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We propose a new variational wave function for the periodic Anderson model in the
case of antiferromagnetically ordered f-electrons. Expectation values in terms of this
wave function can be calculated analytically in arbitrary dimensions d. The wave func-
tion automatically produces the exact limiting behavior of the ground state energy for
weak hybridization and strong f- electron interaction in the symmetric case, which the
Gutzwiller wave function fails to do. Several additional improvements are discussed.
Thereby one obtains a wave function that leads to extremely good ground state energies
for the periodic Anderson model for arbitrary U in all dimensions d.

1. Introduction

The physics of heavy-electron systems comprises many of the fundamental corre-
lation-induced coherence phenomena known in condensed matter physics, such as
magnetic order, superconductivity, Kondo effect, etc.! A comprehensive understand-
ing of the origin of this fascinating wealth of physical properties not only requires
a detailed theoretical understanding of each one of these phenomena, but also of
their mutual influence. It is therefore not surprising that, in spite of intensive in-
vestigations over the last decade, many aspects are not yet adequately understood.

The simplest microscopic model describing essential features of heavy electron
systems is the periodic Anderson model (PAM)

f[PAM = Eeﬁﬁfw + 26{‘&{, + UE ﬁ{Tﬁ{l - Z Vk(fl-:v él(cv + é;-a fkﬂ) . (1)
ko ko i ko

It consists of strongly correlated, almost localized f-electrons ( f'-operators) which
are hybridized via the matrix Vi with a band of noninteracting conduction electrons
(¢-operators) with energy dispersion ¢f. In (1) the index k refers to momentum
(Rg, = é:—o ko) and i to lattice sites (fi], = f}t fi,) The interaction between the f-
electrons is modelled by a Hubbard interaction U. For generality we have included
in (1) a dispersion &f to allow for a (small} kinetic energy of the f-electrons. In
the literature the f-electrons are usually considered to be localized (U — o0), such
that e{ = E; = const, and Vi = V is chosen as constant, too.
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In our paper we will address the U, V dependence of the ground state energy
Epam of (1) for total electron density n = 2, using perturbational and variational
methods. In particular, we will first point out a peculiar deficiency of the Gutzwiller
wave function for the PAM,%3 namely that the corresponding ground state energy
is systematically too high. We will then present a new type of correlated variational
wave functions in terms of which expectation values can be evaluated ezactly in any
dimensiond =1, 2, ..., 0o, and which at the same time yields the exact asymptotic
behavior at small V and large U for all d in the symmetric case.

2. Gutzwiller Wave Function for the PAM

In the non-interacting case (U = 0) the ground state wave function for (1) has the
form

| ¥pam(U = 0)) = [¥pamo) = [] [1 + ok, £, k0] | cFS) (2)
ko

where oWk

ag, = = (3a)
e —eg + \/(s; —ef)? + 412
and
|cFs) = [ &, 10) (3b)
k,o
txler

is the Fermi sea of the conduction electrons, when all f-levels are unoccupied.

As first pointed out by Rice and Ueda? and Brandow? a correlated wave function
for the PAM in the presence of interactions between the f-electrons may now be
constructed in exact analogy with the Gutzwiller wave function for the Hubbard
model.*® Namely, a correlation operator parametrizing the f-electron on-site inter-
action is used as a project or acting on (2) to reduce the number of doubly occupied
sites; this yields

| ¥pam(U)) = ¢ |¥pam,o) (4)

where 0 < ¢ < 1 is a variational parameter and D/ = ¥, ﬁ{T ﬁi!l is the number
operator of double f-occupancy. The choice of wave function is also inspired by
the wave functions used in the investigations of the single-impurity model.5” Since
the number of f-electrons is not conserved, the suppression of double occupancy
would favor the transfer of f-electrons into the conduction band, thus changing the
effective hybridization. Therefore not only g, but also the function af, in | ¥,), is
used as a variational quantity to optimize | ¥pam ), (4).

