulus of A. The sign of A is of no importance in (156). Then 
8' C( - n, 0) is given by 

In order to calculate the quantities introduced above we have to know the Green 
function gL(z ,A)  up to third order in A, where z is a complex energy. The 
derivatives of gL( z ,  A )  at A = 0 can be calculated by repeated derivation of (14) and 
the use of gL(z,A) = gu(z,-A).  This task is straightforward. The intermediate 
steps are given in appendix B. 

For the following it is important to h o w  that &E(n,O) exists. It is negative, 
which is necessary for the expansion to be meaningful. The only exception is half 
filling ( p  = 0), zero disorder (y = 0). and zero temperature (T = 0). In this 
case &E(n,O) diverges and the expansion (23) breaks down. This case will be 
investigated separately in the following section. 

6.1. Critical interaction 
For finite U,, which is the generic case, equation (23) or equivalently 
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Figure 9. Order parameter b(p,yo)  against Figure 10. Order parameter b ( p 0 . y )  against 
lemperalure T at k e d  disorder 70 = 0.01 and disorder fi at hxed temperalure Po = 100 
filling n = 0.45 tor different values of the and filling n = 0.45 for different values of the 
interaction U (a) U > U,(m,yo); @) U = interaaion U (a) U > U,[Po,O); @) U = 
Udmrrdl  (c) U < Udm,ro) .  W P O , O ) ,  (4 U < UC(P0,O). 

So b, as a function of the next-neighbour interaction U, has the critical exponent 
in infinite dimensions. The only exception to this result occurs for U, = 0 at zero 
temperature, m o  disorder and half Nling, i.e. p = 0. In this case we resort to (15) 
and (17): 

which yields A = (UA/r)[-ln(A/S) - 4 in the regime of small A. In this case we 
obtain for the critical behaviour 

b =  - e ~ p ( - ~ - l )  8 T 

U 
This is the generic result for Uc = 0 in HartreeFock theory as is shown in a general 
framework by Uhng et a1 [33]. 
6.2 Critical temperatures 
We now address the critical behaviour of the order parameter b(P,  7") as a function 
of the temperature T at k e d  disorder yw Our numerical work shows that there 
are three types of global behaviour of b(@,yu) at constant Nling (see figure 9). 
Curve (c) in figure 9 has two critical temperatures: one is conventional (TN) because 
b(P ,y")  = 0 for T 3 TN and the other is anomalous because b ( @ , y o )  = 0 
for T < TA. The necessary but not sufficient condition for this phenomenon 
is U < Uc(03,yo). Curve (a) in figure 9 shows only one conventional critical 
temperature; the curve is characterized by U > U,(oo,y,). Curve @) in figure 9 
marks the transition between curve (a) and (c) in the =me figure for U = Uc(co, 7"). 
Since all functions on the right-hand side of (25) are differentiable in the temperature 
at finite temperature, we have A a for TA > 0. Only 
in curve @) of figure 9 for TA = 0 we obtain a linear behaviour A a T because the 
low temperature expansion of l /Uc contains only even powers of T. 

and A a 
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'Ib conclude the discussion of the anomalous temperature dependence we state a 
necessary condition for its occurrence 

This can be deduced from a/a(T2)1,,,[U~]-'(.,7u) > 0. At first sight (29) is 
only valid at p = 00, i.e. for curve @) in figure 9. But (29) can be extended to 
general temperatures since curves @) and (c) in figure 9 differ only in their value 
of U. In other words: to each curve of type (c) corresponds one of type @). This 
statcment is true taking for granted that there are no curves with three or more 
critical temperatures, which is supported by our numerical calculations. 

Condition (29) is also the sufficient condition for the Occurrence of anomalous 
temperature dependence when we permit to choose the value of the interaction U 
suitably, i.e. U < Uc(03,yu) but not too small either. Otherwise no region of 
finite-order parameter will be found. Furthermore, condition (29) tells us that there 
b a special value of disorder yT = 1/fi above which no anomalous temperature 
dependence is possible because (29) can no longer be fulfilled. This phenomenon has 
already been found in section 4.3. 

63. Critical disorders 
The discussion of b( & , y ) ,  for constant temperature, is quite analogous to that of 
b ( P , y , ) .  It is appropriate to stress the similarity by focusing on b(Pu,y) against 
Jri rather than on b(P,,r) against y because f i  is an energy as is T. The three 
generic types of curves b(@,,,-y) at constant filling are shown in figure 10. Curve (a) 
in figure 10 with U > V,(p,,O) displays one conventional critical disorder yc; curve 
(e) in figure 10 with U < U,(p,,O) has two critical disorder values one of which 
is conventional, the other anomalous: yc > y,,. Curve @) in figure 10 marks the 
special case U = Uc(pu,O). For the conventional critical disorders we again find 
b x and for the anomalous disorder rA > 0 we have b a m. For 
curve (c) in figure 10 with yA = 0 we obtain b 0: f i  which stresses the similarity 
between J" and the temperature T as stated at the beginning of this section. All 
these statements follow from the differentiability of l/Uc(Pu,y) for Uc # 0 given 
equation (U). 

As in the previous section a necessary and sulfcient condition for the occurrence 
of anomalous behaviour can be given as 

This is, however, more complicated to evaluate and we do not give its explicit form. 
In analogy with the argument in section 6.2, the infinitesimal validity of (30) is globally 
extended by the fact that to each curve of type (c) corresponds a curve of type @) in 
figure 10. This observation makes (30) even a sufficient condition for the appearance 
of anomalous behaviour at certain values of the interaction U. 

After pointing out the similarities between temperature and disorder one 
important difference must be emphasized. Whereas there exists a certain disorder 
yT above which any temperature anomaly ceases to exist there is no temperature 
above which the disorder anomaly will vanish for all fillings. This is shown by the 
high-temperature expansion of the divergence strength in appendix A. 
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7. Discussion 

In this paper we have obtained the exact solution for a model of spinless fermions 
with nearest neighbour interaction and local disorder on a Bethe lattice with infinite 
coordination number. An essential aspect of this solution is the decomposition of the 
self-energy into two separate parts. We have shown, at least in this explicit example, 
that the limit of large coordination numbers 2 -03 makes possible the formulation 
of a self-consistent mean-field theory for interacting disordered fermions. 

We chose to work on a Bethe lattice for mathematical convenience. Our method 
is equally applicable to any lattice which can be generalized to infinite coordination 
numbers. The Bethe lattice is bipartite, as is the hypercubic lattice. For the one- 
particle properties only, the local surrounding of a given site is of importance so that 
their differences on the hypercubic and on the Bethe lattice are only quantitative. 
Moreover, in the limit 2-00 the Bethe lattice has the advantage that its bandwidth 
remains finite whereas in the hypercubic case the bandwidth diverges. In spite of 
these greatly simplifying features the phase diagram was found to have a significant 
unusual structure. 

In the model of spinless fermions the homogeneous phase becomes unstable at 
a critical interaction and a phase transition occurs. We extensively discussed the 
dependence of this transition on the external parameters, ie. interaction strength, 
disorder, temperature and filling. Our main findings are the following. 

(i) The perfect-nesting singularity is suppressed by disorder and/or temperature. 
(ii) The system shows anomalous behaviour away from half filling, i.e. the 

tendency towards spontaneous symmetry breaking is enhanced by weak disorder 
andlor low temperature. 

The above phenomena can be explained in terms of static (for disorder) and 
dynamic (for temperature) particle-density fluctuations. They drive the system away 
from half filling in the former case and bring it closer to half filling in the latter. 

Although the model of spinless fermions is considerably simpler than the Hubbard 
model, there do exist qualitative similarities between the features of our exact solution 
for 2-03 and those of approximate treatments of the Hubbard model. For example, 
using a t * / U  expansion Khomskii 1341 finds an anomalous temperature behaviour 
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regarding the antiferromagnetic phase away from half filling. At half filling the 
corresponding order parameter decreases with increasing temperature. In the same 
limit Zimanyi and Abraham 1111 noted that the Mott insulating region around half 
fdling is widened by the effect of disorder on the interaction and that the critical 
temperature T, may he increased by disorder. Lee and Ramakrishnan argue that 
disorder enhances the effects of the interaction because it renders the electron motion 
diffusive 111. Our model gives a possibility to study the disorder-induced enhancement 
quantitatively and in a controlled approximation. 

The present treatment can be extended in several directions. While the use of the 
Bethe lattice in combination with infinite branching has proved to be very useful for 
the calculation of one-particle properties, it is not adequate for the description of hvo- 
particle properties such as mnsport coefficients and requires a suitable generalization. 
This problem and its possible solution will be the subject of subsequent publication 
in which the role of diffusive motion as proposed by Lee and Ramakrishnan [l] will 
also be investigated. 

Since the mean-field theory is controlled by the small expansion parameter 
1/Z it can be extended by including self-consistent 1/Z corrections. The effects 
of quantum mechanical fluctuations on the phase transition, the phenomenon of 
Anderson localization and the influence of interaction on it, and so on, should then 
be accessible. As a first step, however, the separate problems, i.e. disorder cf 
interaction, must be solved with 1/Z corrections. 
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Appendix A. 