Within the Gutzwiller approximation? (corresponding to a semi-classical count-
ing of spin configurations,® which becomes exactly in the limit of high dimensions®!
d — o) the ground state energy of Hpawm in terms of (4) is found as%12-14

Gutz
E—PI':M=—%+€Q—-2exp (—E%) (5)
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where L is the number of lattice sites of the system. In (5) Vy =V = const, e{ =

E; = const and the symmetric case (E; = —U/2) with n = 2 has been assumed.
Furthermore ¢f was chosen to be linear, with —1 < ¢f < 1, such that the average

energy of the conduction electrons in the uncorrelated state, g = (2/L) E<o €5
eg<

is given by €5 = —1/2. The appearance of a non-analytic term in the ground
state energy, i.e. of a binding energy having a Kondo form as in the single-site
Kondo problem,!® is remarkable. (In fact, the exponent differs by a factor 2 from
the single site exponent; the appearance of this factor!® has been shown to be a
genuine lattice effect'”). The result in (5), based on the Gutzwiller approximation,
can also be derived by the ezact evaluation of the ground state energy of the PAM
in terms of (4) in the limit d — o00;'%11:18 Other quantities, e.g. the momentum
distribution and correlation functions, can be calculated analytically, too, in d = 0o
using the wave function. The limit d = co may even be used to obtain information
about the corresponding results for finife dimensions d (note that explicit analytic
evaluations are no longer tractable in d < 0o). Indeed, we have recently shown%2°
that, by evaluating the d = oo results with the d-dimensional density of states of
the non-interacting system, one can obtain numerically correct results for the above
quantities in the case of finite dimensions d. This even includes d = 1, where explicit
comparison with variational Monte Carlo data®! is possible. A similar conclusion
was reached by Shiba and Fazekas?? on the basis of their variational results for the
ground state energy of the Kondo lattice in d = 1. According to these authors, the
fact that the d = oo result obtained with (4) yields good results even in d = 1 is,
at least in part, due to an approximation cancellation between an overestimation
of the exchange energy and an underestimation of the conduction band energy at
large U.

Sofar we have only shown that the d-dimensional ground state properties of
the PAM, when calculated in terms of the wave functions (4), can be determined
accurately down to d = 1 by employing the limits d = co. This does not address
the point of how good the results obtained with (4) are in absolute terms, i.e. in
comparison with the ezact ground state wave function. In Fig. 1 the ground state
energy of the PAM in d = 1 measured relative to E; = —%, as obtained by means of
the wave function (4), is shown (short-dashed line). It is compared with the results
from numerical (Monte Carlo) calculations of Blankenbecler et al.2® Obviously the
wave function (4) yields good results only for low U, while at large U the energy
is much higher than the exact result. The origin for this discrepancy at large U is
easily found: it is mainly due to the absence of the (negative!) contribution to the
energy from the second order perturbation theory in the hybridization V. Indeed,
in the symmetric case and for large U perturbation theory in V yields?3:19.22
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Egat U 2v2 1 s
M =S tea-7 Zy_+€c+0(V) (6a)
k 2 k
g >0
U 2v?
=—5+€0—T, U>|€o|- (6b)

This result does not depend on the explicit configuration of f-electrons when
double occupancy is excluded. In fact, the term o« —V?/U is even present for a
single f-spin and hence is not specific for the periodic model. Hence the second
order shift in (6a) does not contain any information about the magnetic state of the
system — this only comes in at higher order, i.e. V*/U?2.2425 The same conclusion
was reached by Shiba and Fazekas,?? who showed that the second order contribution
is automatically generated by a Schrieffer—Wolff transformation that leads from (1)
to an effective Hamiltonian (the Kondo lattice with antiferromagnetic coupling).

The overall features of the result for the ground state energy of the PAM as
obtained with the Gutzwiller-type wave function (4) are almost identical to those
observed in the case of the Hubbard model.® Since the wave function introduces
correlation into the non-interacting state, the energy comes out very well for weak
interactions (U < 3.2¢), but starts to deviate at larger values of U, where the wave
function is no longer controlled by some exact limit. In both cases non-analytic
contributions are obtained for large U. The fact that the wave function (4) for the
PAM does not yield the second order shift o« —V2/U (which is energetically im-
portant, but conceptually rather trivial) and only leads to a non-analytically small,
Kondo-like energy contribution {which is energetically unimportant, but conceptu-
ally significant) raises the question about the reliability of this wave function. In
particular, it is not clear whether the exponentially small energy shift in (5) is a
genuine feature of the finite-dimensional lattice model (PAM) at all, or whether
it is simply an artefact of the wave function (4), i.e. is a residual feature of the
single-impurity model on which the construction of this wave function is based. In
spite of some rather indirect indications supporting the Gutzwiller results,?® this is
still an open question at present.

3. The New Variational Wave Function

We will now present a new type of variational wave function which has two es-
sential advantages over the Gutzwiller-type wave function (4): (i) evaluations can
be performed analytically in arbitrary dimensions d and for arbitrary dispersions
€5, 5{, Vi and (ii) the second order shift o« —V2/U in the ground state energy
is correctly obtained in every dimension. In contrast to (4) the correlations will
be mainly incorporated into the starting wave function, while the hybridization is
introduced variationally be means of an operator. QOur discussion will be limited to
the symmetric case with Ey = —U/2 at half filling (n = 2,i.e. ny =n. = 1) on an
A-B lattice with an antiferromagnetically ordered state of f-electrons. Indeed we



New Variational Approach to the Periodic Anderson Model . . . 1381

know from experiment! that there exist heavy fermion systems, e.g. YbP, UZn,7,
UCd;,, UCus, which exhibit antiferromagnetic order in the ground state. In these
systems we do not expect Kondo-like exponential terms of the type discussed in the
last section to be relevant. The variational wave function proposed by us has the
form

|‘I’)=C"i‘fo) (7a)
where the starting wave function | ¥; )
| ¥o) = [cFS) ® |Neél) (7b)

is a product state of a Fermi sea of conduction electrons (n. = 1) and a Neél state
of localized f-electrons

INedl) = [T [#, +ofitiq0ll0) - ®
%0
Here Q = (=, 7, ..., 7) is half a reciprocal lattice vector and £§ + & q = 0. The
correlator C
C = exp (sZ [, teo + 6, fk,]) 9)
ko

introduces the hybridization. The variational parameter s regulates the strength of
hybridization between ¢- and f-electrons and is determined by the minimum of the
ground state energy. The correlator (9) can be rewritten as

[ II2 —S"‘ (£, o + L, fio) ] (10a)

m—O

= H [1 + (f:o beo +8f, f'k,) sinh s + (ﬁ{, — ﬁfw)z(cosh s— 1)] . (10b)
ko

Both € and the starting wave function | W) in (7) are given by products over k.
Hence the (normalized) variational wave function can be written as a product wave
function in k-space.

o) = H &, fit, + o(sinh sf}, + cosh sé},) ( cosh sfk+Qa + sinh sck+Qa)

ko v1i+ cosh® 2s 10

€g <0
(11)
This feature is in essential contrast to the Gutzwiller-type functions (cf. (4)); it will
enable us to evaluate expectation values in terms of |¥) analytically in arbitrary
dimensions d. For example, the momentum distribution of the f- and c-electrons
are obtained as (D(s): = 1+ cosh? 2s)

(il Y= { (1 + sinh® s cosh 25)/D(s) e <0
ko cosh? s cosh 25/ D(s) , eg >0

(12a)