In this appendix we discuss the temperatures T.,, TS2, the disorder yT and the fillings 
ni(r), nz(p) ,  introduced in section 4.3. AI1 critical interaction curves in figure 5 
and figure 6 diverge at the empty band limit with Uc cx n-l. This can he seen from 
equation-(ZO). Evpansion of n ( P , y )  and [U,(p,y)]-' at the appropriate p gives the 
Same leading coefficient. 

From figure 7 we learn that, for increasing temperature and/or disorder, nf,(y) 
and n:(p) approach zero. The quantities psl = T;', pS2 = Tgl and yT are 
therefore determined by the behaviour of the system at low Illling. This observation 
makes it possible to expand (20) around p = - 2 m  for p = m and around 
p -+ -m for p < 00. Since Uc cx n-I it is helpful to introduce the 'divergence 
coefficient' F ( P , y )  as: 

F W - 0  = @ , - / ) U c ( P , ~ ) .  (AV 
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This quantity is plotted in figure 7. Asymptotic expansion gives 

F(P,r )  = P/(Y t 1)3/21~1 t :[W - ~ ~ ~ ~ I P - ~  t O ( P - ~ ) I  
(1 /~ ) [1+  +02 + &p4(1 - w t ~ ( ~ 9 1  

P - CO 

p + 0. 
(A2) 

{ 
Expansion at zero temperature gives F ( c o , y )  = 2(y+ ly3/' which is in accordance 
with (A2). In figure 11 F ( p , y )  is plotted against p for several values of the 
disorder. It is important to recognize that the curves in figure 11 do not intersect. 
For temperatures 1 < P < 10 this is seen directly from figure 11; for high 
temperatures, we obtain from (A2) gIp,o = -&p3 < 0 and for low/zero 
temperatures glB-m = -3(y t < 0.  his implies that, in the limit of 
low filling %I,-" < 0, whereas > 0. Thus there must be at least one 
intersection between each Uc(p , -y l )  and Uc(P,y2) where y1 # y2, and so there 
exists no temperature analog to yT. This is valid at all temperatures. 

From figure 11 one can also extract information regarding PSI and ps2. Both are 
indicated (figure 11) for zero disorder, and can be found from F ( & ,  y) = F(co, y) 
and $$(&,y) = 0, respectively. This leads to 

) Jm exp(-ps,w) = o Y t 1 [(y - l )wz  - 47*] -4w 2m 

l*mdw(\I-(y_ 1)wz-4yz 

from which ps, can be extracted and 

w d4(y + 1) - U 2  

( Y  - 1)wZ - 472 X exp( -&U) = 0 

from which ps2 can be determined. Here I, and f, are Bessel functions [32]. 
It remains to calculate yT, the disorder strength above which the anomalous 

temperature behaviour ceases to exist. This is the case when ps2 + CO. Thus yT is 
defined as 

Tb find the corresponding disorder we make use of (A2) and fmd yT = 
same result can be obtained for general filling as shown in section 6.2. 

The 

Appendix B. 

Tb find the critical behaviour of the order parameter in section 6 the derivatives of the 
Green function gL must be calculated. Here we give the results for the corresponding 
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where w E [ - 2 - , 2 m ] .  The superscript (n) stands for the nth derivative 
with respect to A. The densities of (BI) have to be integrated to give the functions 
which enter in (24). ’Ib this end we define 

for /.? = CO are given. 

completeness we also state the explicit forms of I @ ) ( p )  and R ( 3 ) ( p ) :  
The factor f in the last equation arises from the Thylor series expansion. For 



h := \/I1 - y1(4(1+ Y )  - pZ). (B5b) 

In principle (B3) also provides the necessary information for the calculation of 
the corresponding functions at finite temperature. TO obtain finite-temperature results 
the right-hand sides of (B3) have to be convoluted with the temperature peak, ie. 
the negative derivative of the Fermi function. Thus it is not straightforward to obtain 
&E(n,O) at finite temperatures since several convolutions are involved. Yet it is 
easy to compute & E ( ~ , o )  at zero temperature (p = w): 

and for y = 1 we find 

(1+3/12)  . a2 - (8- p2)3/2 

240n -C(n,O) = - aA2 

Note the divergence of &e(n,O) at p = 0,y = 0 and T = 0. The sign of 
&E(n,O) is important: it should be negative for the expansion to be meaningful. 
Fbr y = 1 this is clear from (B7). For the other values of disorder y 2 0 and 
chemical potential p E ( - 2 m , 2 J f T ; i )  at zero temperature t h i s a n  be shown 
rigorously by using the inequalities 

For finite temperatures we verified numerically that &e(n,O) has the mrrect sign 
and does not vanish. 
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