1382 R. Sirack & D. Vollhardt

1 + cosh? ;
Ae) = { ( +2cos scosh 2s)/D(s) 51: <0 (120)
sinh” s cosh 25/ D(s) , e >0
(fkt éxo ) =sinh4s/4D(s), all k. (12¢)

Hence the f- and c-electron distributions are step functions with a discontinuity
at k = Q/2. Note that the f-distribution increases at k = Q/2, while the c-
distribution decreases. Furthermore, the double occupancy of f-eletrons is found
as

o 1 " " oa N
(D7) = 7 D (flvar frr gy fuey) (13a)
kk'q
1 coshs
=t [Z - [D_<s)12] ' (13b)
The results are valid in arbitrary dimensions d. For el =B, =-Y and Vi =V =
k ! 2

const. the ground state energy of (1) is obtained as

Epam _ 2¢0 cosh? s — Vsinh4s : [1 cosh? s ] (14)

L 1+ cosh®2s 4 (1 + cosh? 25)2

Since small U corresponds to small &, the energy (14) is found in this limit as

Epam _ U U 2
T _—2+eo-2Vs+(2 eo)a (15)
which after minimization with respect to s yields
Epam _ U Vv
17 —-—2+€o %—6‘0. (16)

Comparing (16) with the result from perturbation theory, (6a, b), shows that for
U » leo| the variational wave function (11) indeed leads to the exact asymptotic
result for the ground state energy, including the correct second order shift, in all
dimensions. This was to be expected since (16) is a result of the starting wave
function | Wo ) in (11) alone, where the f-electrons have no double occupancy (the
antiferromagnetic order is unimportant here; see Sec. 2). The U-dependence of
the ground state energy relative to E; as obtained from (14) is also shown in
Fig. 1 (full line). For large U the result is seen to coincide with the exact result
obtained numerically.?® Deviations only occur for U $3.2t, i.e. outside the range of
parameters for which the PAM was originally constructed.

4. Improvement of the New Variational Wave Function

Since | ¥) in (11) is a product wave function in k-space, improvements can easily
be incorporated provided the product form is maintained. This is the case when
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Fig. 1. Ground state energy F of the one-dimensional periodic Anderson model relative to the
f-level E; = — U/2 as a function of U; here £; = —2tcos k. The results obtained with the new wave
function, (7), (full ine) and the improved version (see text; long-dashed line) are compared with
those from the Gutzwiller wave function, (4) (short-dashed line) and exact Monte-Carlo results.?

additional, purely k dependent variational functions are introduced into | ¥ ). Below
we describe three possible improvements. Firstly, the starting wave function | ¥, ),
(7b), may be refined by replacing the rigid Neél state for the f-electrons by a
Hartree-Fock wave function with antiferromagnetic long range order (“spin density

wave” (SDW)):

| Neél) — |SDW ) = H (mcft, + aka:+qa)|0) . (17a)
kr
:;go

Secondly, the correlator € in (9) may be improved by allowing for a k-dependence
of the variational parameter s:

C— ¢ =exp (Esk [f:’aéka + é;’afk,]> ; (17b)
ko

For uy = vy = s, = 1 the wave function |¥) in (11) is reproduced. Thirdly, one
may introduce an additional correlator C;

Ci=exp (Eékﬁ{w) (17¢)

ko
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which influences the hopping processes (“kinetic energy”) of the f-electrons, with
£x as a new k-dependent variational function. The improved wave function then
takes the form

|¥) =C,C'|cFS) ® |[SDW) . (18a)
After normalization, we obtain
- 1 . ~ _ N
v = exuy &t ft 4 ouv {efx sinh sy fT + cosh s éF
18)= T { g b el i+ ome(e sinhow £+ conhnc)
e <0
x (efx+a 008h8k+Qf1-:+Qa +sinhsk+qé:'+qo)]} [0) (18b)

where
Ny = e%x u;‘:+v£ (e”“ sinh? sy +cosh? sk) (eﬁnq cosh? 5x4+Q +sinh? sk+q) . (18¢)

Here &y, sk and uy, vy with uZ + v = 1 enter as variational functions. All expec-
tation values in terms of | ¥ ), e.g. of the momentum distributions and the double
occupancy (cf. (12), (13)), can be calculated analytically.!® It is interesting to note
that — even without the improvements (17a), (17b) — the action of the new cor-
relator €y, (17c), on |¥) in (11) guarantees the correct low-U dependence of the
ground state energy of the PAM. This may be seen by taking the limit uy = v, = 1,
8y = 5 — oo in (18b), whereby

- é++e¢-kf+
W - ke L~ Jkoigy 19
¥) = - T =m1o) (19)

Except for an unimportant phase factor this is identical with | ¥pam o), (2), i.e. the
exact ground state wave function of the PAM for U = 0, with exp(éx) = aj,. Hence
the energy calculated with | %) will not only yield the large U-behavior correctly
but will even produce the correct linear term in U for small U. This behavior is
shown in Fig. 1, where the long-dashed line represents the ground state energy for
the PAM, (1), as obtained with | ¥ ) in the case Vx =V, e{ = Ep = -U/2, for the
special choice ux = vx = 1, 8x = 5 and

2Vr
S T

The parametrization in (20) is inspired by the form of a),, (3a); this leaves us
with only two variational parameters (r and s) in the ground state energy, which,
after minimization, leads to the curve shown in Fig. 1 (long-dashed line). There
remains a deviation in the intermediate regime where U ~ 2t. However, this part
in parameter space can be controlled by a final improvement of the wave function,
obtained by applying the Guizwiller correlator to I\i' ):

exp(£k) = (20)

| Woptim. ) = g2 | ¥) . (21)
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This wave function will always be better than the Gutzwiller-type wave function (4)
(which leads to the correct low-U behavior (short-dashed line) up to U/t $3.2) and
the new wave function | %) (which gives the correct large-U behavior (long-dashed
line) for U/t 2 3.2). From Fig. 1 it is therefore clear that | ¥otim. ), containing only
three k-independent variational parameters g, r, and s, will be an outstandingly
good wave function (at least with respect to the energy) for the PAM. Due to the
Gutzwiller correlator it is no longer analytically tractable. Evaluation should there-
fore employ variational Monte Carlo techniques. For arbitrary parameters Vi, 6,{
the variational functions sy, ux, vk, £k must be parametrized by functions contain-

ing (few) k-independent variational parameters since otherwise the minimization
d
cannot be performed. In the case of e{ = E; = 2t' ) cosk, the choice of a simple

n=1l
Hartree—Fock form for uy, vk

with

0,, = .
Vel - Ep? + A2

will be sufficient to obtain very good results for the ground state energy of the PAM
for all values of U in all dimensions d.

5. Discussion

We have presented a new type of variational wave function for the periodic Ander-
son model. It applies to the symmetric case (E; = —U/2) with n = 2 and assumes
that anti-ferromagnetic long-range order of the f-electrons as is the case in some
heavy fermion systems, such as UCus, U3Zn7 etc. In contrast to the conventional
Gutzwiller-type wave function the correlation of f-electrons is already mainly con-
tained in the starting wave function and it is the hybridization between c- and
f-electrons that is introduced by a variational procedure. This wave function has
the advantage of being a product state in k-space, which thereby allows for explicit
analytic work in arbitrary dimensions d. Besides that it automatically leads to the
correct contribution from second order perturbation theory in the hybridization V,
o« —V?2/U for large U, which is systematically missing in the Gutzwiller approach.,
We have outlined further improvements of this wave function. In particular, the
correct behavior of the energy at low U is then obtained, too. Application of an
additional Gutzwiller projector for the f-electrons therefore provides one with a
variational wave function that leads to excellent exact upper bounds for the ground
state energies for the periodic Anderson model at arbitrary U in any dimension d.
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